JP4377593B2 - Reactor and critical processing method using the same - Google Patents

Reactor and critical processing method using the same Download PDF

Info

Publication number
JP4377593B2
JP4377593B2 JP2003025313A JP2003025313A JP4377593B2 JP 4377593 B2 JP4377593 B2 JP 4377593B2 JP 2003025313 A JP2003025313 A JP 2003025313A JP 2003025313 A JP2003025313 A JP 2003025313A JP 4377593 B2 JP4377593 B2 JP 4377593B2
Authority
JP
Japan
Prior art keywords
fluid
reactor
reaction
critical
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003025313A
Other languages
Japanese (ja)
Other versions
JP2004230350A (en
Inventor
八郎 上田
公生 井原
邦夫 新井
雅文 阿尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2003025313A priority Critical patent/JP4377593B2/en
Publication of JP2004230350A publication Critical patent/JP2004230350A/en
Application granted granted Critical
Publication of JP4377593B2 publication Critical patent/JP4377593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水や二酸化炭素等の流体の亜臨界領域若しくは超臨界領域の環境下で有機性廃棄物等の被処理流体を処理するための反応装置及びそれを用いた臨界処理方法に関するものである。
【0002】
【従来の技術】
従来より、水や二酸化炭素等の流体と有機性廃棄物等の被処理物とを反応器内に導入し、亜臨界領域若しくは超臨界領域の環境下で反応処理して分解する技術が提案されている。この技術では有機性廃棄物等の被処理物を高い効率で分解できるという特徴を有している。この技術を用いた反応装置としては、例えば(特許文献1)に、「筒状の容器本体と、前記容器本体の一端部に接続された有機物流体又は水を供給する加圧供給手段と、前記容器本体の他端部に基部が固定された複数本の直管状伝熱管からなる流路形成部材と、を備え、水又は有機物流体が前記流路形成部材の管内部を通して有機物流体又は水との混合流路に導かれるようにされた高圧反応容器装置」が開示されている。
しかしながら、亜臨界領域や超臨界領域の環境下で亜臨界水や超臨界水を用いて行われる反応処理は、反応器が300〜600℃の高温、20MPa以上の高圧の雰囲気になるので、被処理物中に含まれる塩素や他の腐食性物質の分解に伴って塩酸や硫酸等の無機酸が生成され反応器の内壁が激しく腐食されるという問題を有していた。また、被処理物の反応処理により無機塩が生じるが、超臨界水はアルカリ金属塩等の無機塩の溶解度が極めて小さいので、無機塩が析出して反応器の内壁に付着し反応器が閉塞したり、反応器の内壁面が酸性若しくは塩基性の環境に曝され腐食されるという問題も有していた。これらの反応器の腐食や閉塞が実用上の大きな問題となっている。
近年、この問題を解決するために種々の技術が提案されている。
【0003】
例えば、(特許文献2)には「耐圧容器内に配設された反応容器と、耐圧容器内面と反応容器外面との間に形成される空隙部と反応容器内部とを連通する開口又は配管と、を備えた高圧反応装置」が開示されている。
【0004】
(特許文献3)には「水熱酸化反応を行う反応器と、被処理物を予熱する予熱器と、予熱された被処理物を中和剤と混合して前記反応器に供給する供給装置と、を備えた水熱反応装置」が開示されている。
【0005】
【特許文献1】
特開平7−313987号公報
【特許文献2】
特開平9−85075号公報
【特許文献3】
特開2002−273459号公報
【0006】
【発明が解決しようとする課題】
しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献2)に開示の技術は、耐圧容器内に配設された反応容器を高価な耐腐食性に優れた材質で形成し、耐圧容器は耐圧性に優れた材質で形成するものなので、反応容器が高価なものとなり多大な設備負荷を要する。
(2)また、反応容器を耐腐食性に優れた材質で形成したとしても、反応容器の内壁は高温高圧の強酸等の雰囲気下に曝されるので、腐食が進行し耐久性に欠ける。
(3)(特許文献3)に開示の技術は、反応器において水熱酸化反応が完結したときのpHが中性付近となるように所定量の中和剤を被処理液に混合しなければならないため、中和剤の量を予測する煩雑な作業が必要で工数を要するという課題を有していた。
(4)また、作業毎に中和剤を大量に要するという課題を有していた。
(5)予熱器で被処理液を予熱するので、予熱器の腐食が生じ易く耐久性に欠けるという課題を有していた。
(6)(特許文献1)乃至(特許文献3)においては、反応器内の温度や圧力を検出する手段については開示されておらず、反応器内が反応処理に最適な温度や圧力に到達しているか否かの検出ができないという課題を有していた。超臨界領域や亜臨界領域の雰囲気下での反応は、特に臨界点付近においては、温度や圧力のわずかな変化により流体の特性が著しく変化し反応速度も大きく変化するからである。
(7)また、反応器内部の温度や圧力を反応器内に配設された温度計や圧力計で計測する場合、反応器内に非圧縮流体を導入した場合は圧力を計測することができないという課題を有していた。さらに、反応器内の状態をリアルタイムで検出できないという課題を有していた。
【0007】
本発明は上記従来の課題を解決するもので、反応器の外部で予め生成した臨界流体を反応器に供給するのでエネルギー効率に優れ、また反応制御性に優れるとともに反応効率を高めることができ、さらにメンテナンス性に優れるとともに耐久性に優れる反応装置を提供することを目的とする。
また、本発明は、被処理流体を連続的に処理することができ作業性に優れるとともにエネルギー効率に優れる臨界処理方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記従来の課題を解決するために本発明の反応装置及びそれを用いた臨界処理方法は、以下の構成を有している。
【0009】
本発明の請求項1に記載の反応装置は、(a)反応流体を加圧する第1加圧装置と、前記反応流体を加熱する第1加熱装置と、下流部に形成され前記第1加圧装置と前記第1加熱装置によって前記反応流体が超臨界状態又は亜臨界状態にされた臨界流体を供給する臨界流体供給口と、を有する臨界流体供給路と、(b)ジチオン酸イオンを含有する被処理流体を加圧する第2加圧装置と、下流部に形成された被処理流体供給口と、を有する被処理流体供給路と、(c)前記臨界流体供給口と前記被処理流体供給口とが配設された合流部を反応器上部に有する反応器と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部の臨界流体供給路に配設された第1加圧装置及び第1加熱装置で連続的に生成することができるので、装置構成が簡単で設備負荷を軽減することができるとともにエネルギー効率に優れる。
(2)反応器の外部で予め生成された臨界流体を反応器の反応器上部の合流部内で被処理流体と合流させて被処理流体を処理することができ、反応器内に臨界流体を確実に供給できるので安定性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができる。
(3)被処理流体は臨界流体と合流されて初めて高温高圧の環境下に曝され腐食性雰囲気になるので、反応器の外部の被処理流体供給路内の腐食を考慮する必要がなくメンテナンス性に優れるとともに耐久性に優れる。
【0010】
ここで、反応流体としては、水、メタノール,エタノール,プロパノール,イソプロパノール等のアルコール類、二酸化炭素,窒素,酸素,水素等のガス、アルゴン等の不活性ガス等の内1種以上が用いられる。反応流体は高純度の流体を用いることが望ましい。第1加圧装置と第1加熱装置によって生成される高温高圧の臨界流体等による臨界流体供給路の腐食を防止するためである。
【0011】
第1加圧装置としては、渦巻ポンプ,ディフューザポンプ等の遠心ポンプ、渦巻斜流ポンプ等の斜流ポンプ、軸流ポンプ、シリンダ内でピストンやプランジャを往復運動させる往復ポンプ、歯車ポンプ,ベーンポンプ,ねじポンプ等の回転ポンプ、ダイヤフラムポンプ等のポンプを備え、反応流体を超臨界領域や亜臨界領域の圧力域まで加圧するものが用いられる。
第1加熱装置としては、臨界流体供給路の外部又は内部に配設され臨界流体供給路を流れる反応流体を超臨界領域や亜臨界領域の温度域まで加熱するものが用いられる。
臨界流体としては、反応流体が第1加圧装置と第1加熱装置によって高温高圧にされた亜臨界流体又は超臨界流体が用いられる。反応流体が水の場合は、臨界流体の温度は300〜600℃、圧力は20〜30MPaにされる。
【0012】
被処理流体としては、産業用廃水、下水、汚泥、し尿、石炭,重質油,軽質油等の化石燃料、豚,牛等の家畜の糞尿、香気成分等を抽出可能な茶葉,コーヒー豆等の食品、食品加工工場や医療施設等からの廃液、廃プラスチック等が懸濁され若しくは溶解された懸濁液若しくは溶液が用いられる。特に、ダイオキシン,PCB等の難分解有機物や有害性有機物、フロン等の溶剤、塩素化合物,窒素化合物,硫黄化合物,ウラン化合物等を含有するものが用いられる。
第2加圧装置としては、第1加圧装置と同様のポンプを備え、被処理流体を反応流体の超臨界領域や亜臨界領域の圧力域まで加圧するものが用いられる。
なお、被処理流体の種類によっては、反応流体や被処理流体に過酸化水素,酸素ガス,空気,四塩化窒素ガス,オゾンガス,塩素ガス,臭素,メタ過ヨウ素酸ナトリウム,重クロム酸カリウム,過マンガン酸カリウム,無水クロム酸,次亜塩素酸,過酸化水素,過酢酸,過蟻酸,メタクロロ過安息香酸,過クロロ酢酸,過ジクロロ酢酸,過トリクロロ酢酸,過トリフロロ酢酸,過メタンスルホン酸,過硫酸等の酸化剤の内の1種以上を混合することもできる。これにより、被処理流体が分解されて生成された亜硫酸イオン等の酸化反応効率を高め、被処理流体の分解処理効率を高めることができる。
【0013】
反応器上部の合流部としては、反応器の上部側に配設され内壁に臨界流体供給口と被処理流体供給口とを有するものが用いられる。合流部内に臨界流体供給口から供給される臨界流体や被処理流体供給口から供給される被処理流体は、合流部の内壁面の接線方向に沿って供給され内壁面を同じ方向に旋回しつつ合流するもの、又は逆方向に旋回しつつ衝突しながら合流するもの、合流部の内壁面から内壁面に沿って若しくは内壁面と所定の噴射角で供給され衝突したり旋回しながら合流するもの等が用いられる。被処理流体と臨界流体の比重差と流量の差を利用して、被処理流体を臨界流体で包み込むように合流させるのが好ましい。反応器の内壁の腐蝕を防止するとともに被処理流体の臨界流体による反応処理を確実に行うためである。
【0014】
臨界流体供給口と被処理流体供給口の配設位置は、臨界流体供給口を被処理流体供給口より高い位置や低い位置に配設したり、臨界流体供給口と被処理流体供給口とを略同一の高さに配設することができる。但し、臨界流体供給口と被処理流体供給口とを略同一の高さに配設するのが好ましい。比重や流量等が異なり運動量が異なる臨界流体と被処理流体とを合流させる際に良好な混合状態が得られ反応効率を高めることができるからである。
【0015】
臨界流体供給口から供給する臨界流体の流量は、被処理流体供給口から供給する被処理流体の流量に対し2〜50倍好ましくは3〜50倍が好適に用いられる。臨界流体供給口から供給する臨界流体の流量が被処理流体供給口から供給する被処理流体の流量に対して3倍より少なくなるにつれ、臨界流体の流量が少なく臨界流体を被処理流体と合流させても被処理流体を超臨界領域や亜臨界領域の温度域にすることができず反応処理が不完全になり、また臨界流体の運動量(比重,流量,流速から得られる)が被処理流体の運動量より小さいか略同一になり臨界流体−被処理流体二相流において被処理流体が反応器の中心部を流れ難く(間けつ流や環状流等を形成し難く)反応器の内壁近くを流れ内壁面で塩が析出し易く、反応器の閉塞や腐蝕が発生し易くなる傾向がみられる。特に、2倍より少なくなるとこの傾向が著しくなるので好ましくない。50倍より多くなるにつれ臨界流体の流量が多すぎて第1加熱装置の容量を要するとともに、被処理流体が反応処理されて生成する処理流体の量が多くなり大型の処理装置を要し設備負荷が増大する傾向がみられるため好ましくない。
【0016】
臨界流体供給口から供給する臨界流体の流速や被処理流体供給口から供給する被処理流体の流速としては、反応器内で層流を形成する流速が用いられる。反応器内で乱流を形成すると、臨界流体と合流した被処理流体が反応器の壁面に接触し易く壁面が腐蝕され易くなり反応器の耐久性が低下するからである。臨界流体と合流した被処理流体が流れる反応器内のレイノルズ数としては、流体の密度や粘度等にもよるが、100〜2000好ましくは500〜1000が好適に用いられる。レイノルズ数が500より小さくなるにつれ反応器内の被処理流体等の滞留時間が長くなり反応時間を要し処理効率が低下する傾向がみられるとともに反応時間を短縮化するために反応器を大型化しなければならず設備負荷が増大する傾向がみられ、1000より大きくなるにつれ乱流が形成され易く反応器の内壁が腐蝕し易くなる傾向がみられる。特に、レイノルズ数が500より小さくなるか2000より大きくなると、これらの傾向が著しくなるのでいずれも好ましくない。
【0017】
請求項2に記載の発明は、請求項1に記載の反応装置であって、前記反応器を加熱する第2加熱装置が配設された構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)反応器に第2加熱装置が配設されているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる。
(2)反応器内を超臨界領域や亜臨界領域の温度に保持することができ、反応器内で温度差が発生し難いので、臨界流体と合流した被処理流体の流れを乱さず層流状態で安定に反応させることができる。
(3)第2加熱装置を所定の温度にすることによって、反応器の内壁で無機塩等が析出するのを防止して反応器の閉塞等が発生するのを防止することができる。また、反応器内の反応状態を制御することができ反応制御性に優れる。
【0018】
ここで、第2加熱装置としては、第1加熱装置とは別個に反応器に配設されたものを用いることができる。また、反応流体を加熱する第1加熱装置を反応器に囲繞して配設して、第1加熱装置と兼用したものを用いることもできる。また、第1加熱装置で加熱された臨界流体が流れる臨界流体供給路を反応器の周囲に囲繞して配設して、高温の臨界流体で反応器を加熱することもできる。
【0019】
第2加熱装置は、反応器の内壁の温度を被処理流体と合流した臨界流体の温度よりも低い温度に加熱するものが用いられる。被処理流体と合流した臨界流体を反応器の内壁で冷やして内壁の近傍の温度を低下させて無機塩等が溶解し易い状態にし、反応器の中心部は臨界領域の温度を維持して無機塩等の析出等の反応を促進させ、反応器の内壁で無機塩等が析出して反応器の閉塞等が発生するのを防止するためである。
【0020】
請求項3に記載の発明は、請求項1又は2の反応装置であって、前記反応器が、縦長の筒状に形成された構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)反応器上部を有する反応器が縦長の筒状に形成されているので、反応器上部で臨界流体と合流した被処理流体が反応器内を落下する間に反応処理されるとともに、析出した無機塩等が反応器内を閉塞し難く安定性に優れる。
(2)臨界流体と被処理流体の下降流において、腐蝕性の高い被処理流体が縦長の筒状の反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性を高めることができる。
【0021】
本発明の請求項4に記載の発明は、請求項1乃至3の内いずれか1に記載の反応装置であって、前記合流部に配設された前記臨界流体供給口と前記被処理流体供給口とが、前記反応器上部の内壁に対向して配設された構成を有している。
この構成により、請求項1乃至3の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)臨界流体供給口と被処理流体供給口が反応器の内壁に対向して配設されているので、反応器の中心部付近で臨界流体と被処理流体が確実に衝突し混合される。これにより、腐蝕性の高い被処理流体が反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性を高めることができる。
(2)また、被処理流体の周囲を臨界流体で包み込み、臨界流体によって被処理流体の周囲から内部に向かって反応処理を進行させることができるので反応効率を高めることができる。
(3)反応器の内壁面で無機塩の析出・付着がみられず腐食され難いので、反応器の材質としてチタン製やセラミック製等の高価で耐腐食性に優れた材質を用いることなく、炭素鋼、ステンレス鋼等の合金鋼等のような比較的安価な材質を用いることができ設備負荷を低く抑えることができる。
【0022】
ここで、臨界流体供給口,被処理流体供給口,反応器上部の横断面積を略同一に形成することが好ましい。合流部内で臨界流体供給口から噴射する臨界流体と被処理流体供給口から噴射する被処理流体が合流する際に確実に混合させることができるからである。
【0023】
本発明の請求項5に記載の発明は、請求項1乃至4の内いずれか1に記載の反応装置であって、前記合流部の横断面積が、前記合流部の下方の反応器下部の横断面積より狭く形成された構成を有している。
この構成により請求項1乃至4の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)合流部の横断面積が反応器下部の横断面積より狭く形成されているので、合流部内で合流した臨界流体と被処理流体とが反応器下部に入った際に強い下降流を伴う噴流が生じ反応器下部の中心部を流れる。この強い下降流に引き寄せられ、その周囲にも弱い下降流が形成される。この影響で反応器下部の壁面に沿う弱い上昇流が形成され、この結果、反応器下部の壁面を上昇する大きな対流が発生する。これにより、反応器下部の上方の壁面近傍に滞留時間の大きな領域が生じ、合流後の臨界流体と被処理流体との接触時間を長くすることができ、反応処理を完全に行うことができ反応率を高めることができる。
【0024】
ここで、合流部の横断面積を決定する内径に対する反応器下部の横断面積を決定する内径の大きさ(倍率)としては、合流部の内径に対して2〜20倍好ましくは2〜10倍が好適に用いられる。内径の倍率が2倍より小さくなるにつれ反応して析出する塩が反応器下部の内壁で析出し易く反応器の閉塞等が発生し易くなる傾向がみられる。10倍より大きくなるにつれ壁面に沿う上昇流が形成され難くなり反応器の壁面を上昇する対流が形成され難くなるので反応器内での滞留時間を長くすることができず反応効率が低下する傾向がみられるとともに、反応器が大型化する傾向がみられる。特に、20倍より大きくなるとこの傾向が著しくなるため好ましくない。
【0025】
本発明の請求項6に記載の発明は、請求項1乃至5の内いずれか1に記載の反応装置であって、前記反応器内で前記臨界流体によって前記被処理流体が反応処理されて生成される処理流体のpH、酸化還元電位、導電率のいずれか1以上を検出する検出装置を備えた構成を有している。
この構成により、請求項1乃至5の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)処理流体の導電率等を検出する検出装置を備えているので、導電率計等の汎用の検出装置を用いて瞬時に、かつ、簡便に処理流体の特性を測定することができ、反応器内の状態をほぼリアルタイムで簡便に検知することができる。反応器内の温度や圧力の変化につれて処理流体中の塩の析出状態が変化し、これによって処理流体の導電率等が変化するからである。
(2)処理流体の特性を測定して反応器内の状態を検知することができるので、反応器内の温度及び圧力を検出するための高価な温度計や圧力計を要さず、また高精度に検知することができる。反応器内は高温高圧の腐食性の雰囲気になるので、反応器内の温度及び圧力を直接検出することは困難だからである。
(3)反応流体の種類に関わらず反応器内の状態を精度良く検知することができ汎用性に優れる。反応流体の種類によって超臨界領域や亜臨界領域の温度域や圧力域が異なるので(例えば、水の臨界点は温度374℃,圧力22.1MPa、二酸化炭素の臨界点は温度31.1℃,圧力7.38MPa)、反応器内の温度及び圧力を直接検出する場合には、異なる温度域や圧力域が検知可能な種々の温度計や圧力計を準備する必要があるからである。
【0026】
ここで、検出装置としては、塩の析出による処理流体のpH,酸化還元電位,導電率の変化を検出可能なpH計、酸化還元電位計、導電率計が用いられる。なかでも導電率計が好適に用いられる。測定原理が単純なので装置構成が単純で耐久性に優れるとともに応答性に優れるからである。
【0027】
本発明の請求項7に記載の発明は、請求項1乃至6の内いずれか1に記載の反応装置であって、前記第2加圧装置が、複数の往復ポンプ及び/又は複数のシリンダを有する往復ポンプを備えた構成を有している。
この構成により、請求項1乃至6の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)第2加圧装置が往復ポンプを備えているので、遠心ポンプや回転ポンプ等のように被処理流体の粘度等に左右されず、また、被処理流体の流量が少なかったり粘度が高い場合でも、被処理流体を高圧にして安定に供給することができ信頼性に優れる。
(2)第2加圧装置が複数の往復ポンプ及び/又は複数のシリンダを有する往復ポンプを備えているので、第2加圧装置からの吐出量の脈動を防止することができ連続処理が可能である。
【0028】
ここで、複数の往復ポンプとしては、一の往復ポンプが被処理流体の吸込を行っているときに、他の往復ポンプが被処理流体の吐出を行うものが用いられる。この場合は、他の往復ポンプが被処理流体の吸込を行っているときに、一の往復ポンプから被処理流体を吐出することができ第2加圧装置から一定の圧力の被処理流体を脈動なく吐出することができる。
複数のシリンダを有する往復ポンプとしては、複動ピストンポンプや2連,3連プランジャーポンプ等を用いることができる。これにより、複数のシリンダに被処理流体の吸込を行い吐出量を平均化するように被処理流体の吐出を行うことができる。
なお、往復ポンプの他、往復ポンプのシリンダ内に被処理流体を供給する被処理流体供給ポンプを備えていると好ましい。往復ポンプ内への被処理流体の吸込を容易にかつ確実に行うことができ信頼性を高めることができるからである。
被処理流体供給ポンプとしては、遠心ポンプ,回転ポンプ,往復ポンプ,斜流ポンプ、軸流ポンプ等が用いられる。
【0029】
本発明の請求項8に記載の発明は、請求項1乃至7の内いずれか1に記載の反応装置であって、前記第1加圧装置及び/又は前記第2加圧装置が、往復ポンプのカム部の摺動面に潤滑油を滴下する油滴下装置を備えた構成を有している。
この構成により、請求項1乃至7の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)往復ポンプのカム部の摺動面に潤滑油を滴下する油滴下装置を備えているので、汎用の往復ポンプの耐久性を著しく高めることができる。油滴下装置を有しない場合は、高圧に加圧するためカム部の摺動面で摩擦熱により焼き付きが生じ耐久性に欠けるからである。
【0030】
ここで、カム部の摺動面に滴下された潤滑油は、回収して循環使用するのが好ましい。潤滑油の廃油を出さないので環境保全性に優れるとともに省資源性に優れるからである。
【0031】
本発明の請求項9に記載の臨界処理方法は、反応流体を加圧するとともに加熱して前記反応流体を超臨界状態又は亜臨界状態の臨界流体にする臨界流体生成工程と、ジチオン酸イオンを含有する被処理流体を少なくとも加圧する被処理流体加圧工程と、前記工程で得られた臨界流体と被処理流体とを反応器内の反応器上部の合流部で合流させ前記臨界流体で前記被処理流体を反応処理して処理流体を生成する流体合流工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部で生成し、加圧された被処理流体と反応器内で合流させ反応処理するので、被処理流体を連続的に反応処理することができ作業性に優れるとともにエネルギー効率に優れる。
(2)生成された臨界流体を反応器内で被処理流体と合流させて被処理流体を反応処理するので、確実性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができる。
【0032】
ここで、被処理流体加圧工程においては、被処理流体を必要に応じて加熱することもできる。
【0033】
本発明の請求項10に記載の発明は、請求項9に記載の臨界処理方法であって、前記流体合流工程で生成された前記処理流体を前記反応器内で保温する保温工程を備えた構成を有している。
この構成により、請求項9で得られる作用に加え、以下のような作用が得られる。
(1)保温工程を備えているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる。
【0034】
【発明の実施の形態】
以下、本発明の一実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1における反応装置の要部模式図であり、図2は実施の形態1における反応装置の加圧ポンプの要部斜視図である。
図1において、1は実施の形態1における反応装置、2は水や二酸化炭素等の反応流体、3は反応流体2を貯留する反応流体槽、4は反応流体槽3内の反応流体2が導入される臨界流体供給路、5は臨界流体供給路4に配設され反応流体2を超臨界領域又は亜臨界領域の圧力域に加圧する遠心ポンプ,回転ポンプ,往復ポンプ,斜流ポンプ,軸流ポンプ等の第1加圧装置、6は第1加圧装置5の下流側の臨界流体供給路4に配設され反応流体2を超臨界領域又は亜臨界領域の温度域に加熱する第1加熱装置、7は臨界流体供給路4の下流部の後述する反応器上部24に形成された臨界流体供給口である。反応流体2は第1加圧装置5と第1加熱装置6によって超臨界状態又は亜臨界状態の超臨界流体又は亜臨界流体(以下、臨界流体という)にされて臨界流体供給口7から供給される。
【0035】
8は産業用廃水、下水、汚泥、し尿、石炭,重質油,軽質油等の化石燃料、廃プラスチック等が懸濁され若しくは溶解された懸濁液若しくは溶液等の被処理流体、9は被処理流体8を貯留する被処理流体槽、10は被処理流体槽9内に配設され被処理流体8の沈降分離を防止する撹拌翼、11は被処理流体槽9内の被処理流体8が導入される被処理流体供給路、11aは一端部が被処理流体槽9に接続された被処理流体供給路11の一部としての被処理流体導入路、12は被処理流体供給路11に配設され被処理流体8を加圧する第2加圧装置である。12aは被処理流体導入路11aに配設され第2加圧装置12の一部としての遠心ポンプ,回転ポンプ,往復ポンプ,斜流ポンプ,軸流ポンプ等の被処理流体供給ポンプ、13,13aは被処理流体導入路11aの他端部に一端部が接続し被処理流体導入路11aを分岐する被処理流体供給路11の一部としての被処理流体分岐路であり、図示しない開閉弁が各々配設されている。14,14aは被処理流体分岐路13,13aの他端部が各々接続した第2加圧装置12の一部としての縦型のシリンダ、14b,14cはシリンダ14,14a内の下部側の被処理流体室後述する15´,15a´内に配設された撹拌翼、15,15aはシリンダ14,14a内に各々配設された第2加圧装置12の一部としてのプランジャやピストン等の摺動部、15´,15a´は摺動部15,15aによってシリンダ14,14aの下部側が区画された被処理流体室、15″,15a″は摺動部15,15aによってシリンダ14,14aの上部側が区画された反応流体室、15b,15cは反応流体室15″,15a″に面する摺動部15,15aの所定部からシリンダ14,14aの上端部を超える長さに延設された延設部、15d,15eは延設部15b,15c及び摺動部15,15aに貫設されたガス抜き路、15f,15gはガス抜き路15d,15eに配設されたガス抜き弁、16は一端部から反応流体槽3に貯留された反応流体2が供給される反応流体路、17は反応流体路16に配設され反応流体2を加圧する第2加圧装置12の一部としての遠心ポンプ,回転ポンプ等の加圧ポンプ、18,18aは反応流体路16の他端部に一端部が接続し反応流体路16を分岐し他端部が反応流体室15″,15a″に各々接続された反応流体分岐路、18b,18cは反応流体分岐路18,18aに配設された開閉弁、18d,18eは一端部が反応流体室15″,15a″に各々接続された反応流体排出路、18f,18gは反応流体排出路18d,18eに各々配設された開閉弁、18hは一端部が反応流体排出路18d,18eに接続され他端部から反応流体が反応流体槽3内に還流される反応流体還流路である。
【0036】
19,19aは一端部がシリンダ14,14aの被処理流体室15´,15a´に各々接続された被処理流体供給路11の一部としての被処理流体吐出路であり、図示しない開閉弁が各々配設されている。20は被処理流体吐出路19,19aの他端部に一端部が接続された被処理流体供給路11の一部としての被処理流体流路、21は被処理流体流路20に配設され必要に応じて被処理流体8を液相状態に保つ温度範囲内に加熱する被処理流体加熱装置、22は被処理流体流路20の他端部の被処理流体供給路11の下流部の後述する反応器上部24に形成され第2加圧装置12によって高圧にされた被処理流体8が供給する被処理流体供給口である。
【0037】
23は内壁面が縦長の筒状に形成された反応器、24は反応器23の上部側に形成され臨界流体供給口7と被処理流体供給口22が配設された反応器上部、24aは臨界流体供給口7から供給する臨界流体と被処理流体供給口22から供給する被処理流体とが合流する反応器上部24の合流部、25は反応器上部24の合流部24aの下方に配設され反応器上部24と連通する反応器下部、25aは反応器下部25の底部に形状が擂鉢状に形成された反応器底部、26は反応器下部25の底部の反応器底部25aに形成された反応器出口部である。
ここで、本実施の形態においては、臨界流体供給口7と被処理流体供給口22が反応器上部24の内壁に対向して配設されている。また、反応器上部24の合流部24aの横断面積及び反応器出口部26の横断面積が、反応器下部25の横断面積より狭く形成されている。
27は反応器23(反応器上部24,反応器下部25,反応器底部25a)の外側に配設され反応器23を所定温度に加熱する第2加熱装置であり、反応器23の内部を超臨界領域又は亜臨界領域の温度域を保つように加熱している。28は反応器出口部26に接続された処理流体排出路であり、被処理流体が臨界流体によって反応器23内で処理されて生成される処理流体が処理流体排出路28を通って反応器23から排出される。28aは反応器出口部26の直後の処理流体排出路28に配設され反応器出口部26近傍の温度を検知する熱電対等の温度検出部である。
29は処理流体排出路28に配設され処理流体を冷却する1次冷却装置、30は1次冷却装置29の下流側の処理流体排出路28に配設され処理流体から未反応等の固形物を分離する固液分離装置、31は固液分離装置30の下流側の処理流体排出路28に配設され処理流体をさらに冷却する2次冷却装置、32は2次冷却装置31の下流側の処理流体排出路28に配設された気液分離装置、33は気液分離装置32の下部と接続され処理流体が流れる液体排出路、33aは液体排出路33に配設された減圧弁等の減圧装置、33bは減圧装置33aの下流側の液体排出路33に配設され液体排出路33を流れる処理流体のpH,酸化還元電位,導電率の内いずれか1以上を測定するpH計,酸化還元電位計,導電率計の内いずれか1以上からなる検出装置、34は液体排出路33の下流側に配設され液体排出路33を流れる処理流体を貯留する処理流体槽、35は気液分離装置32の上部と接続された気体排出路、35aは気体排出路35に配設された減圧弁やオリフィス等の減圧装置、36は1次冷却装置29及び2次冷却装置31に冷媒循環路36a,36bを介して冷媒を供給する冷却装置である。
【0038】
図2において、17は加圧ポンプであり、本実施の形態においては2連プランジャーポンプで構成されている。40はシャフト、41,41はシャフト40に所定間隔を空けて配設されたカム、41a,41aはカム41,41の摺動面、42,42はカム41,41の摺動面41a,41aに当接するコロ、43,43はコロ42,42を回動自在に軸支して固定するロッド先端部、44,44は一端にロッド先端部43,43を有し他端に図示しないプランジャが接続されたロッド、45,45はロッド44,44に装着されロッド先端部43,43をカム41,41側に付勢するスプリング、46,46はカム41,41の上方に配設されコロ42,42が当接するカム41,41の摺動面41a,41aに潤滑油を滴下する油滴下装置の滴下部である。潤滑油は滴下部46,46の先端から摺動面41a,41aに適量滴下される。
【0039】
以上のように構成された実施の形態1における反応装置ついて、以下その使用方法を説明する。
まず、反応流体槽3に所定の反応流体2を貯留するとともに被処理流体槽9に被処理流体8を貯留する。被処理流体8として懸濁液等を用いる場合には、撹拌翼10を駆動して被処理流体8が分離沈降しないようにする。
次いで、臨界流体供給路4において、第1加圧装置5を駆動すると臨界流体供給路4から反応流体2が導入され、さらに反応流体2は反応流体の超臨界領域又は亜臨界領域の圧力域まで加圧される。さらに、第1加熱装置6によって超臨界領域又は亜臨界領域の温度域まで加熱されて臨界流体が生成され、生成された臨界流体は臨界流体供給路4内を臨界流体供給口7へ向かう。(以上、臨界流体生成工程)
一方、被処理流体供給路11において、被処理流体分岐路13に配設された図示しない開閉弁を閉止し被処理流体分岐路13aに配設された図示しない開閉弁を開弁するとともに、被処理流体吐出路19aに配設された図示しない開閉弁を閉止し、さらに反応流体排出路18eに配設された開閉弁18gを開弁した後に被処理流体供給ポンプ12aを駆動して、被処理流体導入路11a,被処理流体分岐路13aを介して被処理流体8をシリンダ14aの被処理流体室15a´内へ圧送する。これにより、摺動部15aが反応流体室15a″を圧縮し、反応流体室15a″内の反応流体は反応流体排出路18e,反応流体還流路18hから反応流体槽3内へ還流されるので、圧送された被処理流体は摺動部15aを押しやりつつ被処理流体室15a´内に充填される。所定量の被処理流体が被処理流体室15a´内に充填されたら、被処理流体分岐路13aの開閉弁を閉止して被処理流体の被処理流体室15a´内への供給を停止し所定時間静置する。これにより、被処理流体室15a´内の被処理流体に混入した気泡が摺動部15a付近にまで上昇する。次いで、ガス抜き弁15g,開閉弁18cを開弁し開閉弁18gを閉止した状態で加圧ポンプ17を駆動し反応流体を反応流体室15a″内へ圧送すると、摺動部15aが被処理流体室15a´内の被処理流体を圧縮し、それに伴って摺動部15a付近にまで上昇した気泡がガス抜き路15eを通って被処理流体室15a´の外部に排出される。ガス抜き弁15gを閉止した後、さらに反応流体を反応流体室15a″内へ圧送し被処理流体室15a´内の被処理流体を加圧する。被処理流体室15a´内に配設された撹拌翼14cを回転しておくことにより、懸濁液等の被処理流体が沈降分離するのを防止することができる。被処理流体室15a´内の圧力が所定値(反応流体の超臨界領域又は亜臨界領域の圧力域)になったときに被処理流体吐出路19aに配設された図示しない開閉弁を開弁すると、加圧された被処理流体が被処理流体室15a´から吐出され必要に応じて被処理流体加熱装置21で所定温度に加熱されて被処理流体流路20内を被処理流体供給口22へ向かう。(以上、被処理流体加圧工程)
なお、被処理流体をシリンダ14aの被処理流体室15a´から吐出している間に、被処理流体分岐路13に配設された図示しない開閉弁と反応流体排出路18dに配設された開閉弁18fを開弁するとともに被処理流体吐出路19に配設された図示しない開閉弁を閉止した後に被処理流体供給ポンプ12aを駆動して、被処理流体導入路11a,被処理流体分岐路13を介して被処理流体8をシリンダ14内の被処理流体室15´へ圧送する。さらに、シリンダ14aの場合に説明したのと同様にしてシリンダ14内の被処理流体室15´に充填された被処理流体を所定値(反応流体の超臨界領域又は亜臨界領域の圧力域)に加圧しておく。シリンダ14a内の被処理流体が吐出され尽くした後、被処理流体吐出路19に配設された図示しない開閉弁を開弁すると、シリンダ14内の加圧された被処理流体が被処理流体流路20(被処理流体供給路11)内を被処理流体供給口22へ向かう。この結果、加圧された被処理流体をシリンダ14,14aから交互に吐出させることができ、被処理流体を脈動なく被処理流体供給口22へ供給することができる。
【0040】
臨界流体供給路4内を臨界流体供給口7へ向かった臨界流体及び被処理流体供給路11内を被処理流体供給口22へ向かった被処理流体は、第2加熱装置27で加熱された反応器23の反応器上部24の合流部24aへ各々臨界流体供給口7及び被処理流体供給口22から吐出され2つの流体が合流する。(以上、流体合流工程)
臨界流体と合流した被処理流体は、第2加熱装置27で保温された反応器上部24,反応器下部25を落下する間に反応処理されて処理流体が生成され、生成された処理流体は反応器底部25aから反応器出口部26を通過して処理流体排出路28から反応器23の外へ排出される。(以上、保温工程)
処理流体排出路28内の処理流体は1次冷却装置29で冷却された後、固液分離装置30で未反応等の固形物が分離される。さらに処理流体は2次冷却装置31で冷却された後に気液分離装置32で気液分離され、気体は気体排出路35から減圧装置35aを経て大気や排ガス処理装置(図示しない)へ放出され、一方の液体は液体排出路33から減圧装置33aを経て減圧され、検出装置33bで導電率等を検出した後に処理流体槽34に排出される。
【0041】
以上のように、実施の形態1における反応装置は構成されているので、以下のような作用が得られる。
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部の臨界流体供給路に配設された第1加圧装置及び第1加熱装置で連続的に生成することができるので、装置構成が簡単で設備負荷を軽減することができるとともにエネルギー効率に優れる。
(2)生成された臨界流体を反応器の反応器上部の合流部内で被処理流体と合流させて被処理流体を反応処理することができ、定量操作が容易で確実性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができる。
(3)被処理流体は臨界流体と合流されて初めて高温高圧の環境下に曝され腐食性雰囲気になるので、反応器の外部の被処理流体供給路内の腐食を考慮する必要がなくメンテナンス性に優れるとともに耐久性に優れる。
(4)反応器に第2加熱装置が配設されているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる。
(5)第2加熱装置が配設されているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、反応器内で温度差が発生し難いので、臨界流体と合流した被処理流体の流れを乱さず層流状態で安定に反応させることができる。
(6)第2加熱装置を所定の温度にすることによって、反応器の内壁で無機塩等が析出するのを防止して反応器の閉塞等が発生するのを防止することができる。また、反応器内の反応状態を制御することができ反応制御性に優れる。
(7)反応器上部を有する反応器が縦長の筒状に形成されているので、反応器上部で臨界流体と合流した被処理流体が反応器内を落下する間に反応処理されるとともに、析出した無機塩等が反応器内を閉塞し難く安定性に優れる。
(8)臨界流体と被処理流体の下降流において、腐蝕性の高い被処理流体が縦長の筒状の反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性を高めることができる。
(9)臨界流体供給口と被処理流体供給口が反応器の内壁に対向して配設されているので、反応器の中心部付近で臨界流体と被処理流体が確実に衝突し混合される。これにより、腐蝕性の高い被処理流体が反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性を高めることができる。
(10)また、被処理流体の周囲を臨界流体で包み込み、臨界流体によって被処理流体の周囲から内部に向かって反応処理を進行させることができるので反応効率を高めることができる。
(11)反応器の内壁面で無機塩の析出・付着がみられず腐食され難いので、反応器の材質としてチタン製やセラミック製等の高価で耐腐食性に優れた材質を用いることなく、炭素鋼、ステンレス鋼等の合金鋼等のような比較的安価な材質を用いることができ設備負荷を低く抑えることができる。
(12)合流部の横断面積が反応器下部の横断面積より狭く形成されているので、合流部内で合流した臨界流体と被処理流体とが反応器下部に入った際に強い下降流を伴う噴流が生じ反応器下部の中心部を流れる。この強い下降流に引き寄せられ、その周囲にも弱い下降流が形成される。この影響で反応器下部の壁面に沿う弱い上昇流が形成され、この結果、反応器下部の壁面を上昇する大きな対流が発生する。これにより、反応器下部の上方の壁面近傍に滞留時間の大きな領域が生じ、合流後の臨界流体と被処理流体との接触時間を長くすることができ、反応処理を完全に行うことができ反応率を高めることができる。
(13)処理流体の導電率等を検出する検出装置を備えているので、導電率計等の汎用の検出装置を用いて瞬時に、かつ、簡便に処理流体の特性を測定することができ、反応器内の状態をほぼリアルタイムで簡便に検知することができる。反応器内の温度や圧力の変化につれて処理流体中の塩の析出状態が変化し、これによって処理流体の導電率等が変化するからである。
(14)処理流体の特性を測定して反応器内の状態を検知することができるので、反応器内の温度及び圧力を検出するための高価な温度計や圧力計を要さず、また高精度に検知することができる。反応器内は高温高圧の腐食性の雰囲気になるので、反応器内の温度及び圧力を直接検出することは困難だからである。
(15)反応流体の種類に関わらず反応器内の状態を精度良く検知することができ汎用性に優れる。反応流体の種類によって超臨界領域や亜臨界領域の温度域や圧力域が異なるので(例えば、水の臨界点は温度374℃,圧力22.1MPa、二酸化炭素の臨界点は温度31.1℃,圧力7.38MPa)、反応器内の温度及び圧力を直接検出する場合には、異なる温度域や圧力域が検知可能な種々の温度計や圧力計を準備する必要があるからである。
(16)第2加圧装置が往復ポンプを備え被処理流体供給路内の被処理流体を高圧に加圧するので、遠心ポンプや回転ポンプ等のように被処理流体の粘度等に左右されず、また、被処理流体の流量が少なかったり粘度が高い場合でも、被処理流体を高圧にして安定に供給することができ信頼性に優れる。
(17)第2加圧装置が複数の往復ポンプを備えているので、第2加圧装置からの吐出量の脈動を防止することができ連続処理が可能である。
(18)被処理流体供給路に被処理流体加熱装置が配設されているので、被処理流体を液相状態に保つ所定の温度範囲内で加熱して、被処理流体供給口から供給される被処理流体の温度を安定に保つことができ、反応器内の反応状態を安定に維持することができる。
(19)往復ポンプで構成された加圧ポンプのカム部の摺動面に潤滑油を滴下する油滴下装置を備えているので、汎用の往復ポンプの耐久性を著しく高めることができる。油滴下装置を有しない場合は、高圧に加圧するため、カム部の摺動面で焼き付きが生じ耐久性に欠けるからである。
(20)第2加圧装置が、供給された被処理流体に混入した気泡を排出するガス抜き路を備えているので、被処理流体を非圧縮性にして被処理流体を反応器に定量供給することができ、被処理流体と臨界流体を定量的に反応させることができ被処理流体の反応効率を高めることができる。
(21)縦型のシリンダに配設された摺動部に延設された延設部にガス抜き路が形成されているので、簡単な構成でシリンダ内に供給された被処理流体の量等に関わらず気泡を排出することができ安定性に優れる。
(22)第2加圧装置のシリンダ内に撹拌翼が配設されているので、懸濁液等の被処理流体が沈降分離するのを防止し、反応器に供給される被処理流体に濃度差が生じるのを防止することができ被処理流体を確実に反応処理することができる。
(23)水からなる反応流体を用いて第2加圧装置のシリンダに配設された摺動部を押して被処理流体を加圧するので、被処理流体の濃度や種類等によらず反応器内に定量的に安定して供給することができ安定性に優れる。
【0042】
また、以上のように実施の形態1における臨界処理方法は構成されているので、以下のような作用が得られる。
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部で生成し、加圧された被処理流体と反応器内で合流させ反応処理するので、被処理流体を連続的に反応処理することができ作業性に優れるとともにエネルギー効率に優れる。
(2)生成された臨界流体を反応器内で被処理流体と合流させて被処理流体を反応処理するので、確実性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができる。
(3)保温工程を備えているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる。
【0043】
なお、本実施の形態では、第2加熱装置27が第1加熱装置6と別個に反応器23に配設された場合について説明したが、第1加熱装置6を反応器23の周囲に囲繞して配設し第2加熱装置の代わりとして兼用することもできる。また、第1加熱装置6で加熱された臨界流体が流れる臨界流体供給路4を反応器23の周囲に囲繞して配設して、これで反応器23を加熱することもできる。
また、臨界流体供給口7と被処理流体供給口22が反応器上部24の内壁に対向して配設されている場合について説明したが、反応器上部の内壁面の接線方向に沿って形成し、供給された臨界流体と被処理流体を同じ方向に旋回しつつ合流させたり、逆方向に旋回しつつ衝突させながら合流させたりする場合もある。
また、加圧ポンプ17に油滴下装置が配設された場合について説明したが、被処理流体供給ポンプ12や第1加圧装置5を往復ポンプで構成して、これに油滴下装置を配設する場合もある。これにより、同様の作用が得られる。
また、縦型のシリンダ14,14aの下部側に被処理流体室15´,15a´が形成され、摺動部15,15aに延設された延設部15b,15cにガス抜き路15d,15eが形成された場合について説明したが、縦状や傾斜状等に配設されたシリンダの上部側に被処理流体室を形成することもできる。この場合は、被処理流体室の最上部にガス抜き路を形成する。これにより、同様の作用が得られる。
また、被処理流体室15´,15a´内に撹拌翼14b,14cが配設された場合について説明したが、被処理流体として懸濁液等の沈降分離が生じ易いものを用いない場合には、撹拌翼14b,14cは設けなくてよい。
【0044】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
高濃度の硫黄化合物と塩素化合物を含有する被処理流体を、実施の形態1で説明した反応装置を用いて反応処理した。
反応装置としては、反応装置における臨界流体供給口及び被処理流体供給口の内径が5mm、反応器上部の横断面の内径が5mm、反応器下部の横断面の内径が20cm、反応器出口部の内径が5mmに形成されたものを用いた。
反応流体としては導電率が約0.1μS/cm程度の純水を用い、被処理流体としては火力発電所の脱硫工程から排水されるジチオン酸ナトリウム(Na226)を含有するジチオン酸ナトリウム含有水を用いた。このジチオン酸ナトリウム含有水(被処理流体)の水質検査結果を(表1)の上段に示す。なお、CODは過マンガン酸カリウム酸性法によって測定し、S26 2-は重量分析法によって測定し、SO4 2-,Cl-,NO3 -はイオンクロマトグラフィによって測定し、Na+はICPによって測定した。
【0045】
【表1】

Figure 0004377593
【0046】
次いで、反応流体(水)を第1加圧装置で25MPaに加圧するとともに第1加熱装置で300〜600℃に加熱して超臨界流体又は亜臨界流体の臨界流体を生成し、臨界流体供給口から反応器上部内へ供給した。これと同時に、被処理流体を第2加圧装置で25MPaに加圧するとともに被処理流体加熱装置で25℃に維持して、被処理流体供給口から反応器上部内へ供給し、臨界流体と合流させた。なお、被処理流体供給口及び臨界流体供給口から供給する流量比率は、被処理流体:臨界流体=20:186とした。
臨界流体と合流した被処理流体は、反応器内で反応処理され処理流体が生成された。反応器内の温度を反応器出口部から排出された処理流体の温度(以下、反応器出口温度という)が320〜360℃になるように第2加熱装置で制御して、反応器出口温度と被処理流体の分解率との関係を調べた。なお、被処理流体の分解率とは、1−(反応器出口から排出された処理流体のジチオン酸濃度)/(反応器に投入された被処理流体のジチオン酸濃度)をいう。その結果を図3に示す。図3は反応器出口温度と分解率との関係を示す図である。
図3に示す結果から、被処理流体の分解率は反応器出口温度が高くなるにつれて高くなり、反応器出口温度が350℃以上のときに100%の分解率が得られることがわかった。
以上のように本実施例によれば、臨界流体と合流した被処理流体の反応処理を完全に行うことができ反応率を高めることができることが明らかになった。
【0047】
図4は反応器出口から排出された処理流体の温度(反応器出口温度)と導電率計からなる検出装置で検出された処理流体の導電率との関係を示す図である。図4の横軸は所定時刻から経過した運転時間を示す。
図4に示す結果から、運転経過時間が30分を超えたあたりで反応器出口温度が約2℃上昇し、同じような時期に処理流体の導電率が約0.3S/m低下した。これは、反応器内の温度が上昇したことにより処理流体の塩の溶解度が小さくなり塩の析出量が増加し、これによって処理流体の導電率が低下したためであると推察される。また、反応器出口温度の上昇と処理流体の導電率の低下が、ほぼ同時に検出できていることがわかった。
以上のように本実施例によれば、導電率計からなる検出装置を用いて瞬時に、かつ、簡便に処理流体の特性を測定することができ、反応器内の状態の変化をほぼリアルタイムで簡便に検知することができることが明らかになった。
【0048】
これらの結果を基にして、実施例1の反応装置を用いて反応器出口温度が355℃になるように第2加圧装置で反応器の温度を保持し、500時間以上もの長期間に渡ってジチオン酸ナトリウム含有水(被処理流体)の処理を行った。ジチオン酸ナトリウムの加水分解反応式を(化1)に示す。また、処理されて生成した処理流体の水質検査結果を(表1)の下段に示す。
【化1】
Figure 0004377593
本実施例によれば、(表1)に示すように難分解性のジチオン酸を含有する廃水のCOD値,S26 2-値を著しく減少でき分解効率が著しく優れることが明らかになった。また、500時間以上もの長時間に渡って安定稼働させることができたことから、(化1)に示すように加水分解反応によって強酸が生成されるような過酷な条件であっても、反応器の内壁面の腐食や閉塞を防止することができ耐久性に著しく優れることが明らかになった。
【0049】
(実施例2)
実施の形態1で説明した反応装置の反応器を用いたジチオン酸ナトリウム含有水(被処理流体)の加水分解反応について、反応器内の熱流動挙動をコンピュータを用いてシミュレーションする熱流動解析を行った。
図5は解析した反応器の大きさ等を示す要部模式図である。
図5に示したように、臨界流体供給口7の内径は0.005m、被処理流体供給口22の内径は0.005m、反応器上部24の内径は0.005mであり長さは0.16m、反応器下部25の内径は0.020mであり長さは0.40m、反応器出口部26の内径は0.005mとし、反応器下部25の外周壁には厚さ0.001mのシリカ−アルミナ製の保温材を覆設するものとした。また、反応器の材質はSUS316製とした。なお、反応器上部24,反応器下部25の温度は300℃に保持するものとした。
この反応器に温度400℃,圧力25MPaの臨界流体(反応流体は水)と温度25℃,圧力25MPaの被処理流体(表1に記載のジチオン酸ナトリウム含有水)とを各々臨界流体供給口7と被処理流体供給口22から供給し反応器上部24の合流部で合流させたときの熱流動解析を行った。なお、熱流動解析の計算を行う際には、図6に示す圧力25MPaにおける水の温度と密度との関係を用いた。また、被処理流体供給口及び臨界流体供給口から供給する流量比率は、被処理流体:臨界流体=20:186とした。
【0050】
以上のような前提条件における反応器内の熱流動解析の結果を、図面を用いて以下説明する。
図7は反応器の鉛直断面内の流体(臨界流体、被処理流体及び処理流体)の鉛直方向の速度分布を示す図であり、図8は反応器内に生じていると推察される対流を示す模式図であり、図9は反応器の鉛直断面内の流体(臨界流体、被処理流体及び処理流体)の滞留時間分布を示す図であり、図10は反応器の鉛直断面内の温度分布を示す図である。
【0051】
熱流動解析の結果、図7にみられるように、反応器上部において臨界流体と被処理流体とが合流する領域(図7に示すAの領域)では、流体の速度が不均一となり偏流が生じていることがわかった。これは臨界流体の流量が被処理流体の流量の約10倍近く大きいので、合流時の臨界流体と被処理流体のエネルギーが異なり均一性に欠けるとともに、図6に示すように温度400℃の臨界流体の密度は温度25℃の水の約1/5になるが流量が約9倍(被処理流体の流量:臨界流体の流量=20:186)と大きいので、臨界流体の運動量が被処理流体の運動量よりも大きくなり、臨界流体が反応器上部の壁面を流れ被処理流体が中心部を流れるので密度が不均一になるからであると推察している。これにより、被処理流体を包み込んだ臨界流体が、被処理流体の周囲から内部に向かって確実に反応処理し反応効率を高めることができることが明らかになった。
また、反応器下部の上部側の領域(図7に示すBの領域)(反応器上部と反応器下部との接続部近傍)では、強い下降流(速度約0.3m/s)を伴う噴流が生じ、その下方では不安定な乱流が生じていることがわかった。また、反応器下部の下部側の領域(図7に示すCの領域)では流れが乱れ、さらに、反応器下部の内壁面に沿って上昇流(速度約0.03m/s)が生じていることがわかった。これらの熱流動解析の結果、反応器下部では、図8に示すように反応器下部の内壁面を上昇する大きな対流が生じていることがわかった。
このため、図9にみられるように反応器下部の上部側の領域(図9に示すDの領域)では、壁面近傍に滞留時間の大きな領域が生じていることがわかった。これにより、臨界流体と被処理流体との接触時間を長くすることができ、反応処理を完全に行うことができ反応率を向上できることが明らかになった。
【0052】
さらに熱流動解析の結果、図10にみられるように、反応器の内壁面の近傍(図10に示すEの部分)は反応器の中心部付近(図10に示すFの部分)より温度が低くなっていることがわかった。この結果、反応器の中心部付近は高温高圧の超臨界状態又は亜臨界状態となって被処理流体が反応処理され無機酸が生成され無機塩が析出するが、反応器の内壁の表面は温度が低く超臨界状態又は亜臨界状態にならず塩の溶解度が大きく無機塩が析出しないので、無機塩が内壁に付着せず反応器の内壁面の閉塞や腐食を防止することができ耐久性を向上できることが明らかになった。
【0053】
(実施例3)
実施の形態1で説明した反応装置を用い、水を反応流体として生成した臨界流体と、実施例1で用いた被処理流体と、を反応器内で合流させた。臨界流体の温度は374℃、圧力は25MPa、被処理流体の温度は25℃、圧力は25MPaとした。第2加熱装置の加熱温度を変えて反応器出口温度を367〜393℃に変化させたときの、反応器出口温度と処理流体の酸化還元電位との関係を調べた。
図11は反応器出口温度と処理流体の酸化還元電位との関係を示す図である。
図11から明らかなように、反応器出口温度と酸化還元電位との間には極めて強い相関がみられるので、汎用の酸化還元電位計等の検出装置を用いて瞬時に、かつ、簡便に処理流体の特性を測定することができ、反応器内の状態をほぼリアルタイムで簡便に検知することができることが明らかになった。
【0054】
【発明の効果】
以上のように、本発明の反応装置及びそれを用いた臨界処理方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部の臨界流体供給路に配設された第1加圧装置及び第1加熱装置で連続的に生成することができるので、装置構成が簡単で設備負荷を軽減することができるとともにエネルギー効率に優れた反応装置を提供することができる。
(2)反応器の外部で予め生成された臨界流体を反応器の反応器上部の合流部内で被処理流体と合流させて被処理流体を処理することができ、反応器内に臨界流体を確実に供給できるので安定性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができ軽質油等の化石燃料の脱硫処理も容易に行うことができる反応装置を提供することができる。
(3)被処理流体は臨界流体と合流されて初めて高温高圧の環境下に曝され腐食性雰囲気になるので、反応器の外部の被処理流体供給路内の腐食を考慮する必要がなくメンテナンス性に優れるとともに耐久性に優れた反応装置を提供することができる。
【0055】
請求項2に記載の発明によれば、請求項1の効果に加え、
(1)反応器に第2加熱装置が配設されているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる反応装置を提供することができる。
(2)反応器内を超臨界領域や亜臨界領域の温度に保持することができ、反応器内で温度差が発生し難いので、臨界流体と合流した被処理流体の流れを乱さず層流状態で安定に反応させることができ安定性に優れた反応装置を提供することができる。
(3)第2加熱装置を所定の温度にすることによって、反応器の内壁で無機塩等が析出するのを防止して反応器の閉塞等が発生するのを防止することができる反応装置を提供することができる。また、反応器内の反応状態を制御することができ反応制御性に優れた反応装置を提供することができる。
【0056】
請求項3に記載の発明によれば、請求項1又は2の効果に加え、
(1)反応器上部を有する反応器が縦長の筒状に形成されているので、反応器上部で臨界流体と合流した被処理流体が反応器内を落下する間に反応処理されるとともに、析出した無機塩等が反応器内を閉塞し難く安定性に優れた反応装置を提供することができる。
(2)臨界流体と被処理流体の下降流において、腐蝕性の高い被処理流体が縦長の筒状の反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性に優れた反応装置を提供することができる。
【0057】
請求項4に記載の発明によれば、請求項1乃至3の内いずれか1の効果に加え、
(1)臨界流体供給口と被処理流体供給口が反応器の内壁に対向して配設されているので、反応器の中心部付近で臨界流体と被処理流体が確実に衝突し混合される。これにより、腐蝕性の高い被処理流体が反応器の中心付近を流れ、臨界流体が壁面に沿って流れるようにできるので、被処理流体が反応器の壁面には接触し難く反応器の壁面が腐蝕し難く耐久性を高めることができる反応装置を提供することができる。
(2)また、被処理流体の周囲を臨界流体で包み込み、臨界流体によって被処理流体の周囲から内部に向かって反応処理を進行させることができるので反応効率を高めることができる反応装置を提供することができる。
(3)反応器の内壁面で無機塩の析出・付着がみられず腐食され難いので、反応器の材質としてチタン製やセラミック製等の高価で耐腐食性に優れた材質を用いることなく、炭素鋼、ステンレス鋼等の合金鋼等のような比較的安価な材質を用いることができ設備負荷を低く抑えることができる反応装置を提供することができる。
【0058】
請求項5に記載の発明によれば、請求項1乃至4の内いずれか1の効果に加え、
(1)合流部の横断面積が反応器下部の横断面積より狭く形成されているので、合流部内で合流した臨界流体と被処理流体とが反応器下部に入った際に強い下降流を伴う噴流が生じ反応器の中心部を流れる。この強い下降流に引き寄せられ、その周囲にも弱い下降流が形成される。この影響で壁面に沿う弱い上昇流が形成され、この結果、反応器の壁面を上昇する大きな対流が発生する。これにより、反応器下部の上方の壁面近傍に滞留時間の大きな領域が生じ、合流後の臨界流体と被処理流体との接触時間を長くすることができ、反応処理を完全に行うことができ反応率を高めることができる反応装置を提供することができる。
【0059】
請求項6に記載の発明によれば、請求項1乃至5の内いずれか1の効果に加え、
(1)処理流体の導電率等を検出する検出装置を備えているので、導電率計等の汎用の検出装置を用いて瞬時に、かつ、簡便に処理流体の特性を測定することができ、反応器内の状態をほぼリアルタイムで簡便に検知することができる反応装置を提供することができる。
(2)処理流体の特性を測定して反応器内の状態を検知することができるので、反応器内の温度及び圧力を検出するための高価な温度計や圧力計を要さず、また高精度に検知することができる反応装置を提供することができる。
(3)反応流体の種類に関わらず反応器内の状態を精度良く検知することができ汎用性に優れた反応装置を提供することができる。
【0060】
請求項7に記載の発明によれば、請求項1乃至6の内いずれか1の効果に加え、
(1)第2加圧装置が往復ポンプを備えているので、遠心ポンプや回転ポンプ等のように被処理流体の粘度等に左右されず、また、被処理流体の流量が少なかったり粘度が高い場合でも、被処理流体を高圧にして安定に供給することができ信頼性に優れた反応装置を提供することができる。
(2)第2加圧装置が複数の往復ポンプ及び/又は複数のシリンダを有する往復ポンプを備えているので、第2加圧装置からの吐出量の脈動を防止することができ連続処理が可能な反応装置を提供することができる。
【0061】
請求項8に記載の発明によれば、請求項1乃至7の内いずれか1の効果に加え、
(1)往復ポンプのカム部の摺動面に潤滑油を滴下する油滴下装置を備えているので、汎用の往復ポンプの耐久性を著しく高めることができる反応装置を提供することができる。
【0062】
請求項9に記載の発明によれば、
(1)超臨界状態又は亜臨界状態にされた臨界流体を反応器の外部で生成し、加圧された被処理流体と反応器内で合流させ反応処理するので、被処理流体を連続的に反応処理することができ作業性に優れるとともにエネルギー効率に優れた臨界処理方法を提供することができる。
(2)生成された臨界流体を反応器内で被処理流体と合流させて被処理流体を反応処理するので、確実性に優れるとともに反応制御性に優れ、さらに反応効率を高めることができる臨界処理方法を提供することができる。
【0063】
請求項10に記載の発明によれば、請求項9の効果に加え
(1)保温工程を備えているので、反応器内を超臨界領域や亜臨界領域の温度に保持することができ、臨界流体と合流した被処理流体を超臨界領域や亜臨界領域に長時間滞在させて反応処理を完全に行うことができ反応率を高めることができる臨界処理方法を提供することができる。
【図面の簡単な説明】
【図1】実施の形態1における反応装置の要部模式図
【図2】実施の形態1における反応装置の加圧ポンプの要部斜視図
【図3】反応器出口温度と分解率との関係を示す図
【図4】反応器出口温度と導電率との関係を示す図
【図5】解析した反応器の大きさ等を示す要部模式図
【図6】圧力25MPaにおける水の温度と密度との関係を示す図
【図7】反応器の鉛直断面内の流体(臨界流体、被処理流体及び処理流体)の鉛直方向の速度分布を示す図
【図8】反応器内に生じていると推察される対流を示す模式図
【図9】反応器の鉛直断面内の流体(臨界流体、被処理流体及び処理流体)の滞留時間分布を示す図
【図10】反応器の鉛直断面内の温度分布を示す図
【図11】反応器出口温度と処理流体の酸化還元電位との関係を示す図
【符号の説明】
1 反応装置
2 反応流体
3 反応流体槽
4 臨界流体供給路
5 第1加圧装置
6 第1加熱装置
7 臨界流体供給口
8 被処理流体
9 被処理流体槽
10 撹拌翼
11 被処理流体供給路
11a 被処理流体導入路
12 第2加圧装置
12a 被処理流体供給ポンプ
13,13a 被処理流体分岐路
14,14a シリンダ
14b,14c シリンダ
15,15a 摺動部
15´,15a´ 被処理流体室
15″,15a″ 反応流体室
15b,15c 延設部
15d,15e ガス抜き路
15f,15g ガス抜き弁
16 反応流体路
17 加圧ポンプ
18,18a 反応流体分岐路
18b,18c 開閉弁
18d,18e 反応流体排出路
18f,18g 開閉弁
18h 反応流体還流路
19,19a 被処理流体吐出路
20 被処理流体流路
21 被処理流体加熱装置
22 被処理流体供給口
23 反応器
24 反応器上部
24a 合流部
25 反応器下部
25a 反応器底部
26 反応器出口部
27 第2加熱装置
28 処理流体排出路
28a 温度検出部
29 1次冷却装置
30 固液分離装置
31 2次冷却装置
32 気液分離装置
33 液体排出路
33a 減圧装置
33b 検出装置
34 処理流体槽
35 気体排出路
35a 減圧装置
36 冷却装置
36a,36b 冷媒循環路
40 シャフト
41 カム
41a 摺動面
42 コロ
43 ロッド先端部
44 ロッド
45 スプリング
46 滴下部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction apparatus for treating a fluid to be treated such as organic waste in a subcritical or supercritical environment of a fluid such as water or carbon dioxide, and a critical treatment method using the same. is there.
[0002]
[Prior art]
Conventionally, a technology has been proposed in which a fluid such as water or carbon dioxide and an object to be treated such as organic waste are introduced into a reactor and reacted and decomposed in a subcritical or supercritical environment. ing. This technology has a feature that it is possible to decompose an object to be treated such as organic waste with high efficiency. As a reaction apparatus using this technology, for example, (Patent Document 1), “Cylindrical container body, pressurized supply means for supplying organic fluid or water connected to one end of the container body, A flow path forming member comprising a plurality of straight tubular heat transfer tubes having a base fixed to the other end of the container body, and water or an organic fluid passes through the inside of the flow path forming member with the organic fluid or water. A high-pressure reaction vessel apparatus "that is led to the mixing channel" is disclosed.
However, a reaction process performed using subcritical water or supercritical water in a subcritical region or supercritical region environment is performed at a high temperature of 300 to 600 ° C. and a high pressure atmosphere of 20 MPa or more. Along with the decomposition of chlorine and other corrosive substances contained in the treated product, inorganic acids such as hydrochloric acid and sulfuric acid are generated, and the inner wall of the reactor is severely corroded. Also, inorganic salts are produced by the reaction treatment of the material to be treated, but supercritical water has extremely low solubility of inorganic salts such as alkali metal salts, so the inorganic salts precipitate and adhere to the inner wall of the reactor and the reactor is blocked. In addition, there is a problem that the inner wall surface of the reactor is corroded by being exposed to an acidic or basic environment. Corrosion and clogging of these reactors are major practical problems.
In recent years, various techniques have been proposed to solve this problem.
[0003]
For example, (Patent Document 2) states that “a reaction vessel disposed in a pressure vessel, an opening formed between the inner surface of the pressure vessel and the outer surface of the reaction vessel, and a pipe that communicates the inside of the reaction vessel; , A high-pressure reactor comprising:
[0004]
(Patent Document 3) describes a “reactor that performs a hydrothermal oxidation reaction, a preheater that preheats the object to be processed, and a supply device that mixes the preheated object to be processed with a neutralizing agent and supplies the mixture to the reactor. And a hydrothermal reactor equipped with the above.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-313987
[Patent Document 2]
JP-A-9-85075
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-273459
[0006]
[Problems to be solved by the invention]
However, the above conventional techniques have the following problems.
(1) In the technology disclosed in (Patent Document 2), a reaction vessel disposed in a pressure vessel is formed of an expensive material having excellent corrosion resistance, and the pressure vessel is formed of a material having excellent pressure resistance. Since it is a thing, a reaction container becomes expensive and requires a great equipment load.
(2) Even if the reaction vessel is formed of a material having excellent corrosion resistance, the inner wall of the reaction vessel is exposed to an atmosphere such as a high-temperature and high-pressure strong acid, so that corrosion proceeds and lacks durability.
(3) In the technique disclosed in (Patent Document 3), a predetermined amount of neutralizing agent must be mixed with the liquid to be treated so that the pH when the hydrothermal oxidation reaction is completed in the reactor is near neutral. Therefore, there is a problem that a complicated operation for predicting the amount of the neutralizing agent is required and man-hours are required.
(4) In addition, there is a problem that a large amount of neutralizing agent is required for each operation.
(5) Since the liquid to be treated is preheated by the preheater, there is a problem that the preheater is easily corroded and lacks durability.
(6) (Patent Document 1) to (Patent Document 3) do not disclose a means for detecting the temperature and pressure in the reactor, and the reactor reaches the optimum temperature and pressure for the reaction process. It has a problem that it cannot be detected whether or not it is. This is because the reaction in the supercritical region or subcritical region atmosphere particularly in the vicinity of the critical point, the characteristics of the fluid are remarkably changed and the reaction rate is greatly changed by a slight change in temperature and pressure.
(7) Also, when measuring the temperature and pressure inside the reactor with a thermometer or pressure gauge disposed in the reactor, the pressure cannot be measured when an incompressible fluid is introduced into the reactor. It had the problem that. Furthermore, there has been a problem that the state in the reactor cannot be detected in real time.
[0007]
The present invention solves the above-mentioned conventional problems, and since the critical fluid generated in advance outside the reactor is supplied to the reactor, it is excellent in energy efficiency, and also has excellent reaction controllability and can increase the reaction efficiency, Furthermore, it aims at providing the reactor which is excellent in maintainability and excellent in durability.
It is another object of the present invention to provide a critical processing method that can continuously process a fluid to be processed and has excellent workability and energy efficiency.
[0008]
[Means for Solving the Problems]
In order to solve the above conventional problems, the reaction apparatus of the present invention and the critical processing method using the same have the following configurations.
[0009]
  The reaction apparatus according to claim 1 of the present invention includes: (a) a first pressurization apparatus that pressurizes the reaction fluid; a first heating apparatus that heats the reaction fluid; and the first pressurization formed at a downstream portion. A critical fluid supply path having a device and a critical fluid supply port for supplying a critical fluid in which the reaction fluid is brought into a supercritical state or a subcritical state by the first heating device; and (b)Contains dithionate ionA treated fluid supply path having a second pressurizing device for pressurizing the treated fluid; a treated fluid supply port formed in a downstream portion; and (c) the critical fluid supply port and the treated fluid supply port. And a reactor having an upper part of the reactor with a merging portion in which is disposed.
  With this configuration, the following effects can be obtained.
(1) Since the critical fluid in the supercritical state or the subcritical state can be continuously generated by the first pressurizing device and the first heating device disposed in the critical fluid supply path outside the reactor. The device configuration is simple, the equipment load can be reduced, and the energy efficiency is excellent.
(2) The fluid to be treated can be processed by joining the fluid to be treated in the junction at the top of the reactor with the fluid to be treated in advance, and the critical fluid can be reliably treated in the reactor. Therefore, it is excellent in stability, excellent in reaction controllability, and can increase the reaction efficiency.
(3) Since the fluid to be treated is exposed to a high-temperature and high-pressure environment only after joining the critical fluid and becomes a corrosive atmosphere, it is not necessary to consider the corrosion in the fluid supply path outside the reactor and maintainability In addition to excellent durability.
[0010]
Here, as the reaction fluid, one or more of water, alcohols such as methanol, ethanol, propanol and isopropanol, gases such as carbon dioxide, nitrogen, oxygen and hydrogen, and inert gases such as argon are used. It is desirable to use a high purity fluid as the reaction fluid. This is to prevent corrosion of the critical fluid supply path due to high-temperature and high-pressure critical fluid generated by the first pressurizing device and the first heating device.
[0011]
As the first pressurizing device, centrifugal pumps such as centrifugal pumps and diffuser pumps, mixed flow pumps such as spiral mixed flow pumps, axial flow pumps, reciprocating pumps that reciprocate pistons and plungers in cylinders, gear pumps, vane pumps, A rotary pump such as a screw pump, a pump such as a diaphragm pump, and the like, which pressurizes the reaction fluid to a supercritical region or a subcritical region pressure range is used.
As the first heating device, a device that is disposed outside or inside the critical fluid supply path and heats the reaction fluid flowing through the critical fluid supply path to a temperature range of a supercritical region or a subcritical region is used.
As the critical fluid, a subcritical fluid or a supercritical fluid in which the reaction fluid is brought to a high temperature and a high pressure by the first pressurizing device and the first heating device is used. When the reaction fluid is water, the temperature of the critical fluid is 300 to 600 ° C. and the pressure is 20 to 30 MPa.
[0012]
Processed fluids include industrial wastewater, sewage, sludge, human waste, fossil fuels such as coal, heavy oil and light oil, manure from pigs, cattle and other livestock, tea leaves and coffee beans that can extract aroma components, etc. Suspensions or solutions in which waste liquids, waste plastics, waste plastics and the like from foods, food processing factories and medical facilities are suspended or dissolved are used. In particular, those containing hardly decomposed organic substances such as dioxins and PCBs, harmful organic substances, solvents such as chlorofluorocarbons, chlorine compounds, nitrogen compounds, sulfur compounds, uranium compounds and the like are used.
As the second pressurizing device, a device that includes the same pump as the first pressurizing device and pressurizes the fluid to be processed to the supercritical region or subcritical region of the reaction fluid is used.
Depending on the type of fluid to be treated, the reaction fluid or fluid to be treated may be hydrogen peroxide, oxygen gas, air, nitrogen tetrachloride gas, ozone gas, chlorine gas, bromine, sodium metaperiodate, potassium dichromate, Potassium manganate, chromic anhydride, hypochlorous acid, hydrogen peroxide, peracetic acid, performic acid, metachloroperbenzoic acid, perchloroacetic acid, perdichloroacetic acid, pertrichloroacetic acid, pertrifluoroacetic acid, permethanesulfonic acid, peroxy One or more kinds of oxidizing agents such as sulfuric acid can be mixed. Thereby, the oxidation reaction efficiency of the sulfite ion etc. which were produced | generated by decomposing | disassembling the to-be-processed fluid can be improved, and the decomposition process efficiency of a to-be-processed fluid can be improved.
[0013]
As the merging portion at the upper part of the reactor, a unit that is disposed on the upper side of the reactor and has a critical fluid supply port and a treated fluid supply port on the inner wall is used. The critical fluid supplied from the critical fluid supply port to the junction and the fluid to be processed supplied from the fluid supply port are supplied along the tangential direction of the inner wall surface of the junction and swiveling in the same direction on the inner wall surface. Those that merge, those that merge while colliding while turning in the opposite direction, those that merge from the inner wall surface of the merging section along the inner wall surface or supplied to the inner wall surface at a predetermined injection angle, or that merge while turning Is used. It is preferable to join the fluid to be treated so as to be wrapped with the critical fluid by utilizing the difference in specific gravity and the flow rate between the fluid to be treated and the critical fluid. This is to prevent the inner wall of the reactor from being corroded and to reliably perform the reaction treatment with the critical fluid of the fluid to be treated.
[0014]
The critical fluid supply port and the processed fluid supply port are arranged at a position where the critical fluid supply port is higher or lower than the processed fluid supply port, or between the critical fluid supply port and the processed fluid supply port. They can be arranged at substantially the same height. However, it is preferable to arrange the critical fluid supply port and the fluid supply port to be processed at substantially the same height. This is because when a critical fluid and a fluid to be treated having different specific gravity, flow rate, etc. and different momentum are merged, a good mixed state can be obtained and the reaction efficiency can be increased.
[0015]
The flow rate of the critical fluid supplied from the critical fluid supply port is preferably 2 to 50 times, preferably 3 to 50 times the flow rate of the fluid to be processed supplied from the process fluid supply port. As the flow rate of the critical fluid supplied from the critical fluid supply port becomes less than three times the flow rate of the processed fluid supplied from the processed fluid supply port, the critical fluid flow rate decreases and the critical fluid is joined with the processed fluid. However, the process fluid cannot be brought into the temperature range of the supercritical region or the subcritical region, and the reaction process becomes incomplete, and the momentum of the critical fluid (obtained from the specific gravity, flow rate, and flow velocity) The momentum is less than or substantially the same, and the fluid to be treated hardly flows in the center of the reactor in the critical fluid-treated fluid two-phase flow (it is difficult to form an intermittent flow or an annular flow) and flows near the inner wall of the reactor. There is a tendency that salt tends to precipitate on the inner wall surface and the reactor is likely to be blocked or corroded. In particular, if the amount is less than twice, this tendency is remarkable, which is not preferable. As the flow rate exceeds 50 times, the flow rate of the critical fluid is too high and the capacity of the first heating device is required, and the amount of processing fluid generated by the reaction of the fluid to be processed increases, which requires a large processing device and the equipment load. Is not preferable because of a tendency to increase.
[0016]
As the flow rate of the critical fluid supplied from the critical fluid supply port and the flow rate of the processed fluid supplied from the processed fluid supply port, a flow rate that forms a laminar flow in the reactor is used. This is because when the turbulent flow is formed in the reactor, the fluid to be treated that has joined the critical fluid easily comes into contact with the wall surface of the reactor, and the wall surface is easily corroded, thereby reducing the durability of the reactor. As the Reynolds number in the reactor through which the fluid to be treated that merges with the critical fluid flows, although it depends on the density and viscosity of the fluid, 100 to 2000, preferably 500 to 1000 is preferably used. As the Reynolds number becomes smaller than 500, the residence time of the fluid to be treated in the reactor becomes longer, and the reaction time tends to decrease, and the processing efficiency tends to decrease, and the reactor is enlarged to shorten the reaction time. There is a tendency to increase the equipment load, and as it becomes larger than 1000, turbulence tends to be formed, and the inner wall of the reactor tends to corrode. In particular, when the Reynolds number is smaller than 500 or larger than 2000, these tendencies become remarkable, which is not preferable.
[0017]
Invention of Claim 2 is a reaction apparatus of Claim 1, Comprising: It has the structure by which the 2nd heating apparatus which heats the said reactor was arrange | positioned.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Since the second heating device is disposed in the reactor, the temperature inside the reactor can be maintained at the temperature of the supercritical region or the subcritical region, and the fluid to be treated that has joined the critical fluid can be maintained in the supercritical region. In addition, the reaction treatment can be performed completely by staying in the subcritical region for a long time, and the reaction rate can be increased.
(2) Because the temperature inside the reactor can be maintained at the temperature in the supercritical region or the subcritical region, and a temperature difference is unlikely to occur in the reactor, It can be made to react stably in a state.
(3) By setting the second heating device to a predetermined temperature, it is possible to prevent inorganic salts and the like from precipitating on the inner wall of the reactor and prevent the reactor from being blocked. Moreover, the reaction state in the reactor can be controlled, and the reaction controllability is excellent.
[0018]
Here, as the second heating device, one provided in the reactor separately from the first heating device can be used. Moreover, the 1st heating apparatus which heats reaction fluid is arrange | positioned surrounding the reactor, and what combined with the 1st heating apparatus can also be used. In addition, a critical fluid supply path through which the critical fluid heated by the first heating device flows can be disposed around the reactor to heat the reactor with a high-temperature critical fluid.
[0019]
As the second heating device, a device that heats the temperature of the inner wall of the reactor to a temperature lower than the temperature of the critical fluid combined with the fluid to be processed is used. The critical fluid combined with the fluid to be treated is cooled at the inner wall of the reactor to lower the temperature in the vicinity of the inner wall so that inorganic salts are easily dissolved. This is for accelerating the reaction such as precipitation of salt and preventing the occurrence of blockage of the reactor due to precipitation of inorganic salt on the inner wall of the reactor.
[0020]
Invention of Claim 3 is a reaction apparatus of Claim 1 or 2, Comprising: The said reactor has the structure formed in the vertically long cylinder shape.
With this configuration, in addition to the operation obtained in the first or second aspect, the following operation can be obtained.
(1) Since the reactor having the upper part of the reactor is formed in a vertically long cylindrical shape, a reaction process is performed while the fluid to be treated that merges with the critical fluid in the upper part of the reactor falls in the reactor, and precipitation occurs. Thus, the inorganic salt and the like hardly clog the inside of the reactor and have excellent stability.
(2) In the downward flow of the critical fluid and the fluid to be treated, the highly corrosive fluid to be treated flows near the center of the vertically long cylindrical reactor, and the critical fluid can flow along the wall surface. It is difficult for the fluid to come into contact with the wall surface of the reactor, and the wall surface of the reactor is hard to be corroded, so that durability can be improved.
[0021]
According to a fourth aspect of the present invention, there is provided the reaction apparatus according to any one of the first to third aspects, wherein the critical fluid supply port disposed in the junction and the fluid to be treated are supplied. The mouth is arranged to face the inner wall of the upper part of the reactor.
According to this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) Since the critical fluid supply port and the target fluid supply port are disposed opposite to the inner wall of the reactor, the critical fluid and the target fluid are reliably collided and mixed near the center of the reactor. . As a result, the highly corroded fluid to be treated flows near the center of the reactor and the critical fluid flows along the wall surface, so that the fluid to be treated is difficult to contact the reactor wall surface and the reactor wall surface It is difficult to corrode and can improve durability.
(2) Moreover, since the periphery of the fluid to be processed is wrapped with a critical fluid and the reaction processing can proceed from the periphery of the fluid to be processed toward the inside by the critical fluid, the reaction efficiency can be increased.
(3) Since the inner wall surface of the reactor does not cause precipitation and adhesion of inorganic salts and is difficult to be corroded, the reactor material is made of titanium or ceramics without using expensive and excellent corrosion resistance materials. A relatively inexpensive material such as carbon steel and alloy steel such as stainless steel can be used, and the equipment load can be kept low.
[0022]
Here, it is preferable that the critical fluid supply port, the fluid supply port to be processed, and the cross-sectional area of the upper part of the reactor are formed substantially the same. This is because the critical fluid ejected from the critical fluid supply port and the fluid to be treated ejected from the fluid supply port to be treated can be reliably mixed in the joining portion.
[0023]
A fifth aspect of the present invention is the reaction apparatus according to any one of the first to fourth aspects, wherein a cross-sectional area of the merging portion is crossed below a reactor below the merging portion. It has a configuration that is narrower than the area.
With this configuration, in addition to the action obtained in any one of claims 1 to 4, the following action is obtained.
(1) Since the cross-sectional area of the junction is narrower than the cross-section of the lower part of the reactor, a jet with a strong downward flow when the critical fluid and the fluid to be treated in the junction enter the lower part of the reactor And flows in the center of the lower part of the reactor. It is attracted by this strong downward flow, and a weak downward flow is also formed around it. Due to this influence, a weak upward flow is formed along the wall surface of the lower part of the reactor, and as a result, a large convection flow that rises on the wall surface of the lower part of the reactor is generated. As a result, a region where the residence time is large is generated near the wall surface above the lower part of the reactor, the contact time between the critical fluid after the merging and the fluid to be treated can be lengthened, and the reaction treatment can be performed completely and the reaction can be performed. The rate can be increased.
[0024]
Here, the size (magnification) of the inner diameter that determines the cross-sectional area of the lower part of the reactor with respect to the inner diameter that determines the cross-sectional area of the merging portion is 2 to 20 times, preferably 2 to 10 times, the inner diameter of the merging portion. Preferably used. As the inner diameter ratio becomes smaller than 2, the salt that reacts and precipitates tends to precipitate on the inner wall of the lower part of the reactor, and the reactor tends to be clogged. As it becomes larger than 10 times, the upward flow along the wall surface is less likely to be formed, and the convection rising up the wall surface of the reactor is less likely to be formed. Therefore, the residence time in the reactor cannot be increased and the reaction efficiency tends to decrease. And a tendency to increase the size of the reactor. In particular, when it is larger than 20 times, this tendency becomes remarkable, which is not preferable.
[0025]
A sixth aspect of the present invention is the reaction apparatus according to any one of the first to fifth aspects, wherein the fluid to be treated is produced by the reaction process of the critical fluid in the reactor. A detection device that detects any one or more of pH, oxidation-reduction potential, and conductivity of the processing fluid to be processed.
With this configuration, in addition to the action obtained in any one of claims 1 to 5, the following action is obtained.
(1) Since a detection device that detects the conductivity of the processing fluid is provided, the properties of the processing fluid can be measured instantaneously and simply using a general-purpose detection device such as a conductivity meter, The state in the reactor can be easily detected almost in real time. This is because the salt precipitation state in the processing fluid changes as the temperature and pressure in the reactor change, and this changes the conductivity of the processing fluid.
(2) Since the state of the reactor can be detected by measuring the characteristics of the processing fluid, an expensive thermometer or pressure gauge for detecting the temperature and pressure in the reactor is not required. It can be detected with accuracy. This is because it is difficult to directly detect the temperature and pressure in the reactor because the reactor becomes a corrosive atmosphere of high temperature and pressure.
(3) Regardless of the type of reaction fluid, the state in the reactor can be detected with high accuracy and excellent versatility. The temperature range and pressure range of the supercritical region and subcritical region differ depending on the type of reaction fluid (for example, the critical point of water is 374 ° C, the pressure is 22.1 MPa, the critical point of carbon dioxide is 31.1 ° C, This is because, when directly detecting the temperature and pressure in the reactor, it is necessary to prepare various thermometers and pressure gauges capable of detecting different temperature ranges and pressure ranges.
[0026]
Here, as the detection device, a pH meter, a redox potential meter, or a conductivity meter capable of detecting changes in pH, oxidation-reduction potential, and conductivity of the processing fluid due to salt precipitation is used. Of these, a conductivity meter is preferably used. This is because, since the measurement principle is simple, the device configuration is simple and excellent in durability and responsiveness.
[0027]
The invention according to claim 7 of the present invention is the reaction apparatus according to any one of claims 1 to 6, wherein the second pressurizing device includes a plurality of reciprocating pumps and / or a plurality of cylinders. It has the structure provided with the reciprocating pump which has.
With this configuration, in addition to the action obtained in any one of claims 1 to 6, the following action is obtained.
(1) Since the second pressurizing device is equipped with a reciprocating pump, it is not affected by the viscosity of the fluid to be treated, such as a centrifugal pump or a rotary pump, and the flow rate of the fluid to be treated is low or the viscosity is high. Even in this case, the fluid to be treated can be stably supplied at a high pressure, and the reliability is excellent.
(2) Since the second pressurizing device includes a reciprocating pump having a plurality of reciprocating pumps and / or a plurality of cylinders, pulsation of the discharge amount from the second pressurizing device can be prevented and continuous processing is possible. It is.
[0028]
Here, as the plurality of reciprocating pumps, one in which another reciprocating pump discharges the fluid to be processed while one reciprocating pump sucks the fluid to be processed is used. In this case, when the other reciprocating pump is sucking the fluid to be processed, the fluid to be processed can be discharged from the one reciprocating pump, and the fluid to be processed having a constant pressure is pulsated from the second pressurizing device. It can discharge without.
As a reciprocating pump having a plurality of cylinders, a double-acting piston pump, a double or triple plunger pump, or the like can be used. Thus, the fluid to be processed can be discharged so that the fluid to be processed is sucked into the plurality of cylinders and the discharge amount is averaged.
In addition to the reciprocating pump, it is preferable that a processing fluid supply pump for supplying the processing fluid into the cylinder of the reciprocating pump is provided. This is because the fluid to be treated can be sucked into the reciprocating pump easily and reliably, and the reliability can be improved.
As the fluid supply pump, a centrifugal pump, a rotary pump, a reciprocating pump, a mixed flow pump, an axial flow pump, or the like is used.
[0029]
An eighth aspect of the present invention is the reaction apparatus according to any one of the first to seventh aspects, wherein the first pressurizing device and / or the second pressurizing device is a reciprocating pump. It has the structure provided with the oil dripping apparatus which dripped lubricating oil to the sliding surface of this cam part.
With this configuration, in addition to the action obtained in any one of claims 1 to 7, the following action is obtained.
(1) Since the oil dropping device that drops lubricating oil on the sliding surface of the cam portion of the reciprocating pump is provided, the durability of the general-purpose reciprocating pump can be significantly increased. This is because when the oil dripping device is not provided, pressurization to a high pressure causes seizure on the sliding surface of the cam portion due to frictional heat and lacks durability.
[0030]
Here, the lubricating oil dropped on the sliding surface of the cam portion is preferably recovered and recycled. This is because the waste oil of the lubricating oil is not discharged, so that it is excellent in environmental conservation and resource saving.
[0031]
  A critical processing method according to claim 9 of the present invention is a critical fluid generating step of pressurizing and heating a reaction fluid to make the reaction fluid a supercritical or subcritical critical fluid;Contains dithionate ionA process fluid pressurizing step for pressurizing at least the process fluid, and the critical fluid and the process fluid obtained in the step are joined at a junction at the upper part of the reactor in the reactor, and the process fluid is used as the process fluid by the critical fluid. And a fluid merging step for generating a processing fluid by reacting the above.
  With this configuration, the following effects can be obtained.
(1) A critical fluid in a supercritical state or a subcritical state is generated outside the reactor, and the pressurized fluid to be treated is merged in the reactor for reaction treatment. The reaction can be performed, and the workability is excellent and the energy efficiency is excellent.
(2) Since the produced critical fluid is combined with the fluid to be treated in the reactor to react the fluid to be treated, the reliability is excellent, the reaction controllability is excellent, and the reaction efficiency can be further increased.
[0032]
Here, in the fluid to be treated pressurizing step, the fluid to be treated can be heated as necessary.
[0033]
Invention of Claim 10 of this invention is a critical processing method of Claim 9, Comprising: The structure provided with the heat retention process which heat-retains the said process fluid produced | generated by the said fluid confluence | merging process in the said reactor have.
With this configuration, in addition to the operation obtained in the ninth aspect, the following operation can be obtained.
(1) Since a temperature maintaining process is provided, the temperature inside the reactor can be maintained at the temperature of the supercritical region or the subcritical region, and the treated fluid that has joined the critical fluid can be kept in the supercritical region or the subcritical region for a long time. The reaction treatment can be performed completely by staying, and the reaction rate can be increased.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram of a main part of a reaction apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a perspective view of the main part of a pressurizing pump of the reaction apparatus according to Embodiment 1.
In FIG. 1, 1 is a reaction apparatus in the first embodiment, 2 is a reaction fluid such as water or carbon dioxide, 3 is a reaction fluid tank for storing the reaction fluid 2, and 4 is a reaction fluid 2 in the reaction fluid tank 3 introduced. The critical fluid supply path 5 is arranged in the critical fluid supply path 4 and is a centrifugal pump, rotary pump, reciprocating pump, diagonal flow pump, axial flow that pressurizes the reaction fluid 2 to a supercritical region or subcritical region pressure region. A first pressurizing device such as a pump, 6 is disposed in a critical fluid supply path 4 on the downstream side of the first pressurizing device 5, and heats the reaction fluid 2 to a temperature range of a supercritical region or a subcritical region. An apparatus 7 is a critical fluid supply port formed in a reactor upper portion 24 described later in the downstream portion of the critical fluid supply path 4. The reaction fluid 2 is changed to a supercritical fluid or a subcritical fluid (hereinafter referred to as critical fluid) in a supercritical state or a subcritical state by the first pressurizing device 5 and the first heating device 6 and supplied from the critical fluid supply port 7. The
[0035]
8 is an industrial wastewater, sewage, sludge, human waste, fossil fuel such as coal, heavy oil, light oil, etc., and a fluid to be treated such as a suspension or solution in which waste plastics are suspended or dissolved. A processing fluid tank 10 for storing the processing fluid 8, 10 is a stirring blade disposed in the processing fluid tank 9 to prevent sedimentation of the processing fluid 8, and 11 is a processing fluid 8 in the processing fluid tank 9. A treated fluid supply path 11a is introduced, a treated fluid introduction path 11 as a part of the treated fluid supply path 11 having one end connected to the treated fluid tank 9, and 12 is disposed in the treated fluid supply path 11. This is a second pressurizing device that is provided and pressurizes the fluid 8 to be treated. Reference numeral 12a denotes a fluid supply pump such as a centrifugal pump, a rotary pump, a reciprocating pump, a diagonal flow pump, and an axial flow pump that is disposed in the fluid introduction path 11a and is part of the second pressurizer 12. Is a treated fluid branch path as a part of the treated fluid supply path 11 having one end connected to the other end of the treated fluid introduction path 11a and branching off the treated fluid introduction path 11a. Each is arranged. Reference numerals 14 and 14a denote vertical cylinders as a part of the second pressurizing device 12 to which the other ends of the fluid branch paths 13 and 13a to be processed are respectively connected. Reference numerals 14b and 14c denote lower cylinders in the cylinders 14 and 14a. Stirrer blades 15 and 15a disposed in processing fluid chambers 15 'and 15a', which will be described later, are plungers and pistons as part of the second pressurizing device 12 disposed in the cylinders 14 and 14a, respectively. Sliding parts, 15 'and 15a' are fluid chambers to be processed in which the lower side of the cylinders 14 and 14a is defined by the sliding parts 15 and 15a, and 15 "and 15a" are the cylinders 14 and 14a by the sliding parts 15 and 15a. The reaction fluid chambers 15b and 15c partitioned on the upper side are extended from a predetermined portion of the sliding portions 15 and 15a facing the reaction fluid chambers 15 ″ and 15a ″ to a length exceeding the upper ends of the cylinders 14 and 14a. Extension part, 15 15e are degassing passages extending through the extending portions 15b and 15c and the sliding portions 15 and 15a, 15f and 15g are degassing valves disposed in the degassing passages 15d and 15e, and 16 is a reaction from one end. A reaction fluid path to which the reaction fluid 2 stored in the fluid tank 3 is supplied, 17 is a centrifugal pump and a rotary pump as a part of the second pressurizing device 12 disposed in the reaction fluid path 16 to pressurize the reaction fluid 2 The pressure pumps 18 and 18a are connected to the other end of the reaction fluid path 16 to branch the reaction fluid path 16, and the other ends connected to the reaction fluid chambers 15 "and 15a", respectively. Branch passages 18b and 18c are on-off valves disposed in the reaction fluid branch passages 18 and 18a, 18d and 18e are reaction fluid discharge passages whose one ends are connected to the reaction fluid chambers 15 ″ and 15a ″, 18f and 18g, respectively. Are respectively connected to the reaction fluid discharge paths 18d and 18e. The open / close valve 18h is a reaction fluid reflux path in which one end is connected to the reaction fluid discharge paths 18d and 18e and the reaction fluid is refluxed into the reaction fluid tank 3 from the other end.
[0036]
Reference numerals 19 and 19a denote treated fluid discharge passages as part of the treated fluid supply passage 11 whose one ends are respectively connected to the treated fluid chambers 15 'and 15a' of the cylinders 14 and 14a. Each is arranged. Reference numeral 20 denotes a processing fluid flow path as a part of the processing fluid supply path 11 whose one end is connected to the other ends of the processing fluid discharge paths 19 and 19 a, and 21 denotes a processing fluid flow path 20. A processing fluid heating device for heating the processing fluid 8 within a temperature range that keeps the processing fluid 8 in a liquid phase as required, 22 is a downstream portion of the processing fluid supply passage 11 at the other end of the processing fluid flow channel 20. The fluid to be treated is supplied to the fluid 8 to be treated which is formed in the upper part 24 of the reactor and is pressurized by the second pressurizer 12.
[0037]
23 is a reactor whose inner wall surface is formed in a vertically long cylindrical shape, 24 is an upper part of the reactor formed on the upper side of the reactor 23 and provided with the critical fluid supply port 7 and the fluid supply port 22 to be treated, and 24a A confluence portion of the reactor upper portion 24 where the critical fluid supplied from the critical fluid supply port 7 and the fluid to be processed supplied from the fluid supply port 22 join, 25 is disposed below the confluence portion 24a of the reactor upper portion 24. The reactor lower part 25a communicated with the reactor upper part 24, the reactor bottom part 25a formed in a bowl shape at the bottom part of the reactor lower part 25, and 26 formed at the reactor bottom part 25a of the bottom part of the reactor lower part 25. Reactor outlet.
Here, in the present embodiment, the critical fluid supply port 7 and the to-be-processed fluid supply port 22 are arranged to face the inner wall of the reactor upper part 24. Further, the cross-sectional area of the junction 24 a of the reactor upper part 24 and the cross-sectional area of the reactor outlet part 26 are formed to be narrower than the cross-sectional area of the reactor lower part 25.
Reference numeral 27 denotes a second heating device that is disposed outside the reactor 23 (reactor upper part 24, reactor lower part 25, reactor bottom part 25a) and heats the reactor 23 to a predetermined temperature. Heating is performed so as to maintain the temperature range of the critical region or the subcritical region. Reference numeral 28 denotes a processing fluid discharge path connected to the reactor outlet 26, and the processing fluid generated by processing the fluid to be processed in the reactor 23 with the critical fluid passes through the processing fluid discharge path 28 and is formed in the reactor 23. Discharged from. Reference numeral 28 a denotes a temperature detector such as a thermocouple that is disposed in the processing fluid discharge path 28 immediately after the reactor outlet 26 and detects the temperature in the vicinity of the reactor outlet 26.
A primary cooling device 29 is disposed in the processing fluid discharge path 28 to cool the processing fluid, and 30 is disposed in the processing fluid discharge path 28 on the downstream side of the primary cooling device 29 and is solid matter such as unreacted from the processing fluid. The solid-liquid separation device 31 is a secondary cooling device that is disposed in the processing fluid discharge path 28 on the downstream side of the solid-liquid separation device 30 to further cool the processing fluid, and 32 is the downstream side of the secondary cooling device 31. A gas-liquid separator 33 disposed in the processing fluid discharge path 28, a liquid discharge path 33 connected to the lower part of the gas-liquid separator 32 and through which the processing fluid flows, 33 a, a pressure reducing valve disposed in the liquid discharge path 33, etc. The pressure reducing device 33b is disposed in the liquid discharge passage 33 on the downstream side of the pressure reducing device 33a, and is a pH meter that measures at least one of pH, oxidation-reduction potential, and conductivity of the processing fluid flowing through the liquid discharge passage 33. Is it one or more of reduction potential meter and conductivity meter? A detection device 34, a processing fluid tank that stores the processing fluid that is disposed downstream of the liquid discharge passage 33 and flows through the liquid discharge passage 33, 35 is a gas discharge passage that is connected to the upper portion of the gas-liquid separation device 32, and 35a. Is a pressure reducing device such as a pressure reducing valve or an orifice disposed in the gas discharge passage 35, and 36 is a cooling device for supplying the refrigerant to the primary cooling device 29 and the secondary cooling device 31 via the refrigerant circulation passages 36a and 36b. .
[0038]
In FIG. 2, reference numeral 17 denotes a pressurizing pump, which is a double plunger pump in the present embodiment. 40 is a shaft, 41 and 41 are cams arranged at a predetermined interval on the shaft 40, 41a and 41a are sliding surfaces of the cams 41 and 41, 42 and 42 are sliding surfaces 41a and 41a of the cams 41 and 41, respectively. Rollers 43 and 43 are rod end portions for pivotally supporting and fixing the rollers 42 and 42, 44 and 44 have rod end portions 43 and 43 at one end, and a plunger (not shown) at the other end. The connected rods 45 and 45 are attached to the rods 44 and 44 and springs for urging the rod end portions 43 and 43 toward the cams 41 and 41, and 46 and 46 are disposed above the cams 41 and 41, and the rollers 42. , 42 is a dripping portion of an oil dripping device for dripping lubricating oil onto the sliding surfaces 41a, 41a of the cams 41, 41 with which they abut. An appropriate amount of lubricating oil is dropped from the tips of the dropping portions 46, 46 onto the sliding surfaces 41a, 41a.
[0039]
About the reaction apparatus in Embodiment 1 comprised as mentioned above, the usage method is demonstrated below.
First, a predetermined reaction fluid 2 is stored in the reaction fluid tank 3 and a process fluid 8 is stored in the process fluid tank 9. When a suspension or the like is used as the treated fluid 8, the stirring blade 10 is driven so that the treated fluid 8 does not separate and settle.
Next, when the first pressurizing device 5 is driven in the critical fluid supply path 4, the reaction fluid 2 is introduced from the critical fluid supply path 4, and the reaction fluid 2 further reaches the pressure region in the supercritical region or subcritical region of the reaction fluid. Pressurized. Further, the first heating device 6 is heated to the temperature range of the supercritical region or the subcritical region to generate a critical fluid, and the generated critical fluid travels through the critical fluid supply path 4 to the critical fluid supply port 7. (End of critical fluid generation process)
On the other hand, in the fluid supply path 11 to be processed, an on-off valve (not shown) disposed in the fluid branch 13 to be processed is closed and an unillustrated on-off valve disposed in the fluid branch 13a is opened. The on-off valve (not shown) disposed in the processing fluid discharge path 19a is closed, and further, the on-off valve 18g disposed in the reaction fluid discharge path 18e is opened, and then the processing fluid supply pump 12a is driven to perform processing. The fluid 8 to be treated is pumped into the fluid chamber 15a ′ of the cylinder 14a through the fluid introduction passage 11a and the fluid branch passage 13a. Thereby, the sliding portion 15a compresses the reaction fluid chamber 15a ″, and the reaction fluid in the reaction fluid chamber 15a ″ is returned to the reaction fluid tank 3 from the reaction fluid discharge passage 18e and the reaction fluid reflux passage 18h. The fluid to be treated that has been pumped is filled into the fluid chamber 15a ′ to be treated while pushing the sliding portion 15a. When a predetermined amount of fluid to be processed is filled in the fluid chamber 15a ′, the on-off valve of the fluid branch 13a is closed to stop the supply of the fluid into the fluid chamber 15a ′. Let stand for hours. As a result, the bubbles mixed in the fluid to be processed in the fluid chamber 15a ′ rise to the vicinity of the sliding portion 15a. Next, when the depressurization valve 15g and the on-off valve 18c are opened and the on-off valve 18g is closed, the pressurizing pump 17 is driven and the reaction fluid is pumped into the reaction fluid chamber 15a ″. The fluid to be treated in the chamber 15a ′ is compressed, and the bubbles that have risen to the vicinity of the sliding portion 15a are discharged to the outside of the fluid chamber 15a ′ through the gas vent passage 15e. Then, the reaction fluid is further pumped into the reaction fluid chamber 15a ″ to pressurize the fluid to be processed in the fluid chamber 15a ′. By rotating the stirring blade 14c disposed in the fluid chamber 15a ′ to be treated, it is possible to prevent the fluid to be treated such as a suspension from being settled and separated. When a pressure in the processing fluid chamber 15a ′ reaches a predetermined value (a pressure region in the supercritical region or subcritical region of the reaction fluid), an on-off valve (not shown) disposed in the processing fluid discharge passage 19a is opened. Then, the pressurized fluid to be treated is discharged from the fluid chamber 15a ′ to be treated and heated to a predetermined temperature by the fluid treatment heating device 21 as necessary, and the fluid supply port 22 to be treated is passed through the fluid passage 20 to be treated. Head to. (End of process fluid pressurization process)
While the fluid to be treated is being discharged from the fluid chamber 15a ′ of the cylinder 14a, an opening / closing valve (not shown) provided in the fluid branch 13 to be processed and an opening / closing provided in the reaction fluid discharge passage 18d. After the valve 18f is opened and the on-off valve (not shown) disposed in the processed fluid discharge path 19 is closed, the processed fluid supply pump 12a is driven to operate the processed fluid introduction path 11a and the processed fluid branch path 13. Then, the fluid 8 to be processed is pumped to the fluid chamber 15 ′ in the cylinder 14. Further, in the same manner as described in the case of the cylinder 14a, the fluid to be processed filled in the fluid chamber 15 'in the cylinder 14 is set to a predetermined value (pressure region in the supercritical region or subcritical region of the reaction fluid). Keep pressurized. After the fluid to be processed in the cylinder 14a has been completely discharged, when the on-off valve (not shown) disposed in the fluid discharge path 19 is opened, the pressurized fluid to be processed in the cylinder 14 flows into the fluid to be processed. The path 20 (processed fluid supply path 11) travels toward the process fluid supply port 22. As a result, the pressurized fluid to be processed can be alternately discharged from the cylinders 14 and 14a, and the fluid to be processed can be supplied to the fluid to be processed supply port 22 without pulsation.
[0040]
The critical fluid that has flowed through the critical fluid supply path 4 toward the critical fluid supply port 7 and the fluid to be processed that has traveled through the fluid supply path 11 and toward the fluid supply port 22 are heated by the second heating device 27. Two fluids are discharged from the critical fluid supply port 7 and the to-be-processed fluid supply port 22 to the junction 24a of the reactor upper part 24 of the reactor 23, respectively. (End of fluid merging process)
The fluid to be treated that has joined the critical fluid is subjected to a reaction treatment while falling down the reactor upper part 24 and the reactor lower part 25 that are kept warm by the second heating device 27 to produce a treatment fluid, and the produced treatment fluid reacts. It passes through the reactor outlet 26 from the reactor bottom 25 a and is discharged out of the reactor 23 from the processing fluid discharge path 28. (End of heat insulation process)
After the processing fluid in the processing fluid discharge path 28 is cooled by the primary cooling device 29, solids such as unreacted material are separated by the solid-liquid separation device 30. Further, the processing fluid is cooled by the secondary cooling device 31 and then gas-liquid separated by the gas-liquid separation device 32, and the gas is discharged from the gas discharge path 35 to the atmosphere and exhaust gas treatment device (not shown) through the decompression device 35a. One liquid is decompressed from the liquid discharge path 33 through the decompression device 33a, and is discharged to the processing fluid tank 34 after detecting the conductivity and the like by the detection device 33b.
[0041]
As described above, since the reaction apparatus in the first embodiment is configured, the following operation can be obtained.
(1) Since the critical fluid in the supercritical state or the subcritical state can be continuously generated by the first pressurizing device and the first heating device disposed in the critical fluid supply path outside the reactor. The device configuration is simple, the equipment load can be reduced, and the energy efficiency is excellent.
(2) The generated critical fluid can be combined with the fluid to be processed in the merging section at the upper part of the reactor so that the fluid to be processed can be processed. In addition, the reaction efficiency can be increased.
(3) Since the fluid to be treated is exposed to a high-temperature and high-pressure environment only after joining the critical fluid and becomes a corrosive atmosphere, it is not necessary to consider the corrosion in the fluid supply path outside the reactor and maintainability In addition to excellent durability.
(4) Since the reactor is provided with the second heating device, the inside of the reactor can be maintained at a temperature in the supercritical region or the subcritical region, and the fluid to be treated that has joined the critical fluid can be maintained in the supercritical region. In addition, the reaction treatment can be performed completely by staying in the subcritical region for a long time, and the reaction rate can be increased.
(5) Since the second heating device is provided, the reactor can be maintained at a temperature in the supercritical region or the subcritical region, and a temperature difference hardly occurs in the reactor. It is possible to react stably in a laminar flow state without disturbing the flow of the fluids to be treated.
(6) By setting the second heating device to a predetermined temperature, it is possible to prevent inorganic salts and the like from precipitating on the inner wall of the reactor and to prevent the reactor from being blocked. Moreover, the reaction state in the reactor can be controlled, and the reaction controllability is excellent.
(7) Since the reactor having the upper part of the reactor is formed in a vertically long cylindrical shape, the reaction fluid is combined with the critical fluid in the upper part of the reactor and is subjected to a reaction process while falling in the reactor, and precipitation Thus, the inorganic salt and the like hardly clog the inside of the reactor and have excellent stability.
(8) In the downward flow of the critical fluid and the fluid to be treated, the highly corrosive fluid to be treated flows near the center of the vertically long cylindrical reactor, and the critical fluid can flow along the wall surface. It is difficult for the fluid to come into contact with the wall surface of the reactor, and the wall surface of the reactor is hard to be corroded.
(9) Since the critical fluid supply port and the target fluid supply port are arranged opposite to the inner wall of the reactor, the critical fluid and the target fluid are reliably collided and mixed near the center of the reactor. . As a result, the highly corroded fluid to be treated flows near the center of the reactor and the critical fluid flows along the wall surface, so that the fluid to be treated is difficult to contact the reactor wall surface and the reactor wall surface It is difficult to corrode and can improve durability.
(10) Moreover, since the periphery of the fluid to be processed is wrapped with a critical fluid and the reaction processing can proceed from the periphery of the fluid to be processed toward the inside by the critical fluid, the reaction efficiency can be increased.
(11) Since no precipitation or adhesion of inorganic salt is observed on the inner wall surface of the reactor and it is difficult to be corroded, without using an expensive and excellent corrosion resistance material such as titanium or ceramic as the material of the reactor, A relatively inexpensive material such as carbon steel and alloy steel such as stainless steel can be used, and the equipment load can be kept low.
(12) Since the cross-sectional area of the merging portion is formed to be narrower than the cross-sectional area of the lower portion of the reactor, a jet with a strong downward flow when the critical fluid and the fluid to be treated in the merging portion enter the lower portion of the reactor And flows in the center of the lower part of the reactor. It is attracted by this strong downward flow, and a weak downward flow is also formed around it. Due to this influence, a weak upward flow is formed along the wall surface of the lower part of the reactor, and as a result, a large convection flow that rises on the wall surface of the lower part of the reactor is generated. As a result, a region where the residence time is large is generated near the wall surface above the lower part of the reactor, the contact time between the critical fluid after the merging and the fluid to be treated can be lengthened, and the reaction treatment can be performed completely and the reaction can be performed. The rate can be increased.
(13) Since a detection device for detecting the conductivity of the processing fluid is provided, the properties of the processing fluid can be measured instantaneously and simply using a general-purpose detection device such as a conductivity meter, The state in the reactor can be easily detected almost in real time. This is because the salt precipitation state in the processing fluid changes as the temperature and pressure in the reactor change, and this changes the conductivity of the processing fluid.
(14) Since the state of the reactor can be detected by measuring the characteristics of the processing fluid, an expensive thermometer or pressure gauge for detecting the temperature and pressure in the reactor is not required. It can be detected with accuracy. This is because it is difficult to directly detect the temperature and pressure in the reactor because the reactor becomes a corrosive atmosphere of high temperature and pressure.
(15) The state in the reactor can be detected with high accuracy regardless of the type of the reaction fluid, and the versatility is excellent. The temperature range and pressure range of the supercritical region and subcritical region differ depending on the type of reaction fluid (for example, the critical point of water is 374 ° C, the pressure is 22.1 MPa, the critical point of carbon dioxide is 31.1 ° C, This is because, when directly detecting the temperature and pressure in the reactor, it is necessary to prepare various thermometers and pressure gauges capable of detecting different temperature ranges and pressure ranges.
(16) Since the second pressurizing device includes a reciprocating pump and pressurizes the fluid to be processed in the fluid supply path to be processed to a high pressure, it is not affected by the viscosity of the fluid to be processed such as a centrifugal pump or a rotary pump, Further, even when the flow rate of the fluid to be treated is small or the viscosity is high, the fluid to be treated can be stably supplied at a high pressure, and the reliability is excellent.
(17) Since the second pressurizing device includes a plurality of reciprocating pumps, pulsation of the discharge amount from the second pressurizing device can be prevented, and continuous processing is possible.
(18) Since the processing fluid heating device is disposed in the processing fluid supply path, the processing fluid is heated within a predetermined temperature range for keeping the processing fluid in a liquid phase state and supplied from the processing fluid supply port. The temperature of the fluid to be treated can be kept stable, and the reaction state in the reactor can be kept stable.
(19) Since the oil dropping device that drops the lubricating oil on the sliding surface of the cam portion of the pressurizing pump constituted by the reciprocating pump is provided, the durability of the general-purpose reciprocating pump can be remarkably enhanced. This is because when the oil dripping device is not provided, pressurization is performed at a high pressure, so that seizure occurs on the sliding surface of the cam portion and lacks durability.
(20) Since the second pressurizing device is provided with a gas vent path for discharging bubbles mixed in the supplied processing fluid, the processing fluid is made incompressible and the processing fluid is supplied to the reactor in a fixed amount. The fluid to be treated and the critical fluid can be reacted quantitatively, and the reaction efficiency of the fluid to be treated can be increased.
(21) Since the gas vent passage is formed in the extending portion that extends to the sliding portion provided in the vertical cylinder, the amount of fluid to be treated supplied into the cylinder with a simple configuration, etc. Regardless of the air bubbles can be discharged, it is excellent in stability.
(22) Since the stirring blade is disposed in the cylinder of the second pressurizing device, the fluid to be treated such as a suspension is prevented from settling and separated, and the concentration of the fluid to be treated supplied to the reactor is reduced. A difference can be prevented from occurring, and the fluid to be treated can be surely reacted.
(23) Since the fluid to be treated is pressurized by pushing the sliding portion disposed in the cylinder of the second pressurizing device using the reaction fluid comprising water, the inside of the reactor is independent of the concentration and type of the fluid to be treated. Can be supplied quantitatively and stably and has excellent stability.
[0042]
Moreover, since the critical processing method in Embodiment 1 is comprised as mentioned above, the following effects are obtained.
(1) A critical fluid in a supercritical state or a subcritical state is generated outside the reactor, and the pressurized fluid to be treated is merged in the reactor for reaction treatment. The reaction can be performed, and the workability is excellent and the energy efficiency is excellent.
(2) Since the produced critical fluid is combined with the fluid to be treated in the reactor to react the fluid to be treated, the reliability is excellent, the reaction controllability is excellent, and the reaction efficiency can be further increased.
(3) Since a temperature maintaining step is provided, the temperature inside the reactor can be maintained at the temperature of the supercritical region or subcritical region, and the fluid to be treated that has joined the critical fluid can be kept in the supercritical region or subcritical region for a long time. The reaction treatment can be performed completely by staying, and the reaction rate can be increased.
[0043]
In the present embodiment, the case where the second heating device 27 is disposed in the reactor 23 separately from the first heating device 6 has been described. However, the first heating device 6 is surrounded around the reactor 23. And can also serve as a substitute for the second heating device. Alternatively, the critical fluid supply path 4 through which the critical fluid heated by the first heating device 6 flows is disposed around the reactor 23 so that the reactor 23 can be heated.
Moreover, although the case where the critical fluid supply port 7 and the fluid to be treated supply port 22 are disposed to face the inner wall of the upper portion of the reactor 24 has been described, they are formed along the tangential direction of the inner wall surface of the upper portion of the reactor. In some cases, the supplied critical fluid and the fluid to be treated are joined while turning in the same direction, or joined while making collision in the opposite direction.
Moreover, although the case where the oil dripping apparatus was arrange | positioned to the pressurization pump 17 was demonstrated, the to-be-processed fluid supply pump 12 and the 1st pressurization apparatus 5 were comprised with the reciprocating pump, and oil dripping apparatus was arrange | positioned to this. There is also a case. Thereby, the same effect is obtained.
In addition, fluid chambers 15 'and 15a' to be processed are formed on the lower side of the vertical cylinders 14 and 14a, and the gas vent paths 15d and 15e are provided in the extending portions 15b and 15c extending to the sliding portions 15 and 15a. However, it is also possible to form a fluid chamber to be processed on the upper side of a cylinder disposed in a vertical or inclined shape. In this case, a gas vent passage is formed at the uppermost portion of the fluid chamber to be processed. Thereby, the same effect is obtained.
Moreover, although the case where the stirring blades 14b and 14c are disposed in the fluid chambers 15 'and 15a' to be treated has been described, when the fluid to be treated is not likely to cause sedimentation separation such as a suspension, etc. The stirring blades 14b and 14c need not be provided.
[0044]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
A fluid to be treated containing high-concentration sulfur compounds and chlorine compounds was subjected to a reaction treatment using the reaction apparatus described in the first embodiment.
As the reactor, the inside diameter of the critical fluid supply port and the to-be-processed fluid supply port in the reactor is 5 mm, the inside diameter of the cross section at the top of the reactor is 5 mm, the inside diameter of the cross section at the bottom of the reactor is 20 cm, An inner diameter of 5 mm was used.
Pure water having a conductivity of about 0.1 μS / cm is used as the reaction fluid, and sodium dithionate (Na) discharged from the desulfurization process of the thermal power plant is used as the treated fluid.2S2O6) -Containing water containing sodium dithionate. The water quality test result of this sodium dithionate-containing water (fluid to be treated) is shown in the upper part of (Table 1). COD is measured by the potassium permanganate acidic method, and S2O6 2-Is measured gravimetrically and SOFour 2-, Cl-, NOThree -Is measured by ion chromatography and Na+Was measured by ICP.
[0045]
[Table 1]
Figure 0004377593
[0046]
Next, the reaction fluid (water) is pressurized to 25 MPa by the first pressurizing device and heated to 300 to 600 ° C. by the first heating device to generate a critical fluid of supercritical fluid or subcritical fluid, and a critical fluid supply port To the top of the reactor. At the same time, the fluid to be processed is pressurized to 25 MPa by the second pressurizing device and maintained at 25 ° C. by the fluid to be processed heating device, and is supplied from the processing fluid supply port into the upper part of the reactor to join the critical fluid. I let you. The flow rate ratio supplied from the fluid supply port to be processed and the critical fluid supply port was fluid to be processed: critical fluid = 20: 186.
The fluid to be treated that merged with the critical fluid was subjected to a reaction treatment in the reactor to produce a treatment fluid. The temperature in the reactor is controlled by the second heating device so that the temperature of the processing fluid discharged from the reactor outlet (hereinafter referred to as reactor outlet temperature) is 320 to 360 ° C. The relationship with the decomposition rate of the fluid to be treated was investigated. The decomposition rate of the fluid to be treated means 1- (dithionic acid concentration of the processing fluid discharged from the reactor outlet) / (dithionic acid concentration of the fluid to be treated charged into the reactor). The result is shown in FIG. FIG. 3 is a graph showing the relationship between the reactor outlet temperature and the decomposition rate.
From the results shown in FIG. 3, it was found that the decomposition rate of the fluid to be treated increased as the reactor outlet temperature increased, and that a 100% decomposition rate was obtained when the reactor outlet temperature was 350 ° C. or higher.
As described above, according to the present example, it has been clarified that the reaction process of the fluid to be processed that has joined the critical fluid can be completely performed, and the reaction rate can be increased.
[0047]
FIG. 4 is a diagram showing the relationship between the temperature of the processing fluid discharged from the reactor outlet (reactor outlet temperature) and the conductivity of the processing fluid detected by a detection device comprising a conductivity meter. The horizontal axis in FIG. 4 indicates the operation time that has elapsed since the predetermined time.
From the results shown in FIG. 4, the reactor outlet temperature increased by about 2 ° C. when the elapsed operation time exceeded 30 minutes, and the conductivity of the processing fluid decreased by about 0.3 S / m at the same time. This is presumably because the solubility of the salt in the processing fluid is reduced due to the increase in the temperature in the reactor, and the amount of deposited salt is increased, thereby decreasing the conductivity of the processing fluid. It was also found that a rise in reactor outlet temperature and a decrease in process fluid conductivity could be detected almost simultaneously.
As described above, according to the present embodiment, the characteristics of the treatment fluid can be measured instantaneously and easily using the detection device including the conductivity meter, and the change in the state in the reactor can be detected in almost real time. It became clear that it could be detected easily.
[0048]
Based on these results, the reactor temperature was maintained at the second pressurizing apparatus using the reactor of Example 1 so that the reactor outlet temperature was 355 ° C., and the reactor temperature was over 500 hours. Then, treatment with sodium dithionate-containing water (fluid to be treated) was performed. The hydrolysis reaction formula of sodium dithionate is shown in (Chemical Formula 1). Moreover, the lower stage of (Table 1) shows the water quality inspection result of the processing fluid generated by processing.
[Chemical 1]
Figure 0004377593
According to this example, as shown in Table 1, the COD value of wastewater containing persistent dithionic acid, S2O6 2-It was found that the value can be significantly reduced and the decomposition efficiency is remarkably excellent. In addition, since it has been possible to operate stably for a long time of 500 hours or more, even under severe conditions where a strong acid is generated by a hydrolysis reaction as shown in (Chemical Formula 1), the reactor It was found that the inner wall surface of the steel plate can be prevented from corroding and clogging, and is extremely excellent in durability.
[0049]
(Example 2)
For the hydrolysis reaction of sodium dithionate-containing water (fluid to be treated) using the reactor of the reactor described in the first embodiment, a thermal fluid analysis is performed to simulate the thermal fluid behavior in the reactor using a computer. It was.
FIG. 5 is a schematic view of the main part showing the size of the analyzed reactor.
As shown in FIG. 5, the critical fluid supply port 7 has an inner diameter of 0.005 m, the to-be-processed fluid supply port 22 has an inner diameter of 0.005 m, the reactor upper portion 24 has an inner diameter of 0.005 m, and a length of 0.005 m. The inner diameter of the reactor lower part 25 is 0.020 m, the length is 0.40 m, the inner diameter of the reactor outlet 26 is 0.005 m, and the outer peripheral wall of the reactor lower part 25 has a thickness of 0.001 m. -A heat insulating material made of alumina was covered. The material of the reactor was made of SUS316. Note that the temperatures of the reactor upper part 24 and the reactor lower part 25 were maintained at 300 ° C.
A critical fluid supply port 7 is supplied with a critical fluid (reaction fluid is water) at a temperature of 400 ° C. and a pressure of 25 MPa and a fluid to be treated (water containing sodium dithionate shown in Table 1) at a temperature of 25 ° C. and a pressure of 25 MPa. And the fluid to be treated were supplied from the fluid supply port 22 and were analyzed at the joining portion of the upper portion 24 of the reactor. In calculating the heat flow analysis, the relationship between the temperature and density of water at a pressure of 25 MPa shown in FIG. 6 was used. Moreover, the flow rate ratio supplied from the fluid supply port to be processed and the critical fluid supply port was fluid to be processed: critical fluid = 20: 186.
[0050]
The result of the heat flow analysis in the reactor under the above preconditions will be described below with reference to the drawings.
FIG. 7 is a diagram showing the velocity distribution in the vertical direction of the fluid (critical fluid, fluid to be treated and fluid to be treated) in the vertical cross section of the reactor, and FIG. 8 shows the convection estimated to be generated in the reactor. FIG. 9 is a diagram showing a residence time distribution of fluid (critical fluid, fluid to be processed and processing fluid) in a vertical section of the reactor, and FIG. 10 is a temperature distribution in the vertical section of the reactor. FIG.
[0051]
As a result of the thermal flow analysis, as shown in FIG. 7, in the region where the critical fluid and the fluid to be treated merge at the upper part of the reactor (region A shown in FIG. 7), the velocity of the fluid becomes non-uniform and drift occurs. I found out. This is because the flow rate of the critical fluid is nearly 10 times larger than the flow rate of the fluid to be treated, and the energy of the critical fluid and the fluid to be treated at the time of merging is different and lacks uniformity. As shown in FIG. The density of the fluid is about 1/5 of water at a temperature of 25 ° C., but the flow rate is about 9 times larger (the flow rate of the fluid to be processed: the flow rate of the critical fluid = 20: 186). It is assumed that the density becomes non-uniform because the critical fluid flows on the upper wall of the reactor and the fluid to be processed flows in the center. As a result, it has been clarified that the critical fluid enclosing the fluid to be treated can be surely reacted from the periphery of the fluid to be treated toward the inside to increase the reaction efficiency.
Further, in the upper region of the lower part of the reactor (region B shown in FIG. 7) (near the connection between the upper part of the reactor and the lower part of the reactor), a jet with a strong downward flow (velocity of about 0.3 m / s) It was found that an unstable turbulent flow was generated below. Further, the flow is disturbed in the lower region (region C shown in FIG. 7) at the lower part of the reactor, and an upward flow (velocity of about 0.03 m / s) is generated along the inner wall surface of the lower part of the reactor. I understood it. As a result of these heat flow analyses, it was found that a large convection flow that rises on the inner wall surface of the lower part of the reactor as shown in FIG.
For this reason, as shown in FIG. 9, it was found that a region having a large residence time was generated in the vicinity of the wall surface in the region on the upper side of the lower portion of the reactor (region D shown in FIG. 9). As a result, it has been clarified that the contact time between the critical fluid and the fluid to be treated can be extended, the reaction treatment can be performed completely, and the reaction rate can be improved.
[0052]
Further, as a result of the heat flow analysis, as shown in FIG. 10, the temperature near the inner wall surface of the reactor (portion E shown in FIG. 10) is higher than the temperature near the center of the reactor (portion F shown in FIG. 10). I found that it was lower. As a result, the vicinity of the center of the reactor is in a supercritical state or subcritical state at high temperature and high pressure, and the fluid to be treated is subjected to reaction treatment to generate inorganic acid and precipitate inorganic salt. Is not supercritical or subcritical and the salt is highly soluble and the inorganic salt does not precipitate, so that the inorganic salt does not adhere to the inner wall and the inner wall of the reactor can be prevented from being clogged or corroded. It became clear that it could be improved.
[0053]
(Example 3)
Using the reaction apparatus described in Embodiment 1, the critical fluid produced using water as a reaction fluid and the fluid to be treated used in Example 1 were merged in the reactor. The temperature of the critical fluid was 374 ° C., the pressure was 25 MPa, the temperature of the fluid to be treated was 25 ° C., and the pressure was 25 MPa. The relationship between the reactor outlet temperature and the oxidation-reduction potential of the treatment fluid when the reactor outlet temperature was changed to 367 to 393 ° C. by changing the heating temperature of the second heating apparatus was examined.
FIG. 11 is a graph showing the relationship between the reactor outlet temperature and the oxidation-reduction potential of the processing fluid.
As is clear from FIG. 11, since a very strong correlation is observed between the reactor outlet temperature and the oxidation-reduction potential, processing can be performed instantaneously and simply using a detection device such as a general-purpose oxidation-reduction potentiometer. It was revealed that the characteristics of the fluid can be measured, and the state in the reactor can be easily detected almost in real time.
[0054]
【The invention's effect】
As described above, according to the reaction apparatus of the present invention and the critical processing method using the same, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the critical fluid in the supercritical state or the subcritical state can be continuously generated by the first pressurizing device and the first heating device disposed in the critical fluid supply path outside the reactor. In addition, it is possible to provide a reaction apparatus that has a simple apparatus configuration, can reduce the equipment load, and is excellent in energy efficiency.
(2) The fluid to be treated can be processed by joining the fluid to be treated in the junction at the top of the reactor with the fluid to be treated in advance, and the critical fluid can be reliably treated in the reactor. Therefore, it is possible to provide a reaction apparatus that is excellent in stability, excellent in reaction controllability, can further increase the reaction efficiency, and can easily perform desulfurization treatment of fossil fuel such as light oil.
(3) Since the fluid to be treated is exposed to a high-temperature and high-pressure environment only after joining the critical fluid and becomes a corrosive atmosphere, it is not necessary to consider the corrosion in the fluid supply path outside the reactor and maintainability It is possible to provide a reactor excellent in durability and durability.
[0055]
According to invention of Claim 2, in addition to the effect of Claim 1,
(1) Since the second heating device is disposed in the reactor, the temperature inside the reactor can be maintained at the temperature of the supercritical region or the subcritical region, and the fluid to be treated that has joined the critical fluid can be maintained in the supercritical region. In addition, it is possible to provide a reaction apparatus that can stay in the subcritical region for a long time and complete the reaction treatment to increase the reaction rate.
(2) Because the temperature inside the reactor can be maintained at the temperature in the supercritical region or the subcritical region, and a temperature difference is unlikely to occur in the reactor, It is possible to provide a reaction apparatus that can be reacted stably in a state and excellent in stability.
(3) By setting the second heating device to a predetermined temperature, a reaction device capable of preventing inorganic salts and the like from precipitating on the inner wall of the reactor and preventing the reactor from being clogged, etc. Can be provided. Moreover, the reaction state in a reactor can be controlled, and the reaction apparatus excellent in reaction controllability can be provided.
[0056]
According to invention of Claim 3, in addition to the effect of Claim 1 or 2,
(1) Since the reactor having the upper part of the reactor is formed in a vertically long cylindrical shape, a reaction process is performed while the fluid to be treated that merges with the critical fluid in the upper part of the reactor falls in the reactor, and precipitation occurs. Thus, it is possible to provide a reactor having excellent stability in which the inorganic salt and the like hardly block the inside of the reactor.
(2) In the downward flow of the critical fluid and the fluid to be treated, the highly corrosive fluid to be treated flows near the center of the vertically long cylindrical reactor, and the critical fluid can flow along the wall surface. It is possible to provide a reactor having excellent durability in which the fluid hardly touches the wall surface of the reactor and the wall surface of the reactor hardly corrodes.
[0057]
According to the invention of claim 4, in addition to the effect of any one of claims 1 to 3,
(1) Since the critical fluid supply port and the target fluid supply port are disposed opposite to the inner wall of the reactor, the critical fluid and the target fluid are reliably collided and mixed near the center of the reactor. . As a result, the highly corroded fluid to be treated flows near the center of the reactor and the critical fluid flows along the wall surface, so that the fluid to be treated is difficult to contact the reactor wall surface and the reactor wall surface It is possible to provide a reaction apparatus that is hard to be corroded and can improve durability.
(2) Further, the present invention provides a reaction apparatus capable of enclosing the periphery of the fluid to be processed with a critical fluid and allowing the reaction fluid to proceed from the periphery of the fluid to be processed toward the inside by the critical fluid, thereby increasing the reaction efficiency. be able to.
(3) Since the inner wall surface of the reactor does not cause precipitation or adhesion of inorganic salts and is difficult to be corroded, the reactor material is made of titanium or ceramic without using an expensive and excellent corrosion resistance material. A relatively inexpensive material such as carbon steel, alloy steel such as stainless steel, etc. can be used, and a reaction apparatus that can keep the equipment load low can be provided.
[0058]
According to invention of Claim 5, in addition to the effect of any one of Claims 1 to 4,
(1) Since the cross-sectional area of the junction is narrower than the cross-section of the lower part of the reactor, a jet with a strong downward flow when the critical fluid and the fluid to be treated in the junction enter the lower part of the reactor And flows through the center of the reactor. It is attracted by this strong downward flow, and a weak downward flow is also formed around it. As a result, a weak upward flow along the wall surface is formed, and as a result, a large convection flow that rises on the wall surface of the reactor is generated. As a result, a region where the residence time is large is generated near the wall surface above the lower part of the reactor, the contact time between the critical fluid after the merging and the fluid to be treated can be lengthened, and the reaction treatment can be performed completely and the reaction can be performed. A reactor capable of increasing the rate can be provided.
[0059]
According to invention of Claim 6, in addition to the effect of any one of Claims 1 to 5,
(1) Since a detection device that detects the conductivity of the processing fluid is provided, the properties of the processing fluid can be measured instantaneously and simply using a general-purpose detection device such as a conductivity meter, It is possible to provide a reaction apparatus that can easily detect the state in the reactor in almost real time.
(2) Since the state of the reactor can be detected by measuring the characteristics of the processing fluid, an expensive thermometer or pressure gauge for detecting the temperature and pressure in the reactor is not required. It is possible to provide a reaction apparatus capable of detecting with high accuracy.
(3) It is possible to provide a highly versatile reaction apparatus that can accurately detect the state in the reactor regardless of the type of reaction fluid.
[0060]
According to the invention described in claim 7, in addition to the effect of any one of claims 1 to 6,
(1) Since the second pressurizing device is equipped with a reciprocating pump, it is not affected by the viscosity of the fluid to be treated, such as a centrifugal pump or a rotary pump, and the flow rate of the fluid to be treated is low or the viscosity is high. Even in such a case, it is possible to provide a highly reliable reaction apparatus that can stably supply a fluid to be processed at a high pressure.
(2) Since the second pressurizing device includes a reciprocating pump having a plurality of reciprocating pumps and / or a plurality of cylinders, pulsation of the discharge amount from the second pressurizing device can be prevented and continuous processing is possible. A simple reactor can be provided.
[0061]
According to the invention described in claim 8, in addition to the effect of any one of claims 1 to 7,
(1) Since the oil dripping device for dripping the lubricating oil on the sliding surface of the cam portion of the reciprocating pump is provided, it is possible to provide a reaction device that can remarkably improve the durability of a general-purpose reciprocating pump.
[0062]
According to the invention of claim 9,
(1) A critical fluid in a supercritical state or a subcritical state is generated outside the reactor, and the pressurized fluid to be treated is merged in the reactor for reaction treatment. It is possible to provide a critical processing method which can be reacted and is excellent in workability and energy efficient.
(2) Since the generated critical fluid is combined with the fluid to be processed in the reactor to react the fluid to be processed, the critical processing is excellent in reliability, excellent in reaction controllability, and can further increase the reaction efficiency. A method can be provided.
[0063]
According to the invention of claim 10, in addition to the effect of claim 9,
(1) Since a temperature maintaining process is provided, the temperature inside the reactor can be maintained at the temperature of the supercritical region or the subcritical region, and the treated fluid that has joined the critical fluid can be kept in the supercritical region or the subcritical region for a long time. It is possible to provide a critical processing method in which the reaction treatment can be performed completely by staying and the reaction rate can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a main part of a reaction apparatus in a first embodiment.
FIG. 2 is a perspective view of a main part of a pressurizing pump of the reaction apparatus in the first embodiment.
FIG. 3 is a graph showing the relationship between reactor outlet temperature and decomposition rate
FIG. 4 is a graph showing the relationship between reactor outlet temperature and conductivity
FIG. 5 is a schematic diagram of the main part showing the size of the analyzed reactor, etc.
FIG. 6 is a graph showing the relationship between the temperature and density of water at a pressure of 25 MPa.
FIG. 7 is a diagram showing the velocity distribution in the vertical direction of fluid (critical fluid, fluid to be treated and fluid to be treated) in the vertical cross section of the reactor.
FIG. 8 is a schematic diagram showing convection presumed to occur in the reactor.
FIG. 9 is a view showing a residence time distribution of fluids (critical fluid, fluid to be treated and fluid to be treated) in a vertical cross section of the reactor.
FIG. 10 is a diagram showing the temperature distribution in the vertical cross section of the reactor.
FIG. 11 is a graph showing the relationship between the reactor outlet temperature and the oxidation-reduction potential of the processing fluid.
[Explanation of symbols]
1 reactor
2 reaction fluid
3 Reaction fluid tank
4 Critical fluid supply path
5 First pressurizer
6 First heating device
7 Critical fluid supply port
8 Fluid to be treated
9 Fluid tank to be treated
10 Stirring blade
11 Fluid supply path to be processed
11a Processed fluid introduction path
12 Second pressurizing device
12a Processed fluid supply pump
13, 13a Processed fluid branch
14, 14a cylinder
14b, 14c cylinder
15, 15a Sliding part
15 ', 15a' Fluid chamber to be processed
15 ", 15a" reaction fluid chamber
15b, 15c extension
15d, 15e Gas vent
15f, 15g venting valve
16 Reaction fluid path
17 Pressurizing pump
18, 18a Reaction fluid branch
18b, 18c On-off valve
18d, 18e Reaction fluid discharge passage
18f, 18g on-off valve
18h Reaction fluid reflux path
19, 19a Fluid discharge path to be processed
20 Fluid flow path
21 Processed fluid heating device
22 Processed fluid supply port
23 reactor
24 Upper part of reactor
24a Junction
25 Lower reactor
25a reactor bottom
26 Reactor outlet
27 Second heating device
28 Processing fluid discharge passage
28a Temperature detector
29 Primary cooling device
30 Solid-liquid separator
31 Secondary cooling device
32 Gas-liquid separator
33 Liquid outlet
33a Pressure reducing device
33b Detector
34 Processing fluid tank
35 Gas exhaust passage
35a Pressure reducing device
36 Cooling device
36a, 36b Refrigerant circuit
40 shaft
41 cam
41a Sliding surface
42 Roll
43 Rod end
44 Rod
45 Spring
46 Dripping section

Claims (10)

(a)反応流体を加圧する第1加圧装置と、前記反応流体を加熱する第1加熱装置と、下流部に形成され前記第1加圧装置と前記第1加熱装置によって前記反応流体が超臨界状態又は亜臨界状態にされた臨界流体を供給する臨界流体供給口と、を有する臨界流体供給路と、(b)ジチオン酸イオンを含有する被処理流体を加圧する第2加圧装置と、下流部に形成された被処理流体供給口と、を有する被処理流体供給路と、(c)前記臨界流体供給口と前記被処理流体供給口とが配設された合流部を反応器上部に有する反応器と、を備えていることを特徴とする反応装置。(A) a first pressurizing device that pressurizes the reaction fluid; a first heating device that heats the reaction fluid; and the first pressurization device and the first heating device that are formed in a downstream portion and the reaction fluid exceeds A critical fluid supply port for supplying a critical fluid in a critical state or a subcritical state; and (b) a second pressurizing device for pressurizing a fluid to be treated containing dithionate ions ; A treated fluid supply passage having a treated fluid supply port formed in a downstream portion; and (c) a junction where the critical fluid supply port and the treated fluid supply port are disposed at an upper portion of the reactor. And a reactor having a reactor. 前記反応器を加熱する第2加熱装置が配設されていることを特徴とする請求項1に記載の反応装置。The reaction apparatus according to claim 1, wherein a second heating apparatus for heating the reactor is provided. 前記反応器が、縦長の筒状に形成されていることを特徴とする請求項1又は2に記載の反応装置。The reactor according to claim 1 or 2, wherein the reactor is formed in a vertically long cylindrical shape. 前記合流部に配設された前記臨界流体供給口と前記被処理流体供給口とが、前記反応器上部の内壁に対向して配設されていることを特徴とする請求項1乃至3の内いずれか1に記載の反応装置。The inside of the said Claim 1 thru | or 3 with which the said critical fluid supply port arrange | positioned in the said confluence | merging part and the said to-be-processed fluid supply port are arrange | positioned facing the inner wall of the said reactor upper part. The reaction apparatus of any one. 前記合流部の横断面積が、前記合流部の下方の反応器下部の横断面積より狭く形成されていることを特徴とする請求項1乃至4の内いずれか1に記載の反応装置。5. The reaction apparatus according to claim 1, wherein a cross-sectional area of the merging portion is formed to be narrower than a cross-sectional area of a lower portion of the reactor below the merging portion. 前記反応器内で前記臨界流体によって前記被処理流体が反応処理されて生成される処理流体のpH、酸化還元電位、導電率のいずれか1以上を検出する検出装置を備えていることを特徴とする請求項1乃至5の内いずれか1に記載の反応装置。And a detection device that detects any one or more of pH, oxidation-reduction potential, and conductivity of a processing fluid generated by reacting the fluid to be processed with the critical fluid in the reactor. The reaction apparatus according to any one of claims 1 to 5. 前記第2加圧装置が、複数の往復ポンプ及び/又は複数のシリンダを有する往復ポンプを備えていることを特徴とする請求項1乃至6の内いずれか1に記載の反応装置。The reaction apparatus according to any one of claims 1 to 6, wherein the second pressurizing device includes a reciprocating pump having a plurality of reciprocating pumps and / or a plurality of cylinders. 前記第1加圧装置及び/又は前記第2加圧装置が、往復ポンプのカム部の摺動面に潤滑油を滴下する油滴下装置を備えていることを特徴とする請求項1乃至7の内いずれか1に記載の反応装置。The said 1st pressurization apparatus and / or the said 2nd pressurization apparatus are provided with the oil dripping apparatus which dripped lubricating oil to the sliding surface of the cam part of a reciprocating pump. The reactor of any one of them. 反応流体を加圧するとともに加熱して前記反応流体を超臨界状態又は亜臨界状態の臨界流体にする臨界流体生成工程と、ジチオン酸イオンを含有する被処理流体を少なくとも加圧する被処理流体加圧工程と、前記工程で得られた臨界流体と被処理流体とを反応器内の反応器上部の合流部で合流させ前記臨界流体で前記被処理流体を反応処理して処理流体を生成する流体合流工程と、を備えていることを特徴とする臨界処理方法。A critical fluid generating step of pressurizing and heating the reaction fluid to make the reaction fluid a critical fluid in a supercritical state or a subcritical state, and a fluid to be treated pressurizing step to at least pressurize a fluid to be treated containing dithionate ions And a fluid merging step in which the critical fluid obtained in the step and the fluid to be processed are merged at a merging portion at an upper portion of the reactor in the reactor, and the fluid to be treated is reacted with the critical fluid to generate a processing fluid. And a critical processing method. 前記流体合流工程で生成された前記処理流体を前記反応器内で保温する保温工程を備えていることを特徴とする請求項9に記載の臨界処理方法。The critical processing method according to claim 9, further comprising a heat retaining step of retaining a temperature of the processing fluid generated in the fluid merging step in the reactor.
JP2003025313A 2003-01-31 2003-01-31 Reactor and critical processing method using the same Expired - Lifetime JP4377593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025313A JP4377593B2 (en) 2003-01-31 2003-01-31 Reactor and critical processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025313A JP4377593B2 (en) 2003-01-31 2003-01-31 Reactor and critical processing method using the same

Publications (2)

Publication Number Publication Date
JP2004230350A JP2004230350A (en) 2004-08-19
JP4377593B2 true JP4377593B2 (en) 2009-12-02

Family

ID=32953629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025313A Expired - Lifetime JP4377593B2 (en) 2003-01-31 2003-01-31 Reactor and critical processing method using the same

Country Status (1)

Country Link
JP (1) JP4377593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207135A (en) * 2007-02-27 2008-09-11 National Univ Corp Shizuoka Univ Hydrothermal oxidation decomposition apparatus
JP5555404B2 (en) * 2007-10-18 2014-07-23 千代田化工建設株式会社 Reactor

Also Published As

Publication number Publication date
JP2004230350A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
CA3018529C (en) Containerized system and method for spray evaporation of water
JP2004151086A (en) Improved system and method of cleaning in-process sensor
EP2272804A2 (en) Biofilm reactor containing spiral structure and water treatment device using the same
CN103157405B (en) Liquid waste treatment apparatus
Jin et al. Bubble behavior of a large‐scale bubble column with elevated pressure
CN103130356A (en) Waste liquid treatment apparatus and waste liquid treatment method
Wang et al. Mixing efficiency of a rotor-stator spinning disc extractor
JP4377593B2 (en) Reactor and critical processing method using the same
JP2013255905A (en) Fluid purification device
Beltran et al. Henry and mass transfer coefficients in the ozonation of wastewaters
CN108348882B (en) System for contacting gas and liquid
US11529606B2 (en) Device comprising a reactor facility and method for the electrolytic treatment, with relation to flow dynamics, of fluid or gaseous media or mixtures of the two in the reactor facility, and use of the device and the method
EP3903915A1 (en) Ultrafine bubble maker and ultrafine bubble water preparing device
Gong et al. Supercritical water oxidation of acrylic acid production wastewater in transpiring wall reactor
JPWO2007023889A1 (en) Flow analysis system
JP3459749B2 (en) Supercritical water reactor
CN108686593B (en) Multi-scale microstructure reactor
CN215196939U (en) Chemical industry reation kettle convenient to detect and product quality control
RU2564333C1 (en) Device and method for production of diluted water solution of peroxomonosulphuric acid
EP2981300B1 (en) Static mixer for germ reduction of a fluid
RU2690070C1 (en) Device for batching alkaline reagent of sodium analyser
Reddy et al. Mass transfer enhancement in a three-phase fluidized bed electrochemical reactor.
Gao et al. Gas–liquid mass transfer in a hot-sparged triple-impeller stirred tank
JP4418927B2 (en) Dispersion emulsification method
CN207608438U (en) A kind of sewage disposal system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3