JP4380360B2 - Winding type vacuum evaporation system - Google Patents

Winding type vacuum evaporation system Download PDF

Info

Publication number
JP4380360B2
JP4380360B2 JP2004046065A JP2004046065A JP4380360B2 JP 4380360 B2 JP4380360 B2 JP 4380360B2 JP 2004046065 A JP2004046065 A JP 2004046065A JP 2004046065 A JP2004046065 A JP 2004046065A JP 4380360 B2 JP4380360 B2 JP 4380360B2
Authority
JP
Japan
Prior art keywords
crucible
film
type vacuum
deposition apparatus
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046065A
Other languages
Japanese (ja)
Other versions
JP2005232564A (en
Inventor
良治 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004046065A priority Critical patent/JP4380360B2/en
Publication of JP2005232564A publication Critical patent/JP2005232564A/en
Application granted granted Critical
Publication of JP4380360B2 publication Critical patent/JP4380360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、巻取走行する基材、特にプラスチックフィルム基材に対し電子ビームによる加熱蒸発によって薄膜形成する巻取式真空蒸着装置に関する。   The present invention relates to a take-up vacuum deposition apparatus for forming a thin film by heating and evaporating with an electron beam on a roll-up base, particularly a plastic film base.

近年、プラスチック等の基材を用いて、その表面に薄膜を形成し機能性を持たせたフィルム開発が盛んに行われている。その代表例としてガスバリア膜を付加し、食品包装材などに応用されている。AlOx,SiOx,MgO等の金属酸化物からなる薄膜がフィルム上に形成され、これらは透明性かつ酸素,水蒸気等の気体遮断性を持つため利用される。プラスチックを代表とするフィルム基材に対しての電子ビーム加熱による巻取式真空蒸着装置の最も簡単な概念図は図2で示す。   2. Description of the Related Art In recent years, film development has been actively conducted in which a thin film is formed on the surface of a base material such as plastic to provide functionality. As a typical example, a gas barrier film is added and applied to food packaging materials. A thin film made of a metal oxide such as AlOx, SiOx, MgO is formed on the film, and these are used because they are transparent and have gas barrier properties such as oxygen and water vapor. FIG. 2 shows the simplest conceptual diagram of a wind-up type vacuum deposition apparatus by electron beam heating for a film substrate represented by plastic.

蒸発材料18は耐熱性を有するるつぼ17に入れられ、蒸発材料に高エネルギーの電子が衝突することで加熱蒸発する。巻出ロール13から巻出されたフィルム基材12は成膜ロール14へ送られる。フィルム基材12は、成膜室内で蒸発材料18をに蒸着させ、成膜ロール14から離れ巻取られて巻取ロール15となる。成膜ロール14は冷却を行い、蒸発過程で生じた熱によるフィルム基材12の浮きを少なくしている。さらに、この過程で成膜室内蒸発中に酸素などの反応性ガスを入れることで比較的容易に酸化物薄膜などを成膜することができ、一般に反応性蒸着と呼ばれている。   The evaporation material 18 is put in a crucible 17 having heat resistance, and is heated and evaporated by collision of high energy electrons with the evaporation material. The film substrate 12 unwound from the unwinding roll 13 is sent to the film forming roll 14. The film substrate 12 is vapor-deposited on the evaporation material 18 in the film forming chamber, and is taken up away from the film forming roll 14 to become a winding roll 15. The film forming roll 14 is cooled to reduce the floating of the film base 12 due to heat generated in the evaporation process. Furthermore, an oxide thin film or the like can be formed relatively easily by introducing a reactive gas such as oxygen during evaporation in the film formation chamber in this process, and is generally called reactive vapor deposition.

フィルム基材12が巻出し、成膜、巻取と一連の動作を行うと、成膜ロール14の出口箇所においてフィルム基材12と成膜ロール14間で剥がそうとする張力が働く。しかし、それとは逆の向きに静電気力によるフィルム基材12と成膜ロール14が密着しようとする力が働く。(張力>静電気力)であるなら成膜ロール14からフィルム基材12が剥がれ、巻取られていく。そのときの成膜ロール14とフィルム基材12間の界面は、静電気力に応じた放電が生じフィルム基材12に衝撃を与える。その衝撃により、フィルム基材12または薄膜に損傷が生じたり、張力が不安定となるなどの不都合が生じる。(張力<静電気力)では、フィルム基材12が成膜ロール14から剥がれることなく、成膜ロール12から送り出されずに成膜ロール14の入り口へと巻き込まれることで巻取不可能となる。このような問題の対処するため、成膜ロール14での剥離箇所の静電気力を減らす方法が多数考えられてきた。この静電気力は電子ビームによって蒸発材料18の上部より散乱電子や反跳電子などがフィルム基材12まで到達したものと考えられている。これは、電子ビームを蒸発材料に照射することで急激に静電気力が増大している点から予想できる。さらに生成する薄膜も金属酸化物であると誘電体になるため、散乱電子や反跳電子などが蓄積してしまう。   When the film base 12 is unwound and a series of operations such as film formation and winding are performed, a tension to be peeled between the film base 12 and the film formation roll 14 is applied at the exit position of the film formation roll 14. However, a force that causes the film base 12 and the film forming roll 14 to adhere to each other due to electrostatic force acts in the opposite direction. If (tension> static force), the film base 12 is peeled off from the film forming roll 14 and wound up. At that time, the interface between the film forming roll 14 and the film substrate 12 generates a discharge corresponding to the electrostatic force and gives an impact to the film substrate 12. The impact causes inconveniences such as damage to the film substrate 12 or the thin film and unstable tension. With (tension <electrostatic force), the film base 12 is not peeled off from the film forming roll 14, and is not sent out from the film forming roll 12, so that the film base 12 can be wound up to the entrance of the film forming roll 14. In order to deal with such a problem, many methods have been considered to reduce the electrostatic force at the peeling site on the film forming roll 14. This electrostatic force is considered to be that scattered electrons, recoil electrons, etc. reach the film substrate 12 from the upper part of the evaporation material 18 by the electron beam. This can be expected from the fact that the electrostatic force is rapidly increased by irradiating the evaporation material with an electron beam. Furthermore, since a thin film to be generated is a dielectric when it is a metal oxide, scattered electrons and recoil electrons accumulate.

以下に特許文献を記す。
特開2000−313953号公報 従来、イオンによる中和で静電気力を減少させることが考えられている(例えば、特許文献1参照。)。このイオンの役割はフィルム基材に到達する前もしくはフィルム基材上で帯電のよう要因になる電子を中和することで静電気力の緩和を行う。ただし、イオン発生のための装置が必要なことと成膜条件によってイオン中和の最適条件が変わってしまう問題点がある。
Patent documents are described below.
JP, 2000-313953, A It is conventionally considered to reduce electrostatic force by neutralization by ion (for example, refer to patent documents 1). The role of these ions is to reduce the electrostatic force by neutralizing electrons that cause charging such as charging before reaching the film substrate or on the film substrate. However, there is a problem that the optimum condition for ion neutralization varies depending on the necessity of an apparatus for generating ions and the film forming conditions.

本発明は、上記の問題を回避するためになされたもので、電子ビーム蒸着を行うときにフィルム基材の帯電障害をなくし、損傷のない安定な成膜を行うことが可能な巻取式真空蒸着装置を提供することを目的とするものである。   The present invention has been made in order to avoid the above-described problem, and eliminates the charging trouble of the film base material when performing electron beam evaporation, and can perform a stable film formation without damage. It aims at providing a vapor deposition apparatus.

上記目的を達成するために、
請求項1の発明は、巻取による基材搬送をしながら、電子ビームを加熱源とする蒸着が該基材に行える真空蒸着装置において、
蒸発材料が収納されるルツボが誘電体からなり、電子ビームによって負電位に帯電するルツボに対して、外部電源から正電位を加える手段を成膜室内に具備し、ルツボと成膜室内でプラズマが発生し維持することを特徴とする巻取式真空蒸着装置である。
To achieve the above objective,
The invention of claim 1 is a vacuum vapor deposition apparatus in which vapor deposition using an electron beam as a heating source can be performed on the substrate while conveying the substrate by winding.
The crucible containing the evaporation material is made of a dielectric, and a means for applying a positive potential from an external power source to the crucible charged to a negative potential by an electron beam is provided in the film formation chamber, and plasma is generated in the crucible and the film formation chamber. It is a winding type vacuum deposition apparatus characterized by being generated and maintained.

請求項2の発明は、前記正電位を加える手段によってプラズマが発生すると、ルツボの電位が減少することを特徴とする請求項1記載の巻取式真空蒸着装置である。   The invention according to claim 2 is the winding type vacuum evaporation apparatus according to claim 1, wherein the potential of the crucible decreases when the plasma is generated by the means for applying the positive potential.

請求項3の発明は、前記ルツボが、セラミックス焼結体からなることを特徴とする請求項1または2記載の巻取式真空蒸着装置である。
A third aspect of the present invention is the take-up vacuum deposition apparatus according to the first or second aspect, wherein the crucible is made of a ceramic sintered body.
.

請求項4の発明は、前記セラミックス焼結体が、酸化アルミニウムを含んでいることを特徴とする請求項3記載の巻取式真空蒸着装置である。   A fourth aspect of the present invention is the take-up vacuum deposition apparatus according to the third aspect, wherein the ceramic sintered body contains aluminum oxide.

請求項5の発明は、請求項1〜4のいずれか1項に記載の巻取式真空蒸着装置において、
巻取による基材搬送室と成膜室が区切られ、成膜室の圧力より基材搬送室の圧力の方が高いことを特徴とする巻取式真空蒸着装置である。
Invention of Claim 5 is a winding-type vacuum evaporation apparatus of any one of Claims 1-4,
A roll-up vacuum deposition apparatus characterized in that a base material transfer chamber and a film formation chamber are separated by winding, and the pressure in the base material transfer chamber is higher than the pressure in the film formation chamber.

請求項6の発明は、請求項1〜5のいずれか1項に記載の巻取式真空蒸着装置において、
負電位に帯電したルツボに対しての正電位を加える手段によって放電する形式が、グロー放電であることを特徴とする巻取式真空蒸着装置である。
Invention of Claim 6 is the winding-type vacuum evaporation apparatus of any one of Claims 1-5,
A wind-up type vacuum vapor deposition apparatus is characterized in that glow discharge is performed by a means for applying a positive potential to a crucible charged to a negative potential.

請求項7の発明は、請求項1〜6記載のいずれか1項に記載の巻取式真空蒸着装置において、
成膜室内で電子ビームが磁界によって偏向される手段が、プラズマを閉じこめる作用を同時に持つことを特徴とする巻取式真空蒸着装置である。
The invention of claim 7 is the winding type vacuum evaporation apparatus according to any one of claims 1 to 6,
In the film forming chamber, the means for deflecting the electron beam by the magnetic field simultaneously has a function of confining the plasma.

本発明により、巻取走行する基材、特にプラスチックフィルム基材に対し電子ビームによる加熱蒸発によって薄膜形成する巻取式真空蒸着装置において、ルツボでの電位上昇を減少させることによって巻取でのフィルムの帯電をおさえて、成膜した膜に損傷を与えることが無く良好な特性を得ることが出来る。直流電源と電極での簡単な装置で、ルツボと成膜ロール電位差を減らすので帯電を少なくする効果が得られる。さらに、ルツボの異常放電を抑制することから、異常放電によるルツボの損傷を防げるため耐久性が上がる効果もある。また、ルツボの電位を管理することで、帯電の障害があるかどうかの判断材料にもなり得る。   According to the present invention, in a winding-type vacuum deposition apparatus for forming a thin film by heating and evaporating with an electron beam on a substrate for winding and traveling, particularly a plastic film substrate, the film in winding is reduced by reducing the potential increase in the crucible. Therefore, good characteristics can be obtained without damaging the deposited film. A simple device with a direct current power source and electrodes reduces the potential difference between the crucible and the film forming roll, so that the effect of reducing charging can be obtained. Further, since the abnormal discharge of the crucible is suppressed, the crucible can be prevented from being damaged by the abnormal discharge, so that the durability is improved. In addition, managing the potential of the crucible can be used to determine whether or not there is a charging failure.

以下、本発明の一実施形態について説明する。図1は、本発明の巻取式真空蒸着装置の一例を示す断面図である。巻取式真空蒸着装置の真空槽11には巻取ロール13と巻出ロ
ール15の他に成膜ロール14から成る巻取部、成膜ロール14上をフィルム基材12が走行している場所に成膜室と呼ばれる薄膜形成部がある。それらを真空環境下にするため巻取部、薄膜形成部を各々真空排気する真空ポンプ10が設けられている。薄膜形成部を経路として走行してきたフィルム基材12が成膜ロール14から離れる部分に。成膜ロール14は冷却および回転等の要因で接地されることが多いため、常に放電に対して接地電極となりうる。薄膜形成部には蒸発材料18とるつぼ17から成る蒸発源があり、電子ビーム19によって加熱蒸発し薄膜を形成することができる。電子ビーム19は電子銃16で生成し、電子銃16は熱電子放出型などの一般的な電子銃を用いることができる。以上より、従来の電子ビーム蒸着よって問題となるプラスチックフィルム基材などの誘電体基材の帯電障害を防ぐ。
Hereinafter, an embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing an example of a take-up vacuum deposition apparatus of the present invention. In the vacuum tank 11 of the wind-up type vacuum evaporation apparatus, a winding unit comprising a film forming roll 14 in addition to the winding roll 13 and the unwinding roll 15, a place where the film substrate 12 runs on the film forming roll 14 There is a thin film forming section called a film forming chamber. In order to put them in a vacuum environment, a vacuum pump 10 is provided for evacuating the winding unit and the thin film forming unit. In the part where the film substrate 12 that has traveled along the thin film forming section is separated from the film forming roll 14. Since the film forming roll 14 is often grounded due to factors such as cooling and rotation, it can always be a ground electrode against discharge. The thin film forming portion has an evaporation source composed of the evaporation material 18 and the crucible 17 and can be heated and evaporated by the electron beam 19 to form a thin film. The electron beam 19 is generated by an electron gun 16, and a general electron gun such as a thermionic emission type can be used as the electron gun 16. As described above, charging failure of a dielectric substrate such as a plastic film substrate, which is a problem due to conventional electron beam evaporation, is prevented.

フィルム基材12は、公知のものを使用することができ、例えばポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド系(ナイロンー6、ナイロンー66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などが挙げられるが特に限定しない。蒸発材料18は、様々な金属(例えばAl,Cu,Ti,Si等)、TiO2,MgO,SiO2,SiO,Al23,ZrO2,ZnS等のセラミックが挙げられるが特に限定はしない。 As the film substrate 12, known materials can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene , Ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol, polycarbonate, polyethersulfone, acrylic, cellulose-based (triacetylcellulose, diacetylcellulose, etc.) and the like are not particularly limited. Examples of the evaporation material 18 include various metals (for example, Al, Cu, Ti, Si, and the like), ceramics such as TiO 2 , MgO, SiO 2 , SiO, Al 2 O 3 , ZrO 2 , and ZnS, but are not particularly limited. .

このように、図1に図示した装置による薄膜形成する場合、フィルム基材12を巻出しロール13のように設置し蒸発材料18をるつぼ17に収め、上下真空室を適度な圧力になるまで真空ポンプ10で真空排気を行う。電子ビーム19が照射できる圧力になれば電子銃16が動作させ蒸発材料18を蒸発するまで加熱させ、フィルム基材12を成膜ロール14上に走行させることで蒸発材料18による薄膜を形成することができる。その後、巻取ロール15のようにフィルム基材12が巻き取られる。このときのフィルム基材12には蒸発材料18の他に、散乱電子や二次電子が入射し成膜ロール14からフィルムが剥がれるとき静電気力がかかり、無理に引っ張ろうとすると帯電障害が生じる。このとき、電子ビーム19が蒸発材料18を加熱するエネルギーと反射して拡散する電子エネルギー、それとルツボを帯電させるエネルギーがあることに注目し、ルツボの帯電電位から接地電位と等しい成膜ロール14や外壁に向け電界が形成されると考えた。よって、反射電子や拡散電子などの比較的エネルギーの低い電子でも負に帯電したルツボには反発し、成膜ロール14上のフィルム基材12に向かって加速してしまう。このルツボに帯電する電位は、電子ビームの加速電圧に関係する。通常の真空蒸着で使われる電子ビームでは−10kV〜−40kV程度であるので少なくとも−数kV以上あることが予想される。   Thus, when forming a thin film by the apparatus shown in FIG. 1, the film base 12 is placed like the unwinding roll 13, the evaporation material 18 is placed in the crucible 17, and the upper and lower vacuum chambers are vacuumed to an appropriate pressure. The pump 10 is evacuated. When the pressure capable of being irradiated with the electron beam 19 is reached, the electron gun 16 is operated to heat the evaporation material 18 until it evaporates, and the film base 12 is run on the film forming roll 14 to form a thin film of the evaporation material 18. Can do. Thereafter, the film substrate 12 is wound up like the winding roll 15. At this time, in addition to the evaporation material 18, scattered electrons and secondary electrons are incident on the film substrate 12, and an electrostatic force is applied when the film is peeled off from the film forming roll 14. At this time, paying attention to the energy that the electron beam 19 heats the evaporation material 18, the electron energy that reflects and diffuses, and the energy that charges the crucible, the film forming roll 14 that is equal to the ground potential from the charged potential of the crucible We thought that an electric field was formed toward the outer wall. Therefore, even a relatively low energy electron such as a reflected electron or a diffused electron repels the negatively charged crucible and accelerates toward the film substrate 12 on the film forming roll 14. The potential charged to the crucible is related to the acceleration voltage of the electron beam. An electron beam used in normal vacuum vapor deposition is about −10 kV to −40 kV, and is expected to be at least −several kV.

このため、負の帯電を効率よく放電させることを考えて、正の電位をルツボ周囲に置いた放電電極22に加える。すると、電子ビームが入射しているときは、数十Vの正電圧を直流電源21より放電電極22に供給しただけで、放電が開始される。この放電は、グロープラズマであり、直流電源21からの電流がプラズマを維持している。安定したグロープラズマによって、ルツボの電位は減少し、ルツボからの反射電子や散乱電子等を成膜ロール14への加速を抑制することとなる。ルツボがセラミックス焼結体であるなら、ルツボとしての熱的特性が優れ硬度も高く好ましいが誘電体であるため帯電をする。前記した内容で、ルツボの電位を下げる必要がある。セラミック焼結体の中でも、酸化アルミニウムを成分としたルツボは誘電率が比較的低く(比誘電率で約10程度)、電気絶縁性が高く、蒸発材料との合金を作りにくいルツボであるため、より好ましい。成膜室と巻取室において、圧力を巻取室側で高くするのは帯電したフィルムが、成膜ロール14からフィルムが離れるときに剥離放電の電圧を低くするためである。電子銃16のビーム面と蒸発材料18の表面は、90°ずれている。このため、ビーム面を90°偏向するため電子ビーム偏向コイル20が設置されている。この電子ビーム偏向コイル20は、強力な磁界を発
生させるためにルツボと放電電極22によって生成したプラズマを閉じこめる作用がある。電子は磁界の中では回転運動を行い、これにより電子ビームを90°偏向させているが、同様にプラズマ中の電子も同じ方向に回転運動をする。よって、プラズマ空間では電子による衝突が盛んに行われることで、より安定したグロープラズマが発生することになり好ましい。
For this reason, in consideration of efficiently discharging negative charges, a positive potential is applied to the discharge electrode 22 placed around the crucible. Then, when the electron beam is incident, the discharge is started only by supplying a positive voltage of several tens of volts to the discharge electrode 22 from the DC power source 21. This discharge is glow plasma, and the current from the DC power source 21 maintains the plasma. Due to the stable glow plasma, the electric potential of the crucible is reduced, and the acceleration of the reflected electrons and scattered electrons from the crucible to the film forming roll 14 is suppressed. If the crucible is a ceramic sintered body, it is preferable because it has excellent thermal characteristics and high hardness as a crucible, but is charged because it is a dielectric. With the above contents, it is necessary to lower the crucible potential. Among ceramic sintered bodies, a crucible containing aluminum oxide as a component is a crucible having a relatively low dielectric constant (relative dielectric constant of about 10), high electrical insulation, and difficult to form an alloy with an evaporation material. More preferred. The reason why the pressure is increased on the winding chamber side in the film forming chamber and the winding chamber is to reduce the voltage of the peeling discharge when the charged film is separated from the film forming roll 14. The beam surface of the electron gun 16 and the surface of the evaporation material 18 are shifted by 90 °. Therefore, an electron beam deflection coil 20 is installed to deflect the beam surface by 90 °. The electron beam deflection coil 20 has an action of confining plasma generated by the crucible and the discharge electrode 22 in order to generate a strong magnetic field. The electrons rotate in the magnetic field, thereby deflecting the electron beam by 90 °. Similarly, the electrons in the plasma also rotate in the same direction. Therefore, it is preferable that collision with electrons is actively performed in the plasma space, so that more stable glow plasma is generated.

以下、本発明の一実施例について具体的に説明する。   Hereinafter, an embodiment of the present invention will be specifically described.

フィルム基材として25μmの厚みのPET(ポリエチレンテレフタレート)フィルム、蒸発材料としてAl、加速電圧40kV、12kWの電子ビームを電子銃から生成し、Al蒸発中に酸素ガスを入れ、反応性蒸着を行いながら成膜ロール上を60m/minで走行するPETフィルム上にAlOxの薄膜を生成した。圧力は成膜室で、2.0×10-1Pa、巻取室で1.5Paとした。図3に示すように、ルツボはルツボケースの内側にセラミックス粉体としてアルミナ粉体を充填させた上、固定した。アルミナ粉体のなかに、5cm四方のステンレス電極(厚さ0.3mm)を入れて、絶縁碍子で保護したリード線によりチャンバーの外に取り出した。その電位を電圧計によって測定した。また、成膜ロールからフィルムが離れたところには、電位計によるフィルム表面電位を測定した。成膜中に直流電源から150Vを印加した。ルツボの電位とフィルムの表面電位、成膜されたフィルムとその水蒸気透過率を測定し、バリア性能の評価を行った。水蒸気透過度測定は、測定装置:モダンコントロール社製PERMATRAN3/31測定条件:40℃−90%RHをもちいた。 A PET (polyethylene terephthalate) film with a thickness of 25 μm as a film base, Al as an evaporation material, an electron beam with an acceleration voltage of 40 kV and 12 kW are generated from an electron gun, oxygen gas is put into the Al evaporation, and reactive deposition is performed An AlOx thin film was formed on a PET film running on a film forming roll at 60 m / min. The pressure was 2.0 × 10 −1 Pa in the film forming chamber and 1.5 Pa in the winding chamber. As shown in FIG. 3, the crucible was fixed by filling alumina powder as ceramic powder inside the crucible case. A 5 cm square stainless steel electrode (thickness: 0.3 mm) was put in the alumina powder, and taken out of the chamber by a lead wire protected with an insulator. The potential was measured with a voltmeter. Moreover, the film surface potential with an electrometer was measured at the place where the film was separated from the film forming roll. 150 V was applied from a direct current power source during film formation. The barrier performance was evaluated by measuring the potential of the crucible, the surface potential of the film, the film formed and its water vapor transmission rate. The water vapor transmission rate measurement was performed using a measuring apparatus: PERMATRAN 3/31 manufactured by Modern Control Co., Ltd .: 40 ° C.-90% RH.

実施例1と同様の装置を用いて、本発明の効果と比較するために直流電源からの電圧印加を行なわず、比較例としての実施例2について実施例1と同様に評価した。その結果を以下に示す。   In order to compare the effect of the present invention with the same apparatus as in Example 1, voltage application from a DC power source was not performed, and Example 2 as a comparative example was evaluated in the same manner as Example 1. The results are shown below.

本発明における実施例1では、ルツボの電位およびフィルムの表面電位はそれぞれ0.1kVと±1.5kV以内と小さい電位で安定した電位が掛かっていた。ところが、比較例としての実施例2では広範囲に電位がばらつき、ルツボの電位では−30kV〜−10KVでフィルムの電位は−60kVにまで達する部分もあった。   In Example 1 of the present invention, the crucible potential and the surface potential of the film were applied with a stable potential at a small potential within 0.1 kV and ± 1.5 kV, respectively. However, in Example 2 as a comparative example, the electric potential varied widely, and there was a portion where the potential of the crucible reached -30 kV to -10 KV and the potential of the film reached -60 kV.

本発明における実施例1では剥離面周辺に薄く発光する放電が見受けられたが、フィルムは成膜ロールから問題なく剥離し、巻き取られたフィルムに皺は見られなかった。ところが、比較例としての実施例2では、剥離面に沿うように強い放電発光が見えて剥離箇所が前後に移動するといった不安定な状態だった。静電気力は強い放電発光が見えるときにエネルギーを放出し、フィルムを弛ませるため皺が生じてしまった。   In Example 1 of the present invention, a thin light emission was observed around the peeled surface, but the film was peeled off from the film-forming roll without any problem, and no wrinkles were found on the wound film. However, in Example 2 as a comparative example, strong discharge light emission was seen along the peeled surface, and the peeled portion moved back and forth. The electrostatic force released energy when a strong discharge luminescence was visible, causing wrinkles to loosen the film.

本発明における実施例1での水蒸気透過率を測定したところ、1.8g/m2−24hrと良好なバリア性能を示したが、比較例としての実施例2では19.5g/m2−24hrであったためバリア性能はほとんど現れなかった。 When the water vapor transmission rate in Example 1 of the present invention was measured, it showed a good barrier performance of 1.8 g / m 2 -24 hr, but in Example 2 as a comparative example, 19.5 g / m 2 -24 hr. As a result, barrier performance hardly appeared.

本発明の巻取式真空蒸着装置の一例を示す説明図である。It is explanatory drawing which shows an example of the winding type vacuum evaporation system of this invention. 従来の巻取式真空蒸着装置の最も簡単な構成を示す説明図である。It is explanatory drawing which shows the simplest structure of the conventional winding type vacuum evaporation system. 本発明のルツボ電位測定の一例をしめす説明図である。It is explanatory drawing which shows an example of the crucible potential measurement of this invention.

符号の説明Explanation of symbols

10…真空ポンプ
11…真空槽
12…フィルム基材
13…巻出しロール
14…成膜ロール
15…巻取ロール
16…電子銃
17…ルツボ
18…蒸発材料
19…電子ビーム
20…電子ビーム偏向コイル
21…直流電源
22…放電電極
23…電圧計
24…ルツボケース
25…セラミックス粉体
DESCRIPTION OF SYMBOLS 10 ... Vacuum pump 11 ... Vacuum tank 12 ... Film base material 13 ... Unwinding roll 14 ... Film-forming roll 15 ... Winding roll 16 ... Electron gun 17 ... Crucible 18 ... Evaporating material 19 ... Electron beam 20 ... Electron beam deflection coil 21 ... DC power supply 22 ... Discharge electrode 23 ... Voltmeter 24 ... Crucible case 25 ... Ceramic powder

Claims (7)

巻取による基材搬送をしながら、電子ビームを加熱源とする蒸着が該基材に行える真空蒸着装置において、
蒸発材料が収納されるルツボが誘電体からなり、電子ビームによって負電位に帯電するルツボに対して、外部電源から正電位を加える手段を成膜室内に具備し、ルツボと成膜室内でプラズマが発生し維持することを特徴とする巻取式真空蒸着装置。
In a vacuum deposition apparatus capable of performing deposition using an electron beam as a heating source on the substrate while conveying the substrate by winding,
The crucible containing the evaporation material is made of a dielectric, and a means for applying a positive potential from an external power source to the crucible charged to a negative potential by an electron beam is provided in the film formation chamber, and plasma is generated in the crucible and the film formation chamber. A wind-up type vacuum deposition apparatus characterized by being generated and maintained.
前記正電位を加える手段によってプラズマが発生すると、ルツボの電位が減少することを特徴とする請求項1記載の巻取式真空蒸着装置。   2. The winding type vacuum deposition apparatus according to claim 1, wherein when the plasma is generated by the means for applying the positive potential, the potential of the crucible decreases. 前記ルツボが、セラミックス焼結体からなることを特徴とする請求項1または2記載の巻取式真空蒸着装置。   The winding type vacuum deposition apparatus according to claim 1 or 2, wherein the crucible is made of a ceramic sintered body. 前記セラミックス焼結体が、酸化アルミニウムを含んでいることを特徴とする請求項3記載の巻取式真空蒸着装置。   The winding type vacuum vapor deposition apparatus according to claim 3, wherein the ceramic sintered body contains aluminum oxide. 請求項1〜4のいずれか1項に記載の巻取式真空蒸着装置において、
巻取による基材搬送室と成膜室が区切られ、成膜室の圧力より基材搬送室の圧力の方が高いことを特徴とする巻取式真空蒸着装置。
In the winding type vacuum deposition apparatus according to any one of claims 1 to 4,
A take-up vacuum deposition apparatus characterized in that a substrate transport chamber and a film forming chamber are separated by winding, and the pressure in the substrate transport chamber is higher than the pressure in the film forming chamber.
請求項1〜5のいずれか1項に記載の巻取式真空蒸着装置において、
負電位に帯電したルツボに対しての正電位を加える手段によって放電する形式が、グロー放電であることを特徴とする巻取式真空蒸着装置。
In the winding type vacuum deposition apparatus according to any one of claims 1 to 5,
A wind-up type vacuum vapor deposition apparatus, characterized in that a discharge is performed by means for applying a positive potential to a crucible charged to a negative potential is glow discharge.
請求項1〜6記載のいずれか1項に記載の巻取式真空蒸着装置において、
成膜室内で電子ビームが磁界によって偏向される手段が、プラズマを閉じこめる作用を同時に持つことを特徴とする巻取式真空蒸着装置。
In the winding type vacuum evaporation apparatus according to any one of claims 1 to 6,
A winding type vacuum vapor deposition apparatus characterized in that means for deflecting an electron beam by a magnetic field in a film forming chamber simultaneously has an action of confining plasma.
JP2004046065A 2004-02-23 2004-02-23 Winding type vacuum evaporation system Expired - Fee Related JP4380360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046065A JP4380360B2 (en) 2004-02-23 2004-02-23 Winding type vacuum evaporation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046065A JP4380360B2 (en) 2004-02-23 2004-02-23 Winding type vacuum evaporation system

Publications (2)

Publication Number Publication Date
JP2005232564A JP2005232564A (en) 2005-09-02
JP4380360B2 true JP4380360B2 (en) 2009-12-09

Family

ID=35015818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046065A Expired - Fee Related JP4380360B2 (en) 2004-02-23 2004-02-23 Winding type vacuum evaporation system

Country Status (1)

Country Link
JP (1) JP4380360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029313B (en) * 2019-04-25 2024-02-06 深圳吉阳智能科技有限公司 Negative electrode winding lithium plating system
CN111139447B (en) * 2020-02-25 2023-11-03 费勉仪器科技(上海)有限公司 Device for realizing ultrahigh vacuum evaporation by utilizing differential air extraction system

Also Published As

Publication number Publication date
JP2005232564A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP2005146401A (en) Coiling type vacuum vapor deposition method and coiling type vacuum vapor deposition apparatus
JP3795518B2 (en) Winding type vacuum deposition apparatus and winding type vacuum deposition method
JP2014189890A (en) Film deposition apparatus and film deposition method
JP2019153591A (en) Method and coating arrangement
JP5504720B2 (en) Deposition equipment
JP2014523940A (en) Method for processing a flexible substrate
JP2008248266A (en) Apparatus for depositing thin film on sheet, and manufacturing method of sheet with thin film
JP4380360B2 (en) Winding type vacuum evaporation system
JP4613046B2 (en) Pressure gradient ion plating film deposition system
JP4601381B2 (en) Pressure gradient ion plating film deposition system
JP7299028B2 (en) Film forming apparatus and film forming method by magnetron sputtering
JP4826907B2 (en) Winding type vacuum deposition method and apparatus
JP5045513B2 (en) Winding type vacuum deposition method and apparatus
JP4601379B2 (en) Pressure gradient ion plating film deposition system
JP4601385B2 (en) Pressure gradient ion plating film deposition system
JP2009179837A (en) Winding type vapor deposition apparatus and winding type vapor deposition method, and barrier film
JP2006111942A (en) Pressure gradient type ion-plating film-forming apparatus
JP4613056B2 (en) Pressure gradient ion plating film forming apparatus and film forming method
JP4613048B2 (en) Pressure gradient ion plating film deposition system
JP2013237897A (en) Vacuum film deposition system, gas barrier film, and laminate with gas barrier property
JP4904725B2 (en) Winding type vacuum deposition method
JP2010185124A (en) Vapor deposition method and vapor deposition apparatus
JP4225051B2 (en) Winding type vacuum deposition method
JP2010215957A (en) Winding type vapor deposition apparatus, winding type vapor deposition method, and barrier film
JP2010163693A (en) Winding type vacuum deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees