JP4375671B2 - Robot seam welding method and apparatus - Google Patents

Robot seam welding method and apparatus Download PDF

Info

Publication number
JP4375671B2
JP4375671B2 JP2004266276A JP2004266276A JP4375671B2 JP 4375671 B2 JP4375671 B2 JP 4375671B2 JP 2004266276 A JP2004266276 A JP 2004266276A JP 2004266276 A JP2004266276 A JP 2004266276A JP 4375671 B2 JP4375671 B2 JP 4375671B2
Authority
JP
Japan
Prior art keywords
robot
electrode
workpiece
welding
seam welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004266276A
Other languages
Japanese (ja)
Other versions
JP2006082088A (en
Inventor
克俊 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Daihen Corp
Original Assignee
Nachi Fujikoshi Corp
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Daihen Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2004266276A priority Critical patent/JP4375671B2/en
Publication of JP2006082088A publication Critical patent/JP2006082088A/en
Application granted granted Critical
Publication of JP4375671B2 publication Critical patent/JP4375671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Description

本発明は、多関節ロボットを用いるシーム溶接(以下、ロボット・シーム溶接)方法と装置に係り、特に、3次元状に湾曲した溶接部分を持つ被溶接物(以下、ワーク)に適したロボット・シーム溶接方法と装置に関する。   The present invention relates to a seam welding (hereinafter referred to as robot seam welding) method and apparatus using an articulated robot, and more particularly, to a robot suitable for an object to be welded (hereinafter referred to as a workpiece) having a three-dimensionally curved welding portion. The present invention relates to a seam welding method and apparatus.

シーム溶接は、回転する一対の電極輪でワークを挟んで加圧し、ワークを電極輪の回転に合わせて移動させつつ、電極輪間に溶接電流を連続的に通電して溶接を行う。このようなシーム溶接は、気密性を要する容器類の接合に適していて、例えば自動車の燃料タンクの製造に用いられる。   In seam welding, welding is performed by continuously applying a welding current between the electrode wheels while pressing the workpiece with a pair of rotating electrode wheels and moving the workpiece in accordance with the rotation of the electrode wheels. Such seam welding is suitable for joining containers that require airtightness, and is used, for example, in the manufacture of fuel tanks for automobiles.

自動車の燃料タンクなどのシーム溶接を自動化したものとしては、シーム溶接機にロボットを併設したロボット・シーム溶接装置が主流になってきている。そのような装置は、ロボットがワーク(燃料タンクなど)を把持し、シーム溶接機が具備した一対の電極輪でワークのフランジを挟持し、ロボットの制御装置が教示された動作プログラムを再生してロボットを動かすことで、ワークのフランジを電極輪間に連続して送り込んで溶接する。   As a system for automated seam welding of automobile fuel tanks and the like, robot seam welding equipment, in which a robot is added to the seam welding machine, has become the mainstream. In such a device, a robot grips a workpiece (such as a fuel tank), holds a workpiece flange between a pair of electrode wheels provided in a seam welder, and reproduces an operation program taught by a robot controller. By moving the robot, the flange of the workpiece is continuously fed between the electrode wheels and welded.

上述した形式のロボット・シーム溶接装置は、多関節ロボットの駆動用の制御系と電極輪の駆動用の制御系が独立している。そのため、双方の動作を同期させるには、制御系間の伝達遅れ等の影響により、高速かつ精密な制御が難しいといった問題がある。   In the robot seam welding apparatus of the type described above, the control system for driving the articulated robot and the control system for driving the electrode wheel are independent. Therefore, in order to synchronize both operations, there is a problem that high-speed and precise control is difficult due to the influence of transmission delay between control systems.

また、このようなロボット・シーム溶接装置は、3次元状に湾曲したワークを溶接する際に問題が生ずる。
例えば、図4に示すようなワーク15の湾曲した溶接部位では、ワークの板厚Wにより、ワーク15の上側と下側の長さが異なっている。この湾曲部位を溶接する場合、上下の電極輪17a,17bを同一速度で回転させると、ワーク15に対して電極輪が動かされる移動速度と電極輪の回転速度とに差が生じ、その速度差のためにワーク表面に引張力が働いて、溶接点に割れなどが生じる。
この問題を解消するために、上下の電極輪はそれぞれ異なる速度で制御することが望ましい。
Further, such a robot seam welding apparatus has a problem when welding a workpiece curved in a three-dimensional shape.
For example, in the curved welded part of the workpiece 15 as shown in FIG. 4, the upper and lower lengths of the workpiece 15 are different depending on the plate thickness W of the workpiece. When welding the curved portion, if the upper and lower electrode wheels 17a and 17b are rotated at the same speed, a difference occurs between the moving speed at which the electrode wheel is moved with respect to the workpiece 15 and the rotation speed of the electrode wheel, and the difference in speed between them. For this reason, a tensile force acts on the workpiece surface, and cracks occur at the welded point.
In order to solve this problem, it is desirable to control the upper and lower electrode wheels at different speeds.

これらの問題に対処するために、ロボットを用いる構成ではないが、1台の数値制御装置によって電極輪の制御とワーク送り機構の制御とを行い、また、上下電極輪をそれぞれ異なる速度で駆動して3次元の溶接軌跡を倣い溶接するシーム溶接機が提案されている(例えば、特許文献1を参照)。
この提案は、電極輪の回転制御をプログラミングにより行うものであるが、ロボットを用いる場合には、ワークのコーナー部分などでロボットが自動的に加減速する為に、電極輪の回転制御を加えたプログラムを作成するには多大な工数を要する。
特開平10−99972号公報
To deal with these problems, a robot is not used, but a single numerical control device controls the electrode wheels and the workpiece feed mechanism, and drives the upper and lower electrode wheels at different speeds. There has been proposed a seam welder that follows and welds a three-dimensional welding locus (see, for example, Patent Document 1).
In this proposal, rotation control of the electrode wheel is performed by programming. However, when using a robot, the rotation control of the electrode wheel is added so that the robot automatically accelerates or decelerates at the corner of the workpiece. Creating a program takes a lot of man-hours.
JP-A-10-99972

本発明は、比較的簡単な構成で、ロボットと溶接機の正確な作動制御を可能にするとともに、湾曲した溶接部における割れなどを防止することのできるロボット・シーム溶接方法と装置の提供を目的とする。   It is an object of the present invention to provide a robot seam welding method and apparatus capable of accurately controlling the operation of a robot and a welding machine with a relatively simple configuration and preventing cracks in a curved welded portion. And

本発明によるロボット・シーム溶接方法は、多関節ロボットに把持した被溶接物を定置した一対の電極輪で挟み、これら電極輪を回転させるとともに、予め教示された被溶接物の溶接線上の位置をロボットに周期的に指令して被溶接物をこの溶接線に沿って移動させながら電極輪に溶接電流を通して被溶接物のシーム溶接を行う。この方法は、多関節ロボットと電極輪を同期して作動させるとともに、周期的に算出するロボットへの指令位置に基づいて被溶接物上の各電極輪の移動距離を求め、この移動距離に見合う速度で当該電極輪を回転させることを特徴とする。   In the robot seam welding method according to the present invention, the workpiece to be welded held by the articulated robot is sandwiched between a pair of stationary electrode wheels, the electrode wheels are rotated, and the position of the workpiece to be welded taught in advance is determined. The robot performs seam welding on the workpiece by passing a welding current through the electrode wheel while periodically instructing the robot to move the workpiece along the welding line. In this method, the articulated robot and the electrode wheel are operated synchronously, and the movement distance of each electrode wheel on the workpiece is calculated based on the command position to the robot which is periodically calculated, and this movement distance is met. The electrode wheel is rotated at a speed.

上記方法を実施するための、本発明によるロボット・シーム溶接装置は、被溶接物を把持する多関節ロボットと、定置した一対の円形の電極輪と、これらロボットと電極輪の作動を制御する制御ユニットとを含む。制御ユニットは、予め教示された被溶接物の溶接線を記憶し、電極輪で被溶接物を挟み、これら電極輪を回転させるとともに、記憶した溶接線上の位置をロボットに周期的に指令して被溶接物をこの溶接線に沿って移動させながら電極輪に溶接電流を通して被溶接物のシーム溶接を行う。この装置は、制御ユニットが、ロボットと電極輪を同期して作動させ、周期的に算出する指令位置に基づいて被溶接物上の各電極輪の移動距離を求め、この移動距離に見合う速度で当該電極輪を回転させることを特徴とする。   A robot seam welding apparatus according to the present invention for carrying out the above method includes an articulated robot that grips an object to be welded, a pair of stationary circular electrode wheels, and a control that controls the operation of the robot and the electrode wheels. Including units. The control unit memorizes the weld line of the workpiece to be taught in advance, sandwiches the workpiece with the electrode ring, rotates the electrode ring, and periodically instructs the robot on the stored position on the weld line. The workpiece is seam welded by passing a welding current through the electrode wheel while moving the workpiece along the welding line. In this device, the control unit operates the robot and the electrode wheel synchronously, obtains the moving distance of each electrode wheel on the workpiece based on the periodically calculated command position, and at a speed corresponding to this moving distance. The electrode wheel is rotated.

上記溶接線は被溶接物の一方の表面上に設定し、被溶接物の他方の表面における電極輪の接触位置を、この溶接線から被溶接物の厚みだけ離れた位置として求めることが好ましい。   Preferably, the weld line is set on one surface of the workpiece, and the contact position of the electrode ring on the other surface of the workpiece is determined as a position away from the weld line by the thickness of the workpiece.

上記した本発明の方法と装置は、ロボットと電極輪を同期して作動させるものである。そのため、双方を高速かつ正確に制御することができる。また、被溶接物上の各電極輪の移動距離を周期的に求めて、この距離に応じた速度で電極輪を回転させるものである。そのため、3次元状に湾曲した溶接部位においてそれぞれの電極輪の移動距離に差のある場合でも、各電極輪の回転速度を移動距離に応じて違えて、従来のような引張力をなくし、溶接割れなどの欠陥を防ぐことができる。
このような処理は、ロボットに教示した移動経路の再生から得られる指令値を利用して行うことができるので、本発明は、従来のシステムを大きく変更することなく簡単な構成で、従って比較的安価に、かつ確実に溶接品質を向上させ得る効果がある。
The method and apparatus of the present invention described above operate the robot and the electrode wheel in synchronization. Therefore, both can be controlled at high speed and accurately. Moreover, the movement distance of each electrode ring on a to-be-welded object is calculated | required periodically, and an electrode ring is rotated at the speed according to this distance. Therefore, even in the case where there is a difference in the moving distance of each electrode wheel in a three-dimensionally curved welding site, the rotational speed of each electrode wheel is changed according to the moving distance, the conventional tensile force is eliminated, and welding is performed. Defects such as cracks can be prevented.
Since such processing can be performed by using a command value obtained from the reproduction of the movement route taught to the robot, the present invention has a simple configuration without greatly changing the conventional system, and therefore is relatively There is an effect that the welding quality can be improved reliably and inexpensively.

続いて、添付図面に示す実施例に基づいて本発明を説明する。
図1は、本発明の実施例によるロボット・シーム溶接装置を示す。この装置は、多関節ロボット1と、これに併設した定置式のシーム溶接機6と、これらロボットおよび溶接機の運転を制御する制御ユニット8とを有する。
なお、図1では制御ユニット8をロボットと溶接機の外に付けるように表示しているが、制御ユニットはロボット本体に内蔵するロボット制御装置としてもよい。
Next, the present invention will be described based on embodiments shown in the accompanying drawings.
FIG. 1 shows a robot seam welding apparatus according to an embodiment of the present invention. This apparatus has an articulated robot 1, a stationary seam welder 6 attached to the articulated robot 1, and a control unit 8 that controls the operation of the robot and the welder.
In FIG. 1, the control unit 8 is displayed so as to be attached to the outside of the robot and the welding machine, but the control unit may be a robot control device built in the robot body.

多関節ロボット1は、その先端に、ワーク5を把持するためのワーク把持装置2を備えている。ワーク把持装置2は、一方の外側端部をロボット先端に取り付けたC型フレーム3と、このC型フレームの内側両端部にそれぞれ対向して取り付けた、回転機構を持つワーク把持部材4a,4bから成る。ワーク把持部材4aと4bは、シリンダ機構等(図示なし)によって互いに近づき或いは遠ざかるように可動となっており、ワーク5を挟んで閉ざすことによってワーク5を把持する。   The articulated robot 1 includes a workpiece gripping device 2 for gripping the workpiece 5 at the tip thereof. The workpiece gripping device 2 includes a C-shaped frame 3 having one outer end attached to the tip of the robot, and workpiece gripping members 4a and 4b each having a rotation mechanism that are respectively attached to both inner ends of the C-shaped frame. Become. The workpiece gripping members 4a and 4b are movable so as to approach or move away from each other by a cylinder mechanism or the like (not shown), and grip the workpiece 5 by closing the workpiece 5 therebetween.

シーム溶接機6は、対向して配置した一対の円形の上部電極輪7aおよび下部電極輪7bを有し、これら電極輪は、それぞれ別個の電気モータにより、減速機およびドライブシャフトを介して回転駆動される。電極輪7a,7bを駆動するモータは、制御ユニット8によって制御される。
また、上部電極輪7aは、エアシリンダ機構などの加圧装置(図示なし)により下部電極輪7bに対して押し付け得るように移動可能に構成され、この動作によりワークを電極輪7a,7b間に挟持する。
The seam welding machine 6 has a pair of circular upper electrode wheel 7a and lower electrode wheel 7b arranged opposite to each other, and these electrode wheels are driven to rotate by a separate electric motor via a speed reducer and a drive shaft. Is done. The motor that drives the electrode wheels 7 a and 7 b is controlled by the control unit 8.
Further, the upper electrode wheel 7a is configured to be movable so as to be pressed against the lower electrode wheel 7b by a pressurizing device (not shown) such as an air cylinder mechanism. By this operation, the workpiece is moved between the electrode wheels 7a and 7b. Hold it.

次に、本実施例の装置におけるシーム溶接作業について説明する。
この作業に先立って、制御ユニット8に、溶接するフランジ面を電極輪7a,7bにあてて動かす溶接軌跡をワーク5が移動するようにロボット1を教示して作成した動作プログラムを記憶させる。このとき、図2に示すように、ワーク溶接線L(図示例ではワーク5のフランジ下面上に設定)の接線方向に対して電極輪7a,7bの回転中心を結んだ直線a−a′〜c−c′が常に直交するようにワーク5の移動軌跡を設定して、ロボット1を教示する。この動作プログラムには、ロボットを動作させるための位置情報を含んだ数値データ、溶接開始および終了のタイミングを制御するデータ、溶接速度、溶接条件等が含まれる。さらに、予め溶接を行うワーク1のフランジの板厚Wを制御ユニット8に記憶させておく。
Next, seam welding work in the apparatus of this embodiment will be described.
Prior to this work, the control unit 8 stores an operation program created by teaching the robot 1 so that the workpiece 5 moves along a welding locus in which the flange surface to be welded is applied to the electrode wheels 7a and 7b. At this time, as shown in FIG. 2, straight lines a-a ′ to tangent to the workpiece welding line L (set on the lower surface of the flange of the workpiece 5 in the illustrated example) connecting the rotation centers of the electrode wheels 7 a and 7 b. The robot 1 is taught by setting the movement trajectory of the workpiece 5 so that cc 'is always orthogonal. This operation program includes numerical data including position information for operating the robot, data for controlling the start and end timing of welding, welding speed, welding conditions, and the like. Further, the thickness W of the flange of the workpiece 1 to be welded is stored in the control unit 8 in advance.

溶接作業は、制御ユニット8が記憶した動作プログラムを再生することによって行われる。
ワーク5をワーク把持装置2で狭持させ、制御ユニット8に作業開始指令を入力すると、多関節ロボット1は動作プログラムに基づいて移動し、ワーク5をシーム溶接機6の電極輪7a,7bへ搬送し、開放状態にある電極輪7a,7bの間にワーク5のフランジ面を挿入する。次いで、前述した加圧機構の駆動の下に、電極輪7aが電極輪7bへ向けて押し付けられ、溶接に適した加圧力により加圧動作を行ってワーク5のフランジ面を挟持し、電極輪7a、7bが溶接作業の開始位置につく。
The welding operation is performed by reproducing the operation program stored in the control unit 8.
When the work 5 is held by the work gripping device 2 and a work start command is input to the control unit 8, the articulated robot 1 moves based on the operation program, and the work 5 is moved to the electrode wheels 7 a and 7 b of the seam welding machine 6. The flange surface of the workpiece 5 is inserted between the electrode wheels 7a and 7b which are conveyed and opened. Next, under the driving of the pressurizing mechanism described above, the electrode wheel 7a is pressed toward the electrode wheel 7b, and a pressurizing operation is performed with a pressurizing force suitable for welding to sandwich the flange surface of the workpiece 5, whereby the electrode wheel 7a and 7b are at the start position of the welding operation.

この狭持動作が完了すると、制御ユニット8は、シーム溶接機6に溶接信号および溶接条件信号を出力し、同時に、多関節ロボット1が所定の溶接速度で移動を開始し、また電極輪7a,7bの回転も開始する。こうして、ワーク5のフランジ面のシーム溶接が行われ、制御ユニット8は、多関節ロボット1が溶接終了位置まで移動すると、溶接信号を止め、多関節ロボットおよび電極輪を停止させる。その後、電極輪7aを開いて、溶接の終了したワーク5を電極輪7a,7bの間から取り出して、作業が完了する。   When this pinching operation is completed, the control unit 8 outputs a welding signal and a welding condition signal to the seam welding machine 6, and at the same time, the articulated robot 1 starts moving at a predetermined welding speed, and the electrode wheels 7a, The rotation of 7b is also started. Thus, seam welding of the flange surface of the workpiece 5 is performed, and when the articulated robot 1 moves to the welding end position, the control unit 8 stops the welding signal and stops the articulated robot and the electrode wheel. Thereafter, the electrode wheel 7a is opened, and the work 5 that has been welded is taken out from between the electrode wheels 7a and 7b to complete the operation.

上述した動作プログラムの再生の間、制御ユニット8は、一定周期毎にロボット1への指令位置を計算してロボットのサーボ制御装置に指令し、サーボ指令装置がロボット1を駆動する。
この一定周期の処理ごとに、制御ユニット8は、ロボットへの指令位置に基づいて、定置側の電極輪7bとワーク5のフランジ下面との接触位置B2(図3)を、ロボット1のアーム先端に設定された座標系上の位置として算出して記憶する。さらに、予め記憶したワーク5の板厚Wに基づいて、この接触位置B2から電極輪7a,7bの回転中心を結んだ直線上で板厚Wだけ離れた位置A2をB2と同様に算出して、加圧側の電極輪7aの接触位置として記憶する。
During the reproduction of the operation program described above, the control unit 8 calculates a command position to the robot 1 at regular intervals and commands the servo control device of the robot, and the servo command device drives the robot 1.
At each fixed cycle, the control unit 8 determines the contact position B2 (FIG. 3) between the stationary electrode wheel 7b and the flange lower surface of the workpiece 5 based on the command position for the robot, Is calculated and stored as a position on the coordinate system set to. Further, based on the plate thickness W of the workpiece 5 stored in advance, a position A2 that is separated from the contact position B2 by the plate thickness W on a straight line connecting the rotation centers of the electrode wheels 7a and 7b is calculated in the same manner as B2. And stored as the contact position of the electrode wheel 7a on the pressure side.

このとき、予め加圧時に電極輪同士が接触する位置上に、電極輪同士の回転中心を結んだ直線に一つの座標軸を一致させた第1の座標系、例えばZ軸を一致させた第1の座標系を定義し、電極輪同士が接触する位置とロボットとの物理的な位置関係を設定しておく。第1の座標系をZ軸を一致させたものとした場合、位置B2は第1の座標系において(0,0,0)として表現され、位置A2は(0,0,W)として表現される。この座標位置を前述のアーム先端に設定した第2の座標系上に投影することで、アーム先端に設定した座標系上の位置として位置B2および位置A2を求めることができる。   At this time, a first coordinate system in which one coordinate axis is made to coincide with a straight line connecting the rotation centers of the electrode wheels on a position where the electrode wheels come into contact with each other at the time of pressurization in advance, for example, a first coordinate system made to coincide with the Z axis. The coordinate system is defined, and the physical positional relationship between the position where the electrode wheels contact each other and the robot is set. When the first coordinate system is made to coincide with the Z axis, the position B2 is expressed as (0, 0, 0) in the first coordinate system, and the position A2 is expressed as (0, 0, W). The By projecting this coordinate position onto the second coordinate system set at the arm tip, the position B2 and the position A2 can be obtained as positions on the coordinate system set at the arm tip.

制御ユニット8は同時に、前回の周期で記憶した電極輪7bとワークのフランジ下面との接触位置位置B1と今回算出した位置B2との距離dB、そして、前回の周期で記憶した電極輪7aとワークのフランジ上面との接触位置A1と今回算出した位置A2との距離dAを求める。
これらの距離dA,dBが電極輪7a,7bの外面円周上の移動量、すなわちワーク5のフランジ面上の移動量となる。
At the same time, the control unit 8 simultaneously measures the distance dB between the contact position position B1 between the electrode wheel 7b stored in the previous cycle and the lower surface of the workpiece flange and the currently calculated position B2, and the electrode wheel 7a stored in the previous cycle and the workpiece. The distance dA between the contact position A1 with the upper surface of the flange and the position A2 calculated this time is obtained.
These distances dA and dB are the amount of movement of the electrode wheels 7a and 7b on the outer circumference, that is, the amount of movement of the workpiece 5 on the flange surface.

制御ユニット8は、計算した移動量dA,dBに見合う回転量を算出し、電極輪7a,7bの回転指令として駆動モータに指令する。以上の処理が、溶接開始から終了までのロボットの作動中に繰返して行われる。
こうして、3次元状に湾曲したワーク部分を溶接する場合であっても、各電極輪7a,7bはワーク5上の移動距離に見合った回転で駆動され、前述したような引張力を生ずることなく、割れなどの無い良好なシーム溶接を行うことができる。
The control unit 8 calculates a rotation amount commensurate with the calculated movement amounts dA and dB, and instructs the drive motor as a rotation command for the electrode wheels 7a and 7b. The above process is repeated during the operation of the robot from the start to the end of welding.
In this way, even when welding a work part curved in a three-dimensional shape, each electrode wheel 7a, 7b is driven at a rotation corresponding to the movement distance on the work 5, without causing the tensile force as described above. Good seam welding without cracks can be performed.

以上、本発明を図示の実施例に基づいて説明したが、本発明はこの特定の形態のみに限定されず、添付した特許請求の範囲に記載する定義内で、説明した形態に種々の変更を施すことができ、或いは本発明は別の形態を採り得るものである。
例えば、電極輪の摩耗に備えて、摩耗量を検知して制御ユニット8に取り込むようにしてもよい。このような構成により、電極輪の摩耗量がわかるために、電極輪の現在の回転半径とワーク上の移動量に基づいて、摩耗に見合った回転指令を作成することができる。
Although the present invention has been described based on the illustrated embodiments, the present invention is not limited to this specific form, and various modifications can be made to the form described within the definition described in the appended claims. Or the present invention may take other forms.
For example, the wear amount may be detected and taken into the control unit 8 in preparation for wear of the electrode wheel. With such a configuration, since the amount of wear of the electrode wheel is known, a rotation command corresponding to the wear can be created based on the current rotation radius of the electrode wheel and the amount of movement on the workpiece.

本発明の実施例によるロボット・シーム溶接装置を概略的に示す図。1 schematically shows a robot seam welding apparatus according to an embodiment of the present invention. FIG. 図1の装置のロボットに教示する溶接軌跡を説明するための概略図。Schematic for demonstrating the welding locus | trajectory taught to the robot of the apparatus of FIG. 図1の装置の制御ユニットによる電極輪の回転制御を説明するための略図。The schematic for demonstrating rotation control of the electrode wheel by the control unit of the apparatus of FIG. 従来のロボット・シーム溶接装置による問題を説明するための略図。The schematic for demonstrating the problem by the conventional robot seam welding apparatus.

符号の説明Explanation of symbols

1 多関節ロボット
2 ワーク把持装置
5 被溶接物(ワーク)
6 シーム溶接機
7a,7b 電極輪
8 制御ユニット
A1,A2,B1,B2 接触位置
dA,dB 移動距離
L 溶接線
W 被溶接物の厚み
1 Articulated robot 2 Work gripping device 5 Workpiece
6 Seam welding machine 7a, 7b Electrode wheel 8 Control unit A1, A2, B1, B2 Contact position dA, dB Movement distance L Welding line W Thickness of workpiece

Claims (3)

多関節ロボットに把持した被溶接物を定置した一対の電極輪で挟み、これら電極輪を回転させるとともに、予め教示された被溶接物の溶接線上の位置をロボットに周期的に指令して被溶接物をこの溶接線に沿って移動させながら電極輪に溶接電流を通して被溶接物のシーム溶接を行うロボット・シーム溶接方法において、
多関節ロボットと電極輪を同期して作動させるとともに、周期的に算出するロボットへの指令位置に基づいて被溶接物上の各電極輪の移動距離を求め、この移動距離に見合う速度で当該電極輪を回転させることを特徴とするロボット・シーム溶接方法。
A workpiece to be welded held by an articulated robot is sandwiched between a pair of stationary electrode wheels, these electrode wheels are rotated, and the position on the welding line of the workpiece to be welded is instructed periodically to the robot to be welded. In a robot seam welding method for performing seam welding of an object to be welded by passing a welding current to an electrode wheel while moving an object along the welding line,
The articulated robot and the electrode wheel are operated synchronously, and the moving distance of each electrode wheel on the workpiece is calculated based on the command position to the robot that is periodically calculated, and the electrode is moved at a speed corresponding to the moving distance. A robot seam welding method characterized by rotating a ring.
請求項1による方法において、前記溶接線は被溶接物の一方の表面上に設定し、被溶接物の他方の表面における電極輪の接触位置を、この溶接線から被溶接物の厚みだけ離れた位置として求める、ロボット・シーム溶接方法。   2. The method according to claim 1, wherein the weld line is set on one surface of the workpiece, and the contact position of the electrode ring on the other surface of the workpiece is separated from the weld line by the thickness of the workpiece. Robot seam welding method to be calculated as a position. 被溶接物を把持する多関節ロボットと、定置した一対の円形の電極輪と、これらロボットと電極輪の作動を制御する制御ユニットとを含み、この制御ユニットは、予め教示された被溶接物の溶接線を記憶し、電極輪で被溶接物を挟み、これら電極輪を回転させるとともに、記憶した溶接線上の位置をロボットに周期的に指令して被溶接物をこの溶接線に沿って移動させながら電極輪に溶接電流を通して被溶接物のシーム溶接を行うロボット・シーム溶接装置において、
前記制御ユニットは、前記ロボットと電極輪の作動を同期させて制御し、周期的に算出する指令位置に基づいて被溶接物上の各電極輪の移動距離を求め、この移動距離に見合う速度で当該電極輪を回転させることを特徴とする、ロボット・シーム溶接装置。
An articulated robot for gripping the workpiece, a pair of stationary circular electrode wheels, and a control unit for controlling the operation of the robot and the electrode wheels. The welding line is memorized, the work piece is sandwiched between the electrode rings, these electrode rings are rotated, the position on the memorized welding line is periodically commanded to the robot, and the work piece is moved along the welding line. However, in the robot seam welding equipment that performs seam welding of the work piece through the welding current through the electrode ring,
The control unit controls the operation of the robot and the electrode wheel in synchronism, obtains the movement distance of each electrode wheel on the workpiece based on the periodically calculated command position, and at a speed corresponding to the movement distance. A robot seam welding apparatus characterized by rotating the electrode wheel.
JP2004266276A 2004-09-14 2004-09-14 Robot seam welding method and apparatus Expired - Fee Related JP4375671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004266276A JP4375671B2 (en) 2004-09-14 2004-09-14 Robot seam welding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266276A JP4375671B2 (en) 2004-09-14 2004-09-14 Robot seam welding method and apparatus

Publications (2)

Publication Number Publication Date
JP2006082088A JP2006082088A (en) 2006-03-30
JP4375671B2 true JP4375671B2 (en) 2009-12-02

Family

ID=36161010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266276A Expired - Fee Related JP4375671B2 (en) 2004-09-14 2004-09-14 Robot seam welding method and apparatus

Country Status (1)

Country Link
JP (1) JP4375671B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159021B1 (en) * 2009-09-16 2012-06-21 주식회사 효성 Moving Seam welding maching and method for controlling of welding threrof
JP5864485B2 (en) * 2013-07-23 2016-02-17 本田技研工業株式会社 Teaching coordinate data creation method, seam welding device and jig for seam welding device
CN107234377A (en) * 2017-07-28 2017-10-10 滨州信杰电子科技有限公司 One kind balance welding stress screen welding machine device people

Also Published As

Publication number Publication date
JP2006082088A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP5301369B2 (en) Seam welding apparatus and seam welding method
JP6511626B2 (en) Seam welding system, seam welding method and method of producing workpiece
JPH05138366A (en) Device for controlling operation of tool including clamp
JP2007167896A (en) Seam welding machine, seam welding apparatus, seam welding robot system, seam welding method, and method of creating rotary driving control program for roller electrode
JP2016163921A (en) Robot system having robot operating synchronously with bending machine
JP3623684B2 (en) Column ring welding equipment
JP5015007B2 (en) Method and apparatus for electric spot welding
JP4375671B2 (en) Robot seam welding method and apparatus
CN210281030U (en) Non-rotating shaft circular seam welding equipment
US20050224467A1 (en) Method and welding device for contour welding
JP4833532B2 (en) Robot seam welding method and apparatus
CN114535753A (en) Preheating and welding integrated automatic system and method
JPH1099972A (en) Numerical controlled resistance seam welding method and device therefor
EP1514629A1 (en) Seam welding apparatus
JP2007167895A (en) Seam welding apparatus, seam welding robot system and seam welding method
JP3406841B2 (en) Seam welding method
JP2006205170A (en) Robot seam welding apparatus provided with truing mechanism for welding electrode, and method for shaping welding electrode
JPH09174260A (en) Friction pressure welding method and device therefor
JPH0442064Y2 (en)
JPH07241684A (en) Method and equipment for seam welding of fuel tank
JP3156980B2 (en) Automatic work seam welding equipment
JP2005066683A (en) Seam welding method
JP2006082089A (en) Method and apparatus for robot seam welding
JP2001300726A (en) Method and equipment for cladding by welding in peripheral direction
JP2004009132A (en) Seam welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

R150 Certificate of patent or registration of utility model

Ref document number: 4375671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees