JP4378496B2 - Measuring device for uneven profile on object surface - Google Patents

Measuring device for uneven profile on object surface Download PDF

Info

Publication number
JP4378496B2
JP4378496B2 JP2000032598A JP2000032598A JP4378496B2 JP 4378496 B2 JP4378496 B2 JP 4378496B2 JP 2000032598 A JP2000032598 A JP 2000032598A JP 2000032598 A JP2000032598 A JP 2000032598A JP 4378496 B2 JP4378496 B2 JP 4378496B2
Authority
JP
Japan
Prior art keywords
laser beam
object surface
concave
convex portion
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000032598A
Other languages
Japanese (ja)
Other versions
JP2001221619A (en
Inventor
克則 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANCALL CORPORATION
Original Assignee
SANCALL CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANCALL CORPORATION filed Critical SANCALL CORPORATION
Priority to JP2000032598A priority Critical patent/JP4378496B2/en
Publication of JP2001221619A publication Critical patent/JP2001221619A/en
Application granted granted Critical
Publication of JP4378496B2 publication Critical patent/JP4378496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、自動車エンジンやトランスミッションなどの製品に付される刻印や浮出し文字の品質を検査したり文字の種類を判別するのに好適な、レーザ光線を使用した物体表面の凹凸プロフィール計測装置に関する。
【0002】
【従来の技術】
自動車エンジンやトランスミッションには製品を特定するための文字や記号が刻印装置によって刻印される。この刻印の明瞭度ないし刻印深さは常に一定であることが勿論望ましいが、実際の刻印品質は刻印装置の特性や製品の表面状態によって微妙に影響され、刻印深さにバラツキがあるのが実状である。一方、刻印品質については所轄官庁から一定の基準が示されており、かつ、拓本の保存も義務付けられている。従って、自動車会社は製品の刻印が品質基準をクリアしているか否かを全数確認すると共に、拓本を一つずつ手作業で採取しなければならないのであるが、従来の刻印品質の確認方法は刻印をCCDカメラで撮像して得た濃淡画像を閾値設定で画像処理した結果で刻印品質の良否を判別していた。
【0003】
【発明が解決しようとする課題】
しかし、画像処理による刻印品質の確認方法では、製品に対する照明の加減や反射の具合、あるいは製品の鋳肌状態や表面汚れ等のために、画像濃度と刻印深さとが必ずしも一致せず、画像上は部分的に途切れた刻印部分でも実際は十分な刻印深さが得られていたり、またこの反対に画像上は連続している刻印部分でも実際は刻印深さが基準に達していないなどの不都合が起こり得る。このように画像処理による刻印品質確認は信頼性の点で問題があった。
【0004】
本発明の目的は、レーザ測距技術を応用して物体表面の凹凸プロフィールを直接的に計測することにより物体表面の見かけ状態に左右されることなく刻印をはじめとする各種凹凸プロフィールを高精度で計測することにある。
【0005】
【課題を解決するための手段】
前記課題を解決するため本発明の物体表面の凹凸プロフィール計測装置は、凹部又は凸部を有する物体表面に向けてレーザ光線を照射するレーザ光線照射手段と、前記レーザ光線照射手段に隣接配置され、前記物体表面からの反射レーザ光線を受光するレーザ光線受光手段と、前記レーザ光線照射手段及びレーザ光線受光手段からの信号に基づき前記レーザ光線照射手段から前記物体表面のレーザ光線照射点までの距離を演算する第1演算手段と、前記凹部又は凸部の存在領域に沿ってレーザ光線を走査すべく前記レーザ光線照射手段及びレーザ光線受光手段を一体型のレーザ光線照射受光組立体として前記物体表面に対して移動させる移動手段と、前記第1演算手段と前記移動手段からの信号に基づき前記物体表面の凹部又は凸部のプロフィールを演算する第2演算手段とを有し、前記移動手段が、前記レーザ光線照射受光組立体を、所定の回動ストロークだけ支軸周りで一方に回動させた後、所定の送りストロークだけ支軸方向で一方にシフト移動させ、その後、所定の回動ストロークだけ支軸周りで他方に回動させ、さらにその後、所定の送りストロークだけ支軸方向で一方にシフト移動させるものであり、前記第2演算手段に、前記回動に伴う前記第1演算手段の演算結果の増減を相殺補正する補正手段が組込まれていることを特徴とする。レーザ光線の種類は赤外線レーザが実用上便利であるが、他種類のレーザ光線を使用することも可能である。
【0006】
前記物体表面の凹部又は凸部は、典型的には製品表面の刻印又は浮出し文字であって、前記第2演算手段により得られた物体表面の凹部又は凸部のプロフィールに基づいて、前記刻印又は浮出し文字の深さ又は高さ品質を検査することができる。
【0007】
また、前記第2演算手段により得られた物体表面の凹部又は凸部のプロフィールに基づいて、前記刻印又は浮出し文字の種類を判別することも可能である。
【0008】
【発明の実施の形態】
以下、本発明の望ましい実施の形態を図面を参照して説明する。図1は本発明の一実施形態に係る物体表面の凹凸プロフィール計測装置の概略構成を示したもので、図中1は刻印2が付されたプレートであって、エンジンやトランスミッションケースの表面の一部を仮想的に示したものである。また、3はレーザ照射部3aとレーザ受光部3bとが隣接配置されたレーザレーザ測距ユニット、4はパソコン、5はモニタ、6はエンジンやトランスミッション等の製造工程を管理するシーケンサ、7はハードディスクである。
【0009】
レーザ測距ユニット3は、位置固定で配設された支軸8を中心として図外のサーボモータなどにより左右方向に回動自在に構成され、かつ、右方向又は左方向の一回の回動毎に支軸の軸線方向に定ピッチだけシフト移動されるように構成されている。このようなシフト機構は例えばレーザ測距ユニット3を載置するXYテーブルで構成可能であり、また他のシフト機構としてはステッピングモータとラック・アンド・ピニオン機構とを組合わせた装置や、サーボモータと螺子棒とを組合わせた装置などで容易に構成可能である。図2はこのようなレーザ測距ユニット3の回動とシフト移動によりプレート上で走査されるレーザポイントの移動軌跡を表したもので、例えば図中の(1)〜(5)の走査ストロークの順でレーザ光線照射部3aから照射されたレーザポイントが移動するようになっている。なお、走査ストロークの数は計測対象の種類に応じて増減すればよく、刻印の文字や記号が計測対象の場合は8本程度の走査ストロークで十分である。
【0010】
プレート1に照射されたレーザ光線はプレート1表面で反射されてレーザ測距ユニット3のレーザ光線受光部3bに捕捉され、レーザ光線照射部3aとレーザ光線受光部3bからの信号に基づき、レーザ光線照射部3aからプレート1表面のレーザ光線照射点ないしレーザ光線反射点までの距離がレーザ測距ユニット3内部の第1演算手段にて演算されるようになっている。このようなレーザ測距ユニット3は市場において容易に入手可能である。
【0011】
レーザ測距ユニット3から得られた測距データは、支軸8の位置を基準としたものとなり、グラフ化すると例えば図3(A)のようになる。この波形は図2の走査ストローク(2)で得られたデータを表しており、図で左から右が走査方向であり、0〜5000の目盛りはレーザ光線の照射ポイント数を表している。また図2(A)の縦軸は支軸8を中心としてプレート1表面下側に描いた仮想円弧を基準線としたプレート1表面のレーザ光線照射点までの距離(単位はμm)を表している。しかし、図3(A)の円弧状波形のままでは後処理がしにくいため、図3(B)のように波形変換する。この図3(B)ではプレート1表面の基準高さが横軸に設定され、この横軸から各波形の上端までの距離が刻印の深さを表している(単位はμm)。従って、図3(B)は図2の走査ストローク(2)に沿った刻印の深さを表していることになる。波形変換は、具体的にはレーザ測距ユニット3の回動に伴う測距データ(図示しない第1演算手段にて演算)の増減変化を相殺補正するアルゴリズムによりなされる。すなわち、支軸8の真下位置(刻印「9」付近)までの距離が最も短く、両端の刻印「J」及び「3」までの距離が最も長いのであるが、このような距離の変化を相殺して一定とするように測距データを補正するわけである。レーザ測距ユニット3がプレート1表面と平行に直線的に走査移動する場合はこのような波形変換は不要であり、図3(B)のような波形が直接得られることになる。なお、必要であればレーザ光線の照射ポイント数を走査ストローク(2)に沿った距離に換算する。また、図3の(A)→(B)の波形変換と併せて、刻印プロフィールの計測では不要なプレート1表面の凸データをノイズとして除去してもよく、図3(B)では図3(A)の刻印形成に伴うプレート1材料の盛上りの凸波形Cをノイズとして除去している。
【0012】
以上のように刻印の深さデータが計測されるが、実際の刻印と図3(B)の波形との対応関係を示すと図4のようになる。すなわち、同図(A)のように走査ストローク(3)によって刻印「3」、「0」の順にレーザポイントが移動すると、同図(B)のような刻印の深さデータがレーザ測距ユニット3によって得られるのである。
【0013】
次に、前記装置による実際の計測工程を図5に基づき説明する。ステップS1で測距ユニットの回動及びシフト移動によるレーザ光線の走査が開始され、ステップS2でレーザ測距ユニット3からの測距データがパソコン4のA/D変換回路を介してパソコン4内のメモリに読込まれる。次に、パソコン4内に読込まれた図3(A)のような波形データの凸部をステップS3でノイズカットし、ステップS4で図3(B)のように波形変換する。
【0014】
次に、ステップS5で所定回数の走査ストロークにて得られたデータから刻印の三次元プロフィールが図示しない第2演算手段によって作成され、この三次元プロフィールと、パソコン4付属のハードディスクに予め蓄積された文字記号などの標準三次元プロフィールデータとが比較照合され、刻印深さが基準に達しているか否かが判別されると共に、プレート1上の刻印で表された文字や記号が何であるかが判別される。この判別結果はステップS7でシーケンサが管理する刻印の文字記号と照合され、判別結果がシーケンサが出力する文字記号と合致していれば予定通りの製品が刻印計測装置を通過しているとしてステップS8で製品が刻印計測装置を通過することが許可され、合致しない場合は予定と異なる製品として刻印計測装置の下流側で生産ラインから排除される。ステップS8の後は計測データがステップS9でクリアされて再びステップS1に戻り、同様の工程が繰返される。なお、三次元プロフィールデータの作成にあたっては、図4(B)の閾値T1以上で刻印ありと判断し、閾値T2以上で基準刻印深さ到達と判断するように、ステップS5及びステップS8の関係プログラムを構成する。
【0015】
以上、本発明の一実施形態につき説明したが、本発明は製品表面の刻印の凹プロフィール計測に限らず、いろいろな製品物体の凸プロフィール計測にも同様に適用可能であり、さらには凹凸が混在したプロフィール計測にも適用可能である。また、レーザ測距ユニット3の走査のための移動形態としては前述した回動とシフト移動を組合わせた移動形態は、凹凸領域が直線状に長く延在する場合に好適である
【0016】
【発明の効果】
本発明は前述のように、レーザ光線を使用して凹凸プロフィールを計測するので、例えば製品表面の刻印の深さデータないし凹プロフィールを製品の見かけの表面状態に左右されることなく正確に計測可能であり、かつ、得られたプロフィールデータを刻印の拓本の代わりに電子的に保管することも可能である。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る物体表面の凹凸プロフィール計測装置の概略構成図。
【図2】 刻印が付されたプレートの平面図。
【図3】 (A)はレーザ測距ユニットから得られた一次データの波形図、(B)は前記一次データを波形変換した波形図。
【図4】 (A)はプレート上の刻印の一部の平面図、(B)は同刻印の凹プロフィールの波形図。
【図5】 本発明の計測装置の計測工程を示すフロー図。
【符号の説明】
1 プレート
2 刻印
3 レーザ測距ユニット
4 パソコン
5 モニタ
6 シーケンサ
7 ハードディスク
8 支軸
[0001]
[Industrial application fields]
The present invention relates to an apparatus for measuring an uneven surface profile of an object using a laser beam, which is suitable for inspecting the quality of stamps and embossed characters attached to products such as automobile engines and transmissions and discriminating the type of characters. About.
[0002]
[Prior art]
Car engines and transmissions are stamped with letters and symbols for identifying products by a stamping device. Of course, it is desirable that the clarity or the marking depth of the marking is always constant, but the actual marking quality is subtly affected by the characteristics of the marking device and the surface condition of the product. It is. On the other hand, the stamping quality has a certain standard from the competent authority, and the preservation of Takumoto is also obligatory. Therefore, the automobile company must check whether all the product stamps meet the quality standards, and must manually collect the Takumoto one by one, but the conventional method for checking the stamp quality is stamped. The quality of the stamping quality is determined based on the result of image processing of the grayscale image obtained by capturing the image with a CCD camera with threshold setting.
[0003]
[Problems to be solved by the invention]
However, in the method for confirming the quality of stamping by image processing, the image density and the stamping depth do not always match because of the degree of illumination and reflection on the product, the cast surface condition of the product, surface contamination, etc. However, there are inconveniences such as the fact that a sufficiently cut depth is actually obtained even in a partially cut mark portion, and on the contrary, the mark depth does not reach the standard even in a continuous mark portion on the image. obtain. As described above, there is a problem in checking the quality of engraving by image processing in terms of reliability.
[0004]
The object of the present invention is to directly measure the uneven surface profile of the object surface by applying laser ranging technology, so that various uneven surface profiles such as engraving can be made with high accuracy without being influenced by the apparent state of the object surface. It is to measure.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the uneven surface profile measuring apparatus of the object surface of the present invention is arranged adjacent to the laser beam irradiating means, a laser beam irradiating means for irradiating a laser beam toward the object surface having a concave portion or a convex portion, Laser beam receiving means for receiving a reflected laser beam from the object surface, and a distance from the laser beam irradiation means to the laser beam irradiation point on the object surface based on signals from the laser beam irradiation means and the laser beam receiving means. A first computing means for computing, and the laser beam irradiating means and the laser beam receiving means for scanning the laser beam along the existence area of the concave or convex portion on the surface of the object as an integrated laser beam irradiation / receiving assembly; And a profile of a concave portion or a convex portion on the surface of the object on the basis of a signal from the moving means to be moved relative to the first calculating means and the moving means. And a second calculating means for calculating a Lumpur, the moving means, after the laser beam irradiation light assembly, is rotated in one only shaft around a predetermined rotation stroke, predetermined feeding stroke Is shifted to one side only in the direction of the support shaft, and then is rotated to the other side around the support shaft by a predetermined rotation stroke, and then is shifted to one side in the direction of the support shaft by a predetermined feed stroke. The second calculation means is incorporated with a correction means for canceling and correcting an increase / decrease in the calculation result of the first calculation means accompanying the rotation . As the type of laser beam, an infrared laser is practically convenient, but other types of laser beam can also be used.
[0006]
The concave portion or convex portion of the object surface is typically a stamped or raised character on the product surface, and based on the concave or convex profile of the object surface obtained by the second calculation means, The depth or height quality of the stamp or embossed character can be inspected.
[0007]
It is also possible to determine the type of the stamped or raised character based on the profile of the concave portion or convex portion of the object surface obtained by the second calculating means.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an uneven surface profile measuring apparatus for an object surface according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a plate with a mark 2, which is a surface of an engine or transmission case. The part is virtually shown. 3 is a laser laser distance measuring unit in which a laser irradiation unit 3a and a laser light receiving unit 3b are arranged adjacent to each other, 4 is a personal computer, 5 is a monitor, 6 is a sequencer for managing the manufacturing process of the engine and transmission, and 7 is a hard disk. It is.
[0009]
The laser distance measuring unit 3 is configured to be rotatable in the left-right direction by a servo motor or the like (not shown) around a support shaft 8 disposed at a fixed position, and is rotated once in the right or left direction. It is configured to be shifted by a constant pitch in the axial direction of the support shaft every time. Such a shift mechanism can be composed of, for example, an XY table on which the laser distance measuring unit 3 is placed, and other shift mechanisms include a combination of a stepping motor and a rack and pinion mechanism, a servo motor And a screw rod can be easily configured. FIG. 2 shows the movement trajectory of the laser point scanned on the plate by such rotation and shift movement of the laser distance measuring unit 3, for example, the scanning strokes (1) to (5) in the figure. The laser points irradiated from the laser beam irradiation unit 3a move in order. Note that the number of scanning strokes may be increased or decreased according to the type of measurement object, and about 8 scanning strokes are sufficient when the characters or symbols to be engraved are measurement objects.
[0010]
The laser beam irradiated on the plate 1 is reflected on the surface of the plate 1 and captured by the laser beam receiving unit 3b of the laser distance measuring unit 3, and based on the signals from the laser beam irradiating unit 3a and the laser beam receiving unit 3b, The distance from the irradiation unit 3a to the laser beam irradiation point or the laser beam reflection point on the surface of the plate 1 is calculated by the first calculation means inside the laser distance measuring unit 3. Such a laser ranging unit 3 is easily available on the market.
[0011]
The distance measurement data obtained from the laser distance measurement unit 3 is based on the position of the support shaft 8 and is graphed, for example, as shown in FIG. This waveform represents the data obtained by the scanning stroke (2) in FIG. 2, the left to right in the drawing is the scanning direction, and the scale from 0 to 5000 represents the number of irradiation points of the laser beam. The vertical axis in FIG. 2A represents the distance (unit: μm) to the laser beam irradiation point on the surface of the plate 1 with a virtual arc drawn below the surface of the plate 1 centered on the support shaft 8 as a reference line. Yes. However, since it is difficult to perform post-processing with the arc-shaped waveform of FIG. 3A, the waveform is converted as shown in FIG. In FIG. 3B, the reference height of the surface of the plate 1 is set on the horizontal axis, and the distance from the horizontal axis to the upper end of each waveform represents the depth of the marking (unit: μm). Accordingly, FIG. 3B represents the depth of the marking along the scanning stroke (2) of FIG. Specifically, the waveform conversion is performed by an algorithm that cancels and corrects an increase / decrease change in distance measurement data (calculated by a first calculation means (not shown)) accompanying rotation of the laser distance measurement unit 3. That is, the distance to the position directly below the support shaft 8 (near the marking “9”) is the shortest, and the distances to the markings “J” and “3” at both ends are the longest. Thus, the distance measurement data is corrected so as to be constant. When the laser distance measuring unit 3 linearly scans and moves in parallel with the surface of the plate 1, such waveform conversion is unnecessary, and a waveform as shown in FIG. 3B is directly obtained. If necessary, the number of laser beam irradiation points is converted into a distance along the scanning stroke (2) . In addition to the waveform conversion from (A) to (B) in FIG. 3, the convex data on the surface of the plate 1 which is unnecessary in the measurement of the engraving profile may be removed as noise. In FIG. The rising convex waveform C of the material of the plate 1 accompanying the formation of the stamp A) is removed as noise.
[0012]
The marking depth data is measured as described above. FIG. 4 shows the correspondence between the actual marking and the waveform shown in FIG. That is, when the laser point is moved in the order of the markings “3” and “0” by the scanning stroke (3) as shown in FIG. 9A, the depth data of the marking as shown in FIG. 3 is obtained.
[0013]
Next, an actual measurement process by the apparatus will be described with reference to FIG. In step S1, scanning of the laser beam by rotation and shift movement of the ranging unit is started. In step S2, ranging data from the laser ranging unit 3 is stored in the personal computer 4 via the A / D conversion circuit of the personal computer 4. Read into memory. Next, the convex portion of the waveform data as shown in FIG. 3A read into the personal computer 4 is noise-cut at step S3, and the waveform is converted at step S4 as shown in FIG. 3B.
[0014]
Next, a stamped three-dimensional profile is created by the second calculation means (not shown) from the data obtained in the predetermined number of scanning strokes in step S5, and this three-dimensional profile and the hard disk attached to the personal computer 4 are stored in advance. It is compared with standard 3D profile data such as character symbols to determine whether or not the marking depth has reached the standard, and to determine what the characters or symbols represented by the markings on the plate 1 are. Is done. This determination result is collated with the character symbol of the stamp managed by the sequencer in step S7. If the determination result matches the character symbol output by the sequencer, it is determined that the planned product has passed through the stamp measuring device. The product is allowed to pass through the marking measuring device, and if it does not match, it is excluded from the production line on the downstream side of the marking measuring device as a product different from the plan. After step S8, the measurement data is cleared in step S9, the process returns to step S1 again, and the same process is repeated. In creating the three-dimensional profile data, the relational program of step S5 and step S8 is determined so that it is determined that there is an inscription above the threshold value T1 in FIG. 4B and that the reference inscription depth has been reached above the threshold value T2. Configure.
[0015]
As described above, one embodiment of the present invention has been described. However, the present invention is not limited to the measurement of the concave profile of the marking on the product surface, but can be similarly applied to the measurement of the convex profile of various product objects. It can also be applied to profile measurement. Further, as the movement forms for scanning of the laser distance measuring unit 3 is moved form a combination of shift movement and rotation as described above, the irregular region is preferable when extending long straight line.
[0016]
【The invention's effect】
As described above, the present invention measures the concave / convex profile using a laser beam, so that, for example, the depth data of the marking on the product surface or the concave profile can be accurately measured regardless of the apparent surface condition of the product. In addition, it is also possible to store the obtained profile data electronically instead of the stamped copy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an uneven surface profile measuring apparatus for an object surface according to an embodiment of the present invention.
FIG. 2 is a plan view of a plate with a mark.
FIG. 3A is a waveform diagram of primary data obtained from a laser ranging unit, and FIG. 3B is a waveform diagram obtained by converting the waveform of the primary data.
4A is a plan view of a part of a mark on a plate, and FIG. 4B is a waveform diagram of a concave profile of the mark.
FIG. 5 is a flowchart showing a measurement process of the measurement apparatus of the present invention.
[Explanation of symbols]
1 Plate 2 Marking 3 Laser Ranging Unit 4 Personal Computer 5 Monitor 6 Sequencer 7 Hard Disk 8 Spindle

Claims (3)

凹部又は凸部を有する物体表面に向けてレーザ光線を照射するレーザ光線照射手段と、
前記レーザ光線照射手段に隣接配置され、前記物体表面からの反射レーザ光線を受光するレーザ光線受光手段と、
前記レーザ光線照射手段及びレーザ光線受光手段からの信号に基づき前記レーザ光線照射手段から前記物体表面のレーザ光線照射点までの距離を演算する第1演算手段と、
前記凹部又は凸部の存在領域に沿ってレーザ光線を走査すべく前記レーザ光線照射手段及びレーザ光線受光手段を一体型のレーザ光線照射受光組立体として前記物体表面に対して移動させる移動手段と、
前記第1演算手段と前記移動手段からの信号に基づき前記物体表面の凹部又は凸部のプロフィールを演算する第2演算手段とを有し、
前記移動手段が、前記レーザ光線照射受光組立体を、所定の回動ストロークだけ支軸周りで一方に回動させた後、所定の送りストロークだけ支軸方向で一方にシフト移動させ、その後、所定の回動ストロークだけ支軸周りで他方に回動させ、さらにその後、所定の送りストロークだけ支軸方向で一方にシフト移動させるものであり、
前記第2演算手段に、前記回動に伴う前記第1演算手段の演算結果の増減を相殺補正する補正手段が組込まれていることを特徴とする物体表面の凹凸プロフィール計測装置。
A laser beam irradiation means for irradiating a laser beam toward the surface of the object having a concave portion or a convex portion;
A laser beam receiving means that is arranged adjacent to the laser beam irradiation means and receives a reflected laser beam from the object surface;
First calculation means for calculating a distance from the laser beam irradiation means to a laser beam irradiation point on the object surface based on signals from the laser beam irradiation means and the laser beam receiving means;
Moving means for moving the laser beam irradiating means and the laser beam receiving means as an integrated laser beam irradiating and receiving assembly to scan the laser beam along the presence area of the concave or convex portion;
A second computing means for computing a profile of the concave portion or convex portion of the object surface based on the signal from the first computing means and the moving means ;
The moving means rotates the laser beam irradiation / light-receiving assembly to one side around the support shaft by a predetermined rotation stroke, and then shifts to one side in the support shaft direction by a predetermined feed stroke, and then the predetermined movement stroke. Is rotated around the support shaft by the other rotation stroke, and then shifted to one side in the support shaft direction by a predetermined feed stroke.
An uneven surface profile measuring device for an object surface , wherein a correction means for canceling and correcting an increase / decrease in a calculation result of the first calculation means accompanying the rotation is incorporated in the second calculation means .
前記物体表面の凹部又は凸部が刻印又は浮出し文字であって、前記第2演算手段により得られた物体表面の凹部又は凸部のプロフィールに基づいて、前記刻印又は浮出し文字の深さ又は高さ品質を検査するようにしたことを特徴とする請求項記載の物体表面の凹凸プロフィール計測装置。The concave or convex portion on the object surface is an imprinted or raised character, and the depth of the imprinted or raised character is based on the profile of the concave or convex portion on the object surface obtained by the second calculation means. uneven profile measuring apparatus according to claim 1, wherein the object surface, characterized in that so as to inspect of or the height quality. 前記物体表面の凹部又は凸部が刻印又は浮出し文字であって、前記第2演算手段により得られた物体表面の凹部又は凸部のプロフィールに基づいて、前記刻印又は浮出し文字の種類を判別するようにしたことを特徴とする請求項記載の物体表面の凹凸プロフィール計測装置。The concave or convex portion on the object surface is an imprinted or raised character, and the type of the imprinted or raised character based on the profile of the concave or convex portion on the object surface obtained by the second computing means The uneven surface profile measuring apparatus for an object surface according to claim 1, wherein:
JP2000032598A 2000-02-10 2000-02-10 Measuring device for uneven profile on object surface Expired - Fee Related JP4378496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032598A JP4378496B2 (en) 2000-02-10 2000-02-10 Measuring device for uneven profile on object surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032598A JP4378496B2 (en) 2000-02-10 2000-02-10 Measuring device for uneven profile on object surface

Publications (2)

Publication Number Publication Date
JP2001221619A JP2001221619A (en) 2001-08-17
JP4378496B2 true JP4378496B2 (en) 2009-12-09

Family

ID=18557174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032598A Expired - Fee Related JP4378496B2 (en) 2000-02-10 2000-02-10 Measuring device for uneven profile on object surface

Country Status (1)

Country Link
JP (1) JP4378496B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058150A (en) * 2006-08-31 2008-03-13 Nidec Tosok Corp Marking inspection apparatus
JP2008064637A (en) * 2006-09-08 2008-03-21 Nidec Tosok Corp Engraved mark inspecting apparatus
JP4883691B2 (en) * 2006-11-13 2012-02-22 Udトラックス株式会社 Work identification device
JP5638904B2 (en) * 2010-09-29 2014-12-10 富士重工業株式会社 Distance measuring device and distance measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260076A (en) * 1989-03-31 1990-10-22 Aisan Ind Co Ltd Carved seal confirming device
JP2808234B2 (en) * 1993-11-12 1998-10-08 山田マシンツール株式会社 Stamped character inspection system
JPH09178439A (en) * 1995-12-27 1997-07-11 Technol Res Assoc Of Medical & Welfare Apparatus Three-dimensional shape measuring device
JPH10197220A (en) * 1996-12-29 1998-07-31 Tokyo Gas Co Ltd Method and instrument for measuring shape of beveling
JPH11311509A (en) * 1998-04-27 1999-11-09 Hashimoto Denshi Kogyo Kk Impression inspecting device

Also Published As

Publication number Publication date
JP2001221619A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
AT506110B1 (en) DEVICE AND METHOD FOR DETECTING BODY MEASURE DATA AND CONTOUR DATA
EP1521056B1 (en) Method and apparatus for internal feature reconstruction
TW201341756A (en) Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, program for measuring profile and non-transitory computer readable medium
JP2641829B2 (en) Bending angle detection device in bending machine
JP4378496B2 (en) Measuring device for uneven profile on object surface
JP2013500462A (en) Topography device for the surface of the substrate
US7310566B2 (en) Quality control method for two-dimensional matrix codes on metallic workpieces, using an image processing device
CN111940913A (en) Laser confocal three-dimensional curved surface marking method and device
JP2011033392A (en) Image processing method and image processing apparatus for extracting unevenness pattern
DE102018202625B4 (en) Measuring device
JP2008064637A (en) Engraved mark inspecting apparatus
JP3324809B2 (en) Measurement point indicator for 3D measurement
JP4332987B2 (en) Cross-sectional shape measuring apparatus and cross-sectional shape measuring method
KR101335385B1 (en) An apparatus for a carved seal of tire and an inspection of tire marking part depth
JP3984683B2 (en) Laser processing apparatus and method for measuring position of workpiece
JP3916415B2 (en) Stamped character recognition system based on self-learning fuzzy inference model using two-dimensional laser displacement sensor
JP5294891B2 (en) Image processing method for extracting uneven characters
JP5069064B2 (en) Stamp inspection device
EP3791129B1 (en) Method for checking an object made of transparent material and corresponding checking system
JP2808234B2 (en) Stamped character inspection system
JP2008058150A (en) Marking inspection apparatus
JP3157001B2 (en) 3D shape measuring device
JP2618303B2 (en) ERW pipe welding bead cutting shape measurement method
IL158118A (en) Method of determining the distance of projection points on the surface of a printing form
US11072125B1 (en) Reflective coating for material calibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees