JP4381182B2 - Induced Raman spectroscopy method and apparatus - Google Patents

Induced Raman spectroscopy method and apparatus Download PDF

Info

Publication number
JP4381182B2
JP4381182B2 JP2004071688A JP2004071688A JP4381182B2 JP 4381182 B2 JP4381182 B2 JP 4381182B2 JP 2004071688 A JP2004071688 A JP 2004071688A JP 2004071688 A JP2004071688 A JP 2004071688A JP 4381182 B2 JP4381182 B2 JP 4381182B2
Authority
JP
Japan
Prior art keywords
laser
light
signal
frequency
signal light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004071688A
Other languages
Japanese (ja)
Other versions
JP2005227253A (en
Inventor
潤一 西澤
建 須藤
匡生 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004071688A priority Critical patent/JP4381182B2/en
Publication of JP2005227253A publication Critical patent/JP2005227253A/en
Application granted granted Critical
Publication of JP4381182B2 publication Critical patent/JP4381182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明はレーザを使った誘導ラマン分光法による生体分子や高分子のテラヘルツ帯の分子振動を測定する方法及び装置に関する。  The present invention relates to a method and apparatus for measuring molecular vibrations of a terahertz band of a biomolecule or a polymer by stimulated Raman spectroscopy using a laser.

DNA、タンパク質などの生体分子、高分子はテラヘルツ帯に分子の共振スペクトルを有している。しかし、これらの分子が水溶液中にあるときはテラヘルツ波の水による吸収が大きいため、直接にテラヘルツ波の吸収スペクトルを得ることが困難となる。水による吸収はテラヘルツ周波数の増大とともに増大するので高い周波数で問題となる。  Biomolecules such as DNA and protein, and polymers have a molecular resonance spectrum in the terahertz band. However, when these molecules are in an aqueous solution, since the absorption of terahertz waves by water is large, it is difficult to obtain an absorption spectrum of terahertz waves directly. Water absorption increases with increasing terahertz frequency and is problematic at higher frequencies.

水溶液中や有機溶液中のテラヘルツ振動を観測する方法として自然ラマン散乱分光はフロレセンスなどの存在によりテラヘルツ帯で測定が困難となる。  As a method of observing terahertz vibration in an aqueous solution or organic solution, natural Raman scattering spectroscopy is difficult to measure in the terahertz band due to the presence of florescence.

これに対してコヒーレントアンチストークスラマン(CARS)分光はTHz帯振動を観測するのに有効であることが示されている。しかし、CARSはポンプ光、ストークス光、アンチストークス光三者の位相整合が必要であり、そのため三つのビームの間の角度を微妙に整合させなければならず、サンプル毎にその調整を必要とし光学系の制御が複雑微妙とならざるを得なかった。  In contrast, coherent anti-Stokes Raman (CARS) spectroscopy has been shown to be effective for observing THz band vibrations. However, CARS requires pump light, Stokes light, and anti-Stokes light phase matching. Therefore, the angle between the three beams must be finely matched, and adjustment is required for each sample. The control of the system had to be complicated and subtle.

これに対して誘導ラマン分光測定法はポンプ光と信号光の二つのみを使い、位相整合の必要がないので光学系は単純となる。しかし、各種分子のテラヘルツ帯振動によるラマン増幅係数が小さいため、ポンプ光強度を極めて大きくしなければならなかった。二つの波長可変モードロックTi−サファイアレーザを使い、一方を、ポンプレーザ、他方を信号レーザとし、信号光強度の増大分ΔIを観測する方式が知られているが強度の弱いテラヘルツ振動を観測することは困難であった。  In contrast, the stimulated Raman spectroscopic measurement method uses only pump light and signal light and does not require phase matching, so the optical system is simple. However, since the Raman amplification coefficient due to terahertz band vibration of various molecules is small, the pump light intensity has to be extremely increased. Two wavelength-tunable mode-locked Ti-sapphire lasers are used. One is a pump laser and the other is a signal laser. It was difficult.

本発明は光学系が極めて単純となる誘導ラマン分光法によって、生体分子結晶や水溶液中の分子のテラヘルツ帯振動を高感度で測定する方法及び装置を提供する。  The present invention provides a method and apparatus for highly sensitively measuring terahertz band vibrations of biomolecular crystals and molecules in an aqueous solution by stimulated Raman spectroscopy with an extremely simple optical system.

従来のような二台のモードロックTi−サファイアレーザを使う誘導ラマン増幅分光方式には二つの問題があった。一つはモードロックパルス幅τがピコ秒或いはそれ以下の狭いパルスであるため、周波数分解能1/2πτが100GHz以上になり、分子の尖鋭なスペクトルを測定できないことである。第二の問題は信号光の入射パルスの強度変動があるため、その変動より小さい増幅強度ΔIを観測することができないことである。通常はΔI/Iが0.1(10%)以下になると観測が困難となる。  There are two problems with the stimulated Raman amplification spectroscopy that uses two conventional mode-locked Ti-sapphire lasers. One is that since the mode-lock pulse width τ is a narrow pulse of picosecond or less, the frequency resolution ½πτ becomes 100 GHz or more and the sharp spectrum of the molecule cannot be measured. The second problem is that since there is a fluctuation in the intensity of the incident pulse of signal light, an amplification intensity ΔI smaller than that fluctuation cannot be observed. Usually, observation becomes difficult when ΔI / I is 0.1 (10%) or less.

本発明ではポンプ光としてオプティカルパラメトリックオシレータ(OPO)などの、パルス幅が0.05ns(50ps)から100ns以内の範囲にある波長可変のパルスレーザを使用し、一方、信号レーザとしてはパルスレーザに替わって連続波(cw)レーザを用いる。  In the present invention, a tunable pulse laser having a pulse width within a range of 0.05 ns (50 ps) to 100 ns, such as an optical parametric oscillator (OPO), is used as pump light, while a signal laser is replaced with a pulse laser. A continuous wave (cw) laser is used.

cwレーザとしてはDFB(distributed feedback)レーザダイオード、又はDBR(distributed Bragg reflector)レーザダイオードはモード不安定による強度雑音がないので最ものぞましい。出力が低い時はレーザダイオード増幅器付の光源を使うことができる。レーザダイオードで励起されるcwYAGレーザも強度雑音が小さく且つ出力が大きいので適当である。  As the cw laser, a DFB (distributed feedback) laser diode or a DBR (distributed Bragg reflector) laser diode is most preferable because there is no intensity noise due to mode instability. When the output is low, a light source with a laser diode amplifier can be used. A cwYAG laser excited by a laser diode is also suitable because it has low intensity noise and high output.

信号光はパルスでないのでポンプ光が存在する時間のみ増幅ΔIが観測される。誘導ラマン効果は増幅過程であるからΔIは信号強度Iに比例する。cw信号光強度がある程度大きく低雑音であればΔI/Iが10−4以下の微小な増幅度まで検出できるから従来に比べて1000倍の感度が得られる。分解能はポンプ光のパルス幅できまるので100MHz以下の先鋭な分解能が得られる。Since the signal light is not a pulse, the amplification ΔI is observed only during the time when the pump light is present. Since the stimulated Raman effect is an amplification process, ΔI is proportional to the signal intensity I. If the intensity of the cw signal light is large to some extent and low noise, it is possible to detect even a very small amplification degree of ΔI / I of 10 −4 or less, so that the sensitivity is 1000 times that of the prior art. Since the resolution can be the pulse width of the pump light, a sharp resolution of 100 MHz or less can be obtained.

本発明によれば、非常に簡単な機構を用いて分解能が高く、且つ高感度のテラヘルツ帯分子振動観測が可能な誘導ラマン増幅分光方法及び装置が得られる。これによって、テラヘルツ計測が容易になり、特に水溶液中の分子についての測定ができるので、生体分子のテラヘルツ分光、食品・医薬品・毒物検査、ガン組織へのテラヘルツ波照射による診断・治療など広範に利用することができる。  According to the present invention, it is possible to obtain a stimulated Raman amplification spectroscopy method and apparatus capable of observing terahertz band molecular vibration with high resolution and high sensitivity using a very simple mechanism. This facilitates terahertz measurement, especially for molecules in aqueous solution, and is widely used for terahertz spectroscopy of biomolecules, food / pharmaceutical / toxic substance inspection, diagnosis and treatment by terahertz wave irradiation of cancer tissue, etc. can do.

発明を実施するための最良の形態、実施例1Best Mode for Carrying Out the Invention, Example 1

図1において、ポンプ光源1はOPOであり、YAGレーザ2の3逓倍波で励起され、波長可変であり、パルス幅は約5ns、線幅は3GHzである。信号光源3はDFBまたはDBRレーザダイオードの出力をレーザダイオード増幅器で増幅したものである。cw出力100mW以上の高出力単一周波数であり強度雑音は極めて低い。  In FIG. 1, the pump light source 1 is an OPO, is excited by a triple wave of the YAG laser 2, is tunable, has a pulse width of about 5 ns, and a line width of 3 GHz. The signal light source 3 is obtained by amplifying the output of a DFB or DBR laser diode with a laser diode amplifier. It is a high output single frequency with a cw output of 100 mW or more, and the intensity noise is extremely low.

石英製サンプルセル4の中に生体分子の水溶液5がある。図1は後方散乱の場合を示してあり、信号光とポンプ光は180度に近い方向でサンプルセルに入射する。図には示さないが前方散乱で観測する場合は信号光とポンプ光の成す角度を0度に近くなるよう配置すれば良い。  There is an aqueous solution 5 of biomolecules in the quartz sample cell 4. FIG. 1 shows the case of backscattering, where signal light and pump light enter the sample cell in a direction close to 180 degrees. Although not shown in the figure, in the case of observing by forward scattering, the angle formed by the signal light and the pump light may be arranged close to 0 degrees.

半波長板6を回転させることにより、信号光の偏光方向をポンプ光と直交或いは平行にすることができる。直交方向、平行方向のスペクトル強度を比較してラマン散乱選択則から振動の形態についての情報を得ることができる。OPOの波長を掃引しながらΔI、あるいは、ΔI/Iを測定すれば誘導ラマン増幅スペクトルが得られる。  By rotating the half-wave plate 6, the polarization direction of the signal light can be made orthogonal or parallel to the pump light. Information on the form of vibration can be obtained from the Raman scattering selection rule by comparing the spectral intensities in the orthogonal direction and the parallel direction. A measured Raman amplification spectrum can be obtained by measuring ΔI or ΔI / I while sweeping the wavelength of OPO.

パルス出力はボクスカー積分器7を使って積分することにより、S/Nを高めている。なお、グレーティング分光器8はポンプ光が迷光となってデテクタに入り雑音となるのを防ぐフィルタとして使い、信号光波長のみをパルス光検出器9に導く。10は信号光レーザが戻り光によって不安定になり雑音が増大するのを防ぐためのアイソレータである。  The pulse output is integrated using the boxcar integrator 7 to increase the S / N. The grating spectroscope 8 is used as a filter for preventing pump light from becoming stray light and entering the detector and causing noise, and guides only the signal light wavelength to the pulse light detector 9. Reference numeral 10 denotes an isolator for preventing the signal light laser from becoming unstable due to return light and increasing noise.

スペクトルを得るためにポンプ光の周波数(波長)と信号光周波数との差周波数が30THzから0.1THzの範囲となるようにポンプ光周波数を掃引すればよい。  In order to obtain a spectrum, the pump light frequency may be swept so that the difference frequency between the frequency (wavelength) of the pump light and the signal light frequency is in the range of 30 THz to 0.1 THz.

スペクトルの微細構造を見るには、ポンプ光の周波数を共鳴線の近くで固定し、DFB又はDBRレーザダイオードの温度をペルチエコントローラにより変化させる方法を付加することができる。DFB(DBR)レーザダイオードの発振周波数は温度1℃あたり20GHzの傾きで減少するから温度を徐々に1℃変化させることによりわずか20GHzの間隔内の微細構造を検出することができる。  To see the fine structure of the spectrum, a method can be added in which the frequency of the pump light is fixed near the resonance line and the temperature of the DFB or DBR laser diode is changed by a Peltier controller. Since the oscillation frequency of the DFB (DBR) laser diode decreases at a slope of 20 GHz per 1 ° C., a fine structure within an interval of only 20 GHz can be detected by gradually changing the temperature by 1 ° C.

図2はベンゼン液体における誘導ラマンスペクトル測定例である。信号光の波長は976nm、出力50mWを石英製サンプルセルに入射する。ポンプ光は約4mJ、繰り返し10Hzのパルスであり、ポンプ光(OPO)の波長可変範囲を889nmから890nmまでの1nmの間隔を0.01nmステップ(3.7GHzステップ)で掃引することにより29.8THz(992cm−1)にあるベンゼン分子の振動スペクトルを得ている。分解能がこのように高いため、スペクトル幅がわずか54GHz(1.8cm−1)であることが分かる。FIG. 2 shows an example of measurement of an induced Raman spectrum in a benzene liquid. The wavelength of the signal light is 976 nm, and an output of 50 mW is incident on the quartz sample cell. The pump light is a pulse of about 4 mJ and a repetition of 10 Hz, and 29.8 THz by sweeping the wavelength variable range of the pump light (OPO) from 189 nm to 889 nm in 0.01 nm steps (3.7 GHz steps). The vibrational spectrum of the benzene molecule at (992 cm −1 ) is obtained. It can be seen that because of this high resolution, the spectral width is only 54 GHz (1.8 cm −1 ).

図3は二糖類の一つであるトレハロースの水溶液の誘導ラマンスペクトルであり、6THzから30THzの間にトレハロースに特有のテラヘルツ帯スペクトルが観測されている。このように水溶液での測定が可能である。  FIG. 3 shows an induced Raman spectrum of an aqueous solution of trehalose, which is one of the disaccharides, and a terahertz band spectrum peculiar to trehalose is observed between 6 THz and 30 THz. Thus, measurement with an aqueous solution is possible.

ポンプ光は実施例1と同様にOPOであるが信号光源はレーザダイオードで励起されるcwYAGレーザ(波長1064nm)である。本レーザはcwレーザダイオードで励起されることにより出力の変動が少ない、低雑音特性を有しているので本目的に合致している。出力は300mWの高出力が得られる。  The pump light is OPO as in the first embodiment, but the signal light source is a cwYAG laser (wavelength 1064 nm) excited by a laser diode. Since this laser is excited by a cw laser diode and has low noise characteristics with little fluctuation in output, it meets this purpose. A high output of 300 mW can be obtained.

図4は四塩化炭素における測定例である。OPOの波長を1042nmから1006nmまで0.5nmステップで測定し、6THzから16THzまでの間のスペクトルを得ている。  FIG. 4 is a measurement example for carbon tetrachloride. The wavelength of OPO is measured from 1042 nm to 1006 nm in 0.5 nm steps, and a spectrum between 6 THz and 16 THz is obtained.

ポンプ光源としてレーザダイオードで励起されるパルスYAGレーザを用いる。パルス出力は約1mJ、繰り返し周期は1kHzでありパルス幅は50nsから100nsである。ポンプ光波長は1064nmに固定されているので信号光源を波長可変とするため、グレーティングを備えた外部共振器型の高出力レーザダイオードを使う。レーザ出力をダイオードから外部に取り出し、グレーティングによって発振波長を選択する。出力100mWを得ることができるが、安定な動作を得るためアイソレータを二重にすることが望ましい。  A pulsed YAG laser excited by a laser diode is used as a pump light source. The pulse output is about 1 mJ, the repetition period is 1 kHz, and the pulse width is 50 ns to 100 ns. Since the pump light wavelength is fixed at 1064 nm, an external resonator type high-power laser diode having a grating is used in order to make the wavelength of the signal light source variable. The laser output is taken out from the diode, and the oscillation wavelength is selected by the grating. Although an output of 100 mW can be obtained, it is desirable to have a double isolator in order to obtain stable operation.

ポンプ光としてはモードロックTi−サファイアレーザを使う。通常のモードロックTi−サファイアレーザはピコ秒以下のパルス幅であり、周波数帯域幅に換算して100GHz以上となり誘導ラマン増幅スペクトルの広がりが大きすぎて望ましくないがTi−サファイアレーザの共振器長を特に長くすることにより、パルス幅を50ps(50ピコ秒)以上の長さに設計することができるのでこのようなモードロックTi−サファイアレーザをポンプ光源とすることにより2GHzより高い分解能を得ることができる。
信号光としては実施例1と同様にcwDBR(DFB)レーザダイオードが最適である。
A mode-locked Ti-sapphire laser is used as the pump light. A normal mode-locked Ti-sapphire laser has a pulse width of picoseconds or less, which is 100 GHz or more when converted to a frequency bandwidth, and the spread of the stimulated Raman amplification spectrum is too large, which is not desirable. In particular, the pulse width can be designed to be longer than 50 ps (50 picoseconds) by increasing the length, so that a resolution higher than 2 GHz can be obtained by using such a mode-locked Ti-sapphire laser as a pump light source. it can.
As the signal light, a cwDBR (DFB) laser diode is optimal as in the first embodiment.

実施例1の構成を示す図である。  1 is a diagram illustrating a configuration of Example 1. FIG. ベンゼン液体における誘導ラマン分光測定例を示す図である。  It is a figure which shows the example of the induced Raman spectroscopy measurement in a benzene liquid. トレハロース水溶液における誘導ラマン分光測定例を示す図である。  It is a figure which shows the example of the induced Raman spectroscopy measurement in a trehalose aqueous solution. 実施例2の構成による四塩化炭素液体における誘導ラマン分光測定例を示す図である。  6 is a diagram illustrating an example of stimulated Raman spectroscopy measurement in a carbon tetrachloride liquid having the configuration of Example 2. FIG.

符号の説明Explanation of symbols

1…OPO
2…YAGレーザ
3…信号光源
4…石英製サンプルセル
5…水溶液
6…半波長板
7…ボクスカー積分器
8…グレーティング分光器
9…パルス光検出器
10…アイソレータ
1 ... OPO
DESCRIPTION OF SYMBOLS 2 ... YAG laser 3 ... Signal light source 4 ... Quartz sample cell 5 ... Aqueous solution 6 ... Half-wave plate 7 ... Boxcar integrator 8 ... Grating spectrometer 9 ... Pulse light detector 10 ... Isolator

Claims (4)

パルス幅が50psから100nsの間にあるポンプ光を出射するポンプレーザと、
低雑音連続波の信号光を出射する信号レーザと、
前記ポンプ光と前記信号光が入射した被測定試料中の分子により誘導ラマン増幅された信号光を検出する検出器
とを備え、前記ポンプ光の周波数前記信号レーザ光の周波数の少なくとも一方を、前記ポンプ光周波数と前記信号光周波数の差が0.1THzから30THzの間で掃引することにより、前記信号光パルス強度を前記検出器で検出しラマン増幅スペクトルを得ることを特徴とする、誘導ラマン分光装置
A pump laser emitting pump light having a pulse width between 50 ps and 100 ns ;
A signal laser which emits a signal light of a continuous-wave low-noise,
A detector for detecting signal light that has been stimulated Raman-amplified by molecules in the sample to be measured on which the pump light and the signal light are incident.
With the door, at least one frequency between the frequency of the pump light the signal laser beam, by the difference between the frequency of said signal light of the pump light is swept between the 30THz from 0.1 THz, the signal A stimulated Raman spectroscopic apparatus , wherein a Raman amplification spectrum is obtained by detecting a pulse intensity of light with the detector .
前記信号レーザがDFBレーザダイオード、DBRレーザダイオード、外部共振器型波長可変レーザダイオード、或いはcwレーザダイオード励起YAGレーザであることを特徴とする請求項1に記載の誘導ラマン分光装置2. The stimulated Raman spectroscopic apparatus according to claim 1, wherein the signal laser is a DFB laser diode, a DBR laser diode, an external resonator type tunable laser diode, or a cw laser diode pumped YAG laser. 前記ポンプレーザがオプティカルパラメトリックオシレータ(OPO)、Ti−サファイアレーザ或いはYAGレーザであることを特徴とする請求項1に記載の誘導ラマン分光装置The stimulated Raman spectroscopic apparatus according to claim 1, wherein the pump laser is an optical parametric oscillator (OPO), a Ti-sapphire laser, or a YAG laser. パルス幅が50psから100nsの間にあるポンプ光の周波数と低雑音で連続波の信号光の周波数との差が0.1THzから30THzの間となるように、前記ポンプ光と前記信号光の少なくとも一方の周波数を掃引して、前記ポンプ光と前記信号光を被測定試料に入射させ、  At least of the pump light and the signal light, the difference between the frequency of the pump light having a pulse width between 50 ps and 100 ns and the frequency of the low noise and continuous wave signal light is between 0.1 THz and 30 THz. One frequency is swept, the pump light and the signal light are incident on the sample to be measured,
前記信号光が、前記被測定試料中の分子により誘導ラマン増幅されたパルス強度を検知し、ラマン増幅スペクトルを得ることを特徴とする、誘導ラマン分光方法。  A stimulated Raman spectroscopic method, wherein the signal light detects a pulse intensity obtained by stimulated Raman amplification by molecules in the sample to be measured to obtain a Raman amplified spectrum.
JP2004071688A 2004-02-13 2004-02-13 Induced Raman spectroscopy method and apparatus Expired - Fee Related JP4381182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071688A JP4381182B2 (en) 2004-02-13 2004-02-13 Induced Raman spectroscopy method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071688A JP4381182B2 (en) 2004-02-13 2004-02-13 Induced Raman spectroscopy method and apparatus

Publications (2)

Publication Number Publication Date
JP2005227253A JP2005227253A (en) 2005-08-25
JP4381182B2 true JP4381182B2 (en) 2009-12-09

Family

ID=35002066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071688A Expired - Fee Related JP4381182B2 (en) 2004-02-13 2004-02-13 Induced Raman spectroscopy method and apparatus

Country Status (1)

Country Link
JP (1) JP4381182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168684B2 (en) * 2007-09-26 2013-03-21 独立行政法人情報通信研究機構 Time-resolved spectroscopic system, time-resolved spectroscopic method, and terahertz wave generation system

Also Published As

Publication number Publication date
JP2005227253A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
Hartmann et al. Recent advances in collisional effects on spectra of molecular gases and their practical consequences
O'Keefe et al. CW integrated cavity output spectroscopy
Hornung et al. Observation of all-trans-β-carotene wavepacket motion on the electronic ground and excited dark state using degenerate four-wave mixing (DFWM) and pump–DFWM
Liang et al. Photoacoustic trace detection of methane using compact solid-state lasers
JP7007667B2 (en) Pulse electromagnetic wave generator and measuring device
US20180266914A1 (en) A photoacoustic sensor for detecting trace amounts of hydrocarbons in gases or liquids
Cen et al. Wavelength dependent resonance Raman band intensity of broadband stimulated Raman spectroscopy of malachite green in ethanol
Whittaker et al. A DFG-based cavity ring-down spectrometer for trace gas sensing in the mid-infrared
JP4381182B2 (en) Induced Raman spectroscopy method and apparatus
Zhao et al. Absorption spectroscopy of formaldehyde at 1.573 μm
JP3669632B2 (en) Spectroscopic measurement method and spectroscopic measurement apparatus
Pesce et al. Detection and spectroscopy of OH fundamental vibrational band based on a difference frequency generator at 3 μm
JP3569762B2 (en) Spectrometry method and spectrometer
JP3600867B2 (en) Tunable laser and Raman spectrometer
Lucchesini et al. Nitrous oxide spectroscopy at 887 nm
Mehdizadeh et al. Intracavity laser spectroscopy with an ion-doped, solid-state Tm3+: YAG laser
Muertz et al. Recent developments in cavity ring-down spectroscopy with tunable cw lasers in the mid-infrared
Bourdon et al. Coherent anti-Stokes Raman scattering spectroscopy using an optical parametric oscillator
Lucchesini Diode laser spectroscopy of methyl iodide at 850 nm
Gerginov et al. Heterodyne frequency calibration of high resolution cesium spectra using diode lasers
Bizet et al. Mode-hop compensation for intracavity sensing via chip voltage in an external-cavity QCL
Cong et al. Ultrafast electronic dephasing dynamics of large molecules in room temperature liquids studied by variable pulse-width tunable femtosecond transient absorption spectroscopy
WO2022248894A1 (en) Apparatus and method for a measurement of a spectral response of a sample, including a quantum-cascade-laser-based light amplification
JP2003270040A (en) Spectral analysis method and spectral analysis system
Sylvester et al. Widely tunable Solid State laser light source for precise time domain Coherent Raman measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees