JP4381390B2 - Vacuum processing equipment - Google Patents

Vacuum processing equipment Download PDF

Info

Publication number
JP4381390B2
JP4381390B2 JP2006113413A JP2006113413A JP4381390B2 JP 4381390 B2 JP4381390 B2 JP 4381390B2 JP 2006113413 A JP2006113413 A JP 2006113413A JP 2006113413 A JP2006113413 A JP 2006113413A JP 4381390 B2 JP4381390 B2 JP 4381390B2
Authority
JP
Japan
Prior art keywords
substrate
plate member
thickness
vacuum processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006113413A
Other languages
Japanese (ja)
Other versions
JP2006222450A (en
Inventor
英四郎 笹川
茂一 上野
栄一郎 大坪
啓介 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006113413A priority Critical patent/JP4381390B2/en
Publication of JP2006222450A publication Critical patent/JP2006222450A/en
Application granted granted Critical
Publication of JP4381390B2 publication Critical patent/JP4381390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、例えば、プラズマCVD装置、スパッタリング装置、ドライエッチング装置などの真空状態にて基板に製膜などのプラズマ処理を施す真空処理装置に関する。   The present invention relates to a vacuum processing apparatus that performs plasma processing such as film formation on a substrate in a vacuum state such as a plasma CVD apparatus, a sputtering apparatus, and a dry etching apparatus.

従来より、シリコン太陽電池等の半導体を製造する際に、その製膜処理を行う装置としてプラズマCVD装置、スパッタリング装置(共に真空処理装置)などが用いられている。なお、ここでは、その代表例として図7に示されるプラズマを用いたプラズマCVD装置10を例に挙げて説明する。
このプラズマCVD装置10は、図示しない真空ポンプによって真空状態にまで減圧される製膜室(処理室)を形成する図示しない真空チャンバの略中央に、ラダー電極13が両側面に設けられた製膜ユニット11を有しており、この製膜ユニット11の両側面側にヒータカバー15(台座)を介して基板加熱ヒータ16が設けられている。
Conventionally, when a semiconductor such as a silicon solar cell is manufactured, a plasma CVD apparatus, a sputtering apparatus (both vacuum processing apparatuses) and the like are used as apparatuses for performing the film forming process. Here, the plasma CVD apparatus 10 using the plasma shown in FIG. 7 will be described as an example as a representative example.
The plasma CVD apparatus 10 is a film forming system in which a ladder electrode 13 is provided on both side surfaces in the approximate center of a vacuum chamber (not shown) that forms a film forming chamber (processing chamber) that is decompressed to a vacuum state by a vacuum pump (not shown). A substrate heater 16 is provided on both sides of the film forming unit 11 via a heater cover 15 (pedestal).

このプラズマCVD装置10では、真空チャンバ内が減圧された真空状態にてSiHからなる原料ガスを含む処理原料ガスである製膜ガスが送り込まれる。
そして、ラダー電極13に高周波電力が供給されると真空チャンバ内にてプラズマが発生し、ヒータカバー15上に設置されて基板加熱ヒータ16により加熱された基板Kにアモルファスシリコン等の製膜が施されるようになっている。
In this plasma CVD apparatus 10, a film forming gas that is a processing source gas including a source gas made of SiH 4 is sent in a vacuum state in which the vacuum chamber is decompressed.
When high frequency power is supplied to the ladder electrode 13, plasma is generated in the vacuum chamber, and a film such as amorphous silicon is formed on the substrate K placed on the heater cover 15 and heated by the substrate heater 16. It has come to be.

基板Kは基板ヒータカバー15に着座して固定されることになるが、基板Kをヒータカバー15に固定する手段として、従来より図8にも示すような基板保持部材20がプラズマCVD装置10に設けられている。
この基板保持部材20は、基板Kの周囲(縁部)を押さえることで、基板Kとヒータカバー15との密着状態を良好に保ちつつ、ヒータカバー15や、製膜処理を施さないヒータカバー15と面する基板の表面などに製膜における膜を付着させないような役目を担っている。
Although the substrate K is seated and fixed on the substrate heater cover 15, as a means for fixing the substrate K to the heater cover 15, a substrate holding member 20 as shown in FIG. Is provided.
The substrate holding member 20 holds the substrate K and the heater cover 15 in a good contact state by pressing the periphery (edge) of the substrate K, while maintaining the contact state between the substrate K and the heater cover 15 in a good state. It plays a role of preventing the film in the film formation from adhering to the surface of the substrate facing the surface.

さて、上述した基板保持部材20の下部を拡大した図8に示すように、基板保持部材20は基板Kを確実に押さえる必要性から、基板厚みtの約2倍の厚さ寸法2tを有して形成されている。例えば、基板Kの大きさが各辺で1mを超えるような大面積型の基板Kであると基板厚みが3〜4mm程度とされるが、このような大面積で重い基板Kを押さえるためには、基板保持部材20の厚みを基板厚みの約2倍の8mm程度とすることが好適であると考えられていた。   Now, as shown in FIG. 8 in which the lower part of the substrate holding member 20 is enlarged, the substrate holding member 20 has a thickness dimension 2t that is about twice the substrate thickness t because it is necessary to hold the substrate K securely. Is formed. For example, if the substrate K is a large area type substrate K having a size exceeding 1 m on each side, the substrate thickness is about 3 to 4 mm. It has been considered that the thickness of the substrate holding member 20 is preferably about 8 mm, which is about twice the substrate thickness.

より詳細に基板保持部材20の形状を説明すると、実質的に基板Kの周囲を押さえるために必要とされる厚みは、材質等を考慮した上で基板厚みと同等な厚みが妥当であるとされていた。これによって、上記の例を考慮すると、基板Kを直接押さえる部分の厚みに基板厚みの4mm分を加算した厚さ8mmの基板保持部材20がヒータカバー15の上面に配置されることになり、8mmの板厚のうち半分が削り込まれた段付き部分Sに基板Kが押さえられていた。   The shape of the substrate holding member 20 will be described in more detail. The thickness required to substantially hold the periphery of the substrate K is considered to be appropriate to the thickness equivalent to the substrate thickness in consideration of the material and the like. It was. Accordingly, considering the above example, the substrate holding member 20 having a thickness of 8 mm, which is obtained by adding 4 mm of the substrate thickness to the thickness of the portion directly holding the substrate K, is disposed on the upper surface of the heater cover 15. The board | substrate K was hold | suppressed by the stepped part S by which half of the plate | board thickness was shaved.

しかしながら、ヒータカバー15の上面にて基板Kよりも大きく凸となった部分、つまりは従来型の基板保持部材20が基板Kの周囲に存在してしまうことになり、この部分はラダー電極13と基板Kの間の距離の10%以上にもなるため、また基板周辺でのプラズマ状態が変わるために、この凸とされた基板保持部材20がプラズマ等における製膜処理に影響を与え兼ねない状態となった。すなわち、製膜処理での膜厚分布が不均一となりやすい問題が生じていた。   However, the portion of the upper surface of the heater cover 15 that is larger than the substrate K, that is, the conventional substrate holding member 20 is present around the substrate K. This portion is connected to the ladder electrode 13. Since the distance between the substrates K is 10% or more, and the plasma state around the substrate is changed, the convex substrate holding member 20 may affect the film forming process in plasma or the like. It became. That is, there has been a problem that the film thickness distribution in the film forming process tends to be non-uniform.

但し、基板厚みが1mm程度の小型で薄い基板の場合には、この基板を固定するための剛性もさほど必要としないため、基板保持部材が薄く形成されて基板の周囲で凸となる部分が小さい。このため、今までの製膜処理においては製膜処理に大きな影響を与えることはなかった。
しかし、基板Kの表面高さよりも大きく凸となった部分が基板Kの周囲に存在すると、ラダー電極13と基板Kとの距離に狭い部分が発生したり、誘電率の違う材質が設置されることによりコンデンサ容量が変化することになり、プラズマ等の放電状態が乱れて製膜処理における膜厚分布が不均一になり、膜厚が薄くなる部分や厚くなる部分ができて安定した製膜処理を行うことが困難となった。
However, in the case of a small and thin substrate having a substrate thickness of about 1 mm, the rigidity for fixing the substrate is not so much required, so the substrate holding member is formed thin and the convex portion around the substrate is small. . For this reason, the conventional film forming process has not had a great influence on the film forming process.
However, if a convex portion larger than the surface height of the substrate K exists around the substrate K, a narrow portion is generated in the distance between the ladder electrode 13 and the substrate K, or a material having a different dielectric constant is installed. As a result, the capacitor capacity changes, the discharge state of plasma and the like is disturbed, the film thickness distribution in the film forming process becomes non-uniform, and the film forming process becomes thinner and thicker. It became difficult to do.

なお、上述の傾向は40MHz〜100MHzという高高周波の放電領域で顕著に現れ、この領域を用いる製膜処理では特に解決すべき問題とされている。そして、このような高高周波の領域では、高高周波にさらされる要素の基板Kや基板保持部材20のコンデンサ容量に差があると、同様にプラズマ等の放電状態が乱れて製膜処理の安定化が阻害されることが懸念されており、製膜処理に影響を与えない基板保持部材20が求められていた。   In addition, the above-mentioned tendency remarkably appears in a high-frequency discharge region of 40 MHz to 100 MHz, and is a problem to be solved particularly in a film forming process using this region. In such a high-frequency region, if there is a difference in the capacitor capacity of the substrate K of the element exposed to the high frequency or the substrate holding member 20, the discharge state of plasma or the like is similarly disturbed and the film forming process is stabilized. There is a concern that the substrate holding member 20 does not affect the film forming process.

本発明は上記事情に鑑みて成されたものであり、基板周辺でのプラズマ等における放電状態の安定化を図り、真空状態での製膜処理における膜厚分布をより均一に導くことを可能とした基板保持部材を有する真空処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to stabilize the discharge state in plasma or the like around the substrate, and to more uniformly lead the film thickness distribution in the film forming process in a vacuum state. An object of the present invention is to provide a vacuum processing apparatus having a substrate holding member.

本発明は、上記課題を解決するため、以下の手段を採用する。
請求項1に記載の発明は、処理室内に設置される台座に基板保持部材を介して各辺が1mを超える基板を固定し、真空状態に導いて前記基板の製膜等のプラズマ処理を行う真空処理装置において、前記基板保持部材は、基板端部を押さえる板部材と該板部材を支持する支持部材とからなり、前記板部材は、基板厚みの5%以上30%以下の厚みを有し、前記基板の端部形状に合わせて折り曲げられた押さえ部と、前記支持部材への嵌めこみ構造を得るべく折り曲げられた接続部とを備え、前記支持部材は、前記板部材と接続される側にて基板厚みと略同一な厚みを有する部分を備えるとともに、前記板部材と接続される端側に前記接続部が嵌め込まれるべく形成された溝部を備えることを特徴としている。
The present invention employs the following means in order to solve the above problems.
According to the first aspect of the present invention, a substrate having a side exceeding 1 m is fixed to a pedestal installed in the processing chamber via a substrate holding member, and the substrate is guided to a vacuum state to perform plasma processing such as film formation of the substrate. In the vacuum processing apparatus, the substrate holding member includes a plate member that holds the end of the substrate and a support member that supports the plate member, and the plate member has a thickness of 5% to 30% of the substrate thickness. A holding portion bent to match the shape of the end portion of the substrate, and a connection portion bent to obtain a fitting structure to the support member, wherein the support member is connected to the plate member. And a portion having a thickness substantially the same as the thickness of the substrate, and a groove portion formed so that the connection portion is fitted to the end side connected to the plate member.

本発明によれば、基板保持部材が、基板厚みの5%以上30%以下の厚みを有する板部材と、基板厚みと同等な厚み部分を有する支持部材とを備えることで、基板保持部材の薄肉化がなされて基板に対する製膜処理が的確に行われる。すなわち、台座上で基板よりも遥かに凸となった部分が存在しなくなることで、製膜処理における障害物が除去されたことになり、製膜処理の精度が向上する。また、放電を受ける基板の場合、このコンデンサ容量と異なる要素である基板保持部材の体積が減少することで互いのコンデンサ容量の差が減少し、基板に対するプラズマ等の放電状態が安定化する。なお、基板の端部は、範囲をもって規定されるものである。   According to the present invention, the substrate holding member includes a plate member having a thickness of 5% to 30% of the substrate thickness and a support member having a thickness portion equivalent to the substrate thickness, so that the substrate holding member is thin. Thus, the film forming process for the substrate is performed accurately. That is, since there is no longer a convex portion on the pedestal than the substrate, the obstacle in the film forming process is removed, and the accuracy of the film forming process is improved. Further, in the case of a substrate that receives a discharge, the difference between the capacitor capacities is reduced by reducing the volume of the substrate holding member, which is an element different from the capacitor capacity, and the discharge state of plasma or the like with respect to the substrate is stabilized. In addition, the edge part of a board | substrate is prescribed | regulated with a range.

請求項2に記載の発明は、請求項1記載の真空処理装置において、前記板部材と前記支持部材との組み合わせ後における変位差を吸収しつつ互いの接続状態を保持する変位差吸収接続手段が備えられていることを特徴としている。   According to a second aspect of the present invention, in the vacuum processing apparatus according to the first aspect of the present invention, the displacement difference absorption connecting means for absorbing the displacement difference after the combination of the plate member and the support member and holding the mutual connection state. It is characterized by being provided.

板部材と支持部材とを組み合わせて基板保持部材を構成するにあたり、例えば、これらの組み合わせ後に入熱があると、板部材と支持部材との線膨張係数の違いや熱容量の違いにより互いの熱変形に差(変位差)が生じる場合がある。このような変位差が基板保持部材に生じると、熱膨張の低い側に熱膨張の高い側が拘束されることとなって基板保持部材の形状が変形しかねない。この結果、基板を台座に的確且つ確実に押さえることが困難となる。
本発明によれば、変位差吸収接続手段が備えられているので、基板厚みよりも薄い板部材と基板厚みと同等な支持部材とを組み合わせた後に生じる互いの変位差が吸収されつつ、形状が変化しないように接続状態が保持される。)
When configuring the substrate holding member by combining the plate member and the support member, for example, if there is heat input after combining these, the thermal deformation of the plate member and the support member due to the difference in the linear expansion coefficient and the difference in heat capacity A difference (displacement difference) may occur. If such a displacement difference occurs in the substrate holding member, the side having high thermal expansion is constrained to the side having low thermal expansion, and the shape of the substrate holding member may be deformed. As a result, it is difficult to accurately and reliably hold the substrate against the pedestal.
According to the present invention, since the displacement difference absorption connecting means is provided, the shape is obtained while the mutual displacement difference generated after combining the plate member thinner than the substrate thickness and the support member equivalent to the substrate thickness is absorbed. The connection state is maintained so as not to change. )

請求項3に記載の発明は、請求項1又は請求項2記載の真空処理装置において、前記板部材は、前記接続部と前記押さえ部との間に位置する延長部とを有して形成されてなり、該延長部は、基板長さの4%以上の高さ寸法を有して形成されてなることを特徴としている。   According to a third aspect of the present invention, in the vacuum processing apparatus according to the first or second aspect, the plate member has an extension portion positioned between the connection portion and the pressing portion. The extension portion is formed to have a height dimension of 4% or more of the substrate length.

本発明によれば、基板と支持部材とが基板長さの4%以上離間して配置されることになり、製膜処理において支持部材の影響が除去される。すなわち、製膜処理としてプラズマを用いる場合を例に挙げると、基板周辺で基板のコンデンサ容量と大きく異なる要素が存在すると、基板に対するプラズマが乱れて製膜処理が的確になされない可能性が高い。基板周囲でコンデンサ容量の異なるものとして挙げられるものが基板を押さえる基板保持部材であり、特に基板とのコンデンサ容量に差が生じやすい厚みのある支持部材を本発明のように基板から離すことで、製膜時のプラズマの安定化が導かれる。なお、基板と支持部材との各コンデンサ容量に差が生じることは、同等な厚みを有していても材質が異なる場合が多々あるからである。   According to the present invention, the substrate and the support member are disposed at a distance of 4% or more of the substrate length, and the influence of the support member is removed in the film forming process. That is, in the case where plasma is used as the film forming process, for example, if there is an element greatly different from the capacitor capacity of the substrate around the substrate, there is a high possibility that the plasma on the substrate is disturbed and the film forming process is not performed accurately. What is cited as a different capacitor capacity around the substrate is a substrate holding member that holds the substrate, and in particular by separating the support member with a thickness that tends to cause a difference in the capacitor capacity with the substrate from the substrate as in the present invention, This leads to stabilization of the plasma during film formation. Note that the difference in the capacitances of the capacitors between the substrate and the support member occurs because the materials are often different even though they have the same thickness.

請求項4に記載の発明は、請求項3記載の真空処理装置において、前記板部材に、前記基板の延在方向に交わってなお且つ前記延長部の一部を少なくとも切り欠く複数のスリットが形成されていることを特徴としている。   According to a fourth aspect of the present invention, in the vacuum processing apparatus according to the third aspect, the plate member is formed with a plurality of slits that intersect the extending direction of the substrate and at least partly cut out the extension portion. It is characterized by being.

本発明によれば、延長部を有することで入熱等に対して温度分布により変形しやすい板部材の変形がスリットの吸収作用で抑えられることとなる。すなわち、延長部を有することで基板の延在方向に大きく拡大された板部材は、入熱などによって温度分布が生じて変形しやすい問題があるが、本発明における複数のスリットの設置によって、板部材の変形が該スリットに吸収されて上記問題が解決される。なお、スリットの形成については、薄い板部材を基板の延在方向に対して交わるように切断し、延長部の一部を少なくとも切り欠きつつ、例えば、押さえ部や接続部にまで延長してもかまわない。   According to the present invention, the deformation of the plate member that easily deforms due to temperature distribution with respect to heat input or the like due to the extension is suppressed by the absorbing action of the slit. That is, the plate member that is greatly enlarged in the extending direction of the substrate by having the extension portion has a problem that the temperature distribution is easily generated due to heat input or the like, but the plate member is easily deformed. The deformation of the member is absorbed by the slit, and the above problem is solved. In addition, about formation of a slit, even if it cut | disconnects a thin board member so that it may cross | intersect with respect to the extending direction of a board | substrate, and it extends to a holding | suppressing part or a connection part, for example, cutting out at least a part of extension part It doesn't matter.

請求項5に記載の発明は、請求項4記載の真空処理装置において、前記各スリットが前記板部材の縁部手前まで形成されていることを特徴としている。   According to a fifth aspect of the present invention, in the vacuum processing apparatus according to the fourth aspect of the invention, the slits are formed up to the edge of the plate member.

本発明によれば、各スリットが板部材の縁部を分割することはない。これによって、この板部材の縁部側にスリット形成による角部が存在することもないので、基板に対する製膜処理が安定する。すなわち、スリットによって板部材の縁部に角部や段差が形成されると、例えば、プラズマでの製膜時にこの角部からプラズマの異常発生が生じて基板処理に不都合が招かれることになるが、本発明によればスリット形成における角部が存在しないので、上記問題が回避される。
また、板部材の縁部が分割されずに繋がれた状態であれば、入熱による変形等で縁部が反ってずれたりすることはなく、縁部側に位置する押さえ部の形状が安定する。これによって、台座に対しての基板の押さえが的確且つ確実になされることとなる。
According to the present invention, each slit does not divide the edge of the plate member. As a result, there is no corner due to slit formation on the edge side of the plate member, so that the film forming process on the substrate is stabilized. That is, if a corner or a step is formed at the edge of the plate member by the slit, for example, when the film is formed with plasma, an abnormality of the plasma is generated from the corner and inconvenience is caused in the substrate processing. According to the present invention, since the corner portion in the slit formation does not exist, the above problem is avoided.
In addition, if the edges of the plate members are connected without being divided, the edges will not be warped and displaced due to deformation due to heat input, etc., and the shape of the pressing part located on the edge side is stable. To do. As a result, the substrate is pressed against the pedestal accurately and reliably.

請求項6に記載の発明は、請求項4又は請求項5記載の真空処理装置において、前記複数のスリットの間隔が100mm以上150mm以下とされ且つスリット幅が0.1mm以上1.0mm以下とされていることを特徴としている。   According to a sixth aspect of the present invention, in the vacuum processing apparatus of the fourth or fifth aspect, the interval between the plurality of slits is set to 100 mm or more and 150 mm or less, and the slit width is set to 0.1 mm or more and 1.0 mm or less. It is characterized by having.

本発明によれば、製膜処理において例えばプラズマが用いられる場合、本発明に係る幅の狭いスリットからプラズマの異常発生はないので、製膜処理の安定化が図られる。また、板部材の変形を効果的に吸収する配置により、基板は台座に的確に押さえられて固定されることとなる。   According to the present invention, when, for example, plasma is used in the film forming process, there is no abnormality in plasma from the narrow slit according to the present invention, so that the film forming process can be stabilized. Moreover, the board | substrate will be correctly hold | suppressed and fixed to a base by the arrangement | positioning which absorbs the deformation | transformation of a board member effectively.

請求項7に記載の発明は、請求項1から請求項6のいずれか1項記載の真空処理装置において、前記板部材の表面が粗面とされていることを特徴としている。   The invention according to claim 7 is the vacuum processing apparatus according to any one of claims 1 to 6, wherein the surface of the plate member is a rough surface.

本発明によれば、板部材に製膜時の膜が付着する場合であっても、粗面とされた板部材に付着する付着膜の食いつきが良好となり、該付着膜の脱落が抑制されて、多数回に渡って製膜処理を行う処理室内が長期的に清浄に保たれる。   According to the present invention, even when a film at the time of film formation adheres to the plate member, the biting of the adhesion film adhering to the roughened plate member becomes good, and the falling off of the adhesion film is suppressed. The processing chamber in which the film forming process is performed many times is kept clean for a long time.

本発明の真空処理装置においては以下の効果を奏する。
請求項1記載の発明によれば、基板保持部材が、基板厚みの5%以上30%以下の厚みを有して基板端部を押さえる板部材と、基板厚みと略同一な厚み部分を有して板部材を支持する支持部材とを備えているので、基板の製膜処理が安定し、膜厚分布が安定した高品質な基板を得ることができる。
The vacuum processing apparatus of the present invention has the following effects.
According to the first aspect of the present invention, the substrate holding member has a thickness that is not less than 5% and not more than 30% of the substrate thickness, and has a thickness portion substantially the same as the substrate thickness. And a supporting member that supports the plate member, the substrate film-forming process is stable, and a high-quality substrate with a stable film thickness distribution can be obtained.

請求項2記載の発明によれば、板部材と支持部材との組み合わせにおける変位差を吸収しつつ接続状態を保持する変位差吸収接続手段が備えられているので、複合体として基板保持部材が構成されたために、板部材と支持部材との変形に変位差が生じる場合であっても、この変位差を相殺して板部材と支持部材との接続における基板保持部材の変形を抑えることが可能となる。したがって、基板保持部材は、基板を的確に押さえる形状が常に維持されることになり、基板が台座上に的確且つ確実に押さえられることによれば、基板に対する製膜処理に高い精度と安定性を得ることができる。   According to the second aspect of the present invention, since the displacement difference absorbing connection means for holding the connection state while absorbing the displacement difference in the combination of the plate member and the support member is provided, the substrate holding member is configured as a composite. Therefore, even if a displacement difference occurs in the deformation between the plate member and the support member, it is possible to cancel the displacement difference and suppress the deformation of the substrate holding member in the connection between the plate member and the support member. Become. Therefore, the shape of the substrate holding member that accurately holds the substrate is always maintained, and according to the substrate being pressed accurately and reliably on the pedestal, high accuracy and stability can be achieved in the film forming process on the substrate. Obtainable.

請求項3記載の発明によれば、板部材が、基板縁部を直接押さえる押さえ部と、支持部材と接続される接続部と、該接続部と押さえ部との間に位置する延長部とを有して形成され、この延長部が、基板長さの4%以上の高さ寸法を有して形成されているので、基板と支持部材とが離間して基板の製膜処理における支持部材の影響が除去され、製膜処理における安定化と作業精度とをより向上させることができる。   According to the invention described in claim 3, the plate member includes a pressing portion that directly presses the substrate edge, a connection portion that is connected to the support member, and an extension portion that is positioned between the connection portion and the pressing portion. Since the extension portion is formed to have a height dimension of 4% or more of the substrate length, the substrate and the support member are separated from each other and the support member in the film forming process of the substrate is formed. The influence is removed, and stabilization and work accuracy in the film forming process can be further improved.

請求項4記載の発明によれば、基板の延在方向に交わってなお且つ延長部の一部を少なくとも切り欠く複数のスリットが板部材に形成されているので、入熱等による板部材の変形を抑えて基板を確実に押さえることができる。   According to the invention described in claim 4, since the plate member is formed with a plurality of slits that intersect with the extending direction of the substrate and at least partly cut out the extended portion, the deformation of the plate member due to heat input or the like. It is possible to hold down the substrate reliably.

請求項5記載の発明は、板部材に形成される各スリットが、板部材の縁部手前まで形成されているので、安定した製膜処理を行うことができる。また、台座に対して基板を確実に押さえて的確且つ安定した製膜処理を行うことができる。   In the fifth aspect of the invention, each slit formed in the plate member is formed up to the edge of the plate member, so that stable film formation can be performed. In addition, the substrate can be reliably pressed against the pedestal, and an accurate and stable film forming process can be performed.

請求項6記載の発明は、複数のスリットの間隔は100mm以上150mm以下とされ、且つスリット幅が0.1mm以上1.0mm以下とされているので、基板処理における安定化を確実に得て的確な製膜処理を行うことができる。   According to the sixth aspect of the present invention, the interval between the plurality of slits is set to 100 mm or more and 150 mm or less, and the slit width is set to 0.1 mm or more and 1.0 mm or less. Film forming treatment can be performed.

請求項7記載の発明は、板部材の表面が粗面とされているので、製膜処理が多数回に渡って行われる場合であっても処理室内が清浄に保たれ、処理室のクリーニングを行う回数を削減して製膜処理をより継続して行うことが可能となる。この結果、製膜処理の作業効率を高めてより多くの基板を製膜処理することができる。   In the seventh aspect of the invention, since the surface of the plate member is a rough surface, the process chamber is kept clean even when the film forming process is performed many times, and the process chamber is cleaned. It is possible to reduce the number of times to perform the film forming process more continuously. As a result, it is possible to increase the working efficiency of the film forming process and to form a larger number of substrates.

次に、本発明に係る各実施形態について、図面を参照して説明する。
[第1の実施形態]
図1は、本発明の第一の実施形態として、真空処理装置に係るプラズマCVD装置10に備わる基板Kが設置されるヒータカバー15(台座)、及び本発明に係る基板保持部材20を部分的に示した断面を含む斜視図である。また、図2は、図1の符号Aで囲まれた範囲を部分的に示した断面を含む斜視図である。
図1に示すように、基板保持部材20は基板Kの縁部を押さえる構造(図示しないが、上下左右のそれぞれで押さえる。)とされており、上下左右の各位置(図においては下方)において、薄い板部材21と該板部材21を支持する支持部材22との2つの部材から基板保持部材20が構成されている。
Next, each embodiment according to the present invention will be described with reference to the drawings.
[First Embodiment]
FIG. 1 shows, as a first embodiment of the present invention, a heater cover 15 (pedestal) on which a substrate K provided in a plasma CVD apparatus 10 according to a vacuum processing apparatus is installed, and a substrate holding member 20 according to the present invention. It is a perspective view including the cross section shown in FIG. Further, FIG. 2 is a perspective view including a cross section partially showing a range surrounded by a symbol A in FIG.
As shown in FIG. 1, the substrate holding member 20 is configured to hold the edge of the substrate K (not shown, but pressed vertically and horizontally), and at each of the vertical and horizontal positions (downward in the figure). The substrate holding member 20 is composed of two members, a thin plate member 21 and a support member 22 that supports the plate member 21.

また、図2にて詳細に示すように、板部材21は基板Kの端部形状に合わせて直角に折り曲げられており、なお且つ、支持部材22への嵌め込み構造を得るためにさらに直角に折り曲げられている。すなわち、直接的に基板Kと接して押さえる押さえ部Fと、支持部材22に形成された後述する溝部22aと面接触するように接続される接続部Gとにより板部材21が構成されている。なお、板部材21の端部(紙面において上端部U)には丸みが設けられており、プラズマの異常発生と基板Kへの傷付きが防止されている。   As shown in detail in FIG. 2, the plate member 21 is bent at a right angle in accordance with the shape of the end portion of the substrate K, and is further bent at a right angle to obtain a fitting structure to the support member 22. It has been. That is, the plate member 21 is configured by a pressing portion F that directly presses against the substrate K and a connection portion G that is connected so as to be in surface contact with a groove portion 22a described later formed on the support member 22. In addition, the edge part (upper end part U on the paper surface) of the plate member 21 is provided with a roundness to prevent the occurrence of abnormal plasma and damage to the substrate K.

