JP4379904B2 - Temperature signal transmission circuit - Google Patents

Temperature signal transmission circuit Download PDF

Info

Publication number
JP4379904B2
JP4379904B2 JP2001235971A JP2001235971A JP4379904B2 JP 4379904 B2 JP4379904 B2 JP 4379904B2 JP 2001235971 A JP2001235971 A JP 2001235971A JP 2001235971 A JP2001235971 A JP 2001235971A JP 4379904 B2 JP4379904 B2 JP 4379904B2
Authority
JP
Japan
Prior art keywords
signal
processing means
temperature
signal processing
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001235971A
Other languages
Japanese (ja)
Other versions
JP2003042855A (en
Inventor
貴 吉岡
正巳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2001235971A priority Critical patent/JP4379904B2/en
Publication of JP2003042855A publication Critical patent/JP2003042855A/en
Application granted granted Critical
Publication of JP4379904B2 publication Critical patent/JP4379904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流路内の流量計等に設置される測温抵抗体からの温度信号を伝送する温度信号伝送回路に関するものである。
【0002】
【従来の技術】
従来における、流路内に設置される測温抵抗体の温度信号伝送回路を図3に示す。この例は、流路1に渦流量計を設置し、この渦流量計内部に設置した測温抵抗体3で検出された温度信号を伝送するものである。
【0003】
図3にあって、渦検出のために流路1に取り付けてある渦発生体2に組み込まれている測温抵抗体3と、この測温抵抗体3に接続されているケーブル4と、このケーブル4に接続されている温度変換回路部5と、温度変換回路部5で変換された信号をデジタル値にして出力するAD変換部6と、デジタル値にされた信号を演算処理するメインCPUを備えた制御部7と、制御部7により演算処理された信号を一次コイル8aに印加し、二次コイル8bに誘起発生させる絶縁回路8と、二次コイル8bの信号を出力する電源・出力回路部9とから構成される。
【0004】
このような構成において、測温抵抗体3と電源・出力回路部9は、絶縁されていなければならないが、この従来の回路構成においては、制御部7と電源・出力回路部9との間で絶縁されている。このため、測温抵抗体3からの信号は、AD変換部6でデジタル値に変換され、そのまま制御部7に送られ信号処理される構成となっている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術で説明した回路構成にあっては、信号処理する制御部7と電源・出力回路部9との間で絶縁する場合、電源線上に絶縁回路8を設けなければならず、この絶縁回路8の部分が大きく、かつ複雑になってしまうという問題がある。
【0006】
従って、電源・出力回路部9と測温抵抗体3との間で絶縁する必要がある場合に、小規模で、簡単な絶縁回路を実現することに解決しなければならない課題を有する。
【0007】
【課題を解決するための手段】
上記課題を達成する本発明は、次の通りである。
【0008】
)流路内に設置される測温抵抗体及び校正用抵抗と、前記測温抵抗体と校正用抵抗とを切り替える切換スイッチと、前記測温抵抗体からの検出信号を演算処理してディジタル値の温度データに変換する第1の信号処理手段と、前記温度データを受信して温度抵抗値を算出する演算処理機能を備えた第2の信号処理手段と、前記第1の信号処理手段と前記第2の信号処理手段との間に前記温度データの信号の伝送を電気的に絶縁する絶縁手段とを備え、前記第2の信号処理手段は、前記切換スイッチを切り替える制御信号を前記第1の信号処理手段に送出し、該制御信号を受信した第1の信号処理手段は、該制御信号に基づいて前記切換スイッチを適宜切り替えるようにしたことを特徴とする温度信号伝送回路。
)前記第1の信号処理手段と前記第2の信号処理手段との間の信号の伝送は、非同期通信によることを特徴とする(1)記載の温度信号伝送回路。
)前記測温抵抗体及び前記校正用抵抗は、前記流路に設けられている渦流量計の渦発生体の内部に組み込まれていることを特徴とする()または()記載の温度信号伝送回路。
【0009】
このように、演算処理する機能を有する2個の信号処理手段を使用し、その間に絶縁手段を介在させる構成にしたことにより、絶縁手段は2つの信号処理手段で送受信する信号のみを通過させるようにすればよいから、その構成を複雑にすることなく、簡単な一次コイル及び二次コイルのみを持って構成することができる。
【0010】
【発明の実施の形態】
以下、本発明の温度信号伝送回路の実施例について図面を参照して説明する。尚、従来技術で説明したものと同じものには同一符号を付与して説明する。
【0011】
本発明の第1の実施例の温度信号伝送回路を図1に示す。
尚、この例では、図3に示した従来の例と同様に、流路1に渦流量計を設置し、この渦流量計内部に設置した測温抵抗体3で検出された温度信号を伝送するものとする。
【0012】
図1の本発明回路は、流路1に取り付けてある渦発生体2に組み込まれている測温抵抗体3と、この測温抵抗体3に接続されているケーブル4と、このケーブル4に接続され、測温抵抗体3の抵抗値を電圧値に変換する温度変換回路部5と、温度変換回路部5で変換された信号をディジタル値にして出力するAD変換部6と、このAD変換部6で変換された温度データを通信するためのサブCPU(小規模マイコン、例えば少ピンマイコン等)からなる通信制御部(第1の信号処理手段)10と、通信制御部10からの通信信号を絶縁手段である一次コイル12a及び二次コイル12bを有する絶縁回路12を介して伝送させるための送信回路11と、絶縁回路12を介して伝送されてきた通信信号(温度データ)を受信する受信回路13と、受信回路13で受信した通信信号から測定抵抗値を算出するメインCPUを備えた制御部(第2の信号処理手段)14と、制御部14により演算処理された信号を出力する電源・出力回路部9とから構成される。
【0013】
通信制御部10と制御部14間の信号の伝送は、非同期通信(UART;Universal Asynchronous Receiver Transmitter)により行うものであり、送信側(通信制御部10)と受信側(制御部14)が前もって標本化周波数(転送周波数)を定めておき、それぞれが独立したクロックで送信と受信を行うものである。
【0014】
このような構成を有す温度信号伝送回路において、測温抵抗体3の抵抗値を電圧値に変換し、その値をAD変換して、サブCPUからなる通信制御部10で温度データを作成し、この温度データを絶縁回路12を介してメインCPUからなる制御部14に非同期通信で送信する。制御部14では、受信した温度データに基づいて温度抵抗値を算出する。
【0015】
このようにして、電源回路9と測温抵抗体3の間を絶縁する場合に、サブCPUである通信制御部(第1の信号処理手段)10と制御部(第2の信号処理手段)14の間の通信を行う通信線を1か所で絶縁するだけでよいので、従来の絶縁方式に比べて回路構成を簡略化でき、絶縁トランスも小規模のものでよい。
【0016】
また、この通信制御部10と制御部14に搭載されている両者間での信号を受信するためのプログラムは適宜変更することができるため、別途、ハードウェアを追加することなくソフト的に問題を解決することができる。
【0017】
次に、本発明の第2の実施例の温度信号伝送回路を図2に示す。
尚、この例にあっても、図1に示した例と同様に、流路1に渦流量計を設置し、この渦流量計内部に設置した測温抵抗体3で検出された温度信号を伝送するものとする。
【0018】
第2の実施例は、図2に示すように、流路1に取り付けてある渦発生体2に組み込まれている測温抵抗体3及び校正用抵抗15,16と、この測温抵抗体3及び校正用抵抗15,16を切り換える切換スイッチ24と、切換スイッチ24に接続されている測温抵抗体3又は校正用抵抗15,16の抵抗値を電圧値に変換する温度変換回路部5と、この温度変換回路部5で変換された信号をディジタル値にして出力するAD変換部6と、このAD変換部6で変換された温度データを通信するためのサブCPU(小規模マイコン、例えば少ピンマイコン等)からなる通信制御部(第1の信号処理手段)17と、通信制御部17からの通信信号を絶縁手段である一次コイル20a及び二次コイル20bからなる絶縁回路20を介して伝送させるための送信回路18と、絶縁回路20を介して送信される信号を受信する受信回路19と、絶縁回路20を介して伝送されてきた通信信号を受信する受信回路21と、メインCPUである制御部23からの信号を絶縁回路20側に送る送信回路22と、受信回路21で受信した通信信号から測定温度の計算を行うメインCPUを備えた制御部(第2の信号処理手段)23と、制御部23により演算処理された信号を出力する電源・出力回路部9とから構成される。
【0019】
サブCPUである通信制御部17は、また、切換スイッチ24の切換を制御する機能も備え、制御部23からの制御信号を、送信回路22−絶縁回路20−受信回路18の経路を通って受信すると、その信号に応じて、切換スイッチ24を制御して測温抵抗体3または校正用抵抗15,16に制御信号のデータに応じて切り換える。
【0020】
このように、第1及び第2の信号処理手段の間の通信を双方向通信にすることで、第2の信号処理手段であるメインCPUの制御部23から第1の信号処理手段であるサブCPUの通信制御部17へ測定する抵抗を切り替える命令を送る等、メインCPUの制御部23から絶縁された回路への制御を行うことができる。
【0021】
この切換スイッチ24は測温抵抗体3と校正用抵抗15,16と測定する抵抗を切り替えることで、測温抵抗体3の校正処理を行うことができ、より正確な温度データを得ることができる。その他の点については第1の実施形態と同様であるので、その説明は省略する。
【0022】
尚、図1に示した第1の実施例、図2に示した第2の実施例では、両方とも、渦流量計に組み込まれる温度信号伝送回路の例を示したが、渦流量計に限ることなく、他の方式の流量計、差圧・圧力伝送器等、流路に設置される機器に内蔵されるような温度信号伝送回路であれば、本発明の温度信号伝送回路をそのまま適用することができる。
【0023】
【発明の効果】
以上説明したように、本発明による温度信号伝送回路は、2つのCPU間で非同期通信(UART)で信号を伝送することで、絶縁された回路間で測定データを伝送する回路構成にすることが可能であり、また、2つのCPU内のプログラムにより作成または解釈されるため、特別なハードウェアを必要としないで、所望の動作をさせることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の温度信号伝送回路を略示的に示したブロック図である。
【図2】本発明の第2の実施形態の温度信号伝送回路を略示的に示したブロック図である。
【図3】従来における温度信号伝送回路を示した略示的なブロック図である。
【符号の説明】
1 流路
2 渦発生体
3 測温抵抗体
4 ケーブル
5 温度変換回路部
6 AD変換部
9 電源・出力回路部
10 通信制御部(第1の信号処理手段)
11 送信回路
12 絶縁回路
12a 一次コイル
12b 二次コイル
13 受信回路
14 制御部(第2の信号処理手段)
15 校正用抵抗
16 校正用抵抗
17 通信制御部(第1の信号処理手段)
18 受信回路
19 送信回路
20 絶縁回路
20a 一次コイル
20b 二次コイル
21 受信回路
22 送信回路
23 制御部(第2の信号処理手段)
24 切換スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature signal transmission circuit that transmits a temperature signal from a resistance temperature detector installed in a flow meter or the like in a flow path.
[0002]
[Prior art]
FIG. 3 shows a conventional temperature signal transmission circuit of a resistance temperature detector installed in the flow path. In this example, a vortex flowmeter is installed in the flow path 1 and a temperature signal detected by the resistance temperature detector 3 installed in the vortex flowmeter is transmitted.
[0003]
In FIG. 3, a resistance temperature detector 3 incorporated in the vortex generator 2 attached to the flow path 1 for detecting the vortex, a cable 4 connected to the resistance temperature detector 3, and this A temperature conversion circuit unit 5 connected to the cable 4, an AD conversion unit 6 that outputs the signal converted by the temperature conversion circuit unit 5 as a digital value, and a main CPU that performs arithmetic processing on the digital value signal The control unit 7 provided, an insulation circuit 8 that applies a signal calculated by the control unit 7 to the primary coil 8a and induces and generates the secondary coil 8b, and a power source / output circuit that outputs the signal of the secondary coil 8b Part 9.
[0004]
In such a configuration, the resistance temperature detector 3 and the power source / output circuit unit 9 must be insulated, but in this conventional circuit configuration, between the control unit 7 and the power source / output circuit unit 9. Insulated. For this reason, the signal from the resistance temperature detector 3 is converted into a digital value by the AD converter 6 and sent to the controller 7 as it is for signal processing.
[0005]
[Problems to be solved by the invention]
However, in the circuit configuration described in the prior art, when the signal processing control unit 7 and the power supply / output circuit unit 9 are insulated, the insulation circuit 8 must be provided on the power supply line. There is a problem that the portion of the circuit 8 is large and complicated.
[0006]
Therefore, when it is necessary to insulate between the power source / output circuit unit 9 and the resistance temperature detector 3, there is a problem that must be solved by realizing a small-scale and simple insulation circuit.
[0007]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
[0008]
( 1 ) A resistance temperature detector and a calibration resistor installed in the flow path, a changeover switch for switching between the resistance temperature detector and the calibration resistor, and a detection signal from the resistance temperature detector are processed. A first signal processing means for converting the temperature data into a digital value; a second signal processing means having an arithmetic processing function for receiving the temperature data and calculating a temperature resistance value; and the first signal processing means. And an insulating means for electrically isolating transmission of the temperature data signal between the second signal processing means and the second signal processing means, wherein the second signal processing means sends a control signal for switching the changeover switch to the first signal. The temperature signal transmission circuit according to claim 1, wherein the first signal processing means that sends the signal to the first signal processing means and receives the control signal switches the changeover switch as appropriate based on the control signal.
( 2 ) The temperature signal transmission circuit according to (1) , wherein signal transmission between the first signal processing means and the second signal processing means is performed by asynchronous communication.
( 3 ) The temperature measuring resistor and the calibration resistor are incorporated in a vortex generator of a vortex flowmeter provided in the flow path ( 1 ) or ( 2 ) Temperature signal transmission circuit.
[0009]
In this way, by using two signal processing means having a function of performing arithmetic processing and interposing the insulating means between them, the insulating means passes only signals transmitted and received by the two signal processing means. Therefore, it is possible to configure with only a simple primary coil and secondary coil without complicating the configuration.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the temperature signal transmission circuit of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the same thing as what was demonstrated by the prior art.
[0011]
A temperature signal transmission circuit according to a first embodiment of the present invention is shown in FIG.
In this example, as in the conventional example shown in FIG. 3, a vortex flowmeter is installed in the flow path 1, and the temperature signal detected by the resistance temperature detector 3 installed in the vortex flowmeter is transmitted. It shall be.
[0012]
The circuit of the present invention of FIG. 1 includes a resistance temperature detector 3 incorporated in a vortex generator 2 attached to a flow path 1, a cable 4 connected to the resistance temperature detector 3, and a cable 4 A temperature conversion circuit unit 5 that is connected and converts the resistance value of the resistance temperature detector 3 into a voltage value, an AD conversion unit 6 that outputs a signal converted by the temperature conversion circuit unit 5 as a digital value, and this AD conversion A communication control unit (first signal processing means) 10 including a sub CPU (small-scale microcomputer, for example, a small pin microcomputer) for communicating the temperature data converted by the unit 6, and a communication signal from the communication control unit 10 Is transmitted through an insulation circuit 12 having a primary coil 12a and a secondary coil 12b as insulation means, and reception for receiving a communication signal (temperature data) transmitted through the insulation circuit 12 Circuit 13 and A control unit (second signal processing means) 14 having a main CPU that calculates a measured resistance value from a communication signal received by the receiving circuit 13, and a power source / output circuit unit that outputs a signal calculated by the control unit 14 9.
[0013]
Transmission of signals between the communication control unit 10 and the control unit 14 is performed by asynchronous communication (UART: Universal Asynchronous Receiver Transmitter), and the transmission side (communication control unit 10) and the reception side (control unit 14) perform sampling in advance. The transmission frequency is determined, and transmission and reception are performed with independent clocks.
[0014]
In the temperature signal transmission circuit having such a configuration, the resistance value of the resistance temperature detector 3 is converted into a voltage value, the value is AD-converted, and temperature data is created by the communication control unit 10 including the sub CPU. The temperature data is transmitted by asynchronous communication to the control unit 14 including the main CPU via the insulation circuit 12. The control unit 14 calculates a temperature resistance value based on the received temperature data.
[0015]
Thus, when the power supply circuit 9 and the resistance temperature detector 3 are insulated, the communication control unit (first signal processing unit) 10 and the control unit (second signal processing unit) 14 which are sub CPUs. Since it is only necessary to insulate the communication line for performing communication between the two at one place, the circuit configuration can be simplified as compared with the conventional insulation system, and the insulation transformer may be of a small scale.
[0016]
In addition, since the program for receiving signals between the communication control unit 10 and the control unit 14 can be changed as appropriate, there is no problem in terms of software without additional hardware. Can be solved.
[0017]
Next, a temperature signal transmission circuit according to a second embodiment of the present invention is shown in FIG.
Even in this example, as in the example shown in FIG. 1, a vortex flow meter is installed in the flow path 1, and the temperature signal detected by the resistance temperature detector 3 installed in the vortex flow meter is obtained. Shall be transmitted.
[0018]
In the second embodiment, as shown in FIG. 2, the resistance temperature detector 3 and the calibration resistors 15 and 16 incorporated in the vortex generator 2 attached to the flow path 1, and the resistance temperature detector 3 A changeover switch 24 for switching between the calibration resistors 15 and 16, a temperature conversion circuit unit 5 for converting the resistance value of the resistance temperature detector 3 or the calibration resistors 15 and 16 connected to the changeover switch 24 into a voltage value, An AD conversion unit 6 that outputs the signal converted by the temperature conversion circuit unit 5 as a digital value, and a sub CPU (small microcomputer, for example, a small pin) for communicating the temperature data converted by the AD conversion unit 6 A communication control unit (first signal processing unit) 17 composed of a microcomputer or the like and a communication signal from the communication control unit 17 are transmitted through an insulation circuit 20 composed of a primary coil 20a and a secondary coil 20b which are insulation units. For A transmission circuit 18, a reception circuit 19 that receives a signal transmitted through the insulation circuit 20, a reception circuit 21 that receives a communication signal transmitted through the insulation circuit 20, and a control unit 23 that is a main CPU. A control circuit (second signal processing means) 23 having a main CPU for calculating a measured temperature from the communication signal received by the reception circuit 21, And a power supply / output circuit unit 9 that outputs a signal that has been arithmetically processed by the computer 23.
[0019]
The communication control unit 17 that is a sub CPU also has a function of controlling switching of the changeover switch 24 and receives a control signal from the control unit 23 through a path of the transmission circuit 22 -insulation circuit 20 -reception circuit 18. Then, according to the signal, the changeover switch 24 is controlled to switch the temperature measuring resistor 3 or the calibration resistors 15 and 16 according to the data of the control signal.
[0020]
In this way, by making the communication between the first and second signal processing means bidirectional, the control unit 23 of the main CPU, which is the second signal processing means, makes the sub signal that is the first signal processing means. It is possible to control the circuit isolated from the control unit 23 of the main CPU, such as sending a command to switch the resistance to be measured to the communication control unit 17 of the CPU.
[0021]
The changeover switch 24 can perform calibration processing of the resistance thermometer 3 by switching the resistance of the resistance thermometer 3 and the calibration resistors 15 and 16, and can obtain more accurate temperature data. . Since other points are the same as those of the first embodiment, the description thereof is omitted.
[0022]
In the first embodiment shown in FIG. 1 and the second embodiment shown in FIG. 2, both of the examples of the temperature signal transmission circuit incorporated in the vortex flowmeter are shown. Without being limited to this, the temperature signal transmission circuit of the present invention is applied as it is as long as it is a temperature signal transmission circuit that is built in equipment installed in the flow path, such as a flow meter of another type, a differential pressure / pressure transmitter, etc. be able to.
[0023]
【The invention's effect】
As described above, the temperature signal transmission circuit according to the present invention can be configured to transmit measurement data between insulated circuits by transmitting signals between two CPUs by asynchronous communication (UART). Since it is possible and is created or interpreted by a program in two CPUs, there is an effect that a desired operation can be performed without requiring special hardware.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing a temperature signal transmission circuit according to a first embodiment of the present invention.
FIG. 2 is a block diagram schematically showing a temperature signal transmission circuit according to a second embodiment of the present invention.
FIG. 3 is a schematic block diagram showing a conventional temperature signal transmission circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow path 2 Vortex generator 3 Resistance thermometer 4 Cable 5 Temperature conversion circuit part 6 AD conversion part 9 Power supply / output circuit part 10 Communication control part (1st signal processing means)
DESCRIPTION OF SYMBOLS 11 Transmission circuit 12 Insulation circuit 12a Primary coil 12b Secondary coil 13 Reception circuit 14 Control part (2nd signal processing means)
15 Calibration resistor 16 Calibration resistor 17 Communication control unit (first signal processing means)
18 receiving circuit 19 transmitting circuit 20 insulating circuit 20a primary coil 20b secondary coil 21 receiving circuit 22 transmitting circuit 23 control unit (second signal processing means)
24 selector switch

Claims (3)

流路内に設置される測温抵抗体及び校正用抵抗と、前記測温抵抗体と校正用抵抗とを切り替える切換スイッチと、前記測温抵抗体からの検出信号を演算処理してディジタル値の温度データに変換する第1の信号処理手段と、前記温度データを受信して温度抵抗値を算出する演算処理機能を備えた第2の信号処理手段と、前記第1の信号処理手段と前記第2の信号処理手段との間に前記温度データの信号の伝送を電気的に絶縁する絶縁手段とを備え、前記第2の信号処理手段は、前記切換スイッチを切り替える制御信号を前記第1の信号処理手段に送出し、該制御信号を受信した第1の信号処理手段は、該制御信号に基づいて前記切換スイッチを適宜切り替えるようにしたことを特徴とする温度信号伝送回路。  A resistance temperature detector and a calibration resistor installed in the flow path, a changeover switch for switching between the resistance temperature detector and the calibration resistor, and a detection signal from the resistance temperature detector are arithmetically processed to obtain a digital value. First signal processing means for converting to temperature data; second signal processing means having an arithmetic processing function for receiving the temperature data and calculating a temperature resistance value; the first signal processing means; Insulation means for electrically isolating transmission of the temperature data signal between the first signal processing means and the second signal processing means, wherein the second signal processing means sends a control signal for switching the changeover switch to the first signal. The temperature signal transmission circuit according to claim 1, wherein the first signal processing means, which is sent to the processing means and receives the control signal, appropriately switches the changeover switch based on the control signal. 前記第1の信号処理手段と前記第2の信号処理手段との間の信号の伝送は、非同期通信によることを特徴とする請求項記載の温度信号伝送回路。The transmission of the first signal processing means and said second signal between the signal processing means, the temperature signal transmission circuit according to claim 1, wherein the by asynchronous communication. 前記測温抵抗体及び前記校正用抵抗は、前記流路に設けられている渦流量計の渦発生体の内部に組み込まれていることを特徴とする請求項または請求項記載の温度信号伝送回路。The temperature signal according to claim 1 or 2 , wherein the resistance temperature detector and the calibration resistor are incorporated in a vortex generator of a vortex flowmeter provided in the flow path. Transmission circuit.
JP2001235971A 2001-08-03 2001-08-03 Temperature signal transmission circuit Expired - Lifetime JP4379904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235971A JP4379904B2 (en) 2001-08-03 2001-08-03 Temperature signal transmission circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235971A JP4379904B2 (en) 2001-08-03 2001-08-03 Temperature signal transmission circuit

Publications (2)

Publication Number Publication Date
JP2003042855A JP2003042855A (en) 2003-02-13
JP4379904B2 true JP4379904B2 (en) 2009-12-09

Family

ID=19067325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235971A Expired - Lifetime JP4379904B2 (en) 2001-08-03 2001-08-03 Temperature signal transmission circuit

Country Status (1)

Country Link
JP (1) JP4379904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034937B1 (en) * 2015-09-04 2016-11-30 株式会社又進 Sensor unit for vortex flowmeter and vortex flowmeter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058014A (en) * 2010-09-07 2012-03-22 Ngk Insulators Ltd Particulate substance detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034937B1 (en) * 2015-09-04 2016-11-30 株式会社又進 Sensor unit for vortex flowmeter and vortex flowmeter

Also Published As

Publication number Publication date
JP2003042855A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
US20080183317A1 (en) Building management system
JP4379904B2 (en) Temperature signal transmission circuit
WO2004053430A2 (en) Sensor arrangements and methods of determining a characteristic of a sample fluid using such sensor arrangements
JP2005517964A (en) Generation and measurement of radio frequency power
JP2008172634A (en) Failure detector of ad converter
JPH05122768A (en) Process signal receiver
JP2005321239A (en) Temperature transmitter
JP3968767B2 (en) Vortex flow meter
JPH11127092A (en) Power line carrier communication system, power line carrier communication equipment used for the system, frequency mutual converter and power line characteristic detector
JP2841998B2 (en) Transceiver inspection equipment
KR100312068B1 (en) Transmission system for measurement data on facility by modem chip
JP2928970B2 (en) Two-wire communication device
JPH09198596A (en) Radio meter-reading system
JP3147738B2 (en) Remote control system
CN206470935U (en) Desktop wireless transmitter for weighbridge weighing system
KR20220055572A (en) Phase discrimination system and method of Distribution Line
JP3307830B2 (en) Communication system between the transmitter that outputs pulse signals and the communication terminal
JPH07296288A (en) Composite measurement converter
US20020075899A1 (en) Method and device for receiving and converting transmission signals transmitted according to different protocols
CN117596567A (en) Signal processing device
JPH03207196A (en) Transmitter
CN114762301A (en) Signal processing device, signal processing method, and signal processing program
JP4861089B2 (en) Instrumentation data transmission apparatus and instrumentation data transmission method
JP2017011439A (en) Receiver, transmission system, reception method, and program for reception
JPH0739064A (en) Sampling time synchronization system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term