JP4376071B2 - Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device - Google Patents

Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device Download PDF

Info

Publication number
JP4376071B2
JP4376071B2 JP2004009425A JP2004009425A JP4376071B2 JP 4376071 B2 JP4376071 B2 JP 4376071B2 JP 2004009425 A JP2004009425 A JP 2004009425A JP 2004009425 A JP2004009425 A JP 2004009425A JP 4376071 B2 JP4376071 B2 JP 4376071B2
Authority
JP
Japan
Prior art keywords
power
power line
antenna
predetermined distance
signal generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004009425A
Other languages
Japanese (ja)
Other versions
JP2005204152A (en
Inventor
孝一 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004009425A priority Critical patent/JP4376071B2/en
Publication of JP2005204152A publication Critical patent/JP2005204152A/en
Application granted granted Critical
Publication of JP4376071B2 publication Critical patent/JP4376071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、輻射電波測定方法、輻射電波測定装置および電力線搬送通信装置に関し、より特定的には、電力線搬送通信時に電力線から輻射される不要電波を測定する輻射電波測定方法、輻射電波測定装置および輻射電波測定機能を備えた電力線搬送通信装置に関する。   The present invention relates to a radiated radio wave measuring method, a radiated radio wave measuring device, and a power line carrier communication device, and more specifically, a radiated radio wave measuring method, a radiated radio wave measuring device, and a radio wave measuring device that measure unnecessary radio waves radiated from a power line during power line carrier communication. The present invention relates to a power line carrier communication device having a radiation wave measurement function.

近年、家庭のコンセントなどの電力線を使って通信を行なう電力線搬送通信(Power Line Communication:PLC)の実用化の検討が盛んに行なわれている。   In recent years, practical studies of power line communication (PLC) for performing communication using a power line such as a household outlet have been actively conducted.

電力線搬送通信は、各家庭に既設の電力線をネットワーク伝送路として利用することから、すぐに家庭内通信網が構築でき、無線LAN等に対して設備投資が小さいことが特長である。   The power line carrier communication is characterized in that since an existing power line is used as a network transmission path in each home, a home communication network can be constructed immediately, and the capital investment for a wireless LAN or the like is small.

一方、電力線搬送通信は、平衡度の悪い電力線を通信媒体として信号を送受信するため、電力線からの漏洩電力が大きいという不具合を有する。このため、これまでは、使用できる周波数帯は、電波法の規制を受けて10kHz〜450kHzの低周波帯域に制限されていた。したがって、伝送速度が9.6kbps程度と低速であるため、実際の通信にはあまり利用されていなかった。   On the other hand, power line carrier communication has a problem that leakage power from the power line is large because signals are transmitted and received using a power line with poor balance as a communication medium. For this reason, until now, the usable frequency band has been limited to a low frequency band of 10 kHz to 450 kHz under the regulations of the Radio Law. Therefore, since the transmission speed is as low as about 9.6 kbps, it has not been used much for actual communication.

しかしながら、2〜30MHzの短波帯での使用が認められれば、伝送速度は数10Mbpsにもなり、ブロードバンドとして活用することができる。このため、最近では、国内外において、電力会社や家電メーカーなどから規制緩和による短波帯の利用を望む声が強まっている(例えば、非特許文献1参照)。   However, if the use in the short wave band of 2 to 30 MHz is approved, the transmission speed is as high as several tens of Mbps, and can be utilized as a broadband. For this reason, recently, there are increasing demands from electric power companies, home appliance manufacturers, and the like for the use of shortwave bands due to deregulation in Japan and overseas (for example, see Non-Patent Document 1).

一方、短波帯は、海上無線、警察無線、陸上無線およびアマチュア無線等の無線通信や、気象観測、医療器具などの使用周波数に該当することから、これらの既存の無線通信に対する電力線搬送通信からの干渉が懸念されている。したがって、電力線搬送通信を短波帯へ導入するにあたっては、これらの無線通信への影響度を正確に把握して、その低減を図ることが必要不可欠となる。   On the other hand, the short-wave band corresponds to the frequency used for maritime radio, police radio, land radio, amateur radio, etc., weather observation, medical equipment, etc. Interference is a concern. Therefore, when introducing power line carrier communication into the shortwave band, it is essential to accurately grasp the degree of influence on these wireless communications and to reduce them.

図6は、従来の電力線搬送通信装置を説明するための概要構成図である。   FIG. 6 is a schematic configuration diagram for explaining a conventional power line carrier communication apparatus.

図6を参照して、電柱2には、図示しない高圧配電線と低圧配電線1とが敷設される。高圧配電線は、装柱される図示しない電力変圧器の1次(高圧)側に接続され、低圧配電線1は、電力変圧器の2次(低圧)側に接続される。低圧配電線1は、電柱2において、さらに引込線3に接続される。引込線3は、電力需要家5まで引込まれ、電力量計6において屋内に敷設される電灯・動力線7と接続される。低圧配電線1と、引込線3と、電灯・動力線7とは、電力線搬送通信装置の通信媒体を構成する。   Referring to FIG. 6, a high-voltage distribution line and a low-voltage distribution line 1 (not shown) are laid on the utility pole 2. The high-voltage distribution line is connected to the primary (high-voltage) side of a power transformer (not shown) that is mounted, and the low-voltage distribution line 1 is connected to the secondary (low-voltage) side of the power transformer. The low voltage distribution line 1 is further connected to the lead-in wire 3 in the utility pole 2. The lead-in wire 3 is drawn into the electric power consumer 5 and is connected to the electric light / power line 7 laid indoors in the watt-hour meter 6. The low-voltage distribution line 1, the lead-in line 3, and the electric light / power line 7 constitute a communication medium of the power line carrier communication device.

電力線通信モデム4は、通常、電力変圧器(図示せず)とともに電柱2に装柱され、インターネットに接続される電話回線や光ファイバなどの通信線に接続されるとともに、低圧配電線1に接続される。   The power line communication modem 4 is usually mounted on a power pole 2 together with a power transformer (not shown), connected to a communication line such as a telephone line or an optical fiber connected to the Internet, and connected to the low voltage distribution line 1. Is done.

電力線通信モデム9は、コンセント8を介して電灯・動力線7に接続されるとともに、電力需要家5内で使用されるパーソナルコンピュータなどの端末装置10に接続される。   The power line communication modem 9 is connected to the light / power line 7 through the outlet 8 and is connected to a terminal device 10 such as a personal computer used in the power consumer 5.

以上の構成からなる電力線搬送通信装置において、通信は、通信媒体に高周波信号を重畳させて行なわれる。電力需要家5は、電力線通信モデム9を既設のコンセント8に接続することによって、インターネットに容易にアクセスすることができる。   In the power line carrier communication apparatus having the above configuration, communication is performed by superimposing a high-frequency signal on a communication medium. The power consumer 5 can easily access the Internet by connecting the power line communication modem 9 to the existing outlet 8.

図6に示すように、電力線搬送信号は、空気中に配線された引込線3を伝搬して電力需要家5の屋内に引込まれる。前述のように、電力線搬送信号の周波数帯が2MHz以上の短波帯に及ぶと、引込線3がアンテナの役割を果たして強い電波を漏洩する。この輻射される不要な電波(以下、不要輻射電波とも称する)が、空気中を伝搬する既存の無線通信に電波障害などの影響を及ぼすことになる。   As shown in FIG. 6, the power line carrier signal propagates through the lead-in wire 3 wired in the air and is drawn into the power consumer 5 indoors. As described above, when the frequency band of the power line carrier signal reaches a short wave band of 2 MHz or more, the lead-in wire 3 serves as an antenna and leaks strong radio waves. This radiated unnecessary radio wave (hereinafter also referred to as “unnecessary radiated radio wave”) affects existing wireless communication propagating in the air, such as radio wave interference.

ここで、電力線搬送通信の通信媒体となる電力線(引込線3および電灯・動力線7)には、多種多様な電気機器が接続されるため、通信性能を左右する電力線のインピーダンス、電力線上の雑音、伝送中の信号減衰量などは、各家庭の電灯・動力線の配線状態により個々に違い、電力線に接続されている電気機器によっても変化する。さらに、電力線のアンテナ効果にもばらつきが生じることから、電力線から発生する不要輻射電波の電波強度についても、電力線ごとに大きく異なってくる。   Here, since a wide variety of electric devices are connected to the power line (the lead-in line 3 and the light / power line 7) serving as a communication medium for power line carrier communication, the impedance of the power line that affects communication performance, the noise on the power line, The amount of signal attenuation during transmission varies depending on the wiring state of the lamps and power lines in each home, and also varies depending on the electrical equipment connected to the power lines. Further, since the antenna effect of the power line also varies, the radio wave intensity of unnecessary radiated radio waves generated from the power line also varies greatly from one power line to another.

したがって、不要輻射電波の測定は、通常の無線アンテナおよび無線機器のように試験サイトを用いた電界強度測定では不十分であり、実設備に配される電力線通信モデムを用いて試験信号を送信して実際に不要輻射電波を発生させ、電力線から所定の距離に設置した電界強度計により測定する必要がある。   Therefore, measurement of unwanted radiated radio waves is not sufficient with field strength measurement using a test site like ordinary radio antennas and radio equipment, and a test signal is transmitted using a power line communication modem placed in the actual facility. Therefore, it is necessary to actually generate unnecessary radiated radio waves and measure them with a field strength meter installed at a predetermined distance from the power line.

不要輻射電波の測定には、図6に示すように、引込線3から所定の距離を隔てて電界強度計12を設置し、試験信号送信時に測定用アンテナ11で受信した信号の電界強度を検出することにより求めることができる。屋内においても同様に、電灯・動力線7から所定の距離を隔てて電界強度計14を設置し、試験信号送信時に測定用アンテナ13で受信した信号の電界強度を検出すれば、その検出結果から屋内で発生する不調輻射電波の電界強度を知ることができる。
「電波法施行規則の一部改正案等に対する意見募集−高速電力線搬送通信設備に関する実験制度の導入について−」、総務省報道資料、平成15年8月29日。
As shown in FIG. 6, for measuring unnecessary radiated radio waves, a field strength meter 12 is installed at a predetermined distance from the lead-in wire 3 to detect the field strength of the signal received by the measurement antenna 11 when transmitting the test signal. Can be obtained. Similarly, if the electric field strength meter 14 is installed at a predetermined distance from the lamp / power line 7 and the electric field strength of the signal received by the measurement antenna 13 is detected when the test signal is transmitted, It is possible to know the electric field strength of irregularly radiated radio waves generated indoors.
“Recruitment of opinions on partial amendments to the Radio Law Enforcement Regulations, etc. -Introduction of an experimental system for high-speed power line carrier communication facilities-”, Ministry of Internal Affairs and Communications, August 29, 2003.

しかしながら、図6にて述べた不要輻射電波の測定方法は、電波法によって著しい制約を受け、実施不可能であるに等しい。これは、電力線に電力線通信モデムを接続して高周波の試験電波を送信することが、現行の電波法において認められていないことによる。というのは、前述のように、試験電波の送信によって他の無線通信に電波妨害などの悪影響を与えることが懸念されるからである。   However, the measurement method of the unnecessary radiated radio wave described in FIG. 6 is substantially restricted by the radio wave method and is not feasible. This is because the current radio law does not permit the transmission of high-frequency test radio waves by connecting a power line communication modem to the power line. This is because, as described above, there is a concern that the transmission of test radio waves may adversely affect other wireless communications such as radio wave interference.

したがって、現状では、不要輻射電波を測定するための有効な手段さえも存在せず、このことは、電力線搬送通信の実用化を減速させる一要因となっている。   Therefore, at present, there is not even an effective means for measuring unwanted radiated radio waves, which is one factor that slows down the practical use of power line carrier communication.

それゆえ、この発明の目的は、他の無線機器に障害を与えることなく、電力線から輻射される電波を測定する輻射電波測定方法および輻射電波測定装置と、輻射電波測定機能を備えた電力線搬送通信装置とを提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a radiated radio wave measuring method and a radiated radio wave measuring device for measuring radio waves radiated from a power line without causing interference with other wireless devices, and a power line carrier communication having a radiated radio wave measuring function. Providing a device.

この発明のある局面によれば、電力線通信モデムから電力線に電力線搬送信号を重畳させて通信する電力線搬送通信において、電力線から輻射される電波を測定する輻射電波測定方法であって、電力線から所定の距離を隔てて配置された信号発生器から、電力線搬送信号と同じ周波数の試験信号を発生するステップと、信号発生器に結合された既知の利得のアンテナから、試験信号に既知の利得を乗じた所定の電力レベルの送信電力を出力するステップと、電力線通信モデムの設置場所に配設された受信機によって、送信電力を受信したときの受信電力を測定するステップと、送信電力と受信電力との比である無線利得を算出するステップと、算出された無線利得と電力線通信モデムから出力される送信電力の予定値とを乗じて、送信電力の予定値に対するアンテナでの受信電力の予測値を算出するステップと、受信電力の予測値に基づいて、電力線から所定の距離を隔てた位置における電界強度を算出するステップとを備える。   According to an aspect of the present invention, in a power line carrier communication in which a power line carrier signal is superimposed on a power line from a power line communication modem, a radiation radio wave measuring method for measuring a radio wave radiated from the power line is provided. A test signal having the same frequency as the power line carrier signal is generated from a signal generator arranged at a distance, and a test signal is multiplied by a known gain from an antenna of known gain coupled to the signal generator. A step of outputting a transmission power of a predetermined power level, a step of measuring the reception power when the transmission power is received by a receiver disposed at a place where the power line communication modem is installed, and the transmission power and the reception power. Multiplying the calculated wireless gain by the estimated value of the transmission power output from the power line communication modem, and calculating the wireless gain as a ratio. Comprising a step of calculating a predicted value of the received power at the antenna for value, based on the predicted value of the reception power, and calculating the field strength at the position at a predetermined distance from the power line.

好ましくは、所定の距離および所定の電力レベルを、電波法の規定する試験条件に準拠して設定するステップをさらに備える。   Preferably, the method further includes the step of setting the predetermined distance and the predetermined power level in accordance with test conditions defined by the Radio Law.

好ましくは、信号発生器およびアンテナを電力線から所定の距離を隔てた複数の位置に順次配置するステップをさらに備える。   Preferably, the method further includes the step of sequentially arranging the signal generator and the antenna at a plurality of positions at a predetermined distance from the power line.

この発明の別の局面によれば、電力線通信モデムから電力線に電力線搬送信号を重畳させて通信する電力線搬送通信において、電力線から輻射される電波を測定する輻射電波測定装置であって、電力線から所定の距離を隔てて配置され、電力線搬送信号と同じ周波数の試験信号を発生する信号発生器と、信号発生器に結合され、試験信号に既知の利得を乗じて放射するアンテナと、電力線通信モデムの設置場所に配設された受信機とを備える。信号発生器は、発生した試験信号をアンテナを介して所定の電力レベルの送信電力として送信する。受信機は、送信電力を受信したときの受信電力を測定する。輻射電波測定装置は、送信電力と受信電力との比である無線利得を算出する手段と、算出された無線利得と電力線通信モデムから出力される送信電力の予定値とを乗じて、送信電力の予定値に対するアンテナでの受信電力の予測値を算出する手段と、受信電力の予測値に基づいて、電力線から所定の距離を隔てた位置における電界強度を算出する手段とをさらに備える。   According to another aspect of the present invention, in a power line carrier communication in which a power line carrier signal is superimposed on a power line from a power line communication modem, a radiated radio wave measuring device that measures a radio wave radiated from the power line, the power line communication signal is predetermined from the power line. A signal generator for generating a test signal of the same frequency as the power line carrier signal, an antenna coupled to the signal generator for radiating the test signal with a known gain, and a power line communication modem And a receiver disposed at the installation location. The signal generator transmits the generated test signal as transmission power of a predetermined power level via the antenna. The receiver measures the reception power when the transmission power is received. The radiated radio wave measuring apparatus multiplies the means for calculating the radio gain, which is the ratio between the transmission power and the reception power, and the calculated radio gain multiplied by the planned value of the transmission power output from the power line communication modem. Means for calculating a predicted value of the received power at the antenna with respect to the scheduled value, and means for calculating the electric field strength at a position separated from the power line by a predetermined distance based on the predicted value of the received power.

好ましくは、輻射電波測定装置は、所定の距離および所定の電力レベルを、電波法の規定する試験条件に準拠して設定する手段をさらに備える。   Preferably, the radiated radio wave measuring apparatus further includes means for setting a predetermined distance and a predetermined power level in accordance with test conditions specified by the Radio Law.

好ましくは、信号発生器およびアンテナは、電力線から所定の距離を隔てた複数の位置にそれぞれ配置される。   Preferably, the signal generator and the antenna are respectively arranged at a plurality of positions separated from the power line by a predetermined distance.

この発明の別の局面によれば、電力線搬送通信装置は、電力需要家に敷設され、電力に電力線搬送信号を重畳させて伝搬する電力線と、電力線に設置され、電力線搬送信号を送受信する電力線通信モデムと、電力線から所定の距離を隔てて配置され、電力線搬送信号と同じ周波数の試験信号を発生する信号発生器と、信号発生器に結合され、試験信号に既知の利得を乗じて放射するアンテナと、電力線通信モデムの設置場所に配設された受信機とを備える。信号発生器は、発生した試験信号をアンテナを介して所定の電力レベルの送信電力として送信する。受信機は、送信電力を受信したときの受信電力を測定する。電力線搬送通信装置は、送信電力と受信電力との比である無線利得を算出する手段と、算出された無線利得と電力線通信モデムから出力される送信電力の予定値とを乗じて、送信電力の予定値に対するアンテナでの受信電力の予測値を算出する手段と、受信電力の予測値に基づいて、電力線から所定の距離を隔てた位置における電界強度を算出する手段とをさらに備える。   According to another aspect of the present invention, a power line carrier communication device is installed in a power consumer and propagates by superimposing a power line carrier signal on power, and a power line communication installed in the power line and transmitting / receiving a power line carrier signal A modem, a signal generator arranged at a predetermined distance from the power line and generating a test signal of the same frequency as the power line carrier signal, and an antenna coupled to the signal generator and radiating by multiplying the test signal by a known gain And a receiver disposed at a place where the power line communication modem is installed. The signal generator transmits the generated test signal as transmission power of a predetermined power level via the antenna. The receiver measures the reception power when the transmission power is received. The power line carrier communication device multiplies the means for calculating the radio gain, which is the ratio of the transmission power and the reception power, by the calculated radio gain and the planned value of the transmission power output from the power line communication modem, Means for calculating a predicted value of the received power at the antenna with respect to the scheduled value, and means for calculating the electric field strength at a position separated from the power line by a predetermined distance based on the predicted value of the received power.

好ましくは、所定の距離および所定の電力レベルを、電波法の規定する試験条件に準拠して設定する手段をさらに備える。   Preferably, the apparatus further includes means for setting the predetermined distance and the predetermined power level in accordance with test conditions defined by the Radio Law.

好ましくは、信号発生器およびアンテナは、電力線から所定の距離を隔てた複数の位置にそれぞれ配置される。   Preferably, the signal generator and the antenna are respectively arranged at a plurality of positions separated from the power line by a predetermined distance.

以上のように、この発明によれば、電力線搬送通信における不要な輻射電波を法規制に抵触することなく、かつ簡易に測定することができる。   As described above, according to the present invention, it is possible to easily measure unnecessary radiated radio waves in power line carrier communication without conflicting with laws and regulations.

以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.

図1は、この発明の実施の形態に従う輻射電波測定方法を説明するための電力線搬送通信装置の全体構成図である。本図において、電力線搬送通信の通信媒体を構成する部位については、図6で説明したものと同様であるため、詳細な説明は繰り返さない。   FIG. 1 is an overall configuration diagram of a power line carrier communication device for explaining a method of measuring a radiated radio wave according to an embodiment of the present invention. In this figure, since the site | part which comprises the communication medium of power line carrier communication is the same as that of what was demonstrated in FIG. 6, detailed description is not repeated.

図1を参照して、電力線搬送通信装置は、不要輻射電波の測定手段として、引込線3から所定の距離d2を隔てて配置される信号発生器22と、既知の利得Gsを有する測定用アンテナ11と、電灯・動力線7から所定の距離d2を隔てて配置される信号発生器23と、既知の利得Gsを有する測定用アンテナ13とを備える。   Referring to FIG. 1, the power line carrier communication apparatus is a measurement generator 11 having a known gain Gs and a signal generator 22 arranged at a predetermined distance d2 from the lead-in wire 3 as means for measuring unwanted radiated radio waves. And a signal generator 23 disposed at a predetermined distance d2 from the lamp / power line 7 and a measurement antenna 13 having a known gain Gs.

電力線搬送通信装置は、さらに、電柱2および電力需要家5のコンセント8にそれぞれ設置される受信機20,21を備える。   The power line carrier communication device further includes receivers 20 and 21 installed in the power pole 2 and the outlet 8 of the power consumer 5, respectively.

信号発生器22,23は、不要輻射電波の測定において、実際に電力線搬送通信が行なわれる周波数帯の信号を発生する(例えば、2〜30MHz)。測定用アンテナ11,13は、対応する信号発生器の発生した信号と既知の利得Gsとを掛け合わせて得られる送信電力Wsを出力する。   The signal generators 22 and 23 generate signals in a frequency band in which power line carrier communication is actually performed (for example, 2 to 30 MHz) in measurement of unnecessary radiated radio waves. The measurement antennas 11 and 13 output transmission power Ws obtained by multiplying a signal generated by a corresponding signal generator and a known gain Gs.

信号発生器22は、測定用アンテナ11とそれぞれ一体化され、図6において本来電界強度計12が設置されるべき場所、すなわち引込線3から所定の距離d2を隔てた位置に設置される。図1において、信号発生器22と測定用アンテナ11とは、送信側を構成する。なお、所定の距離d2は、電波法および施行規則において規定される試験条件に基づいて設定される。   The signal generator 22 is integrated with the measurement antenna 11, and is installed at a place where the electric field strength meter 12 should be originally installed in FIG. 6, that is, at a position separated by a predetermined distance d 2 from the lead-in wire 3. In FIG. 1, the signal generator 22 and the measurement antenna 11 constitute a transmission side. The predetermined distance d2 is set based on test conditions defined in the Radio Law and enforcement regulations.

信号発生器23についても同様に、測定用アンテナ13と一体化され、図6に示す電界強度計14の設置予定場所、すなわち電灯・動力線7から所定の距離d2離れた位置に設置される。   Similarly, the signal generator 23 is integrated with the measurement antenna 13 and is installed at a predetermined installation location of the electric field strength meter 14 shown in FIG. 6, that is, at a position away from the lamp / power line 7 by a predetermined distance d2.

一方、受信側を構成する受信機20は、図6において電力線通信モデム4が設置されるべき場所、すなわち低圧配電線1と引込線3との結合部分である電柱2に設置される。   On the other hand, the receiver 20 that constitutes the receiving side is installed in a place where the power line communication modem 4 is to be installed in FIG. 6, that is, in the utility pole 2 that is a coupling portion between the low-voltage distribution line 1 and the lead-in line 3.

受信機21についても同様に、図6の電力線通信モデム9の設置場所である、各電力需要家5の屋内であって、電灯・動力線7とPC10との結合部分であるコンセント8に設置される。受信機20,21は、等価回路的には、対応する電力線通信モデムの出力インピーダンス相当の終端インピーダンスと、適当な容量のカップリングコンデンサとからなる。高周波においてアンテナとして機能する引込線3および電灯・動力線7にそれぞれ接続され、アンテナから受信される電力を測定することができる。   Similarly, the receiver 21 is installed in an outlet 8 which is an installation place of the power line communication modem 9 in FIG. The In terms of an equivalent circuit, the receivers 20 and 21 include a termination impedance corresponding to the output impedance of the corresponding power line communication modem and a coupling capacitor having an appropriate capacity. The power received from the antenna can be measured by being connected to the lead-in wire 3 and the lamp / power line 7 that function as an antenna at high frequencies.

次に、図1に示す構成において実行される不要輻射電波の測定方法について説明する。本実施の形態に係る輻射電波の測定は、要約すれば、送信と受信との間に成立する無線利得の可逆性を利用して、実際に電力線搬送通信を行なったと想定したときに電力線から輻射されうる電波の電界強度を予測するものである。   Next, a method for measuring unnecessary radiated radio waves executed in the configuration shown in FIG. 1 will be described. In summary, the measurement of the radiated radio wave according to the present embodiment radiates from the power line when it is assumed that power line carrier communication is actually performed using the reversibility of the radio gain established between transmission and reception. It is intended to predict the electric field strength of radio waves that can be transmitted.

以下に、輻射電波の測定方法を、引込線3から輻射される電波を測定する場合を例として説明する。なお、本測定方法に従えば、電灯・動力線7および低圧配電線1からの輻射電波についても、それぞれ測定することができる。   Hereinafter, a method for measuring a radiated radio wave will be described by way of an example in which a radio wave radiated from the lead-in wire 3 is measured. In addition, according to this measuring method, it can each measure also about the radiated radio wave from the electric light / power line 7 and the low voltage distribution line 1.

最初に、測定準備段階として、信号発生器22が測定用アンテナ11を介して放射する送信電力Wsの調整が行なわれる。これは、以降の実設備において実行する測定方法が電波法に抵触しないことを保証するために行なわれる作業である。   First, as a measurement preparation stage, the transmission power Ws radiated from the signal generator 22 via the measurement antenna 11 is adjusted. This is an operation to be performed to ensure that the measurement method executed in the subsequent actual equipment does not violate the Radio Law.

図2は、信号発生器22および測定用アンテナ11の送信電力Wsの調整を説明するための回路図である。   FIG. 2 is a circuit diagram for explaining the adjustment of the transmission power Ws of the signal generator 22 and the measurement antenna 11.

図2を参照して、信号発生器22および測定用アンテナ11を送信側とし、送信側から所定の距離d1隔てた場所に受信側として、受信機25および受信アンテナ24が設置される。   Referring to FIG. 2, a receiver 25 and a receiving antenna 24 are installed on the signal generator 22 and the measurement antenna 11 on the transmission side, and on the reception side at a predetermined distance d1 from the transmission side.

この構成において、周辺の無線通信への影響を防止するため、信号発生器22に測定用アンテナ11を接続した状態で、距離d1における電界強度Esが、電波法に定める試験条件の許容範囲内となるように送信電力Wsを調整する。詳細には、電波法施行規則6条1項1号には、試験条件として、332MHz以下の周波数においては、送信側からの距離d1=3mにおける電界強度が500μV/m以下であることが規定される。これに従って、図2の構成では、送受信間の距離d1=3mとし、電界強度Esが500μV/m以下となるように送信電力Wsを調整する。   In this configuration, the electric field strength Es at the distance d1 is within the allowable range of the test conditions stipulated in the Radio Law in the state where the measurement antenna 11 is connected to the signal generator 22 in order to prevent the influence on the surrounding wireless communication. The transmission power Ws is adjusted so that Specifically, the Radio Law Enforcement Regulations Article 6.1.1 No. 1 stipulates that, as a test condition, the electric field strength at a distance d1 = 3 m from the transmission side is 500 μV / m or less at a frequency of 332 MHz or less. The Accordingly, in the configuration of FIG. 2, the transmission power Ws is adjusted so that the distance d1 between transmission and reception is 3 m and the electric field strength Es is 500 μV / m or less.

図2において送信電力Wsが決定されると、次に、信号発生器22および測定用アンテナ11は、引込線3から所定の距離d2を隔てた場所に配置される。この場所は、図6の電力線搬送通信システムにおいて、輻射電波を測定するために電界強度計12の設置が予定される場所に相当する。なお、所定の距離d2は、今後の規制緩和によって定められる試験条件に準拠した値が採用される。また、特定の無線設備への障害を調査する場合には、測定用アンテナ11を当該無線設備の位置に設置する必要がある。よって、この場合は、所定の距離d2は、引込線3から当該無線設備までの最短距離となる。   When the transmission power Ws is determined in FIG. 2, next, the signal generator 22 and the measurement antenna 11 are arranged at a position separated from the lead-in line 3 by a predetermined distance d2. This place corresponds to a place where the field strength meter 12 is planned to be installed in order to measure the radiated radio wave in the power line carrier communication system of FIG. The predetermined distance d2 is a value that complies with test conditions determined by future deregulation. Further, when investigating a failure in a specific wireless facility, it is necessary to install the measurement antenna 11 at the position of the wireless facility. Therefore, in this case, the predetermined distance d2 is the shortest distance from the service line 3 to the radio equipment.

信号発生器22は、図1に示すように、この設置場所において、測定用アンテナ11を介して送信電力Wsの試験電波を出力する。   As shown in FIG. 1, the signal generator 22 outputs a test radio wave having a transmission power Ws via the measurement antenna 11 at this installation location.

一方、電柱2に設置された受信機20においては、引込線3を受信アンテナとし、送信電力Wsに応答して得られる受信電力Wrを測定する。このとき、送信側である信号発生器22と受信側である受信機20とは、図3に示す回路図で表わされる。図3から明らかなように、信号発生器22の送信電力Wsは、既知の利得Gsを有する測定用アンテナ11を介して出力されると、受信アンテナとして機能する引込線3によって受信され、引込線3に繋がる受信機20において、その受信電力Wrが検出される。   On the other hand, in the receiver 20 installed on the utility pole 2, the reception power Wr obtained in response to the transmission power Ws is measured using the lead-in wire 3 as a reception antenna. At this time, the signal generator 22 on the transmission side and the receiver 20 on the reception side are represented by the circuit diagram shown in FIG. As is clear from FIG. 3, when the transmission power Ws of the signal generator 22 is output via the measurement antenna 11 having a known gain Gs, the transmission power Ws is received by the lead-in wire 3 functioning as a reception antenna and is sent to the lead-in wire 3. In the connected receiver 20, the received power Wr is detected.

なお、受信電力Wrの検出の際に、測定用アンテナ11の設置場所および角度は、受信電力Wrが最大となるように調整される。これは、送信アンテナの偏波面と受信アンテナの偏波面との不整合による受信電力の減少によって生じる測定ばらつきを最小化するのに有効である。さらに、送信アンテナから受信アンテナに直接到達する電波と、大地や建物などの障害物に当たって反射して受信アンテナに到達する電波とが干渉し合う、いわゆるフェージングによる受信電力の変化に起因する測定誤差の減少にも有効である。   When detecting the received power Wr, the installation location and angle of the measurement antenna 11 are adjusted so that the received power Wr is maximized. This is effective in minimizing measurement variations caused by a reduction in received power due to mismatch between the polarization plane of the transmission antenna and the polarization plane of the reception antenna. Furthermore, measurement errors caused by changes in received power due to so-called fading, in which radio waves that directly reach the receiving antenna from the transmitting antenna and radio waves that hit the obstacles such as the earth and buildings and interfere with the receiving antenna interfere with each other. It is also effective for reduction.

ここで、図3における送信電力Wsと受信電力Wrとの関係において、受信機20の負荷に与えられる受信最大電力Waと送信電力Wsとの比(A:自由空間利得)は、次のようになる。 Here, in the relationship between the transmission power Ws and the reception power Wr in FIG. 3, the ratio (A 0 : free space gain) between the reception maximum power Wa given to the load of the receiver 20 and the transmission power Ws is as follows: become.

Figure 0004376071
Figure 0004376071

ここで、Waは受信最大電力、Wsは送信電力、λは波長、dは送受信点間の距離を表わす。 Here, Wa represents the maximum received power, Ws represents the transmission power, λ represents the wavelength, and d represents the distance between the transmission and reception points.

なお上式は、理想的な自由空間に2つのアンテナが置かれた場合の関係であるから、実際には、大地による反射、回折、大気による屈折などによる伝搬損を考慮する必要がある。したがって、実際に取り出しうる受信電力Wrは、   Since the above equation is a relationship when two antennas are placed in an ideal free space, it is actually necessary to consider propagation loss due to reflection by the ground, diffraction, refraction by the atmosphere, and the like. Therefore, the received power Wr that can be actually extracted is

Figure 0004376071
Figure 0004376071

となる。この係数Apは通路利得係数と呼ばれている。 It becomes. This coefficient Ap is called a path gain coefficient.

以上のことから、実際の受信電力Wrと送信電力Wsとの比である無線利得Aは、自由空間利得Aと通路利得係数Apとを乗じた、A=A・Apで与えられる。なお、本実施の形態において、無線利得Aは、引込線3のアンテナ利得、放射電界の自由空間伝搬損失に加えて、周辺環境からの反射の影響や、近接界(2πd/λ<1)における誘導電磁界、準静電界の影響までを含み、引込線および測定アンテナの構成・配置により定まる固有の値となる。 From the above, the radio gain A, which is the ratio of the actual received power Wr to the transmitted power Ws, is given by A = A 0 · Ap obtained by multiplying the free space gain A 0 and the path gain coefficient Ap. In the present embodiment, the wireless gain A is not only the antenna gain of the lead-in wire 3 and the free space propagation loss of the radiated electric field, but also the influence of reflection from the surrounding environment and the induction in the near field (2πd / λ <1). Including the influence of electromagnetic field and quasi-electrostatic field, it is a unique value determined by the configuration and arrangement of the lead-in wire and measurement antenna.

ここで、あるアンテナを送信アンテナとして使用したときの特性と、受信アンテナとして使用したときの特性との間には、その利得および指向性において可逆性が成立することが知られている(例えば、電子通信学会編、「アンテナ工学ハンドブック 1980年版」、オーム社、第31頁−第34頁参照)。この可逆性は、空間に非直線性透磁率をもつ強磁性体や非対称誘電率を持つ媒質などが存在する場合を除いて成立するものである。   Here, it is known that reversibility is established in the gain and directivity between the characteristics when a certain antenna is used as a transmitting antenna and the characteristics when used as a receiving antenna (for example, Edited by the Institute of Electronics and Communication Engineers, "Antenna Engineering Handbook 1980 Edition", Ohmsha, pages 31-34). This reversibility is established except in the case where a ferromagnetic material having nonlinear permeability or a medium having an asymmetric dielectric constant exists in the space.

この可逆性を図3に示す回路図に照らせば、利得Gsの測定用アンテナ11を送信アンテナとし、引込線3を受信アンテナとしたときに得られる自由空間利得Aおよび通路利得係数Apと、図4のように、引込線3を送信アンテナとし、測定用アンテナ11を受信アンテナとしたときに得られる自由空間利得Aおよび通路利得係数Apとにおいても、それぞれ等価であると考えることができる。以上のことから、通路利得係数Apと自由空間利得Aとを乗じて得られる無線利得Aにおいても、可逆性が成り立つことは明らかである。 In view of this reversibility in the circuit diagram shown in FIG. 3, the free space gain A 0 and the path gain coefficient Ap obtained when the antenna 11 for measuring the gain Gs is the transmitting antenna and the lead-in line 3 is the receiving antenna, 4, it can be considered that the free space gain A 0 and the path gain coefficient Ap obtained when the lead-in wire 3 is a transmission antenna and the measurement antenna 11 is a reception antenna are equivalent to each other. From the above, even in the radio gain A obtained by multiplying the path gain factor Ap and the free space gain A 0, it is clear that reversible holds.

そこで、本実施の形態では、この無線利得Aの可逆性を用いて、図3の送受信の関係を入れ換えることにより、受信機20の位置に配される電力線通信モデム4からある送信電力を出力したときに、引込線3から測定用アンテナ11に放射される電力を予測する。以下に示す予測方法は、電波法上実施が許可されていない、図6に示す輻射電波の測定を計算上において実現するものである。   Therefore, in the present embodiment, by using the reversibility of the radio gain A, the transmission / reception relationship in FIG. 3 is switched to output a certain transmission power from the power line communication modem 4 arranged at the position of the receiver 20. Sometimes, the power radiated from the lead-in wire 3 to the measurement antenna 11 is predicted. The prediction method shown below realizes the measurement of the radiated radio wave shown in FIG. 6, which is not permitted in the radio law, in calculation.

図4は、輻射電波の予測方法を説明するための回路図である。   FIG. 4 is a circuit diagram for explaining a method for predicting a radiated radio wave.

図4を参照して、送信側として、図3で受信機20が設置されていた場所(電柱2に相当)に電力線通信モデム4を設置し、送信電力Wtを出力すると仮定する。   Referring to FIG. 4, it is assumed that the power line communication modem 4 is installed at the place where the receiver 20 is installed in FIG. 3 (corresponding to the utility pole 2) and the transmission power Wt is output on the transmission side.

一方、受信側として、図3で信号発生器22が設置されていた場所(引込線3から距離d2隔てた場所に相当)に電界強度計12を設置し、利得Gsの測定用アンテナ11を介して電波を受信すると仮定する。   On the other hand, on the receiving side, a field strength meter 12 is installed at a place where the signal generator 22 is installed in FIG. 3 (corresponding to a place separated from the lead-in wire 3 by a distance d2), and the gain Gs is measured via the antenna 11 for measurement. Assume that you receive radio waves.

図4の送受信の関係における無線利得Aは、図3にて得られた無線利得Aと等価であることから、送信電力Wtおよび無線利得Aから、電界強度計12における受信電力Wxは、   Since the wireless gain A in the transmission / reception relationship of FIG. 4 is equivalent to the wireless gain A obtained in FIG. 3, from the transmission power Wt and the wireless gain A, the received power Wx in the electric field strength meter 12 is

Figure 0004376071
Figure 0004376071

となる。さらに、受信電力Wxと電界強度Exとの一般式である、 It becomes. Furthermore, it is a general formula of the received power Wx and the electric field strength Ex.

Figure 0004376071
Figure 0004376071

を変形すれば、受信電力の電界強度Exは、次式のように求めることができる。ただし、Zは、固有インピーダンス120π[Ω]である。 Can be obtained as the following equation. However, Z 0 is a specific impedance 120π [Ω].

Figure 0004376071
Figure 0004376071

なお、引込線3からの所定の距離d2が同一であっても、引込線3と測定用アンテナ11との配置、周辺環境からの反射等によって受信電力Wrが変化することから、複数の箇所で測定および計算を行ない、信頼性を高めることが望ましい。これには、例えば、引込線3を長さ方向に適当に分割して各分割点を基準箇所に設定し、各々が対応する基準箇所から距離d2離れた複数の測定場所において、上記の輻射電波の測定を実行することが好ましい。   Even if the predetermined distance d2 from the lead-in line 3 is the same, the received power Wr varies depending on the arrangement of the lead-in line 3 and the measurement antenna 11, reflection from the surrounding environment, etc. It is desirable to perform calculations and increase reliability. For this purpose, for example, the lead-in wire 3 is appropriately divided in the length direction, and each dividing point is set as a reference location, and at each of a plurality of measurement locations separated by a distance d2 from the corresponding reference location, It is preferable to perform the measurement.

再び図1を参照して、信号発生器22および測定用アンテナ11の送信電力を、屋内の電力線通信モデム9の設置場所に配設した受信機21で受信したときの受信電力を測定することによって、先述と同様に、信号発生器22と受信機21との間の無線利得Aが得られる。   Referring to FIG. 1 again, by measuring the reception power when the transmission power of the signal generator 22 and the measurement antenna 11 is received by the receiver 21 provided at the installation place of the indoor power line communication modem 9. In the same manner as described above, the radio gain A between the signal generator 22 and the receiver 21 is obtained.

さらに、この無線利得Aは送受信間において可逆性を有することから、受信機21の設定場所に電力線通信モデム9を設置して電力を送信したときに、信号発生器22の設置場所における受信電力を算出することができる。これにより、屋内に配された電力線通信モデム9によって引込線3から生じる輻射電波の電界強度を求めることができる。   Further, since this wireless gain A has reversibility between transmission and reception, when the power line communication modem 9 is installed at the setting location of the receiver 21 and power is transmitted, the received power at the setting location of the signal generator 22 is reduced. Can be calculated. Thereby, the electric field strength of the radiated radio wave generated from the lead-in wire 3 can be obtained by the power line communication modem 9 arranged indoors.

なお、電灯・動力線7に生じる輻射電波についても、上記の方法によって求めることができる。詳細には、図1に示すように、電力需要家5の屋内において、電灯・動力線7から所定の距離を隔てて信号発生器23と測定用アンテナ13とを設置し、信号発生器23から出力される試験電波を受信機20で受信する構成とすれば、図6の電力線通信モデム4から出力される試験電波によって電灯・動力線7から輻射される不要電波を予測することが可能になる。   Note that the radiated radio waves generated in the lamp / power line 7 can also be obtained by the above method. Specifically, as shown in FIG. 1, the signal generator 23 and the measurement antenna 13 are installed at a predetermined distance from the lamp / power line 7 inside the electric power consumer 5. If the receiver 20 receives the output test radio wave, it is possible to predict unnecessary radio waves radiated from the light / power line 7 by the test radio wave output from the power line communication modem 4 of FIG. .

一方、信号発生器23の試験電波を屋内の受信機21で受信する構成とすれば、屋内の電力線通信モデム9から出力される試験電波によって電灯・動力線7に生じる輻射電波を予測することができる。   On the other hand, if the indoor receiver 21 receives the test radio wave from the signal generator 23, the radio wave generated on the lamp / power line 7 can be predicted by the test radio wave output from the indoor power line communication modem 9. it can.

さらに、図示は省略するが、低圧配電線1から所定の距離を隔てて信号発生器およびアンテナを設置し、信号発生器からの試験電波を受信機20で受信する構成とすることにより、低圧配電線1において発生する不要輻射電波の電界強度を予測することができる。   Further, although not shown in the drawing, a signal generator and an antenna are installed at a predetermined distance from the low-voltage distribution line 1, and a test radio wave from the signal generator is received by the receiver 20, whereby the low-voltage distribution is achieved. The electric field strength of unnecessary radiated radio waves generated in the electric wire 1 can be predicted.

図5は、本実施の形態に係る不要輻射電波測定方法を説明するためのフロー図である。   FIG. 5 is a flowchart for explaining the method for measuring an unnecessary radiation wave according to the present embodiment.

図5を参照して、最初に、電力線から所定の距離d2を隔てて設置される信号発生器から出力される送信電力Wsを調整する(ステップS01)。詳細には、電波法に規定される試験条件に従って、所定の距離d1における電界強度が規定値以下となるように送信電力Wsが決定される。現行法における試験条件によれば、試験電波送信時に、送信側から所定の距離d1=3mにおける電界強度が500μV/m以下であることが求められる。   Referring to FIG. 5, first, transmission power Ws output from a signal generator installed at a predetermined distance d2 from the power line is adjusted (step S01). Specifically, the transmission power Ws is determined so that the electric field strength at a predetermined distance d1 is not more than a specified value according to the test conditions specified in the Radio Law. According to the test conditions in the current method, the electric field strength at a predetermined distance d1 = 3 m from the transmission side is required to be 500 μV / m or less during test radio wave transmission.

次に、信号発生器から測定用アンテナを介して送信電力Wsを放射する。このとき、電力線通信モデム4の設置予定場所(電柱2に相当)に配置した受信機20において、受信電力Wrを測定する(ステップS02)。   Next, the transmission power Ws is radiated from the signal generator through the measurement antenna. At this time, the received power Wr is measured at the receiver 20 arranged at the planned installation location (corresponding to the utility pole 2) of the power line communication modem 4 (step S02).

さらに、送信電力Wsと測定した受信電力Wrとに基づいて送受信間の無線利得Aを算出する(ステップS03)。   Further, the wireless gain A between transmission and reception is calculated based on the transmission power Ws and the measured reception power Wr (step S03).

このとき送受信間には、その無線利得Aに可逆性が成り立つことから、受信機20の配置場所に電力線通信モデム4が設置されたと仮定して、電力線通信モデム4の出力Waにより信号発生器22の設置場所(引込線3から所定の距離d2離れた場所に相当)において受信される受信電力Wxを算出する(ステップS04)。   At this time, since the radio gain A is reversible between transmission and reception, it is assumed that the power line communication modem 4 is installed at the place where the receiver 20 is disposed, and the signal generator 22 is generated by the output Wa of the power line communication modem 4. The received power Wx received at the installation location (corresponding to a location away from the service line 3 by a predetermined distance d2) is calculated (step S04).

最後に、得られた受信電力Wxから所定の距離d2における電界強度Exを算出する(ステップS05)。   Finally, the electric field intensity Ex at a predetermined distance d2 is calculated from the obtained received power Wx (step S05).

以上のように、この発明の実施の形態によれば、電力線搬送通信において生じる不要輻射電波を、他の無線装置への電波障害を起こすことなく、合法的かつ簡易に測定することができる。   As described above, according to the embodiment of the present invention, unnecessary radiated radio waves generated in power line carrier communication can be measured legally and easily without causing radio interference to other radio apparatuses.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態に従う輻射電波測定方法を説明するための電力線搬送通信装置の全体構成図である。1 is an overall configuration diagram of a power line carrier communication device for illustrating a method for measuring a radiated radio wave according to an embodiment of the present invention. 送信電力Wsの調整を説明するための回路図である。It is a circuit diagram for demonstrating adjustment of transmission power Ws. この発明の実施の形態に従う輻射電波測定方法の原理を説明するための回路図である。It is a circuit diagram for demonstrating the principle of the radiation wave measuring method according to embodiment of this invention. 輻射電波の予測方法を説明するための回路図である。It is a circuit diagram for demonstrating the prediction method of a radiation wave. 不要輻射電波の測定方法を説明するためのフロー図である。It is a flowchart for demonstrating the measuring method of an unnecessary radiation wave. 従来の電力線搬送通信装置を説明するための概要構成図である。It is a schematic block diagram for demonstrating the conventional power line carrier communication apparatus.

符号の説明Explanation of symbols

1 低圧配電線、2 電柱、3 引込線、4,9 電力線通信モデム、5 電力需要家、6 電力量計、7 電灯・動力線、8 コンセント、10 端末装置、11,13 測定用アンテナ、12,14 電界強度計、20,21,25 受信機、22,23 信号発生器、24 受信アンテナ。   DESCRIPTION OF SYMBOLS 1 Low voltage distribution line, 2 utility poles, 3 service lines, 4,9 Power line communication modem, 5 Electric power consumer, 6 Electricity meter, 7 Electric light and power line, 8 Outlet, 10 Terminal device, 11, 13 Antenna for measurement, 12, 14 Field strength meter, 20, 21, 25 Receiver, 22, 23 Signal generator, 24 Receiving antenna.

Claims (9)

電力線通信モデムから電力線に電力線搬送信号を重畳させて通信する電力線搬送通信において、前記電力線から輻射される電波を測定する輻射電波測定方法であって、
前記電力線から所定の距離を隔てて配置された信号発生器から、前記電力線搬送信号と同じ周波数の試験信号を発生するステップと、
前記信号発生器に結合された既知の利得のアンテナから、前記試験信号に前記既知の利得を乗じた所定の電力レベルの送信電力を出力するステップと、
前記電力線通信モデムの設置場所に配設された受信機によって、前記送信電力を受信したときの受信電力を測定するステップと、
前記送信電力と前記受信電力との比である無線利得を算出するステップと、
前記算出された無線利得と前記電力線通信モデムから出力される送信電力の予定値とを乗じて、前記送信電力の予定値に対する前記アンテナでの受信電力の予測値を算出するステップと、
前記受信電力の予測値に基づいて、前記電力線から前記所定の距離を隔てた位置における電界強度を算出するステップとを備える、輻射電波測定方法。
In a power line carrier communication in which a power line carrier signal is superimposed on a power line and communicated from a power line communication modem, a radio wave measuring method for measuring a radio wave radiated from the power line,
Generating a test signal having the same frequency as the power line carrier signal from a signal generator arranged at a predetermined distance from the power line;
Outputting a transmission power of a predetermined power level obtained by multiplying the test signal by the known gain from an antenna of a known gain coupled to the signal generator;
Measuring the received power when the transmission power is received by a receiver disposed at a place where the power line communication modem is installed;
Calculating a radio gain that is a ratio of the transmission power and the reception power;
Multiplying the calculated radio gain by a planned value of transmission power output from the power line communication modem, calculating a predicted value of received power at the antenna with respect to the planned value of transmission power;
And a step of calculating an electric field strength at a position separated from the power line by the predetermined distance based on the predicted value of the received power.
前記所定の距離および前記所定の電力レベルを、電波法の規定する試験条件に準拠して設定するステップをさらに備える、請求項1に記載の輻射電波測定方法。   The radiated radio wave measurement method according to claim 1, further comprising the step of setting the predetermined distance and the predetermined power level in accordance with test conditions defined by the Radio Law. 前記信号発生器および前記アンテナを前記電力線から前記所定の距離を隔てた複数の位置に順次配置するステップをさらに備える、請求項1または2に記載の輻射電波測定方法。   The radiation wave measuring method according to claim 1, further comprising the step of sequentially arranging the signal generator and the antenna at a plurality of positions spaced from the power line by the predetermined distance. 電力線通信モデムから電力線に電力線搬送信号を重畳させて通信する電力線搬送通信おいて、前記電力線から輻射される電波を測定する輻射電波測定装置であって、
前記電力線から所定の距離を隔てて配置され、前記電力線搬送信号と同じ周波数の試験信号を発生する信号発生器と、
前記信号発生器に結合され、前記試験信号に既知の利得を乗じて放射するアンテナと、
前記電力線通信モデムの設置場所に配設された受信機とを備え、
前記信号発生器は、発生した前記試験信号を前記アンテナを介して所定の電力レベルの送信電力として送信し、
前記受信機は、前記送信電力を受信したときの受信電力を測定し、
前記送信電力と前記受信電力との比である無線利得を算出する手段と、
前記算出された無線利得と前記電力線通信モデムから出力される送信電力の予定値とを乗じて、前記送信電力の予定値に対する前記アンテナでの受信電力の予測値を算出する手段と、
前記受信電力の予測値に基づいて、前記電力線から所定の距離を隔てた位置における電界強度を算出する手段とをさらに備える、輻射電波測定装置。
In power line carrier communication in which a power line carrier signal is superimposed on a power line from a power line communication modem for communication, a radiated radio wave measuring device that measures radio waves radiated from the power line,
A signal generator disposed at a predetermined distance from the power line and generating a test signal having the same frequency as the power line carrier signal;
An antenna coupled to the signal generator for radiating the test signal with a known gain;
A receiver disposed at a place where the power line communication modem is installed,
The signal generator transmits the generated test signal as a transmission power of a predetermined power level via the antenna,
The receiver measures the received power when the transmission power is received;
Means for calculating a radio gain that is a ratio of the transmission power and the reception power;
Means for multiplying the calculated wireless gain by a scheduled value of transmission power output from the power line communication modem, and calculating a predicted value of received power at the antenna with respect to the scheduled value of transmission power;
A radiation wave measuring apparatus further comprising: means for calculating an electric field strength at a position separated from the power line by a predetermined distance based on the predicted value of the received power.
前記所定の距離および前記所定の電力レベルを、電波法の規定する試験条件に準拠して設定する手段をさらに備える、請求項4に記載の輻射電波測定装置。   The radiated radio wave measuring apparatus according to claim 4, further comprising means for setting the predetermined distance and the predetermined power level in accordance with test conditions specified by the Radio Law. 前記信号発生器および前記アンテナは、前記電力線から前記所定の距離を隔てた複数の位置にそれぞれ配置される、請求項4または5に記載の輻射電波測定装置。   The radiated radio wave measuring apparatus according to claim 4 or 5, wherein the signal generator and the antenna are respectively arranged at a plurality of positions separated from the power line by the predetermined distance. 電力需要家に敷設され、電力に電力線搬送信号を重畳させて伝搬する電力線と、
前記電力線に設置され、前記電力線搬送信号を送受信する電力線通信モデムと、
前記電力線から所定の距離を隔てて配置され、前記電力線搬送信号と同じ周波数の試験信号を発生する信号発生器と、
前記信号発生器に結合され、前記試験信号に既知の利得を乗じて放射するアンテナと、
前記電力線通信モデムの設置場所に配設された受信機とを備え、
前記信号発生器は、発生した前記試験信号を前記アンテナを介して所定の電力レベルの送信電力として送信し、
前記受信機は、前記送信電力を受信したときの受信電力を測定し、
前記送信電力と前記受信電力との比である無線利得を算出する手段と、
前記算出された無線利得と前記電力線通信モデムから出力される送信電力の予定値とを乗じて、前記送信電力の予定値に対する前記アンテナでの受信電力の予測値を算出する手段と、
前記受信電力の予測値に基づいて、前記電力線から所定の距離を隔てた位置における電界強度を算出する手段とをさらに備える、電力線搬送通信装置。
A power line that is laid in a power consumer and propagates by superimposing a power line carrier signal on the power; and
A power line communication modem installed on the power line and transmitting and receiving the power line carrier signal;
A signal generator disposed at a predetermined distance from the power line and generating a test signal having the same frequency as the power line carrier signal;
An antenna coupled to the signal generator for radiating the test signal with a known gain;
A receiver disposed at a place where the power line communication modem is installed,
The signal generator transmits the generated test signal as a transmission power of a predetermined power level via the antenna,
The receiver measures the received power when the transmission power is received;
Means for calculating a radio gain that is a ratio of the transmission power and the reception power;
Means for multiplying the calculated wireless gain by a scheduled value of transmission power output from the power line communication modem, and calculating a predicted value of received power at the antenna with respect to the scheduled value of transmission power;
A power line carrier communication device further comprising: means for calculating an electric field strength at a position separated from the power line by a predetermined distance based on the predicted value of the received power.
前記所定の距離および前記所定の電力レベルを、電波法の規定する試験条件に準拠して設定する手段をさらに備える、請求項7に記載の電力線搬送通信装置。   The power line carrier communication apparatus according to claim 7, further comprising means for setting the predetermined distance and the predetermined power level in accordance with test conditions defined by the Radio Law. 前記信号発生器および前記アンテナは、前記電力線から前記所定の距離を隔てた複数の位置にそれぞれ配置される、請求項7または8に記載の電力線搬送通信装置。   9. The power line carrier communication device according to claim 7, wherein the signal generator and the antenna are respectively disposed at a plurality of positions separated from the power line by the predetermined distance.
JP2004009425A 2004-01-16 2004-01-16 Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device Expired - Lifetime JP4376071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009425A JP4376071B2 (en) 2004-01-16 2004-01-16 Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009425A JP4376071B2 (en) 2004-01-16 2004-01-16 Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device

Publications (2)

Publication Number Publication Date
JP2005204152A JP2005204152A (en) 2005-07-28
JP4376071B2 true JP4376071B2 (en) 2009-12-02

Family

ID=34822472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009425A Expired - Lifetime JP4376071B2 (en) 2004-01-16 2004-01-16 Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device

Country Status (1)

Country Link
JP (1) JP4376071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804322C1 (en) * 2023-02-15 2023-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Method for measuring the electrophysical parameters of a quadripole and a device for its implementation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606298B1 (en) 2004-04-26 2009-10-20 Dgi Creations, Llc Method of testing remote power line carrier pick-up coil
US7636396B1 (en) 2004-04-26 2009-12-22 Dgi Creations, Llc Method of testing remote power line carrier pick-up coil
JP4871205B2 (en) * 2007-05-10 2012-02-08 大成建設株式会社 Communication device calling method
JP4930309B2 (en) * 2007-09-28 2012-05-16 株式会社村田製作所 Power line communication apparatus and power line communication system using the same
US9768833B2 (en) * 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
JP6391118B2 (en) * 2015-09-18 2018-09-19 日本電信電話株式会社 Method for estimating characteristics of conductor lines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804322C1 (en) * 2023-02-15 2023-09-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Method for measuring the electrophysical parameters of a quadripole and a device for its implementation

Also Published As

Publication number Publication date
JP2005204152A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
US8212635B2 (en) Surface wave coupler
US8269583B2 (en) Using surface wave propagation to communicate an information-bearing signal through a barrier
US8593238B2 (en) Technique for conveying a wireless-standard signal through a barrier
US8253516B2 (en) Using an electric power cable as the vehicle for communicating an information-bearing signal through a barrier
AU2015315140B2 (en) Modulated guided surface waves
JP4376071B2 (en) Radiation wave measurement method, radiation wave measurement device, and power line carrier communication device
CN105093014B (en) A kind of Electromagnetic Interference Test method
US7391332B2 (en) Radiation information management device and communication device
Nguyen et al. In-pipe wireless communication for underground sampling and testing
KR101467171B1 (en) Electromagnetic measurement system and signal processing apparatus
CN107192891A (en) A kind of radiation Forecasting Methodology measured based on frequency domain common mode current
JP2004080441A (en) Transmitter apparatus and receiver apparatus
Adebisi et al. Comparisons of indoor PLC emissions measurement results and regulation standards
Fenton et al. Some aspects of benchmarking high frequency radiated emissions from wireline communications systems in the near and far fields
JP5980362B1 (en) Unwanted radiation measurement method in all anechoic chambers
Hammerschmidt et al. Best practices for radio propagation measurements
Trueman et al. Comparison of computed RF current flow on a power line with full scale measurements
JP2021128136A (en) Occupancy bandwidth measuring device
Vick Radiated emission caused by in-house PLC-systems
Ekata et al. Model for monitoring GSM base station radiation safety in Nigeria
US8311752B1 (en) Method and apparatus to quantify mast clamp current probe effective loss on pole-mast antenna
Zhang et al. Evaluation of the interference potential of in-home power line communication systems
JP6391118B2 (en) Method for estimating characteristics of conductor lines
CN111257653B (en) Electromagnetic radiation prediction method under underground pedestrian passageway scene
Tokuda et al. Radiated electromagnetic field immunity test method for wireless LAN using opened parallel wired cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3