また、板部材21の厚みは、大面積型の基板Kの厚みである3〜4mmに対して5%以上30%以下の範囲内とされた0.2〜1.0mmとされている。そして、このような薄い板部材21の材質は、耐熱性に優れ、フッ素系ガス等に腐食されない耐食性に富んだ非磁性のインコネルが採用されている。なお、該板部材21とフッ素系ガスとの接触は、製膜室(処理室)内のクリーニング作業時において生じるものであって、このことを考慮する必要がない場合であれば、プラズマ等に影響を与えない低磁性のSUS304等のステンレス材等であっても有効である。   Further, the thickness of the plate member 21 is set to 0.2 to 1.0 mm within a range of 5% to 30% with respect to 3 to 4 mm which is the thickness of the large area type substrate K. The thin plate member 21 is made of non-magnetic inconel having excellent heat resistance and high corrosion resistance that is not corroded by fluorine gas or the like. Note that the contact between the plate member 21 and the fluorine-based gas occurs during the cleaning operation in the film forming chamber (processing chamber). Even a stainless steel material such as SUS304 having a low magnetic property that does not affect is effective.

また、板部材21のラダー電極(図示せず)と対向する表面(紙面右側)にはブラスト処理と同様な効果をもたらす溶射がなされており、表面のごく僅かな凹凸によって該板部材21の一平面が粗面となっている。なお、板部材21が1mm以下と薄く変形しやすいことから、この板部材21に対するブラスト処理と異なるアルミニウムの溶射膜で20〜100μmの粗面が形成される。そして、製膜処理における付着膜の脱落抑制が図られている。
なお、後述する支持部材22の表面については、従来と同様なブラスト処理がなされており、これも粗面とされることで付着膜の脱落が抑制される。
Further, the surface (right side of the drawing) facing the ladder electrode (not shown) of the plate member 21 is sprayed to bring about the same effect as the blasting process. The plane is rough. Since the plate member 21 is thin and easily deformed to 1 mm or less, a rough surface of 20 to 100 μm is formed by a sprayed aluminum film different from the blast treatment for the plate member 21. And the fall-off control of the adhesion film | membrane in a film forming process is achieved.
In addition, about the surface of the supporting member 22 mentioned later, the blast process similar to the past is made | formed, and the omission of an adhesion film is suppressed by making this into a rough surface.

支持部材22は、図1に示すように板部材21と接続される側にて基板厚みの4mmと同等な厚みを有する部分(符号M)と、自らの剛性を保つために従来と同等な厚みを有する部分(符号N)とで構成されている。なお、基板Kと同等な厚みを有する部分(M)の表面から従来と同様な厚みを有する部分(N)の表面とは角部ができないように緩やかに結ばれており、プラズマの異常発生が防止されている。   As shown in FIG. 1, the support member 22 has a portion (reference numeral M) having a thickness equivalent to the substrate thickness of 4 mm on the side connected to the plate member 21, and a thickness equivalent to the conventional thickness in order to maintain its own rigidity. It is comprised with the part (code | symbol N) which has. The surface of the portion (M) having the same thickness as that of the substrate K is gently connected to the surface of the portion (N) having the same thickness as the conventional one so as not to form a corner portion, and an abnormal plasma is generated. It is prevented.

そして、板部材21と接続される支持部材22の端側における厚み方向の中心には、該支持部材22の平面(ヒータカバー15の延在方向)と平行な溝部22aが形成されており、この溝部22aの溝幅は板部材21の厚みと同等とされ、また、溝部22aの深さは板部材21の接続部Gの高さ寸法に合わせて形成されている。   A groove 22a parallel to the plane of the support member 22 (the extending direction of the heater cover 15) is formed at the center in the thickness direction on the end side of the support member 22 connected to the plate member 21. The groove width of the groove portion 22 a is equal to the thickness of the plate member 21, and the depth of the groove portion 22 a is formed in accordance with the height dimension of the connection portion G of the plate member 21.

そして、支持部材22が板部材21を支持する構造として、支持部材22には、先に説明した溝部22aに加えて、複数の止めねじ25が取り付けられるための複数のねじ穴23が形成されている。
また、これに対応して板部材21には、図3に示すような止めねじ25を貫通させるための複数の貫通穴21aが形成されている。板部材21に形成される複数の貫通穴21aは、板部材21の長手方向において中心付近に位置する基準穴と、該基準穴を挟んで左右それぞれ形成された長穴とで構成されている。なお、以上説明した止めねじ25、ねじ穴23、貫通穴21aの構成により、本発明に係る変位差吸収接続手段が構成されることになる。
As a structure in which the support member 22 supports the plate member 21, the support member 22 is formed with a plurality of screw holes 23 for attaching a plurality of set screws 25 in addition to the groove portion 22 a described above. Yes.
Correspondingly, the plate member 21 is formed with a plurality of through holes 21a for allowing the set screws 25 to pass therethrough as shown in FIG. The plurality of through holes 21 a formed in the plate member 21 are configured by a reference hole located near the center in the longitudinal direction of the plate member 21 and elongated holes formed on the left and right sides of the reference hole, respectively. The above-described configuration of the set screw 25, the screw hole 23, and the through hole 21a constitutes the displacement difference absorbing connection means according to the present invention.

次に、以上説明した基板保持部材20の作用について説明する。
薄い板部材21が基板Kを直接押さえつつ、該板部材21を支持する支持部材22が備えられることにより、基板保持部材20の薄肉化がなされてラダー電極との距離(例えば、電圧300〜500Vで30〜40mm)における基板K側の凹凸が小さくなる。この結果、基板Kに対する製膜処理が的確に行われる。すなわち、ヒータカバー15上で基板Kよりも大きく凸となった部分が存在しなくなることで、プラズマによる製膜処理において障害物が除去されたことになる。
Next, the operation of the substrate holding member 20 described above will be described.
By providing the supporting member 22 that supports the plate member 21 while the thin plate member 21 directly presses the substrate K, the substrate holding member 20 is thinned and the distance from the ladder electrode (for example, voltage 300 to 500 V). 30 to 40 mm), the unevenness on the substrate K side is reduced. As a result, the film forming process for the substrate K is accurately performed. That is, since there is no portion that is larger than the substrate K on the heater cover 15, the obstacle is removed in the film forming process using plasma.

また、基板Kの周囲でコンデンサ容量が多大な基板保持部材20の本体部である支持部材22の厚みが一部で基板Kと同等とされることで、基板保持部材20のコンデンサ容量が低減され、且つ、図示しないラダー電極との距離が基板Kと同一に保たれている。   In addition, since the thickness of the support member 22 that is the main body of the substrate holding member 20 having a large capacitor capacity around the substrate K is partially equal to the substrate K, the capacitor capacity of the substrate holding member 20 is reduced. In addition, the distance from the ladder electrode (not shown) is kept the same as that of the substrate K.

また、板部材21と支持部材22とを組み合わせて基板保持部材20を構成するにあたり、製膜処理時における入熱があると板部材21と支持部材22との線膨張係数や熱容量の差による熱膨張の違いにより互いの熱変形に差(変位差)が生じる。しかしながら、板部材21に設けられた基準穴とその両側の各長穴(共に符号21aを指す。)とによって、板部材21は基準位置を保ちながら長手方向に自由に伸縮することができる。これによって、板部材21の変形が支持部材22に拘束されることがなくなる。   Further, when the substrate holding member 20 is configured by combining the plate member 21 and the support member 22, if there is heat input during the film forming process, heat due to a difference in linear expansion coefficient or heat capacity between the plate member 21 and the support member 22. A difference (displacement difference) occurs in the thermal deformation of each other due to the difference in expansion. However, the plate member 21 can be freely expanded and contracted in the longitudinal direction while maintaining the reference position by the reference hole provided in the plate member 21 and the long holes on both sides thereof (both indicate the reference numeral 21a). Thereby, the deformation of the plate member 21 is not restrained by the support member 22.

このように、互いの部材21,22の変位差を吸収しつつ互いの接続状態を維持する止めねじ25、及び各ねじ穴23,21aの構成が本発明に係る変位差吸収接続手段として備えられることで、基板厚みよりも薄い板部材21と基板厚みと同等な支持部材22とを組み合わせた後に生じる互いの変位差が吸収され、形状が変化しないことによれば、基板Kに対する押さえ付けの状態があらゆる環境下で確実に維持される。   In this way, the configuration of the set screw 25 and the screw holes 23 and 21a that maintain the connection state with each other while absorbing the displacement difference between the members 21 and 22 is provided as the displacement difference absorption connecting means according to the present invention. Thus, the mutual displacement difference generated after combining the plate member 21 thinner than the substrate thickness and the support member 22 equivalent to the substrate thickness is absorbed and the shape does not change. Is reliably maintained in all environments.

以上説明した本実施形態の構成によれば、プラズマ発生に異常を来す要因となりうる基板Kの周囲の平滑化と、基板Kに対するコンデンサ容量の近似化がなされることで、基板Kに対する製膜処理の安定化がなされ、膜厚分布の安定した高品質な基板を得ることができる。特に、40〜100MHzの高高周波において従来の膜厚分布が±30%の製膜処理であったものが、本発明に係る実施形態にて±20%程度に改善された。このことを換言すると、膜厚分布が50%向上したと言える。   According to the configuration of the present embodiment described above, the film formation on the substrate K is performed by smoothing the periphery of the substrate K, which may cause anomalies in plasma generation, and approximating the capacitor capacity with respect to the substrate K. Processing is stabilized and a high-quality substrate having a stable film thickness distribution can be obtained. In particular, the conventional film forming process with a film thickness distribution of ± 30% at a high frequency of 40 to 100 MHz has been improved to about ± 20% in the embodiment according to the present invention. In other words, it can be said that the film thickness distribution is improved by 50%.

また、複合体として基板保持部材20が構成されるために、板部材21と支持部材22との変形量に差が生じる場合であっても、この変位差を相殺して板部材21と支持部材22との接続における基板保持部材20の変形を抑えることが可能となる。これによって、基板Kはヒータカバー15上に的確且つ確実に押さえられることになり、基板Kに対する製膜処理に高い精度と安定性を得ることができる。
また、板部材21に製膜時の膜が付着しても、粗面とされた板部材21に付着する付着膜の食いつきが良好となり、該付着膜の脱落が抑制されて、多数回に渡って製膜処理を行う製膜室内を長期に渡って清浄に保つことができる。
Further, since the substrate holding member 20 is configured as a composite, even if there is a difference in the deformation amount between the plate member 21 and the support member 22, the displacement difference is offset to cancel the plate member 21 and the support member. Therefore, it is possible to suppress the deformation of the substrate holding member 20 in connection with the connection 22. As a result, the substrate K is accurately and reliably pressed onto the heater cover 15, and high accuracy and stability can be obtained in the film forming process for the substrate K.
Further, even if a film during film formation adheres to the plate member 21, the biting of the adhered film adhering to the roughened plate member 21 becomes good, and the falling off of the adhered film is suppressed, and the film is applied many times. Thus, the film forming chamber in which the film forming process is performed can be kept clean for a long time.

[第2の実施形態]
次に、本発明に係る第2の実施形態について図4〜6を用いて説明する。なお、本実施形態の構成は基板保持部材の構造及び構成が異なるので、この点について詳しく説明するものとし、その他の点については先の実施形態及び従来技術と同様であるので、同一符号を付してその説明を一部省略する。
[Second Embodiment]
Next, a second embodiment according to the present invention will be described with reference to FIGS. The configuration of the present embodiment is different from the structure and configuration of the substrate holding member, and therefore this point will be described in detail. The other points are the same as those of the previous embodiment and the prior art, and thus are denoted by the same reference numerals. A part of the description will be omitted.

図4及び図4の符号Bの範囲を拡大した図5に示すように、本実施形態に係る基板保持部材20は、基板Kの縁部を直接押さえる押さえ部Fと、支持部材22と接続される接続部Gと、接続部Gと押さえ部Fとの間に位置する延長部Hとを有する板部材21からなる板部材21、及び、これを支持する支持部材22により構成されている。なお、押さえ部Fと接続部Gとは第1の実施形態と略同様な構造である。   As shown in FIG. 5 in which the range of the symbol B in FIGS. 4 and 4 is enlarged, the substrate holding member 20 according to the present embodiment is connected to the holding member F that directly presses the edge of the substrate K and the support member 22. The plate member 21 includes a plate member 21 having a connecting portion G, and an extension portion H located between the connecting portion G and the pressing portion F, and a support member 22 that supports the plate member 21. The holding part F and the connection part G have substantially the same structure as that of the first embodiment.

板部材21に設けられた延長部Hは、基板長さの4%以上の高さ寸法を満たすように、一辺の長さが1mである基板長さに対して50mmの高さ寸法を有して形成されている。この延長部Hは、押さえ部Fから折り曲げられ接続部Gにて再度折り曲げられるまでの間で上記寸法を有しており、ヒータカバー15側に密着するように配置される。   The extension portion H provided on the plate member 21 has a height dimension of 50 mm with respect to the substrate length having a side length of 1 m so as to satisfy the height dimension of 4% or more of the substrate length. Is formed. The extension portion H has the above-described dimensions until it is bent from the pressing portion F and is bent again at the connection portion G, and is disposed so as to be in close contact with the heater cover 15 side.

さらに、この延長部Hには、基板Kの延在方向に交わりつつ、板部材21の長手方向(図において奥行き方向)にて等間隔に配置された複数のスリット21cが形成されている。
スリット21cを正面から見た図6に示すように、これらスリット21cは、板部材21の長手方向に対して直交するように延長部Hを含んでさらには接続部Gにまで達して形成されており、接続部Gの端部にてまで達して接続部Gを分割している。しかしながら、基板Kを直接押さえる押さえ部Fにまでは形成されてはおらず、押さえ部Fが分割されることはない。つまり、板部材21の一方側の縁部手前でスリット21cの形成が止められている。
Further, the extension H is formed with a plurality of slits 21 c that are arranged at equal intervals in the longitudinal direction (depth direction in the drawing) of the plate member 21 while intersecting the extending direction of the substrate K.
As shown in FIG. 6 when the slits 21c are viewed from the front, these slits 21c are formed so as to extend to the connection part G including the extension part H so as to be orthogonal to the longitudinal direction of the plate member 21. The connection part G is divided up to the end of the connection part G. However, it is not formed up to the pressing portion F that directly presses the substrate K, and the pressing portion F is not divided. That is, the formation of the slit 21c is stopped just before the edge on one side of the plate member 21.

このことは、押さえ部Fの分割によって押さえ部が分割されたそれぞれの部分で反って基板Kを押さえる力や形状にばらつきを生じさせないためであり、また、分割したことによって形成される角部や段差によるプラズマの異常発生を回避するためでもある。   This is to prevent variation in the force and shape of holding the substrate K by warping in each portion where the holding portion is divided by the division of the holding portion F, and the corner portion formed by the division or This is also to avoid the occurrence of abnormal plasma due to a step.

スリット21cの構造を具体的に説明すると、各スリット21cどうしの間隔は100〜150mmとされ、スリット21cの幅はプラズマの異常発生を防止するために0.5mm弱とされている。そして、スリット21cの形成範囲は、上述したように押さえ部Fを除いて延長部Hと接続部Gの全てに渡って形成されている。   The structure of the slits 21c will be specifically described. The interval between the slits 21c is set to 100 to 150 mm, and the width of the slits 21c is set to be less than 0.5 mm in order to prevent the occurrence of abnormal plasma. And the formation range of the slit 21c is formed over all of the extension part H and the connection part G except the holding | suppressing part F as mentioned above.

なお、スリット21cを形成する範囲については、延長部Hの一部を少なくとも含んで形成することが必要とされる。なぜなら、延長部Hには熱の影響で温度分布を発生することによって応力が生じやすいためであり、少なくともこの部分で応力を緩和するスリット21cを設けることで、板部材21の変形を効果的に回避することができるからである。   In addition, about the range which forms the slit 21c, it is required to form including the extension part H at least. This is because stress is easily generated in the extension portion H by generating a temperature distribution due to the influence of heat. By providing a slit 21c that relieves stress at least in this portion, deformation of the plate member 21 can be effectively performed. This is because it can be avoided.

さて、このような構成によって、基板Kと支持部材22とが延長部Hの高さ寸法である50mmにて離間して配置されることになり、製膜処理において支持部材22の影響が除去される。すなわち、製膜処理としてプラズマを用いる場合、基板Kの周辺で基板Kのコンデンサ容量と大きく異なる要素が存在すると、基板に対するプラズマが乱れて製膜処理が的確になされない可能性が高い。しかし、基板Kに対してコンデンサ容量が異なる要素の1つである支持部材22が離れることで、製膜時のプラズマの安定化が先の実施形態以上に確実に導かれる。
なお、基板Kと支持部材22との各コンデンサ容量に差が生じることは、同等な厚みを有していても材質が異なることによってもたらせられることを本実施形態では考慮している。
Now, with such a configuration, the substrate K and the support member 22 are spaced apart at a height of 50 mm, which is the height of the extension H, and the influence of the support member 22 is removed in the film forming process. The That is, when plasma is used for the film forming process, if there is an element greatly different from the capacitor capacity of the substrate K around the substrate K, there is a high possibility that the plasma on the substrate is disturbed and the film forming process is not performed accurately. However, since the support member 22 that is one of the elements having different capacitor capacities with respect to the substrate K is separated, the stabilization of plasma during film formation is more reliably guided than in the previous embodiment.
In the present embodiment, the difference between the capacitor capacities of the substrate K and the support member 22 is caused by the difference in material even though they have the same thickness.

以上説明した本実施形態の構成によれば、基板Kの周囲でプラズマ等の発生に異常を来す要因ともなりうる基板Kのコンデンサ容量と異なる支持部材22を基板Kから離間させることが可能となり、プラズマ発生の安定化を図って製膜処理における膜厚分布の安定化を得ることができる。
また、上記構成を得ることで問題となる板部材21の変形をスリット21cの形成によって抑えることができ、変形を抑えつつ基板Kを的確に押さえ付けることが可能である。
According to the configuration of the present embodiment described above, it is possible to separate the support member 22 from the substrate K, which is different from the capacitor capacity of the substrate K, which may cause abnormalities in the generation of plasma or the like around the substrate K. Thus, stabilization of plasma generation can be achieved, and stabilization of the film thickness distribution in the film forming process can be obtained.
Moreover, the deformation | transformation of the plate member 21 which becomes a problem by obtaining the said structure can be suppressed by formation of the slit 21c, and it is possible to hold down the board | substrate K exactly, suppressing a deformation | transformation.

なお、本実施形態にて説明した板部材21、支持部材22についても、プラズマを受ける表面にはブラスト処理やアルミニウム溶射処理によって粗面とされており、付着膜の脱落抑制がなされている。また、板部材21と支持部材との接続には、第1の実施形態と同様に変位差を吸収できる各止めねじ25と、長穴等を有する各穴21a,23からなる変位差吸収接続手段の構成が用いられ、基板保持部材20の変形が抑えられている。   Note that the plate member 21 and the support member 22 described in the present embodiment are also roughened by blasting or aluminum spraying on the surface that receives plasma, and the adhesion film is prevented from falling off. Further, the connection between the plate member 21 and the support member is similar to the first embodiment in that the displacement difference absorbing connecting means includes each set screw 25 capable of absorbing a displacement difference and each hole 21a, 23 having a long hole or the like. Thus, the deformation of the substrate holding member 20 is suppressed.

なお、以上説明した各実施形態において、基板保持部材20の構成は製膜処理に用いられることで最良な効果がもたらされることを説明したが、これに拘わらずその他の用途として、大面積の基板を台座に固定する固定治具として適宜用いることが可能である。
また、基板保持部材を板部材21と支持部材22との組み合わせによって形成することとして説明したが、一体に形成することとしてもかまわない。
In each of the embodiments described above, the configuration of the substrate holding member 20 has been described to provide the best effect when used in the film-forming process. Can be used as appropriate as a fixing jig for fixing to the base.
Further, although the substrate holding member has been described as being formed by a combination of the plate member 21 and the support member 22, it may be formed integrally.

本発明の第1の実施形態における基板保持部材の概略構成を説明する断面を含む斜視図である。It is a perspective view including the cross section explaining schematic structure of the board | substrate holding member in the 1st Embodiment of this invention. 図1の基板保持部材の一部を拡大した断面を含む斜視図である。It is a perspective view including the cross section which expanded a part of board | substrate holding member of FIG. 第1の実施形態における板部材の構造を説明する平面図である。It is a top view explaining the structure of the board member in a 1st embodiment. 本発明の第2の実施形態における基板保持部材の概略構成を説明する断面を含む斜視図である。It is a perspective view including the cross section explaining schematic structure of the board | substrate holding member in the 2nd Embodiment of this invention. 図2の基板保持部材の一部を拡大した断面を含む斜視図である。FIG. 3 is a perspective view including an enlarged cross section of a part of the substrate holding member of FIG. 2. 第2の実施形態における板部材の構造を説明する平面図である。It is a top view explaining the structure of the plate member in 2nd Embodiment. 真空処理装置の一例であるプラズマCVD装置の概略構成を説明する分解斜視図である。It is a disassembled perspective view explaining schematic structure of the plasma CVD apparatus which is an example of a vacuum processing apparatus. 従来の基板保持部材の構造を説明する断面を含む斜視図である。It is a perspective view including the cross section explaining the structure of the conventional board | substrate holding member.

符号の説明Explanation of symbols

10 プラズマCVD装置(真空処理装置)
11 製膜ユニット
13 ラダー電極
15 ヒータカバー(台座)
16 基板加熱ヒータ
20 基板保持部材
21 板部材
21a 貫通穴(変位差吸収接続手段)
21c スリット
22 支持部材
22a 溝部
23 ねじ穴(変位差吸収接続手段)
25 止めねじ(変位差吸収接続手段)
K 基板
F 押さえ部
G 接続部
H 延長部
10 Plasma CVD equipment (vacuum processing equipment)
11 Film-forming unit 13 Ladder electrode 15 Heater cover (pedestal)
16 Substrate heater 20 Substrate holding member 21 Plate member 21a Through hole (displacement difference absorbing connection means)
21c Slit 22 Support member 22a Groove 23 Screw hole (displacement difference absorbing connection means)
25 Set screw (displacement difference absorbing connection means)
K Substrate F Holding part G Connection part H Extension part

Claims (7)

処理室内に設置される台座に基板保持部材を介して各辺が1mを超える基板を固定し、真空状態に導いて前記基板の製膜等のプラズマ処理を行う真空処理装置において、
前記基板保持部材は、基板端部を押さえる板部材と該板部材を支持する支持部材とからなり、
前記板部材は、基板厚みの5%以上30%以下の厚みを有し、前記基板の端部形状に合わせて折り曲げられた押さえ部と、前記支持部材への嵌めこみ構造を得るべく折り曲げられた接続部とを備え、
前記支持部材は、前記板部材と接続される側にて基板厚みと略同一な厚みを有する部分を備えるとともに、前記板部材と接続される端側に前記接続部が嵌め込まれるべく形成された溝部を備えることを特徴とする真空処理装置。
In a vacuum processing apparatus for fixing a substrate having a side of more than 1 m to a pedestal installed in a processing chamber via a substrate holding member and conducting plasma processing such as film formation of the substrate by leading to a vacuum state,
The substrate holding member is composed of a plate member that holds the end of the substrate and a support member that supports the plate member,
The plate member has a thickness of 5% or more and 30% or less of the substrate thickness, and is bent to obtain a pressing portion that is bent in accordance with the shape of the end portion of the substrate and a structure that fits into the support member. With a connection part,
The support member includes a portion having a thickness substantially the same as the substrate thickness on the side connected to the plate member, and a groove formed to fit the connection portion on an end side connected to the plate member. A vacuum processing apparatus comprising:
前記板部材と前記支持部材との組み合わせ後における変位差を吸収しつつ互いの接続状態を保持する変位差吸収接続手段が備えられてなることを特徴とする請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, further comprising a displacement difference absorption connecting means that absorbs a displacement difference after the combination of the plate member and the support member and maintains a connection state between them. 前記板部材は、前記接続部と前記押さえ部との間に位置する延長部とを有して形成されてなり、
該延長部は、基板長さの4%以上の高さ寸法を有して形成されてなることを特徴とする請求項1又は請求項2記載の真空処理装置。
The plate member is formed having an extension portion located between the connection portion and the pressing portion,
The vacuum processing apparatus according to claim 1, wherein the extension portion is formed to have a height dimension of 4% or more of the substrate length.
前記板部材には、前記基板の延在方向に交わってなお且つ前記延長部の一部を少なくとも切り欠く複数のスリットが形成されてなることを特徴とする請求項3記載の真空処理装置。   The vacuum processing apparatus according to claim 3, wherein the plate member is formed with a plurality of slits that intersect with the extending direction of the substrate and at least cut out a part of the extension. 前記各スリットは、前記板部材の縁部手前まで形成されてなることを特徴とする請求項4記載の真空処理装置。   The vacuum processing apparatus according to claim 4, wherein each of the slits is formed up to the edge of the plate member. 前記複数のスリットの間隔は100mm以上150mm以下とされ且つスリット幅が0.1mm以上1.0mm以下とされていることを特徴とする請求項4又は請求項5記載の真空処理装置。   6. The vacuum processing apparatus according to claim 4, wherein an interval between the plurality of slits is 100 mm or more and 150 mm or less and a slit width is 0.1 mm or more and 1.0 mm or less. 前記板部材の表面が粗面とされていることを特徴とする請求項1から請求項6のいずれか1項記載の真空処理装置。
The vacuum processing apparatus according to claim 1, wherein a surface of the plate member is a rough surface.
JP2006113413A 2006-04-17 2006-04-17 Vacuum processing equipment Expired - Fee Related JP4381390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113413A JP4381390B2 (en) 2006-04-17 2006-04-17 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113413A JP4381390B2 (en) 2006-04-17 2006-04-17 Vacuum processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002243404A Division JP3820197B2 (en) 2002-08-23 2002-08-23 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2006222450A JP2006222450A (en) 2006-08-24
JP4381390B2 true JP4381390B2 (en) 2009-12-09

Family

ID=36984500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113413A Expired - Fee Related JP4381390B2 (en) 2006-04-17 2006-04-17 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP4381390B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5584461B2 (en) * 2009-12-24 2014-09-03 株式会社日立国際電気 Heating apparatus, substrate processing apparatus, and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JP2006222450A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
TW478296B (en) Plasma-reactor to process some substrates with large areas and method to process at least one substrate in a high-frequency plasma-reactor
JP5035884B2 (en) Thermal conductive sheet and substrate mounting apparatus using the same
US9187827B2 (en) Substrate support with ceramic insulation
JP2008177493A (en) Substrate processing apparatus and focus ring
KR20050050660A (en) A method and apparatus for the compensation of edge ring wear in a plasma processing chamber
JP2018006299A (en) Processing object susceptor for plasma processing apparatus, plasma processing apparatus and plasma processing method
JP5981358B2 (en) Heat transfer sheet affixing method
JP4381390B2 (en) Vacuum processing equipment
US20160079106A1 (en) Semiconductor manufacturing apparatus, control method of electrostatic chuck, and electrostatic chuck device
WO2019047856A1 (en) Base support component, film forming device and method
US10957573B2 (en) Electrostatic chuck device including a heating member
JP3820197B2 (en) Vacuum processing equipment
JP2006156938A (en) Board placing table, board processing apparatus and method for controlling temperature of board
JP4439501B2 (en) Plasma process apparatus and electrode unit for plasma apparatus
JP5022077B2 (en) Deposition equipment
TWI479540B (en) Substrate processing apparatus
TWI518820B (en) Showerhead assembly with improved impact protection
JP5817646B2 (en) Sample holder
JP3151364U (en) Plasma chemical vapor deposition equipment
TWI796982B (en) Fixtures for Low Pressure Chemical Vapor Deposition
JP4622764B2 (en) Plasma processing method
JP2008277774A (en) Plasma treatment device
TW202042274A (en) Mounting structure of plasma processor and corresponding plasma processor
JP5214528B2 (en) Plasma processing apparatus and plasma processing method
JP2010171244A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees