JP4378527B2 - Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same - Google Patents

Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same Download PDF

Info

Publication number
JP4378527B2
JP4378527B2 JP2004027263A JP2004027263A JP4378527B2 JP 4378527 B2 JP4378527 B2 JP 4378527B2 JP 2004027263 A JP2004027263 A JP 2004027263A JP 2004027263 A JP2004027263 A JP 2004027263A JP 4378527 B2 JP4378527 B2 JP 4378527B2
Authority
JP
Japan
Prior art keywords
glass body
columnar glass
manufacturing
longitudinal direction
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004027263A
Other languages
Japanese (ja)
Other versions
JP2005219944A (en
Inventor
泰彦 岩舘
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2004027263A priority Critical patent/JP4378527B2/en
Publication of JP2005219944A publication Critical patent/JP2005219944A/en
Application granted granted Critical
Publication of JP4378527B2 publication Critical patent/JP4378527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/60Silica-free oxide glasses
    • C03B2201/62Silica-free oxide glasses containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Description

本発明は柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体の製造方法及び複数のコアを有する光ファイバーの製造方法に関する。   The present invention relates to a method for producing a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body, and a method for producing an optical fiber having a plurality of cores.

古来、ガラスはその美しさと耐久性により美術品あるいは美術品を兼ねた日用品として用いられてきた。それはガラスが本質的に透明であり、極めて平滑な表面を作ることが出来ることに由来している。現在はその新たな機能が見直され、光学的機能ガラスとして光集積回路、光ファイバー、フォトマスク等の分野で、電気・電子的機能ガラスとしてディスプレイ、透明導電性膜等の分野で実用化されている。   Traditionally, glass has been used as a work of art or a daily necessities that also serves as a work of art due to its beauty and durability. It stems from the fact that glass is essentially transparent and can produce extremely smooth surfaces. At present, the new functions are reviewed, and they are put into practical use in the fields of optical integrated circuits, optical fibers and photomasks as optical functional glasses, and in the fields of displays and transparent conductive films as electrical and electronic functional glasses. .

これまでイオン加速器は原子炉材料のイオン照射効果を解析して新規材料を開発するために、あるいは放射光発生装置の一部として利用されてきた。イオン加速器を利用して電気的に高速イオンを作り出し、これを材料中に打ち込む(インプランテーション)ことにより、材料の部分的改質を図ることができる。また、ガラスに他の原子をドープすることも提案されている(例えば、特許文献1及び2参照。)。   Until now, ion accelerators have been used to analyze the effects of ion irradiation on reactor materials to develop new materials or as part of synchrotron radiation generators. The material can be partially modified by creating fast ions electrically using an ion accelerator and implanting them into the material (implantation). It has also been proposed to dope other atoms into the glass (see, for example, Patent Documents 1 and 2).

特開平6−90055号公報JP-A-6-90055 特開平7−109146号公報JP-A-7-109146

本発明は、イオン加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体中の所定の位置に注入する技術を利用することによる、複数のコアを有する光ファイバーの製造方法並びにその製造に用い得る柱状ガラス体の製造方法を提供することを目的としている。   The present invention uses a technique for injecting heavy ions into a predetermined position in a long columnar glass body in a thin beam state using an ion accelerator, and a method for manufacturing an optical fiber having a plurality of cores. It aims at providing the manufacturing method of the columnar glass body to obtain.

本発明者は、上記の目的を達成するために鋭意検討した結果、イオン加速器を用いて柱状ガラス体外壁に重イオンを照射する際に、重イオンの加速エネルギーと照射時間を適宜換えることにより、重イオンの浸透深さを任意に制御することができるので、同じ操作をイオン加速器と柱状ガラス体との相対位置を柱状ガラス体の長手方向に順次変化させて実施することにより柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を形成することができ、また、以上の操作を柱状ガラス体中の他の位置で繰り返すことにより柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本形成することができ、更に、柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体を長手方向に延伸処理することにより複数のコアを有する光ファイバーを製造し得ることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventor changed the acceleration energy and irradiation time of heavy ions appropriately when irradiating heavy ions to the outer wall of a columnar glass body using an ion accelerator, Since the penetration depth of heavy ions can be arbitrarily controlled, the same operation is performed by sequentially changing the relative position between the ion accelerator and the columnar glass body in the longitudinal direction of the columnar glass body. A region having a high heavy ion concentration continuous in the direction can be formed, and a region having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body can be formed by repeating the above operation at other positions in the columnar glass body. Further, a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body is stretched in the longitudinal direction. Found that it is possible to manufacture an optical fiber having a plurality of cores by, the present invention has been completed.

即ち、本発明の柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体の製造方法は、イオン加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体中の所定の位置に注入して重イオン濃度の高い領域を形成し、該イオン加速器と該柱状ガラス体との相対位置を該柱状ガラス体の長手方向に順次変化させて重イオンを細いビームの状態で該柱状ガラス体中に順次注入して該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を形成し、以上の操作を該柱状ガラス体中の他の位置で、好ましくは円周に沿って一定間隔で複数回繰り返して、該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本形成することを特徴とする。   That is, the method for producing a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body according to the present invention is a method of producing heavy ions in a long columnar glass body in a thin beam state using an ion accelerator. A region having a high heavy ion concentration is formed by injecting the ion accelerator into a predetermined position, and the relative position between the ion accelerator and the columnar glass body is sequentially changed in the longitudinal direction of the columnar glass body so that heavy ions are in a thin beam state. In order to form a region having a high concentration of heavy ions continuous in the longitudinal direction of the columnar glass body by sequentially injecting into the columnar glass body, the above operation is preferably performed at other positions in the columnar glass body. A plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body are formed by repeating a plurality of times at regular intervals along.

また、本発明の複数のコアを有する光ファイバーの製造方法は、柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体を長手方向に延伸処理することを特徴とする。   The method for producing an optical fiber having a plurality of cores according to the present invention is characterized in that a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body is stretched in the longitudinal direction. .

例えば、本発明の複数のコアを有する光ファイバーの製造方法は、イオン加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体中の所定の位置に注入して重イオン濃度の高い領域を形成し、該イオン加速器と該柱状ガラス体との相対位置を該柱状ガラス体の長手方向に順次変化させて重イオンを細いビームの状態で該柱状ガラス体中に順次注入して該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を形成し、以上の操作を該柱状ガラス体中の他の位置で、好ましくは円周に沿って一定間隔で複数回繰り返して、該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本形成し、その後該柱状ガラス体を長手方向に延伸処理することを特徴とする。   For example, in the method of manufacturing an optical fiber having a plurality of cores according to the present invention, an ion accelerator is used to inject heavy ions into a predetermined position in a long columnar glass body in a thin beam state to form a region having a high heavy ion concentration. Then, the relative position between the ion accelerator and the columnar glass body is sequentially changed in the longitudinal direction of the columnar glass body so that heavy ions are sequentially injected into the columnar glass body in a thin beam state. A region having a high heavy ion concentration continuous in the longitudinal direction is formed, and the above operation is repeated several times at other positions in the columnar glass body, preferably at regular intervals along the circumference. A plurality of regions having a high heavy ion concentration continuous in the longitudinal direction are formed, and then the columnar glass body is stretched in the longitudinal direction.

本発明の製造方法により、一本の柱状ガラス体の中に光ファイバー状の光の通り道を多数作り出すことができ、これを長手方向に延伸処理することにより複数のコアを有する光ファイバーを得ることができる。   According to the manufacturing method of the present invention, a large number of optical fiber-like light paths can be created in a single columnar glass body, and an optical fiber having a plurality of cores can be obtained by stretching this in the longitudinal direction. .

本発明の柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体の製造方法を図1に基づいて説明する。最初に、イオン加速器、例えばタンデム加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体(光ファイバーに用いられている通常のガラス体)中の所定の位置(普通には柱状ガラス体の端部、例えば図1(a)に示す点Aの位置)に注入して重イオン濃度の高い領域を形成し、引き続いて該イオン加速器と該柱状ガラス体との相対位置を該柱状ガラス体の長手方向に順次変化させて重イオンを細いビームの状態で該柱状ガラス体中に順次注入して該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域(図1(b)に示す1の領域)を該柱状ガラス体の一端(図1(b)に示す点Aの位置)から他端(図1(b)に示す点Bの位置)まで形成する。   A method for producing a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body of the present invention will be described with reference to FIG. First, an ion accelerator, for example, a tandem accelerator is used to place heavy ions in a thin beam state in a long columnar glass body (ordinary glass body used for optical fibers) (usually the end of the columnar glass body). A region having a high heavy ion concentration is formed, and subsequently the relative position between the ion accelerator and the columnar glass body is determined by the length of the columnar glass body. In the state where the heavy ions are successively injected into the columnar glass body in the state of a thin beam by changing in the direction, the heavy ion concentration is continuous in the longitudinal direction of the columnar glass body (1 shown in FIG. 1B). A region) is formed from one end (position of point A shown in FIG. 1 (b)) to the other end (position of point B shown in FIG. 1 (b)) of the columnar glass body.

次いで、以上の操作を該柱状ガラス体中の他の位置で、好ましくは、図1(c)に示すように、円周に沿って一定間隔で複数回繰り返して、該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本形成する(図1(c)には内部の重イオン濃度の高い領域を3本のみ示し、他は省略してある)。以上の操作で本発明の柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体を得ることができる。なお、重イオンの種類や加速エネルギーを適宜換えることで目的に即したインプランテーションを容易に遂行することができる。   Next, the above operation is repeated at other positions in the columnar glass body, preferably a plurality of times at regular intervals along the circumference, as shown in FIG. A plurality of continuous regions with high heavy ion concentration are formed (FIG. 1 (c) shows only three regions with high internal heavy ion concentration, others are omitted). By the above operation, a columnar glass body having a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction of the columnar glass body of the present invention can be obtained. In addition, the implantation suitable for the objective can be easily performed by changing the kind and acceleration energy of heavy ion suitably.

本発明の上記の製造方法により、柱状ガラス体中にその長手方向に連続した重イオン濃度の高い領域を複数本平行に形成することができ、この重イオン濃度の高い領域は高い光屈折率を持つので、ここを通過する光は全反射により重イオン濃度の低い部分にもれることはない。つまり、一本のガラス体の中に光ファイバー状の光の通り道を多数作り出すことができる。   According to the manufacturing method of the present invention, a plurality of regions having a high heavy ion concentration continuous in the longitudinal direction can be formed in parallel in the columnar glass body, and the region having a high heavy ion concentration has a high photorefractive index. Therefore, the light passing through the light source does not leak into a portion having a low heavy ion concentration due to total reflection. That is, many optical fiber-like light paths can be created in one glass body.

本発明の複数のコアを有する光ファイバーの製造方法においては、上記のようにして又はその他の方法で製造された柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を複数本有する柱状ガラス体を長手方向に加熱延伸処理して複数のコアを有する光ファイバーを形成する。   In the method for producing an optical fiber having a plurality of cores of the present invention, a columnar glass body having a plurality of regions having a high heavy ion concentration in the longitudinal direction of the columnar glass body produced as described above or by other methods. Is heated and stretched in the longitudinal direction to form an optical fiber having a plurality of cores.

柱状ガラス体を長手方向に加熱延伸処理することで実際の光ファイバーの細さまで容易に引き伸ばすことができる。このようにして作製される光ファイバーは多数の光のパスを内包することで、その通信量を飛躍的に向上させることができ、大量情報の双方向通信が期待できる。   By heating and stretching the columnar glass body in the longitudinal direction, it can be easily stretched to the actual thinness of the optical fiber. An optical fiber manufactured in this way can greatly increase the amount of communication by enclosing a large number of light paths, and can expect bidirectional communication of a large amount of information.

<重イオンの照射>
下記組成のガラスを調製し、直径約10mm、長さ約50mmの柱状ガラス体に成形した。それらの柱状ガラス体にタンデム加速器を用いて室温で下記の照射条件下で重イオン照射を行った。
<Irradiation of heavy ions>
A glass having the following composition was prepared and formed into a columnar glass body having a diameter of about 10 mm and a length of about 50 mm. These columnar glass bodies were irradiated with heavy ions at room temperature under the following irradiation conditions using a tandem accelerator.

ガラス組成:
(1)0.99(0.8B23−0.2PbO)−0.01CuCl
(2)0.99(0.8B23−0.2PbO)−0.01LiCl
(3)0.8B23−0.2PbO
Glass composition:
(1) 0.99 (0.8B 2 O 3 -0.2PbO) -0.01CuCl
(2) 0.99 (0.8B 2 O 3 -0.2PbO) -0.01LiCl
(3) 0.8B 2 O 3 -0.2PbO

照射条件:
各ガラスに共通
照射イオン:Xe14+(加速エネルギー 160MeV)
照射時間:1時間
照射中の試料電流:125nA
照射面積:0.64cm2(照射エリア:直径9mmの円)
ガラス(1)
照射イオン数:45054×10-8クーロン=2.01×1014イオン
単位面積当たりの照射イオン数:3.14×1014 イオン/cm2
ガラス(2)及び(3)
照射イオン数:44336×10-8クーロン=1.98×1014イオン
単位面積当たりの照射イオン数:3.09×1014 イオン/cm2
Irradiation conditions:
Common to all glasses Irradiated ions: Xe 14+ (acceleration energy 160 MeV)
Irradiation time: 1 hour Sample current during irradiation: 125 nA
Irradiation area: 0.64 cm 2 (Irradiation area: Circle with a diameter of 9 mm)
Glass (1)
Number of irradiated ions: 45054 × 10 −8 coulomb = 2.01 × 10 14 ions Number of irradiated ions per unit area: 3.14 × 10 14 ions / cm 2
Glass (2) and (3)
Number of irradiated ions: 44336 × 10 −8 coulomb = 1.98 × 10 14 ions Number of irradiated ions per unit area: 3.09 × 10 14 ions / cm 2

なお、上記のタンデム加速器とはペレットチェーンに電荷を乗せて高電圧端子に運び上げ、高電圧を発生させてイオンを加速させる装置で、一つの高電圧で一回目は負イオンを加速し、途中でイオンの電荷を負から正へ変換して、2回目は正イオ ンを加速する装置である。負イオン源では電子に原子を結合させて負イオンを生成し、これを加速するために超高真空に保たれた初段加速管に入射し負イオン加速管入口まで到達させる。負イオン加速管まで到達した負イオンを、正の高電圧端子に向け加速させる。高電圧端子に到達した負イオンは、電子ストリッパー(炭素薄膜または窒素ガス層)で多数の電子がはぎとられ正イオンに変換後、正イオン加速管で再び加速され高エネルギーのイオンビームが得られる。   The tandem accelerator mentioned above is a device that puts charges on the pellet chain and transports them to the high voltage terminal to generate high voltage and accelerate the ions. The second is a device that accelerates positive ions by converting the charge of ions from negative to positive. In the negative ion source, atoms are combined with electrons to generate negative ions, and in order to accelerate them, the negative ions are incident on the first stage accelerator tube maintained in an ultra-high vacuum and reach the negative ion accelerator tube entrance. Negative ions that have reached the negative ion accelerator tube are accelerated toward the positive high-voltage terminal. Negative ions that have reached the high voltage terminal are stripped off by the electron stripper (carbon thin film or nitrogen gas layer) and converted to positive ions, and then accelerated again by the positive ion accelerator tube to obtain a high-energy ion beam.

上記のような条件でガラス試料にXe14+を照射したところ、ガラス試料に外見上の変化はほとんど認められなかった。しかし、高エネルギーでのイオン照射であるのでガラス体へのXe14+の注入が起こっていることが十分に予想される。そこで、深さあたりの試料に付与されるエネルギーをSRIM2000(計算コード)により計算した結果を図2及び図3に示す。図2は電子的エネルギーSeを表しており、図3は核的エネルギーSnを表している。 When the glass sample was irradiated with Xe 14+ under the above conditions, almost no change in appearance was observed in the glass sample. However, since ion irradiation is performed at a high energy, it is sufficiently expected that Xe 14+ is implanted into the glass body. Therefore, the results of calculating the energy applied to the sample per depth by SRIM2000 (calculation code) are shown in FIGS. FIG. 2 represents the electronic energy Se, and FIG. 3 represents the nuclear energy Sn.

図2及び図3から明らかなように、Xe14+はガラス試料表面から10μmの深さにまで注入され、そのあたりで濃度が高くなっていることがわかった。むしろ表面に近いほど濃度が低くなっていた。いずれにせよ、ガラスのごく表面付近にのみ重イオンが分布して存在することがわかった。計算コードから推察すると、加速粒子の質量が小さくなるほど、加速エネルギーが大きくなるほど、イオン注入の深さが深くなることが予想される。このことは、材料の局所構造を、つまり局所的な特性を制御し得ることを示している。 As is apparent from FIGS. 2 and 3, Xe 14+ was injected to a depth of 10 μm from the glass sample surface, and it was found that the concentration increased around that. Rather, the closer to the surface, the lower the concentration. In any case, it was found that heavy ions are distributed only near the very surface of the glass. As inferred from the calculation code, it is expected that the ion implantation depth increases as the mass of the accelerated particles decreases and the acceleration energy increases. This indicates that the local structure of the material, that is, the local properties can be controlled.

<ラマン分光実験>
ラマン分光器によりラマンスペクトルを測定し、イオン照射前後のガラス構造の変化を調べた。ここでは日本分光工業(株)製のNR−1800型レーザーラマン分光光度計を用い、光源には波長514.5nmのAr+レーザーを使用した。ガラス試料にレーザー光を水平に照射させ、同じ平面上で入射光に対して垂直方向にあるレンズにより散乱光を集光する水平直角散乱法によりスペクトル測定を行った。ラマン分光実験の測定条件を第1表に示す。
<Raman spectroscopy experiment>
The Raman spectrum was measured with a Raman spectrometer, and the change in the glass structure before and after ion irradiation was examined. Here, an NR-1800 type laser Raman spectrophotometer manufactured by JASCO Corporation was used, and an Ar + laser having a wavelength of 514.5 nm was used as a light source. A glass sample was irradiated with laser light horizontally, and the spectrum was measured by a horizontal right-angle scattering method in which scattered light was collected by a lens perpendicular to the incident light on the same plane. Table 1 shows the measurement conditions for the Raman spectroscopic experiment.

Figure 0004378527
Figure 0004378527

23−PbO系のガラスにおいてはPbOの含有量の少ない組成で、500、770、810cm-1付近に目立ったピークが認められ、その含有量が増えるにつれて、三配位型ホウ素に由来する振動である810cm-1付近のピーク強度が減少し、四配位型ホウ素の出現によって起こる振動である770cm-1付近のピーク強度の増大が報告されている。また1400cm-1付近のピークはオルソボレイトの振動である。 In the B 2 O 3 —PbO-based glass, a conspicuous peak is observed in the vicinity of 500, 770, and 810 cm −1 with a composition having a low PbO content. As the content increases, it is derived from tricoordinate boron. It has been reported that the peak intensity near 810 cm −1, which is a vibration, decreases, and the peak intensity near 770 cm −1, which is a vibration caused by the appearance of tetracoordinated boron, is increased. The peak near 1400 cm −1 is orthoborate vibration.

本実験では特に770および810cm-1のピークの変化に注目し、Xe14+イオンの照射がそれぞれの試料のボロキソル環型構造に及ぼす影響について調べた。図4に0.8B23-0.2PbO、0.99(0.8B23-0.2PbO)-0.01LiClおよび 0.99(0.8B23-0.2PbO)-0.01CuClガラスのイオン照射前後のラマンスペクトルを示す。 In this experiment, focusing on changes in peaks at 770 and 810 cm −1 , the influence of Xe 14+ ion irradiation on the boroxol ring structure of each sample was investigated. FIG. 4 shows 0.8B 2 O 3 -0.2PbO, 0.99 (0.8B 2 O 3 -0.2PbO) -0.01LiCl and 0.99 (0.8B 2 O 3 -0.2PbO)- The Raman spectrum before and behind ion irradiation of 0.01 CuCl glass is shown.

0.8B23-0.2PbO系ガラスは照射によるスペクトルに変化はあまり認められなかったのに対し、0.99(0.8B23-0.2PbO)-0.01LiClおよび0.99(0.8B23-0.2PbO)-0.01CuClガラスのスペクトルは大きな変化がみられた。次にバックグラウンドの補正を行い、770および810cm-1のピークを分離し照射前後のピークの変化を解析した。照射前後のラマンススペクトルをピーク分離した結果の一例を図5に示す。 The 0.8B 2 O 3 -0.2PbO glass did not show much change in the spectrum due to irradiation, whereas 0.9 (0.8B 2 O 3 -0.2PbO) -0.01LiCl and 0.0L The spectrum of 99 (0.8B 2 O 3 -0.2PbO) -0.01CuCl glass changed significantly. Next, the background was corrected, peaks at 770 and 810 cm −1 were separated, and changes in the peaks before and after irradiation were analyzed. An example of the result of peak separation of the Raman spectra before and after irradiation is shown in FIG.

ピーク分離した後、それぞれのピーク面積の分率を求めた。すべての系において、イオン照射によりスペクトルの強度がおしなべて減少していた。照射前後での面積の分率には大きな変化はみられなかったので、ガラス構造全体が照射の影響を受けているものと考えられる。イオン照射によりガラス中で形成されていたボロキソル環型構造やBO4四面体が少し変形し、全体としてガラス構造がよりランダムになったと考えられる。 After peak separation, the fraction of each peak area was determined. In all systems, the intensity of the spectrum was generally reduced by ion irradiation. Since there was no significant change in the area fraction before and after irradiation, the entire glass structure is considered to be affected by irradiation. It is considered that the boroxol ring structure and the BO 4 tetrahedron formed in the glass by ion irradiation were slightly deformed, and the glass structure as a whole became more random.

本発明の製造方法の工程を説明する概略図である。It is the schematic explaining the process of the manufacturing method of this invention. 電子的エネルギーSeを表すグラフである。It is a graph showing electronic energy Se. 核的エネルギーSnを表すグラフである。It is a graph showing nuclear energy Sn. イオン照射前後のラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum before and behind ion irradiation. 照射前後のラマンススペクトルをピーク分離した結果の一例を示すグラフである。It is a graph which shows an example of the result of having peak-separated the Raman spectrum before and behind irradiation.

Claims (2)

イオン加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体中の所定の位置に注入して重イオン濃度の高い領域を形成し、該イオン加速器と該柱状ガラス体との相対位置を該柱状ガラス体の長手方向に順次変化させて重イオンを細いビームの状態で該柱状ガラス体中に順次注入して該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を形成する光ファイバーの製造方法Using an ion accelerator, heavy ions are injected into a predetermined position in a long columnar glass body in a thin beam state to form a region having a high heavy ion concentration, and the relative position between the ion accelerator and the columnar glass body is determined. optical fibers that form a heavy ion high concentration region that is continuous in the longitudinal direction of the longitudinal direction are sequentially injected into the columnar glass body in sequentially varied heavy ions of a narrow beam state columnar glass body of the columnar glass body Manufacturing method . イオン加速器を用いて重イオンを細いビームの状態で長い柱状ガラス体中の所定の位置に注入して重イオン濃度の高い領域を形成し、該イオン加速器と該柱状ガラス体との相対位置を該柱状ガラス体の長手方向に順次変化させて重イオンを細いビームの状態で該柱状ガラス体中に順次注入して該柱状ガラス体の長手方向に連続した重イオン濃度の高い領域を形成し、その後該柱状ガラス体を長手方向に延伸処理することを特徴とする光ファイバーの製造方法。Using an ion accelerator, heavy ions are injected into a predetermined position in a long columnar glass body in the form of a thin beam to form a region having a high heavy ion concentration, and the relative position between the ion accelerator and the columnar glass body is determined. by sequentially changed in the longitudinal direction of the columnar glass body to form a heavy ion high concentration region that is continuous in the longitudinal direction of the heavy ion sequentially injected into the columnar glass body in a narrow beam state columnar glass body, its the method of manufacturing an optical fiber, characterized in that the columnar glass body is stretched in the longitudinal direction after.
JP2004027263A 2004-02-03 2004-02-03 Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same Expired - Lifetime JP4378527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027263A JP4378527B2 (en) 2004-02-03 2004-02-03 Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027263A JP4378527B2 (en) 2004-02-03 2004-02-03 Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005219944A JP2005219944A (en) 2005-08-18
JP4378527B2 true JP4378527B2 (en) 2009-12-09

Family

ID=34995875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027263A Expired - Lifetime JP4378527B2 (en) 2004-02-03 2004-02-03 Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4378527B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201202128D0 (en) 2012-02-08 2012-03-21 Univ Leeds Novel material

Also Published As

Publication number Publication date
JP2005219944A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Ditmire et al. Energy-yield and conversion-efficiency measurements of high-order harmonic radiation
Richter et al. Multiphoton ionization of atoms with soft x-ray pulses
Oelze et al. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser
Pino et al. Release of large polycyclic aromatic hydrocarbons and fullerenes by cosmic rays from interstellar dust-Swift heavy ion irradiations of interstellar carbonaceous dust analogue
Torrisi Ion acceleration from intense laser-generated plasma: methods, diagnostics and possible applications
JP4378527B2 (en) Manufacturing method of optical fiber having a plurality of cores and manufacturing method of columnar glass body usable for manufacturing the same
Hempel Development of a novel diamond based detector for machine induced background and luminosity measurements
Haddad et al. In situ characterization of irradiation-induced microstructural evolution in urania single crystals at 773 K
Cutroneo et al. Thomson parabola spectrometry of laser generated plasma at PALS laboratory
Torrisi Laser-induced ablation: Physics and diagnostics of ion emission
Krause-Rehberg et al. Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD)
CN104979033A (en) All-optical Compton gamma-ray and ultrashort pulse positron beam generation method
Torrisi et al. Laser-generated plasma by carbon nanoparticles embedded into polyethylene
Giuffrida et al. Physical characterization of Ge films on polyethylene obtained by pulsed laser deposition
Bustabad From fundamental fullerenes to the cardinal calcium candidate: the development of a laser ablation ion source and its diverse application at the LEBIT facility
Chaves 19 ne Excited States and Resonances in the 18 f (p, α) 15 o Reaction in Classical Novae
Ghomeishi et al. Study of traps in special doped optical fiber radiation sensors via glow curve analysis
Petringa et al. CR-39 track detector calibration with H and He beams for applications in the p-11B fusion reaction
Dumas et al. Polarized Positrons at Jefferson Lab
Kislov et al. XPS studies on surfaces of field-emission cathodes of artificial carbon materials
Scott On the use of multiple high intensity laser pulses in ion acceleration experiments
Wei et al. Study of plasma expansion in a vacuum diode by the spectroscopic method
Abbas et al. Mass spectrometric study of low energy Cs+ ion‐induced sputtered fragmentation of PADC polymer
Szustkowski et al. Gas Jet Profile Monitor for Use in IOTA Proton Beam
Newman Precision crystal electromagnetic calorimeters at high energy accelerators and colliders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4378527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term