JP4375123B2 - Fuel injection control device for direct injection internal combustion engine - Google Patents

Fuel injection control device for direct injection internal combustion engine Download PDF

Info

Publication number
JP4375123B2
JP4375123B2 JP2004158104A JP2004158104A JP4375123B2 JP 4375123 B2 JP4375123 B2 JP 4375123B2 JP 2004158104 A JP2004158104 A JP 2004158104A JP 2004158104 A JP2004158104 A JP 2004158104A JP 4375123 B2 JP4375123 B2 JP 4375123B2
Authority
JP
Japan
Prior art keywords
fuel injection
time
injection rate
pressure
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004158104A
Other languages
Japanese (ja)
Other versions
JP2005337138A (en
Inventor
竜延 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004158104A priority Critical patent/JP4375123B2/en
Publication of JP2005337138A publication Critical patent/JP2005337138A/en
Application granted granted Critical
Publication of JP4375123B2 publication Critical patent/JP4375123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、燃料噴射における圧力要因に基づいて生じる燃料噴射弁から筒内への燃料噴射量誤差を補償して燃料噴射を行う直噴式内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for a direct injection internal combustion engine that performs fuel injection by compensating for an error in the amount of fuel injected from a fuel injection valve into a cylinder based on a pressure factor in fuel injection.

直噴式内燃機関における燃料噴射制御においては、予め標準筒内圧力下での実験にて設定されているマップに基づいて、内燃機関の運転状態から燃料噴射量を算出している。そして実際の筒内圧力と実際の燃料圧力との差圧から得られる燃料噴射率Kに基づいて燃料噴射量Tpを補正(Tp/K)して、実際の燃料噴射制御に用いている(例えば特許文献1参照)。
特開平9−256886号公報(第4頁、図3)
In fuel injection control in a direct-injection internal combustion engine, the fuel injection amount is calculated from the operating state of the internal combustion engine based on a map set in advance by experiments under standard in-cylinder pressure. Then, the fuel injection amount Tp is corrected (Tp / K) based on the fuel injection rate K obtained from the differential pressure between the actual in-cylinder pressure and the actual fuel pressure, and used for actual fuel injection control (for example, Patent Document 1).
Japanese Patent Laid-Open No. 9-256886 (page 4, FIG. 3)

しかし実際には燃料噴射の過程において、燃料噴射率は、燃料噴射量に対して一律の寄与ではないことが判明した。したがって従来技術にごとくの一次計算(Tp/K)のみでは誤差が生じて高精度な燃料噴射制御はできず、燃料噴射過程における燃料噴射率の寄与の違いを考慮する必要がある。   However, in practice, it has been found that the fuel injection rate does not contribute uniformly to the fuel injection amount in the process of fuel injection. Accordingly, an error occurs only by the primary calculation (Tp / K) as in the prior art, and highly accurate fuel injection control cannot be performed, and it is necessary to consider the difference in contribution of the fuel injection rate in the fuel injection process.

このことから、燃料噴射過程における燃料噴射率の寄与の違いに応じて燃料噴射補正量を算出することにより、直噴式内燃機関において圧力要因の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。   From this, by calculating the fuel injection correction amount according to the difference in contribution of the fuel injection rate in the fuel injection process, it is possible to appropriately correct the fuel injection amount based on the pressure factor difference in the direct injection internal combustion engine. As a result, the control accuracy of the fuel injection amount is improved.

そして、このように燃料噴射率の寄与の違いを考慮して燃料噴射量を補正する燃料噴射制御においても更に改良できることが判明した。
本発明は、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して高精度な燃料噴射制御を実現することを目的とするものである。
Further, it has been found that the fuel injection control for correcting the fuel injection amount in consideration of the difference in contribution of the fuel injection rate can be further improved.
An object of the present invention is to realize highly accurate fuel injection control in a direct injection internal combustion engine in consideration of the difference in contribution of the fuel injection rate.

以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の直噴式内燃機関の燃料噴射制御装置は、燃料噴射における圧力要因に基づいて生じる燃料噴射弁から筒内への燃料噴射量誤差を補償して燃料噴射を行う直噴式内燃機関の燃料噴射制御装置であって、前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償するための燃料噴射率補償補正量を、燃料噴射過程における燃料噴射率の燃料噴射量に対する寄与の違いに応じて算出する補正量算出手段と、前記補正量算出手段にて算出された燃料噴射率補償補正量を、燃料噴射時における推定燃料噴射率に基づいて燃料噴射時間に変換することで、燃料噴射率補償補正時間を算出する燃料噴射率補償補正時間算出手段と、前記直噴式内燃機関の運転状態に基づいて要求燃料噴射量に対応する燃料噴射時間を算出する燃料噴射時間算出手段と、前記燃料噴射率補償補正時間算出手段にて算出された燃料噴射率補償補正時間を含む補正時間により、前記燃料噴射時間算出手段にて算出された燃料噴射時間を補正する燃料噴射時間補正手段とを備え、前記補正量算出手段は、燃料噴射過程における燃料噴射率の寄与の違いに応じて、前記燃料噴射弁の開閉弁駆動過渡期間と全開期間とに区分して、前記開閉弁駆動過渡期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する過渡期間燃料噴射率補償補正量と、前記全開期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する全開期間燃料噴射率補償補正量とを算出して、前記燃料噴射率補償補正量とすることを特徴とする。
In the following, means for achieving the above object and its effects are described.
A fuel injection control device for a direct injection type internal combustion engine according to claim 1, wherein the direct injection type internal combustion engine performs fuel injection by compensating for a fuel injection amount error from a fuel injection valve into a cylinder generated based on a pressure factor in fuel injection. fuel the fuel injection control system, the fuel injection rate in the fuel injection rate compensation correction amount for compensating for the fuel injection quantity error corresponding to the change in the fuel injection rate arising under pressure factors, the fuel injection process A correction amount calculating means for calculating according to a difference in contribution to the injection amount, and a fuel injection rate compensation correction amount calculated by the correction amount calculating means for the fuel injection time based on the estimated fuel injection rate at the time of fuel injection. By converting, a fuel injection rate compensation correction time calculating means for calculating a fuel injection rate compensation correction time, and a fuel injection time corresponding to the required fuel injection amount based on the operating state of the direct injection internal combustion engine are calculated. The fuel injection time calculated by the fuel injection time calculation means is corrected by a correction time including the fuel injection time calculation means for performing the fuel injection rate compensation correction time calculated by the fuel injection rate compensation correction time calculation means. A fuel injection time correction means for performing the fuel injection time division, and the correction amount calculation means is divided into an on-off valve drive transient period and a fully open period of the fuel injection valve according to a difference in contribution of the fuel injection rate in the fuel injection process. A transition period fuel injection rate compensation correction amount that compensates for a fuel injection amount error in accordance with a change in fuel injection rate that occurs based on the pressure factor in the on-off valve drive transition period, and the pressure factor in the fully open period A full-open period fuel injection rate compensation correction amount that compensates for a fuel injection amount error according to a change in the fuel injection rate that occurs based on the calculated fuel injection rate compensation correction amount is calculated .

このように補正量算出手段が燃料噴射過程における燃料噴射率の寄与の違いに応じて、前記燃料噴射量誤差を補償するための燃料噴射率補償補正量を算出する。そして、この燃料噴射率補償補正量は、燃料噴射率補償補正時間算出手段により、燃料噴射時における推定燃料噴射率に基づいて燃料噴射率補償補正時間に変換される。そしてこの燃料噴射率補償補正時間を含む補正時間を用いて、燃料噴射時間補正手段が、要求燃料噴射量に対応する燃料噴射時間を補正することになる。   Thus, the correction amount calculation means calculates the fuel injection rate compensation correction amount for compensating the fuel injection amount error in accordance with the difference in contribution of the fuel injection rate in the fuel injection process. This fuel injection rate compensation correction amount is converted into fuel injection rate compensation correction time by the fuel injection rate compensation correction time calculation means based on the estimated fuel injection rate at the time of fuel injection. Then, using the correction time including this fuel injection rate compensation correction time, the fuel injection time correction means corrects the fuel injection time corresponding to the required fuel injection amount.

このように燃料噴射過程における燃料噴射率の寄与の違いにより、燃料噴射弁の開閉弁駆動過渡期間と全開期間とに区分することができる。そして、それぞれの区分において過渡期間燃料噴射率補償補正量と全開期間燃料噴射率補償補正量とを算出することにより、正確な燃料噴射率補償補正量となり、燃料噴射量の制御精度は高められることになる。したがって、燃料噴射過程における燃料噴射率の寄与の違いに応じて燃料噴射率補償補正量(過渡期間燃料噴射率補償補正量と全開期間燃料噴射率補償補正量)を算出する補正量算出手段を備えることにより、圧力要因の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。 Thus, according to the difference in the contribution of the fuel injection rate in the fuel injection process, the fuel injection valve can be divided into an on-off valve drive transition period and a fully open period. Then, by calculating the transition period fuel injection rate compensation correction amount and the full-open period fuel injection rate compensation correction amount in each category, an accurate fuel injection rate compensation correction amount is obtained, and the control accuracy of the fuel injection amount is improved. become. Therefore , a correction amount calculating means for calculating a fuel injection rate compensation correction amount (transient fuel injection rate compensation correction amount and full-open period fuel injection rate compensation correction amount) according to the difference in contribution of the fuel injection rate in the fuel injection process is provided. As a result , the fuel injection amount can be appropriately corrected based on the difference in pressure factors, and the control accuracy of the fuel injection amount can be improved.

そして燃料噴射率補償補正量は、直接、燃料噴射量の補正には用いられるのではなく、燃料噴射時における推定燃料噴射率に基づいて燃料噴射率補償補正量を時間変換した燃料噴射率補償補正時間にて、燃料噴射時間に対する補正を実行している。このため、現実の燃料噴射時の状況に対応して要求燃料噴射量に合致する正確な燃料噴射時間の設定が可能となる。   The fuel injection rate compensation correction amount is not directly used to correct the fuel injection amount, but is a fuel injection rate compensation correction obtained by time-converting the fuel injection rate compensation correction amount based on the estimated fuel injection rate at the time of fuel injection. Correction for fuel injection time is performed in time. Therefore, it is possible to set an accurate fuel injection time that matches the required fuel injection amount in accordance with the actual situation at the time of fuel injection.

このことにより、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して高精度な燃料噴射制御を実現することができる。
請求項2に記載の直噴式内燃機関の燃料噴射制御装置は、燃料噴射における圧力要因に基づいて生じる燃料噴射弁から筒内への燃料噴射量誤差を補償して燃料噴射を行う直噴式内燃機関の燃料噴射制御装置であって、前記圧力要因に基づいて生じる前記燃料噴射弁の開弁時期の変化に応じた燃料噴射量誤差を補償する開弁時期補償補正時間を算出する開弁時期補償補正時間算出手段と、前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償するための燃料噴射率補償補正量を、燃料噴射過程における燃料噴射率の燃料噴射量に対する寄与の違いに応じて算出する補正量算出手段と、前記補正量算出手段にて算出された燃料噴射率補償補正量を、燃料噴射時における推定燃料噴射率に基づいて燃料噴射時間に変換することで、燃料噴射率補償補正時間を算出する燃料噴射率補償補正時間算出手段と、前記直噴式内燃機関の運転状態に基づいて要求燃料噴射量に対応する燃料噴射時間を算出する燃料噴射時間算出手段と、前記開弁時期補償補正時間算出手段にて算出された開弁時期補償補正時間と前記燃料噴射率補償補正時間算出手段にて算出された燃料噴射率補償補正時間とを含む補正時間により、前記燃料噴射時間算出手段にて算出された燃料噴射時間を補正する燃料噴射時間補正手段とを備え、前記補正量算出手段は、燃料噴射過程における燃料噴射率の寄与の違いに応じて、前記燃料噴射弁の開閉弁駆動過渡期間と全開期間とに区分して、前記開閉弁駆動過渡期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する過渡期間燃料噴射率補償補正量と、前記全開期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する全開期間燃料噴射率補償補正量とを算出して、前記燃料噴射率補償補正量とすることを特徴とする。
As a result, in the direct injection internal combustion engine, highly accurate fuel injection control can be realized in consideration of the difference in contribution of the fuel injection rate.
3. A fuel injection control device for a direct injection internal combustion engine according to claim 2, wherein the direct injection internal combustion engine performs fuel injection by compensating for a fuel injection amount error from a fuel injection valve into a cylinder generated based on a pressure factor in fuel injection. The fuel injection control apparatus according to claim 1, wherein the valve opening timing compensation correction is performed to calculate a valve opening timing compensation correction time that compensates for a fuel injection amount error in accordance with a change in the valve opening timing of the fuel injection valve that occurs based on the pressure factor. and time calculation means, the fuel injection rate compensation correction amount for compensating for the fuel injection quantity error corresponding to the change in the fuel injection rate arising under the pressure factors, contributing to the fuel injection quantity of the fuel injection rate in the fuel injection process Correction amount calculation means calculated according to the difference between the two, and the fuel injection rate compensation correction amount calculated by the correction amount calculation means is converted into fuel injection time based on the estimated fuel injection rate at the time of fuel injection The fuel injection rate compensation correction time calculating means for calculating the fuel injection rate compensation correction time, and the fuel injection time calculation for calculating the fuel injection time corresponding to the required fuel injection amount based on the operating state of the direct injection internal combustion engine And a correction time including a valve opening timing compensation correction time calculated by the valve opening timing compensation correction time calculation means and a fuel injection rate compensation correction time calculated by the fuel injection rate compensation correction time calculation means. And a fuel injection time correcting means for correcting the fuel injection time calculated by the fuel injection time calculating means, the correction amount calculating means according to the difference in contribution of the fuel injection rate in the fuel injection process, A fuel injection amount error corresponding to a change in the fuel injection rate caused by the pressure factor during the on-off valve drive transition period is compensated by dividing into a fuel injection valve on-off valve drive transition period and a fully open period. A transition period fuel injection rate compensation correction amount and a fully open period fuel injection rate compensation correction amount that compensates for a fuel injection amount error in accordance with a change in the fuel injection rate that occurs based on the pressure factor in the fully open period; The fuel injection rate compensation correction amount is used .

開弁時期補償補正時間算出手段を設けることで、圧力要因に基づいて生じる燃料噴射弁の開弁時期の変化に応じた燃料噴射量誤差を補償する開弁時期補償補正時間を算出している。そして、この開弁時期補償補正時間と前述した燃料噴射率補償補正時間とを含む補正時間により、燃料噴射時間を補正している。   By providing the valve opening timing compensation correction time calculation means, the valve opening timing compensation correction time for compensating for the fuel injection amount error in accordance with the change in the valve opening timing of the fuel injector caused based on the pressure factor is calculated. The fuel injection time is corrected by a correction time including the valve opening timing compensation correction time and the fuel injection rate compensation correction time described above.

燃料噴射弁によっては、圧力要因の変化により開弁時期が変化する場合がある。このような場合に開弁時期補償補正時間算出手段にて開弁時期補償補正時間を求めて、請求項1にて説明した燃料噴射率補償補正時間と共に燃料噴射時間を補正することで、圧力要因の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。   Depending on the fuel injection valve, the valve opening timing may change due to a change in pressure factor. In such a case, the valve opening timing compensation correction time calculation means obtains the valve opening timing compensation correction time, and corrects the fuel injection time together with the fuel injection rate compensation correction time described in claim 1 to obtain a pressure factor. Accordingly, the fuel injection amount can be appropriately corrected based on the difference, and the control accuracy of the fuel injection amount can be improved.

そして開弁時期補償補正時間と燃料噴射率補償補正時間とを含む補正時間による燃料噴射時間に対する補正であるので、現実の燃料噴射時の状況に対応して要求燃料噴射量に合致する正確な燃料噴射時間の設定が可能となる。   Since the fuel injection time is corrected by the correction time including the valve opening timing compensation correction time and the fuel injection rate compensation correction time, an accurate fuel that matches the required fuel injection amount corresponding to the actual fuel injection situation The injection time can be set.

このことにより、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して高精度な燃料噴射制御を実現することができる。
請求項3に記載の直噴式内燃機関の燃料噴射制御装置では、請求項1又は2において、前記推定燃料噴射率は、予め、筒内圧力、燃料圧力及び前記要求燃料噴射量をパラメータとするマップから、燃料噴射時における実際の筒内圧力、燃料圧力及び前記要求燃料噴射量に基づいて算出されることを特徴とする。
As a result, in the direct injection internal combustion engine, highly accurate fuel injection control can be realized in consideration of the difference in contribution of the fuel injection rate.
The fuel injection control device for a direct injection internal combustion engine according to claim 3, wherein the estimated fuel injection rate is a map in which the in-cylinder pressure, the fuel pressure, and the required fuel injection amount are parameters in advance. From the actual in-cylinder pressure at the time of fuel injection, fuel pressure, and the required fuel injection amount.

このようなマップを予め備えておくことにより、現実の燃料噴射時の状況に対応して容易にかつ正確に、燃料噴射率補償補正量を燃料噴射率補償補正時間に変換することができるので、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して高精度な燃料噴射制御を実現することができる。   By preparing such a map in advance, it is possible to easily and accurately convert the fuel injection rate compensation correction amount into the fuel injection rate compensation correction time according to the actual fuel injection situation. In a direct injection internal combustion engine, highly accurate fuel injection control can be realized in consideration of the difference in contribution of the fuel injection rate.

請求項4に記載の直噴式内燃機関の燃料噴射制御装置では、請求項1〜3のいずれかにおいて、前記圧力要因とは筒内圧力及び燃料圧力であることを特徴とする。
より具体的には圧力要因としては筒内圧力及び燃料圧力を用いる。このことにより上述した構成によって、筒内圧力及び燃料圧力の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。
In a fuel injection control device for a direct injection internal combustion engine according to a fourth aspect, in any one of the first to third aspects, the pressure factors are an in-cylinder pressure and a fuel pressure.
More specifically, in-cylinder pressure and fuel pressure are used as pressure factors. With this configuration, the fuel injection amount can be appropriately corrected based on the difference between the in-cylinder pressure and the fuel pressure, and the control accuracy of the fuel injection amount can be improved.

請求項に記載の直噴式内燃機関の燃料噴射制御装置では、請求項2において、前記圧力要因とは筒内圧力及び燃料圧力であり、前記開弁時期補償補正時間算出手段は、前記開弁時期補償補正時間を、燃料噴射時における実際の筒内圧力と標準筒内圧力との差と、実際の燃料圧力の値に基づいて求めた噴射時期補正係数との積に基づいて算出することを特徴とする。 6. The fuel injection control device for a direct injection internal combustion engine according to claim 5 , wherein the pressure factors are in-cylinder pressure and fuel pressure, and the valve opening timing compensation correction time calculating means The timing compensation correction time is calculated based on the product of the difference between the actual in-cylinder pressure and the standard in-cylinder pressure at the time of fuel injection and the injection timing correction coefficient obtained based on the actual fuel pressure value. Features.

開弁時期補償補正時間については、燃料噴射時における実際の筒内圧力と標準筒内圧力との差と、実際の燃料圧力の値に基づいて求めた噴射時期補正係数との積に基づいて算出することができる。このようにして求めた開弁時期補償補正時間と燃料噴射率補償補正時間とを含む補正時間により燃料噴射時間を補正することにより、圧力要因の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。   The valve opening timing compensation correction time is calculated based on the product of the difference between the actual in-cylinder pressure and the standard in-cylinder pressure at the time of fuel injection and the injection timing correction coefficient obtained based on the actual fuel pressure value. can do. By correcting the fuel injection time by the correction time including the valve opening timing compensation correction time and the fuel injection rate compensation correction time obtained in this way, the fuel injection amount is appropriately corrected based on the difference in pressure factors. As a result, the control accuracy of the fuel injection amount can be improved.

請求項に記載の直噴式内燃機関の燃料噴射制御装置では、請求項1〜のいずれかにおいて、前記圧力要因とは筒内圧力及び燃料圧力であり、前記補正量算出手段は、実際の燃料圧力と燃料噴射時における実際の筒内圧力との圧力差と、実際の燃料圧力と標準筒内圧力との圧力差との比に基づいて、標準燃料噴射率と実際の燃料噴射率との噴射率差と、標準燃料噴射率との比を表す変化燃料噴射率比を算出するとともに、前記全開期間燃料噴射率補償補正量を前記変化燃料噴射率比と一次式の関係に基づいて算出し、前記過渡期間燃料噴射率補償補正量を前記変化燃料噴射率比と二次式の関係に基づいて算出することを特徴とする。 In the fuel injection control device for a direct injection internal combustion engine according to claim 6 , in any one of claims 1 to 5 , the pressure factors are in-cylinder pressure and fuel pressure, and the correction amount calculating means Based on the ratio between the pressure difference between the fuel pressure and the actual in-cylinder pressure at the time of fuel injection and the pressure difference between the actual fuel pressure and the standard in-cylinder pressure, the standard fuel injection rate and the actual fuel injection rate A change fuel injection rate ratio representing a ratio between the injection rate difference and the standard fuel injection rate is calculated, and the full-open period fuel injection rate compensation correction amount is calculated based on the relationship between the change fuel injection rate ratio and a primary expression. The fuel injection rate compensation correction amount during the transition period is calculated based on the relationship between the change fuel injection rate ratio and a quadratic expression.

前述したごとく過渡期間燃料噴射率補償補正量と全開期間燃料噴射率補償補正量とを算出する場合、過渡期間燃料噴射率補償補正量は変化燃料噴射率比と二次式の関係に基づいて算出でき、全開期間燃料噴射率補償補正量は変化燃料噴射率比と一次式の関係に基づいて算出できる。このことにより、これらの補正量を合計した燃料噴射率補償補正量は、正確な補正量となり、燃料噴射量の制御精度は高められることになる。   As described above, when calculating the transition period fuel injection rate compensation correction amount and the fully open period fuel injection rate compensation correction amount, the transient period fuel injection rate compensation correction amount is calculated based on the relationship between the change fuel injection rate ratio and the quadratic equation. The full-open period fuel injection rate compensation correction amount can be calculated based on the relationship between the change fuel injection rate ratio and the linear expression. Thus, the fuel injection rate compensation correction amount obtained by adding these correction amounts becomes an accurate correction amount, and the control accuracy of the fuel injection amount is improved.

請求項に記載の直噴式内燃機関の燃料噴射制御装置では、請求項3、又はにおいて、前記燃料噴射時における実際の筒内圧力は、燃料噴射時における推定値又は実測値であることを特徴とする。 It fuel injection control apparatus for a direct injection internal combustion engine according to claim 7, in claim 3, 5 or 6, the actual in-cylinder pressure during the fuel injection is an estimate or measured values at the time the fuel injection It is characterized by.

燃料噴射時における実際の筒内圧力は推定値でも良く、噴射時の実測から求めても良い。   The actual in-cylinder pressure at the time of fuel injection may be an estimated value or may be obtained from actual measurement at the time of injection.

[実施の形態1]
図1は、上述した発明が適用された車両用ディーゼルエンジン及びエンジン制御装置の概略構成図である。
[Embodiment 1]
FIG. 1 is a schematic configuration diagram of a vehicle diesel engine and an engine control device to which the above-described invention is applied.

ディーゼルエンジン2は複数気筒、例えば4気筒あるいは6気筒からなるエンジンである。各気筒の燃焼室4は吸気弁6にて開閉される吸気ポート8及び吸気マニホールド10を介してサージタンク12に連結されている。そしてサージタンク12は、吸気経路14を介してエアクリーナあるいは過給機側から空気が供給されている。尚、サージタンク12には、排気再循環(以下、「EGR」と称する)経路16からEGRガスが供給されている。そして吸気経路14にはスロットル弁18が配置され、スロットル弁18とサージタンク12との間には吸気温センサ20が配置されている。尚、スロットル弁18にはスロットル開度検出のためのスロットル開度センサ18aと弁駆動のためのモータ18bとが設けられ、サージタンク12には内部の吸気圧Pinを検出するための吸気圧センサ21が設けられている。   The diesel engine 2 is an engine having a plurality of cylinders, for example, 4 cylinders or 6 cylinders. The combustion chamber 4 of each cylinder is connected to a surge tank 12 via an intake port 8 and an intake manifold 10 that are opened and closed by an intake valve 6. The surge tank 12 is supplied with air from the air cleaner or the supercharger side via the intake passage 14. The surge tank 12 is supplied with EGR gas from an exhaust gas recirculation (hereinafter referred to as “EGR”) path 16. A throttle valve 18 is disposed in the intake path 14, and an intake air temperature sensor 20 is disposed between the throttle valve 18 and the surge tank 12. The throttle valve 18 is provided with a throttle opening sensor 18a for detecting the throttle opening and a motor 18b for driving the valve, and the surge tank 12 has an intake pressure sensor for detecting the internal intake pressure Pin. 21 is provided.

燃焼室4は排気弁22にて開閉される排気ポート24及び排気マニホールド26を介して排気浄化触媒あるいは過給機側へ排気を排出している。尚、排気マニホールド26には、EGR経路16へEGRガスとして排気が供給されている。   The combustion chamber 4 discharges exhaust gas to the exhaust purification catalyst or the supercharger side through an exhaust port 24 opened and closed by an exhaust valve 22 and an exhaust manifold 26. The exhaust manifold 26 is supplied with exhaust gas as EGR gas to the EGR path 16.

気筒毎に設けられて各燃焼室4内に直接燃料を噴射する燃料噴射弁28は、燃料供給管30を介してコモンレール32に連結されている。このコモンレール32内へは電気制御式の吐出量可変燃料ポンプ34から燃料が供給され、燃料ポンプ34からコモンレール32内に供給された高圧燃料は各燃料供給管30を介して各燃料噴射弁28に分配供給される。尚、コモンレール32には燃料圧力Pf(いわゆるレール圧)を検出するための燃料圧力センサ36が取り付けられている。   A fuel injection valve 28 provided for each cylinder and directly injecting fuel into each combustion chamber 4 is connected to a common rail 32 via a fuel supply pipe 30. Fuel is supplied into the common rail 32 from an electrically controlled discharge variable fuel pump 34, and the high-pressure fuel supplied from the fuel pump 34 into the common rail 32 is supplied to each fuel injection valve 28 via each fuel supply pipe 30. Distributed supply. A fuel pressure sensor 36 for detecting a fuel pressure Pf (so-called rail pressure) is attached to the common rail 32.

電子制御ユニット(以下「ECU」と称する)40はCPU、ROM、RAM等を備えたデジタルコンピュータと、各装置を駆動するための駆動回路とを主体として構成されている。そしてECU40は前述した吸気温センサ20、吸気圧センサ21、燃料圧力センサ36及びスロットル開度センサ18aの信号を読み込んでいる。更にアクセルペダル42の踏み込み量(アクセル開度ACCP)を検出するアクセル開度センサ44、及びディーゼルエンジン2の冷却水温度THWを検出する冷却水温センサ46から信号を読み込んでいる。更に、クランク軸48の回転数(以下、「エンジン回転数NE」と称する)を検出するエンジン回転数センサ50、クランク軸48の回転位相あるいは吸気カムの回転位相を検出して基準クランク角信号G2を出力する気筒判別センサ52から信号を読み込んでいる。   An electronic control unit (hereinafter referred to as “ECU”) 40 is mainly configured by a digital computer including a CPU, a ROM, a RAM, and the like, and a drive circuit for driving each device. The ECU 40 reads signals from the intake air temperature sensor 20, the intake pressure sensor 21, the fuel pressure sensor 36, and the throttle opening sensor 18a. Further, signals are read from an accelerator opening sensor 44 that detects the amount of depression of the accelerator pedal 42 (accelerator opening ACCP) and a cooling water temperature sensor 46 that detects the cooling water temperature THW of the diesel engine 2. Further, an engine speed sensor 50 for detecting the rotational speed of the crankshaft 48 (hereinafter referred to as “engine speed NE”), the rotational phase of the crankshaft 48 or the rotational phase of the intake cam, and the reference crank angle signal G2 are detected. Is read from the cylinder discrimination sensor 52 that outputs.

そしてこれらの信号から得られるエンジン運転状態や操作状態に基づいて、ECU40は燃料噴射弁28による燃料噴射制御を実行する。その他、モータ18bによるスロットル開度制御、燃料ポンプ34の吐出量制御等を実行する。   The ECU 40 executes fuel injection control by the fuel injection valve 28 based on the engine operation state and the operation state obtained from these signals. In addition, throttle opening control by the motor 18b, discharge amount control of the fuel pump 34, and the like are executed.

ここで燃料噴射弁28の構造及び動作について説明する。図2に示すごとく燃料噴射弁28は本体62、ニードル弁64及びコイルスプリング66を備えている。ニードル弁64とコイルスプリング66とは本体62内部に収納され、本体62の先端には燃料噴射孔68が形成されている。ニードル弁64は軸方向に進退移動可能であり、進出時にはシート部70に着座することにより燃料噴射孔68を閉じ、後退時にはシート部70から離れることにより燃料噴射孔68を開く。コイルスプリング66はニードル弁64を閉弁方向、すなわち燃料噴射孔68の方向に付勢している。尚、燃料噴射孔68とシート部70との間にはサック室72が形成されている。   Here, the structure and operation of the fuel injection valve 28 will be described. As shown in FIG. 2, the fuel injection valve 28 includes a main body 62, a needle valve 64, and a coil spring 66. The needle valve 64 and the coil spring 66 are housed inside the main body 62, and a fuel injection hole 68 is formed at the tip of the main body 62. The needle valve 64 can move forward and backward in the axial direction, and closes the fuel injection hole 68 by sitting on the seat portion 70 when moving forward, and opens the fuel injection hole 68 by moving away from the seat portion 70 when moving backward. The coil spring 66 urges the needle valve 64 in the valve closing direction, that is, in the direction of the fuel injection hole 68. A sac chamber 72 is formed between the fuel injection hole 68 and the seat portion 70.

更に、本体62には、第1燃料供給路74、第1燃料供給路74から分岐している第2燃料供給路76、燃料排出路78、制御室80及び燃料溜82が形成されている。第1燃料供給路74は、燃料供給管30(図1)を介してコモンレール32から所定圧力に調節されて供給されてくる高圧燃料を燃料溜82へ導いている。第2燃料供給路76は、コモンレール32からの高圧燃料を制御室80へ導いている。燃料排出路78は、制御室80内の圧力を低下させる際に制御室80内の高圧燃料を排出する機能を果たす。尚、第2燃料供給路76にはインレットオリフィス76aが設けられて、制御室80への燃料流入量を決定している。燃料排出路78にはアウトレットオリフィス78aが設けられて、制御室80からの燃料排出量を決定している。尚、アウトレットオリフィス78aの通路断面積は、インレットオリフィス76aよりも大きく設定されている。   Further, the main body 62 is formed with a first fuel supply path 74, a second fuel supply path 76 branched from the first fuel supply path 74, a fuel discharge path 78, a control chamber 80, and a fuel reservoir 82. The first fuel supply path 74 guides high-pressure fuel supplied from the common rail 32 to a predetermined pressure through the fuel supply pipe 30 (FIG. 1) and supplied to the fuel reservoir 82. The second fuel supply path 76 guides the high pressure fuel from the common rail 32 to the control chamber 80. The fuel discharge path 78 functions to discharge high-pressure fuel in the control chamber 80 when the pressure in the control chamber 80 is reduced. The second fuel supply passage 76 is provided with an inlet orifice 76a to determine the amount of fuel flowing into the control chamber 80. An outlet orifice 78 a is provided in the fuel discharge path 78 to determine the amount of fuel discharged from the control chamber 80. The passage sectional area of the outlet orifice 78a is set larger than that of the inlet orifice 76a.

ニードル弁64は、メインピストン64aとサブピストン64bとを備えている。メインピストン64aは制御室80からの燃料圧力を受けてニードル弁64を閉弁方向への駆動力Fmを発生する。サブピストン64bは燃料溜82からの燃料圧力を受けてニードル弁64を開弁方向への駆動力Fsを発生する。サブピストン64bが燃料溜82から受ける燃料圧力の受圧面積はメインピストン64aが制御室80から受ける燃料圧力の受圧面積よりも小さく設定されている。   The needle valve 64 includes a main piston 64a and a sub piston 64b. The main piston 64a receives the fuel pressure from the control chamber 80 and generates a driving force Fm in the valve closing direction of the needle valve 64. The sub-piston 64b receives the fuel pressure from the fuel reservoir 82 and generates a driving force Fs for opening the needle valve 64 in the valve opening direction. The pressure receiving area of the fuel pressure received by the sub piston 64b from the fuel reservoir 82 is set smaller than the pressure receiving area of the fuel pressure received by the main piston 64a from the control chamber 80.

ここでコイルスプリング66から付勢力Fcが与えられているとすると、定常時はFm+Fc>Fs、Fc<Fsとなるように設定されている。
アウトレットオリフィス78a部分には燃料排出路78を開閉制御する排圧制御弁84が設けられている。この排圧制御弁84が閉弁されている時には制御室80からの高圧燃料の排出を阻止して制御室80内を高圧状態に維持する機能を果たす。そして排圧制御弁84が開弁された時には制御室80から高圧燃料が排出されるので制御室80内を低圧化する機能を果たす。この排圧制御弁84は電磁弁にて構成されている。
Here, assuming that the urging force Fc is applied from the coil spring 66, Fm + Fc> Fs and Fc <Fs are set in a steady state.
A discharge pressure control valve 84 for controlling opening and closing of the fuel discharge path 78 is provided at the outlet orifice 78a portion. When the exhaust pressure control valve 84 is closed, it functions to prevent discharge of high-pressure fuel from the control chamber 80 and maintain the inside of the control chamber 80 in a high-pressure state. When the exhaust pressure control valve 84 is opened, high pressure fuel is discharged from the control chamber 80, so that the function of reducing the pressure in the control chamber 80 is achieved. The exhaust pressure control valve 84 is constituted by an electromagnetic valve.

排圧制御弁84が閉弁駆動されていれば、制御室80内の燃料圧力が上昇しているので、Fm+Fc>Fsであり、メインピストン64aが燃料噴射孔68側に押されてニードル弁64はシート部70に着座しており燃料噴射弁28は閉弁状態を維持する。   If the exhaust pressure control valve 84 is driven to close, the fuel pressure in the control chamber 80 has risen, so Fm + Fc> Fs, and the main piston 64a is pushed toward the fuel injection hole 68 and the needle valve 64 is driven. Is seated on the seat portion 70 and the fuel injection valve 28 is kept closed.

ECU40により排圧制御弁84が開弁駆動されると、燃料排出路78を介して制御室80内の燃料が排出され、しかもインレットオリフィス76aよりもアウトレットオリフィス78aの通路断面積が大きく設定されているため、制御室80内の燃料圧力は低下する。このため閉弁方向の駆動力Fmは小さくなる。   When the exhaust pressure control valve 84 is driven to open by the ECU 40, the fuel in the control chamber 80 is discharged through the fuel discharge path 78, and the passage sectional area of the outlet orifice 78a is set larger than the inlet orifice 76a. Therefore, the fuel pressure in the control chamber 80 decreases. For this reason, the driving force Fm in the valve closing direction becomes small.

このことによりFm+Fc<Fsとなるとニードル弁64がリフトを開始してシート部70から離れることで燃料噴射孔68から燃料噴射が開始される。そしてリフト開始から最大リフト(フルリフト)まで次第に燃料噴射率(mm3/μsec)が上昇し、全開すなわち最大リフトにて、最大の燃料噴射率となる。   Thus, when Fm + Fc <Fs, the needle valve 64 starts to lift and is separated from the seat portion 70, so that fuel injection is started from the fuel injection hole 68. The fuel injection rate (mm 3 / μsec) gradually increases from the lift start to the maximum lift (full lift), and reaches the maximum fuel injection rate when fully opened, that is, at the maximum lift.

閉弁時にはECU40により排圧制御弁84が閉弁駆動されることにより燃料排出路78が閉じられて制御室80の燃料圧力が上昇し、Fm+Fc>Fsとなることによりニードル弁64のリフト量が小さくなり、最終的にシート部70に着座することで燃料噴射孔68からの燃料噴射は停止する。   When the valve is closed, the exhaust pressure control valve 84 is driven to close by the ECU 40, the fuel discharge path 78 is closed, the fuel pressure in the control chamber 80 rises, and the lift amount of the needle valve 64 is increased by Fm + Fc> Fs. The fuel injection from the fuel injection hole 68 stops when the seat becomes smaller and finally sits on the seat portion 70.

次に、本実施の形態において、ECUにより実行される制御のうち、燃料噴射制御処理について説明する。図3,4に燃料噴射制御処理のフローチャートを示す。本処理は燃料噴射間隔の周期で、ここで4気筒エンジンであるとすると180°CA(CA:クランク角)毎に割り込み実行される。なお個々の処理内容に対応するフローチャート中のステップを「S〜」で表す。   Next, fuel injection control processing in the control executed by the ECU in the present embodiment will be described. 3 and 4 show flowcharts of the fuel injection control process. This process is a cycle of the fuel injection interval, and if it is a four-cylinder engine, an interruption is executed every 180 ° CA (CA: crank angle). The steps in the flowchart corresponding to the individual processing contents are represented by “S˜”.

本処理が開始されると、まず1噴射当たりの基本燃料噴射量Qbs(mm3)が設定される(S102)。例えばECU40内に記憶されているガバナパターンに従ってアクセル開度ACCPとエンジン回転数NEとから基本燃料噴射量Qbsが求められる。   When this process is started, first, a basic fuel injection amount Qbs (mm3) per injection is set (S102). For example, the basic fuel injection amount Qbs is obtained from the accelerator opening ACCP and the engine speed NE according to the governor pattern stored in the ECU 40.

次にこの基本燃料噴射量Qbsが、図5に実線にて示した燃料噴射時間変換マップMaptbsに基づいて基本燃料噴射量Qbsから基本燃料噴射時間Tbs(μsec)が算出される(S104)。例えば基本燃料噴射量Qbs=QAであれば図5に示したごとく基本燃料噴射時間Tbs=TAが求められる。   Next, the basic fuel injection amount Qbs is calculated from the basic fuel injection amount Qbs based on the fuel injection time conversion map Mapts shown by the solid line in FIG. 5 (S104). For example, if the basic fuel injection amount Qbs = QA, the basic fuel injection time Tbs = TA is obtained as shown in FIG.

この燃料噴射時間変換マップMaptbsは予め標準の燃料噴射弁により標準筒内圧力Ps(例えば1MPa)下で燃料圧力Pfを変更することで燃料噴射量と燃料噴射時間との関係を測定してマップ化したものである。尚、図5は現在の燃料圧力Pf下での燃料噴射量と燃料噴射時間との関係を表しているのであり、燃料圧力Pfが変化した場合には実線部分も変化する。   This fuel injection time conversion map Mapts is previously mapped by measuring the relationship between the fuel injection amount and the fuel injection time by changing the fuel pressure Pf under the standard in-cylinder pressure Ps (for example, 1 MPa) using a standard fuel injection valve. It is a thing. FIG. 5 shows the relationship between the fuel injection amount and the fuel injection time under the current fuel pressure Pf. When the fuel pressure Pf changes, the solid line portion also changes.

次に燃料噴射時期θiがTDCなどの基準クランク角に対する進角値(°CA)として設定される(S106)。これは基本燃料噴射量Qbs(あるいは基本燃料噴射時間Tbs)とエンジン回転数NEとに基づいて燃料噴射時期マップから設定される。この燃料噴射時期マップは最適燃焼のためにエンジンの種類に応じて予め実験などに基づいて設定されているものである。   Next, the fuel injection timing θi is set as an advance value (° CA) with respect to a reference crank angle such as TDC (S106). This is set from the fuel injection timing map based on the basic fuel injection amount Qbs (or basic fuel injection time Tbs) and the engine speed NE. This fuel injection timing map is set based on experiments and the like in advance according to the type of engine for optimal combustion.

燃料噴射時期θiが設定されると、次に図6に示した容積比マップMapvrから燃料噴射時期θiに基づいて、燃料噴射時期θiでの燃焼室4の容積比Rvが算出される(S108)。例えば燃料噴射時期θi=θAであれば図6に示したごとく容積比Rv=RAが求められる。   When the fuel injection timing θi is set, the volume ratio Rv of the combustion chamber 4 at the fuel injection timing θi is calculated based on the fuel injection timing θi from the volume ratio map Mapvr shown in FIG. 6 (S108). . For example, if the fuel injection timing θi = θA, the volume ratio Rv = RA is obtained as shown in FIG.

この容積比マップMapvrは、燃焼室4の最大容積Vmと該当クランク角での燃焼室4の容積Viとの比Vm/Viを表しているものであり、理論計算や実験にて設定されている。   This volume ratio map Mapvr represents the ratio Vm / Vi between the maximum volume Vm of the combustion chamber 4 and the volume Vi of the combustion chamber 4 at the corresponding crank angle, and is set by theoretical calculation or experiment. .

容積比Rvが求められると、次にこの容積比Rvと吸気圧センサ21にて検出されている吸気圧Pinとにより燃料噴射開始時筒内圧力Picが式1のごとく算出される(S110)。   When the volume ratio Rv is obtained, the in-cylinder pressure Pic at the start of fuel injection is calculated as shown in Expression 1 based on the volume ratio Rv and the intake pressure Pin detected by the intake pressure sensor 21 (S110).

[式1] Pic ← Rv × Pin
この燃料噴射開始時筒内圧力Picは、今回燃料噴射対象となっている気筒において、該当する燃料噴射弁28から燃料噴射が開始される時の燃焼室4内の気圧を表している。
[Formula 1] Pic ← Rv × Pin
This in-cylinder pressure Pic at the start of fuel injection represents the atmospheric pressure in the combustion chamber 4 when fuel injection is started from the corresponding fuel injection valve 28 in the cylinder that is the current fuel injection target.

次に式2により差圧比Rdpが算出される(S112)。
[式2] Rdp ← (Pf−Pic)/(Pf−Ps)
ここで式2の右辺は、燃料噴射開始時に燃料噴射弁28に生じる差圧(Pf−Pic)と、標準状態での差圧(Pf−Ps)との比を表している。
Next, the differential pressure ratio Rdp is calculated by Equation 2 (S112).
[Formula 2] Rdp <-(Pf-Pic) / (Pf-Ps)
Here, the right side of Expression 2 represents the ratio between the differential pressure (Pf−Pic) generated in the fuel injection valve 28 at the start of fuel injection and the differential pressure (Pf−Ps) in the standard state.

次に燃料圧力Pfに基づいて折れ点マップMapqflから、図5に実線で示した燃料噴射時間変換マップMaptbsの折れ点Eにおける燃料噴射量Qflを求める(S114)。この折れ点マップMapqflは、例えば図7のごとく表される。   Next, the fuel injection amount Qfl at the break point E of the fuel injection time conversion map Mapts shown by the solid line in FIG. 5 is obtained from the break point map Mapqfl based on the fuel pressure Pf (S114). This break point map Mapqfl is expressed as shown in FIG. 7, for example.

図2において述べたごとく、燃料噴射弁28は燃料噴射開始時に全開(フルリフト)状態となって燃料を噴射するのではなく、開き始めから全開までに時間を要する。又、閉じる時にも一瞬にして全閉となるのではなく全開から全閉までに時間を要する。この現象を燃料噴射率(mm3/μsec)との関係で示すと図8のごとくとなる。このような開閉弁駆動過渡期間が存在するため、図5に示したごとく基本燃料噴射量Qbsに対する基本燃料噴射時間Tbsの関係が不連続に変化する折れ点Eが生じる。この折れ点Eの燃料噴射量を折れ点噴射量Qflとして、予め実験により燃料圧力Pfとの関係を、折れ点マップMapqfl(図7)として設定してある。   As described in FIG. 2, the fuel injection valve 28 is not fully injected (full lift) at the start of fuel injection and does not inject fuel, but takes time from the start of opening to the full opening. Also, when closing, it takes time from full opening to full closing, not instant closing. FIG. 8 shows this phenomenon in relation to the fuel injection rate (mm 3 / μsec). Since such an on-off valve drive transition period exists, as shown in FIG. 5, a breakpoint E occurs where the relationship of the basic fuel injection time Tbs to the basic fuel injection amount Qbs changes discontinuously. The fuel injection amount at the break point E is set as the break point injection amount Qfl, and the relationship with the fuel pressure Pf is previously set as a break point map Mapqfl (FIG. 7) through experiments.

次に差圧比Rdpに基づいて変化燃料噴射率比Rhが式3のごとく算出される(S116)。
[式3] Rh ← 1 − √(Rdp)
尚、右辺の「√()」は、図3のステップS116に表示しているごとく、()内の値の平方根を算出する演算子を表している。
Next, based on the differential pressure ratio Rdp, the changed fuel injection rate ratio Rh is calculated as shown in Equation 3 (S116).
[Formula 3] Rh ← 1-√ (Rdp)
Note that “√ ()” on the right side represents an operator for calculating the square root of the value in () as displayed in step S116 in FIG.

ここで1回の噴射において、図9の(A)に示すごとく実際の燃料噴射率パターン(実線)と標準の燃料噴射率パターン(一点鎖線)との間に差が存在するとする。全開期間の実際の噴射率rqと標準噴射率rQsとの差は「rQs−rq」で表される。この差(rQs−rq)と標準噴射率rQsとの比は式4に示すごとく計算される。   Here, it is assumed that there is a difference between the actual fuel injection rate pattern (solid line) and the standard fuel injection rate pattern (dashed line) in one injection as shown in FIG. The difference between the actual injection rate rq during the fully open period and the standard injection rate rQs is represented by “rQs−rq”. The ratio between the difference (rQs−rq) and the standard injection rate rQs is calculated as shown in Equation 4.

[式4] (rQs−rq)/rQs = 1 − rq/rQs
この内、実際と標準との噴射率比(rq/rQs)の二乗は、物理的関係により差圧比Rdpと等しいことが分かっている。
[Formula 4] (rQs−rq) / rQs = 1−rq / rQs
Of these, the square of the actual and standard injection rate ratio (rq / rQs) is known to be equal to the differential pressure ratio Rdp due to a physical relationship.

したがって、前記式3は前記式4と同等であり、前記式3で表される変化燃料噴射率比Rhは標準噴射率rQsに対する実際の噴射率rqの変化分割合を示していることになる。   Therefore, the equation 3 is equivalent to the equation 4, and the changed fuel injection rate ratio Rh represented by the equation 3 indicates the rate of change of the actual injection rate rq with respect to the standard injection rate rQs.

次に基本燃料噴射量Qbsが折れ点噴射量Qfl未満か否かが判定される(S118)。
ここで、まずQbs≧Qflの場合(S118でYES)について説明する。この場合には、図9の(A)に示した標準の噴射率パターン(一点鎖線)を、図9の(B)に示すごとく全開から全閉までの噴射率変化線と平行な破線で、全開までで噴射が終了した場合の燃料噴射量(折れ点噴射量Qflと同じ)と、全開以後の分の噴射量(Qbs−Qfl)とに分割する。この状態でハッチングで示す実際の噴射率パターン(実線)との燃料噴射量誤差(dQ1,dQ2)を算出する。
Next, it is determined whether or not the basic fuel injection amount Qbs is less than the break point injection amount Qfl (S118).
Here, first, a case where Qbs ≧ Qfl (YES in S118) will be described. In this case, the standard injection rate pattern (one-dot chain line) shown in FIG. 9A is a broken line parallel to the injection rate change line from fully open to fully closed as shown in FIG. The fuel injection amount when the injection is completed until the valve is fully opened (same as the break point injection amount Qfl) and the injection amount after the fully opening (Qbs−Qfl) are divided. In this state, the fuel injection amount error (dQ1, dQ2) from the actual injection rate pattern (solid line) indicated by hatching is calculated.

まず、式5により全開までで噴射が終了した場合の燃料噴射量における誤差である過渡期間燃料噴射率補償補正量dQ1を算出する(S120)。
[式5] dQ1 ← Qfl × Rh × Rh
図9の(B)において過渡期間燃料噴射率補償補正量dQ1は、「(rQs−rq)/rQs」の二乗に比例することから、式6のごとく「(rQs−rq)/rQs」の二次式で表される。
First, a transient period fuel injection rate compensation correction amount dQ1, which is an error in the fuel injection amount when the injection is completed until fully open, is calculated by Equation 5 (S120).
[Formula 5] dQ1 ← Qfl × Rh × Rh
In FIG. 9B, the fuel injection rate compensation correction amount dQ1 during the transition period is proportional to the square of “(rQs−rq) / rQs”, and therefore, “(rQs−rq) / rQs” 2 It is expressed by the following formula.

[式6] dQ1=
Qfl×{(rQs−rq)/rQs}×{(rQs−rq)/rQs}
したがって前記式3,4の関係から式6は前記式5と同等であり、前記式5のごとく変化燃料噴射率比Rhの二次式により過渡期間燃料噴射率補償補正量dQ1は算出できることになる。
[Formula 6] dQ1 =
Qfl × {(rQs−rq) / rQs} × {(rQs−rq) / rQs}
Therefore, from the relationship between the equations 3 and 4, equation 6 is equivalent to the equation 5, and the transient period fuel injection rate compensation correction amount dQ1 can be calculated by a quadratic equation of the change fuel injection rate ratio Rh as in the equation 5. .

次に式7により全開以後の分の燃料噴射量(Qbs−Qfl)における誤差である全開期間燃料噴射率補償補正量dQ2を算出する(S122)。
[式7] dQ2 ← (Qbs−Qfl)×Rh
図9の(B)において全開期間燃料噴射率補償補正量dQ2は、「(rQs−rq)/rQs」に比例することから、式8のごとく「(rQs−rq)/rQs」の一次式でで表される。
Next, a full-open period fuel injection rate compensation correction amount dQ2, which is an error in the fuel injection amount (Qbs−Qfl) for the part after the full opening, is calculated by Expression 7 (S122).
[Formula 7] dQ2 <-(Qbs−Qfl) × Rh
In FIG. 9B, the full-open period fuel injection rate compensation correction amount dQ2 is proportional to “(rQs−rq) / rQs”, and therefore is a linear expression of “(rQs−rq) / rQs” as shown in Equation 8. It is represented by

[式8] dQ2=(Qbs−Qfl)×(rQs−rq)/rQs
したがって前記式3,4の関係から式8は前記式7と同等であり、前記式7のごとく変化燃料噴射率比Rhの一次式により全開期間燃料噴射率補償補正量dQ2は算出できることになる。
[Formula 8] dQ2 = (Qbs−Qfl) × (rQs−rq) / rQs
Therefore, from the relationship between the equations 3 and 4, equation 8 is equivalent to the equation 7, and the full-open period fuel injection rate compensation correction amount dQ2 can be calculated by a linear equation of the change fuel injection rate ratio Rh as in the equation 7.

次に、Qbs<Qflの場合(S118でYES)について説明する。例えば、図5のQbs=QBの場合であり、ステップS104では基本燃料噴射時間Tbs=TBが求められている。   Next, the case where Qbs <Qfl (YES in S118) will be described. For example, this is the case of Qbs = QB in FIG. 5, and the basic fuel injection time Tbs = TB is obtained in step S104.

この場合には、過渡期間燃料噴射率補償補正量dQ1が式9に示すごとく算出される(S124)。
[式9] dQ1 ← Qbs × Rh × Rh
このQbs<Qflの場合においては、折れ点噴射量Qflと同じ値が基本燃料噴射量Qbsに設定された場合には、前記式5により「Qfl×Rh×Rh」の値が過渡期間燃料噴射率補償補正量dQ1となる。この場合、基本燃料噴射量Qbsが折れ点噴射量Qflより小さくなることに比例して、過渡期間燃料噴射率補償補正量dQ1が小さくなることが判明しているので、式10のごとくの関係が存在する。
In this case, the transition period fuel injection rate compensation correction amount dQ1 is calculated as shown in Equation 9 (S124).
[Formula 9] dQ1 ← Qbs × Rh × Rh
In the case of Qbs <Qfl, when the same value as the break point injection amount Qfl is set as the basic fuel injection amount Qbs, the value of “Qfl × Rh × Rh” is expressed by the above equation 5 as the fuel injection rate during the transient period. The compensation correction amount is dQ1. In this case, it has been found that the transient period fuel injection rate compensation correction amount dQ1 is reduced in proportion to the basic fuel injection amount Qbs being smaller than the break point injection amount Qfl. Exists.

[式10] Qbs/Qfl=dQ1/(Qfl×Rh×Rh)
式10から過渡期間燃料噴射率補償補正量dQ1は式11にて表される。
[式11] dQ1=(Qfl×Rh×Rh)×(Qbs/Qfl)
=Qbs × Rh × Rh
このようにして過渡期間燃料噴射率補償補正量dQ1は、前記式9のごとく変化燃料噴射率比Rhの二次式により算出できることになる。
[Formula 10] Qbs / Qfl = dQ1 / (Qfl × Rh × Rh)
From Expression 10, the transient period fuel injection rate compensation correction amount dQ1 is expressed by Expression 11.
[Formula 11] dQ1 = (Qfl × Rh × Rh) × (Qbs / Qfl)
= Qbs x Rh x Rh
In this way, the transient period fuel injection rate compensation correction amount dQ1 can be calculated by the quadratic expression of the change fuel injection ratio Rh as shown in the above equation 9.

そしてこの時は全開期間燃料噴射率補償補正量dQ2は存在しないので、全開期間燃料噴射率補償補正量dQ2に「0」を設定する(S126)。
次に今回燃料噴射がなされる燃料噴射弁28での推定燃料噴射率rqi(mm3/μsec)が、今回燃料噴射がなされる燃料噴射弁28に対して設定されている燃料噴射率マップMaprqから、燃料圧力Pf、基本燃料噴射量Qbs及び燃料噴射開始時筒内圧力Picに基づいて算出される(S128)。
At this time, since the fully open period fuel injection rate compensation correction amount dQ2 does not exist, “0” is set to the fully open period fuel injection rate compensation correction amount dQ2 (S126).
Next, the estimated fuel injection rate rqi (mm 3 / μsec) at the fuel injection valve 28 to which fuel injection is performed this time is calculated from the fuel injection rate map Maprq set for the fuel injection valve 28 to which fuel injection is performed this time. It is calculated based on the fuel pressure Pf, the basic fuel injection amount Qbs, and the in-cylinder pressure Pic at the start of fuel injection (S128).

各燃料噴射弁28については、それぞれの燃料噴射弁28の製造時に、燃料圧力、燃料噴射量及び筒内圧力をパラメータとして燃料噴射率データが実測されている。そしてディーゼルエンジン2に各燃料噴射弁28を組み付ける際に、各燃料噴射弁28に添付されたデータタグなどからECU40に対して読み込まれて燃料噴射率マップMaprqとしてマップ化されている。この燃料噴射弁28毎の燃料噴射率マップMaprqを用いて、噴射時点での推定燃料噴射率rqiが算出される。尚、燃料噴射弁28毎に設けられた他のマップについても同様に作成され、データタグなどからECU40に対して読み込まれている。   For each fuel injection valve 28, fuel injection rate data is measured using the fuel pressure, the fuel injection amount, and the in-cylinder pressure as parameters when the fuel injection valve 28 is manufactured. When each fuel injection valve 28 is assembled to the diesel engine 2, it is read into the ECU 40 from a data tag attached to each fuel injection valve 28 and is mapped as a fuel injection rate map Maprq. Using the fuel injection rate map Maprq for each fuel injection valve 28, the estimated fuel injection rate rqi at the time of injection is calculated. Note that other maps provided for each fuel injection valve 28 are similarly created and read from the data tag or the like to the ECU 40.

次に式12のごとく燃料噴射率補償補正時間dTh(μsec)を算出する(S130)。
[式12] dTh ← (dQ1 + dQ2)/rqi
次に開弁時期補償補正時間dTtを求めるための、噴射時期補正係数Kiを燃料圧力Pfをパラメータとして図10に示すマップMapkiから算出する(S132)。
Next, the fuel injection rate compensation correction time dTh (μsec) is calculated as shown in Expression 12 (S130).
[Formula 12] dTh ← (dQ1 + dQ2) / rqi
Next, the injection timing correction coefficient Ki for obtaining the valve opening timing compensation correction time dTt is calculated from the map Mapi shown in FIG. 10 using the fuel pressure Pf as a parameter (S132).

次に式13により開弁時期補償補正時間dTtを算出する(S134)。
[式13] dTt ← Ki × (Pic − Ps)
実際の筒内圧力である燃料噴射開始時筒内圧力Picと標準筒内圧力Psとの差(Pic−Ps)は、燃料噴射弁28の開弁時期のずれ(図9のΔTh)を生じさせるものであり、このずれの程度は燃料圧力Pfにより感度が変化する。したがってマップMapkiを予め実測により作成しておき、上記式13により算出される。
Next, the valve opening timing compensation correction time dTt is calculated by Equation 13 (S134).
[Formula 13] dTt <-Ki x (Pic-Ps)
The difference between the in-cylinder pressure Pic at the start of fuel injection, which is the actual in-cylinder pressure, and the standard in-cylinder pressure Ps (Pic−Ps) causes a shift in the opening timing of the fuel injection valve 28 (ΔTh in FIG. 9). The sensitivity of the degree of deviation varies depending on the fuel pressure Pf. Therefore, a map Mapki is prepared in advance by actual measurement, and is calculated by the above equation (13).

そして式14により、基本燃料噴射時間Tbsを、前述したごとく算出した燃料噴射率補償補正時間dTh及び開弁時期補償補正時間dTtと、更に無効噴射時間dTxとにより補正して、今回噴射対象の燃料噴射弁28に対する噴射時間(通電時間)Tauを算出する(S136)。   Then, using equation 14, the basic fuel injection time Tbs is corrected by the fuel injection rate compensation correction time dTh and valve opening timing compensation correction time dTt calculated as described above, and the invalid injection time dTx, and the fuel to be injected this time. An injection time (energization time) Tau for the injection valve 28 is calculated (S136).

[式14] Tau ← Tbs + dTh + dTt + dTx
そして燃料噴射時期θiに、噴射時間Tauの通電がなされるようにECU40において設定がなされて(S138)、本処理を一旦終了する。
[Formula 14] Tau <-Tbs + dTh + dTt + dTx
Then, at the fuel injection timing θi, a setting is made in the ECU 40 so that the energization for the injection time Tau is performed (S138), and this process is temporarily ended.

上述した構成において、請求項との関係は、燃料噴射制御処理(図3,4)のステップS132,S134が開弁時期補償補正時間算出手段としての処理に、ステップS118〜S126が補正量算出手段としての処理に相当する。更に、ステップS128,S130が燃料噴射率補償補正時間算出手段としての処理に、ステップS102,S104が燃料噴射時間算出手段としての処理に、ステップS136が燃料噴射時間補正手段としての処理に相当する。   In the configuration described above, the relationship with the claims is that steps S132 and S134 of the fuel injection control process (FIGS. 3 and 4) are processing as valve opening timing compensation correction time calculating means, and steps S118 to S126 are correction amount calculating means. It corresponds to the processing as. Further, steps S128 and S130 correspond to processing as fuel injection rate compensation correction time calculation means, steps S102 and S104 correspond to processing as fuel injection time calculation means, and step S136 corresponds to processing as fuel injection time correction means.

以上説明した本実施の形態1によれば、以下の効果が得られる。
(イ).燃料噴射制御処理(図3,4)のステップS118〜S126では、燃料噴射過程における燃料噴射率の寄与の違いに応じて、燃料噴射弁28の開閉弁駆動過渡期間と全開期間とに区分して燃料噴射率補償補正量を算出している。すなわち、開閉弁駆動過渡期間については過渡期間燃料噴射率補償補正量dQ1を算出し(S120,S124)、全開期間については全開期間燃料噴射率補償補正量dQ2を算出している(S122,S126)。
According to the first embodiment described above, the following effects can be obtained.
(I). In steps S118 to S126 of the fuel injection control process (FIGS. 3 and 4), the fuel injection valve 28 is divided into an on-off valve drive transient period and a full-open period according to the difference in the contribution of the fuel injection rate in the fuel injection process. The fuel injection rate compensation correction amount is calculated. That is, the transition period fuel injection rate compensation correction amount dQ1 is calculated for the on-off valve drive transition period (S120, S124), and the fully open period fuel injection rate compensation correction amount dQ2 is calculated for the fully open period (S122, S126). .

このため圧力要因(筒内圧力及び燃料圧力)の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。
そして過渡期間燃料噴射率補償補正量dQ1及び全開期間燃料噴射率補償補正量dQ2は、直接、燃料噴射量の補正に用いられるのではなく、推定燃料噴射率rqi(S128)に基づいて燃料噴射率補償補正時間dThに変換して(S130)、基本燃料噴射時間Tbsに対する補正を実行している(S136)。このため、現実の燃料噴射時の状況に対応して要求燃料噴射量に合致する正確な燃料噴射時間Tauの設定が可能となる。
For this reason, the fuel injection amount can be appropriately corrected based on the difference between the pressure factors (in-cylinder pressure and fuel pressure), and the control accuracy of the fuel injection amount can be improved.
The transient period fuel injection rate compensation correction amount dQ1 and the fully open period fuel injection rate compensation correction amount dQ2 are not directly used for correcting the fuel injection amount, but based on the estimated fuel injection rate rqi (S128). Conversion to the compensation correction time dTh (S130), and correction for the basic fuel injection time Tbs is executed (S136). For this reason, it is possible to set an accurate fuel injection time Tau that matches the required fuel injection amount in accordance with the actual situation at the time of fuel injection.

更に、圧力要因に基づいて生じる燃料噴射弁28の開弁時期の変化に応じた燃料噴射量誤差を補償する開弁時期補償補正時間dTtを、噴射時期補正係数Kiと(Pic−Ps)との積により算出している(S132,S134)。そして、前述した燃料噴射率補償補正時間dThと共に、この開弁時期補償補正時間dTtによる補正を行っている(S136)。   Further, the valve opening timing compensation correction time dTt for compensating for the fuel injection amount error in accordance with the change in the valve opening timing of the fuel injection valve 28 caused based on the pressure factor is expressed as the injection timing correction coefficient Ki and (Pic-Ps). It is calculated by the product (S132, S134). Then, the correction based on the valve opening timing compensation correction time dTt is performed together with the fuel injection rate compensation correction time dTh described above (S136).

本燃料噴射弁28は、圧力要因の変化により開弁時期が変化する。したがって開弁時期補償補正時間dTtを加味して燃料噴射時間を補正することで、より適切に圧力要因の差異に基づいて適切に燃料噴射量を補正することができるようになり、燃料噴射量の制御精度は高められることになる。   The opening timing of the fuel injection valve 28 changes due to a change in the pressure factor. Accordingly, by correcting the fuel injection time in consideration of the valve opening timing compensation correction time dTt, it becomes possible to more appropriately correct the fuel injection amount based on the difference in pressure factor, and Control accuracy will be improved.

こうして、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して高精度な燃料噴射制御を実現することができる。
(ロ).推定燃料噴射率rqiは、燃料噴射率マップMaprqから、燃料圧力Pf、要求燃料噴射量に相当する基本燃料噴射量Qbs及び燃料噴射開始時筒内圧力Picに基づいて算出される。このような燃料噴射率マップMaprqが予め燃料噴射弁28毎に備えられているので、現実の燃料噴射時の状況に対応して容易にかつ正確に、過渡期間燃料噴射率補償補正量dQ1及び全開期間燃料噴射率補償補正量dQ2を燃料噴射率補償補正時間dThに変換することができる。したがって、直噴式内燃機関において、燃料噴射率の寄与の違いを考慮して、より高精度な燃料噴射制御を実現することができる。
Thus, in the direct injection internal combustion engine, highly accurate fuel injection control can be realized in consideration of the difference in contribution of the fuel injection rate.
(B). The estimated fuel injection rate rqi is calculated from the fuel injection rate map Maprq based on the fuel pressure Pf, the basic fuel injection amount Qbs corresponding to the required fuel injection amount, and the fuel injection start cylinder pressure Pic. Since such a fuel injection rate map Maprq is provided for each fuel injection valve 28 in advance, the fuel injection rate compensation correction amount dQ1 and the fully-opened fuel injection rate compensation correction amount can be easily and accurately corresponding to the actual fuel injection situation. The period fuel injection rate compensation correction amount dQ2 can be converted into the fuel injection rate compensation correction time dTh. Therefore, in the direct injection internal combustion engine, more accurate fuel injection control can be realized in consideration of the difference in contribution of the fuel injection rate.

(ハ).ステップS118〜S126にて説明したごとく、過渡期間燃料噴射率補償補正量dQ1は、変化燃料噴射率比Rhと二次式の関係に基づいて算出し、全開期間燃料噴射率補償補正量dQ2は変化燃料噴射率比Rhと一次式の関係に基づいて算出できる。このことにより全体の燃料噴射率補償補正量(dQ1+dQ2)を容易に算出することが可能となる。   (C). As described in steps S118 to S126, the transient period fuel injection rate compensation correction amount dQ1 is calculated based on the relationship between the change fuel injection rate ratio Rh and the quadratic equation, and the fully open period fuel injection rate compensation correction amount dQ2 varies. It can be calculated based on the relationship between the fuel injection rate ratio Rh and the linear expression. This makes it possible to easily calculate the entire fuel injection rate compensation correction amount (dQ1 + dQ2).

[その他の実施の形態]
(a).前記実施の形態1においては、図2に示したごとく燃料噴射弁28が制御室80を備えていたが、制御室80が存在しない直動タイプの燃料噴射弁では、燃料噴射弁の開弁時期のずれ(図9のΔTh)は生じないので開弁時期補償補正時間dTtを算出する必要はない。したがってこの場合には燃料噴射制御処理(図3,4)のステップS132,S134の処理は不要である。したがってステップS136での噴射時間Tauの算出は、式15のごとくとなる。
[Other embodiments]
(A). In the first embodiment, as shown in FIG. 2, the fuel injection valve 28 includes the control chamber 80. However, in the direct-acting type fuel injection valve in which the control chamber 80 does not exist, the fuel injection valve opening timing is shown. Since there is no deviation (ΔTh in FIG. 9), it is not necessary to calculate the valve opening timing compensation correction time dTt. Therefore, in this case, steps S132 and S134 of the fuel injection control process (FIGS. 3 and 4) are unnecessary. Therefore, the calculation of the injection time Tau in step S136 is as shown in Equation 15.

[式15] Tau ← Tbs + dTh + dTx
このような燃料噴射弁による燃料噴射制御においても、開弁時期補償補正の部分を除いて、前記実施の形態1の(イ)〜(ハ)の効果を生じる。
[Formula 15] Tau <-Tbs + dTh + dTx
In such fuel injection control by the fuel injection valve, the effects (a) to (c) of the first embodiment are produced except for the valve opening timing compensation correction portion.

(b).前記実施の形態1では、Qbs<Qflの時には前記式9により過渡期間燃料噴射率補償補正量dQ1を算出したが、これ以外の手法として次のごとくに算出しても良い。   (B). In the first embodiment, when Qbs <Qfl, the transient period fuel injection rate compensation correction amount dQ1 is calculated by the above equation 9, but it may be calculated as follows as another method.

すなわち図2に示したニードル弁64が全開(フルリフト)に至らない場合のごとく、開度(リフト量)が小さい状態で行われる燃料噴射においては、燃料噴射が行われた場合の実際の燃料噴射圧力であるサック室72内の燃料圧力は燃料圧力Pf(レール圧)に達していない。このためサック室72内の燃料圧力を推定して過渡期間燃料噴射率補償補正量dQ1を求めることができる。   That is, in the case of fuel injection performed in a state where the opening degree (lift amount) is small as in the case where the needle valve 64 shown in FIG. 2 does not reach full open (full lift), actual fuel injection when fuel injection is performed is performed. The fuel pressure in the sac chamber 72 that is the pressure does not reach the fuel pressure Pf (rail pressure). Therefore, the fuel pressure in the sac chamber 72 can be estimated to obtain the transient period fuel injection rate compensation correction amount dQ1.

ここでサック室72内の燃料圧力はニードル弁64のリフト位置と燃料圧力Pfに基づいて決定される。ニードル弁64のリフト位置は、リフト速度と時間とに基づいて決定される。ニードル弁64のリフト速度は制御室80から燃料排出路78のアウトレットオリフィス78aを介して排出される燃料のオリフィス流量の特性により求めることができ、略等速度、すなわち一定とみなすことができる。したがってサック室72内の燃料圧力は時間の関数で表すことができる。   Here, the fuel pressure in the sac chamber 72 is determined based on the lift position of the needle valve 64 and the fuel pressure Pf. The lift position of the needle valve 64 is determined based on the lift speed and time. The lift speed of the needle valve 64 can be obtained from the characteristics of the orifice flow rate of the fuel discharged from the control chamber 80 through the outlet orifice 78a of the fuel discharge path 78, and can be regarded as substantially constant speed, that is, constant. Therefore, the fuel pressure in the sac chamber 72 can be expressed as a function of time.

そしてこのように時間に基づいて求められるサック室72内の燃料圧力と基本燃料噴射量Qbsとに基づいて、単位筒内圧力当たりの燃料噴射量の変化量を求めるためのマップを予め実験等により求めておく。そして燃料噴射開始時筒内圧力Picと標準筒内圧力Psとの差に基づいて、前記マップから燃料噴射量の変化量、すなわち誤差を求めて、このずれ量を過渡期間燃料噴射率補償補正量dQ1として設定する。   Then, based on the fuel pressure in the sac chamber 72 and the basic fuel injection amount Qbs obtained based on the time as described above, a map for obtaining the change amount of the fuel injection amount per unit in-cylinder pressure is experimentally obtained in advance. I ask for it. Then, based on the difference between the in-cylinder pressure Pic at the start of fuel injection and the standard in-cylinder pressure Ps, a change amount of the fuel injection amount, that is, an error is obtained from the map, and this deviation amount is calculated as a transient period fuel injection rate compensation correction amount. Set as dQ1.

(c).燃料噴射開始時筒内圧力Picは、燃料噴射時における推定値として求めたが、これ以外に筒内圧力センサを設けて実測値として求めても良い。
(d).前述した各例については、ディーゼルエンジンにて説明したが、筒内噴射型であれば、本発明はガソリンエンジンについても適用できる。
(C). The in-cylinder pressure Pic at the start of fuel injection is obtained as an estimated value at the time of fuel injection. Alternatively, an in-cylinder pressure sensor may be provided to obtain an actually measured value.
(D). Each example described above has been described with a diesel engine, but the present invention can be applied to a gasoline engine as long as it is an in-cylinder injection type.

実施の形態1の車両用ディーゼルエンジン及びエンジン制御装置の概略構成図。1 is a schematic configuration diagram of a vehicle diesel engine and an engine control device according to a first embodiment. 実施の形態1の燃料噴射弁の構成説明図。FIG. 2 is a configuration explanatory diagram of a fuel injection valve according to the first embodiment. 実施の形態1のECUが実行する燃料噴射制御処理のフローチャート。3 is a flowchart of fuel injection control processing executed by the ECU according to the first embodiment. 同じく燃料噴射制御処理のフローチャート。The flowchart of a fuel injection control process similarly. 実施の形態1の燃料噴射時間変換マップMaptbsの構成説明図。The structure explanatory drawing of fuel injection time conversion map Mapts of Embodiment 1. FIG. 実施の形態1の容積比マップMapvrの構成説明図。FIG. 3 is a configuration explanatory diagram of a volume ratio map Mapvr according to the first embodiment. 実施の形態1の折れ点マップMapqflの構成説明図。FIG. 3 is a configuration explanatory diagram of a breakpoint map Mapqfl according to the first embodiment. 実施の形態1における燃料噴射時の燃料噴射率変化説明図。FIG. 3 is an explanatory diagram of a change in fuel injection rate during fuel injection in the first embodiment. 実施の形態1における過渡期間燃料噴射率補償補正量dQ1と全開期間燃料噴射率補償補正量dQ2との算出手法の説明図。Explanatory drawing of the calculation method of the transition period fuel injection rate compensation correction amount dQ1 and the full-open period fuel injection rate compensation correction amount dQ2 in the first embodiment. 実施の形態1のマップMapkiの構成説明図。FIG. 3 is a configuration explanatory diagram of a map Mapki according to the first embodiment.

符号の説明Explanation of symbols

2…ディーゼルエンジン、4…燃焼室、6…吸気弁、8…吸気ポート、10…吸気マニホールド、12…サージタンク、14…吸気経路、16…EGR経路、18…スロットル弁、18a…スロットル開度センサ、18b…モータ、20…吸気温センサ、21…吸気圧センサ、22…排気弁、24…排気ポート、26…排気マニホールド、28…燃料噴射弁、30…燃料供給管、32…コモンレール、34…燃料ポンプ、36…燃料圧力センサ、40…ECU、42…アクセルペダル、44…アクセル開度センサ、46…冷却水温センサ、48…クランク軸、50…エンジン回転数センサ、52…気筒判別センサ、62…燃料噴射弁の本体、64…ニードル弁、64a…メインピストン、64b…サブピストン、66…コイルスプリング、68…燃料噴射孔、70…シート部、72…サック室、74…第1燃料供給路、76…第2燃料供給路、76a…インレットオリフィス、78…燃料排出路、78a…アウトレットオリフィス、80…制御室、82…燃料溜、84…排圧制御弁、E…折れ点、Fc…付勢力、Fm,Fs…駆動力。   2 ... diesel engine, 4 ... combustion chamber, 6 ... intake valve, 8 ... intake port, 10 ... intake manifold, 12 ... surge tank, 14 ... intake route, 16 ... EGR route, 18 ... throttle valve, 18a ... throttle opening Sensor 18b motor 20 intake temperature sensor 21 intake pressure sensor 22 exhaust valve 24 exhaust port 26 exhaust manifold 28 fuel injection valve 30 fuel supply pipe 32 common rail 34 DESCRIPTION OF SYMBOLS ... Fuel pump, 36 ... Fuel pressure sensor, 40 ... ECU, 42 ... Accelerator pedal, 44 ... Accelerator opening sensor, 46 ... Cooling water temperature sensor, 48 ... Crankshaft, 50 ... Engine speed sensor, 52 ... Cylinder discrimination sensor, 62 ... Main body of fuel injection valve, 64 ... Needle valve, 64a ... Main piston, 64b ... Sub piston, 66 ... Coil spring, 6 DESCRIPTION OF SYMBOLS ... Fuel injection hole, 70 ... Seat part, 72 ... Suck chamber, 74 ... 1st fuel supply path, 76 ... 2nd fuel supply path, 76a ... Inlet orifice, 78 ... Fuel discharge path, 78a ... Outlet orifice, 80 ... Control Chamber, 82 ... Fuel reservoir, 84 ... Exhaust pressure control valve, E ... Folding point, Fc ... Energizing force, Fm, Fs ... Driving force.

Claims (7)

燃料噴射における圧力要因に基づいて生じる燃料噴射弁から筒内への燃料噴射量誤差を補償して燃料噴射を行う直噴式内燃機関の燃料噴射制御装置であって、
前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償するための燃料噴射率補償補正量を、燃料噴射過程における燃料噴射率の燃料噴射量に対する寄与の違いに応じて算出する補正量算出手段と、
前記補正量算出手段にて算出された燃料噴射率補償補正量を、燃料噴射時における推定燃料噴射率に基づいて燃料噴射時間に変換することで、燃料噴射率補償補正時間を算出する燃料噴射率補償補正時間算出手段と、
前記直噴式内燃機関の運転状態に基づいて要求燃料噴射量に対応する燃料噴射時間を算出する燃料噴射時間算出手段と、
前記燃料噴射率補償補正時間算出手段にて算出された燃料噴射率補償補正時間を含む補正時間により、前記燃料噴射時間算出手段にて算出された燃料噴射時間を補正する燃料噴射時間補正手段とを備え
前記補正量算出手段は、燃料噴射過程における燃料噴射率の寄与の違いに応じて、前記燃料噴射弁の開閉弁駆動過渡期間と全開期間とに区分して、前記開閉弁駆動過渡期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する過渡期間燃料噴射率補償補正量と、前記全開期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する全開期間燃料噴射率補償補正量とを算出して、前記燃料噴射率補償補正量とする
ことを特徴とする直噴式内燃機関の燃料噴射制御装置。
A fuel injection control device for a direct injection internal combustion engine that performs fuel injection by compensating for a fuel injection amount error from a fuel injection valve into a cylinder generated based on a pressure factor in fuel injection,
The fuel injection rate compensation correction amount for compensating the fuel injection rate error according to the change in the fuel injection rate generated based on the pressure factor is determined according to the difference in contribution of the fuel injection rate to the fuel injection amount in the fuel injection process. Correction amount calculation means for calculating,
The fuel injection rate for calculating the fuel injection rate compensation correction time by converting the fuel injection rate compensation correction amount calculated by the correction amount calculating means into the fuel injection time based on the estimated fuel injection rate at the time of fuel injection. Compensation correction time calculating means;
Fuel injection time calculating means for calculating a fuel injection time corresponding to a required fuel injection amount based on an operating state of the direct injection internal combustion engine;
Fuel injection time correction means for correcting the fuel injection time calculated by the fuel injection time calculation means by a correction time including the fuel injection rate compensation correction time calculated by the fuel injection rate compensation correction time calculation means ; Prepared ,
The correction amount calculating means divides the on / off valve drive transient period and the fully open period of the fuel injection valve according to the difference in contribution of the fuel injection rate in the fuel injection process, and In accordance with a fuel injection rate compensation correction amount that compensates for a fuel injection amount error corresponding to a change in fuel injection rate that occurs based on a pressure factor, and a change in fuel injection rate that occurs based on the pressure factor in the fully open period The fuel injection rate compensation correction amount is calculated by calculating a fuel injection rate compensation correction amount for the fully open period that compensates for the fuel injection amount error.
A fuel injection control apparatus for a direct injection internal combustion engine.
燃料噴射における圧力要因に基づいて生じる燃料噴射弁から筒内への燃料噴射量誤差を補償して燃料噴射を行う直噴式内燃機関の燃料噴射制御装置であって、
前記圧力要因に基づいて生じる前記燃料噴射弁の開弁時期の変化に応じた燃料噴射量誤差を補償する開弁時期補償補正時間を算出する開弁時期補償補正時間算出手段と、
前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償するための燃料噴射率補償補正量を、燃料噴射過程における燃料噴射率の燃料噴射量に対する寄与の違いに応じて算出する補正量算出手段と、
前記補正量算出手段にて算出された燃料噴射率補償補正量を、燃料噴射時における推定燃料噴射率に基づいて燃料噴射時間に変換することで、燃料噴射率補償補正時間を算出する燃料噴射率補償補正時間算出手段と、
前記直噴式内燃機関の運転状態に基づいて要求燃料噴射量に対応する燃料噴射時間を算出する燃料噴射時間算出手段と、
前記開弁時期補償補正時間算出手段にて算出された開弁時期補償補正時間と前記燃料噴射率補償補正時間算出手段にて算出された燃料噴射率補償補正時間とを含む補正時間により、前記燃料噴射時間算出手段にて算出された燃料噴射時間を補正する燃料噴射時間補正手段とを備え
前記補正量算出手段は、燃料噴射過程における燃料噴射率の寄与の違いに応じて、前記燃料噴射弁の開閉弁駆動過渡期間と全開期間とに区分して、前記開閉弁駆動過渡期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する過渡期間燃料噴射率補償補正量と、前記全開期間での前記圧力要因に基づいて生じる燃料噴射率の変化に応じた燃料噴射量誤差を補償する全開期間燃料噴射率補償補正量とを算出して、前記燃料噴射率補償補正量とする
ことを特徴とする直噴式内燃機関の燃料噴射制御装置。
A fuel injection control device for a direct injection internal combustion engine that performs fuel injection by compensating for a fuel injection amount error from a fuel injection valve into a cylinder generated based on a pressure factor in fuel injection,
A valve opening timing compensation correction time calculating means for calculating a valve opening timing compensation correction time for compensating for a fuel injection amount error in accordance with a change in the valve opening timing of the fuel injection valve caused based on the pressure factor;
The fuel injection rate compensation correction amount for compensating the fuel injection rate error according to the change in the fuel injection rate generated based on the pressure factor is determined according to the difference in contribution of the fuel injection rate to the fuel injection amount in the fuel injection process. Correction amount calculation means for calculating,
The fuel injection rate for calculating the fuel injection rate compensation correction time by converting the fuel injection rate compensation correction amount calculated by the correction amount calculating means into the fuel injection time based on the estimated fuel injection rate at the time of fuel injection. Compensation correction time calculating means;
Fuel injection time calculating means for calculating a fuel injection time corresponding to a required fuel injection amount based on an operating state of the direct injection internal combustion engine;
The fuel is obtained by a correction time including a valve opening timing compensation correction time calculated by the valve opening timing compensation correction time calculation means and a fuel injection rate compensation correction time calculated by the fuel injection rate compensation correction time calculation means. and a fuel injection time correction means for correcting the fuel injection time calculated by the injection time calculating means,
The correction amount calculating means divides the on / off valve drive transient period and the fully open period of the fuel injection valve according to the difference in contribution of the fuel injection rate in the fuel injection process, and In accordance with a fuel injection rate compensation correction amount that compensates for a fuel injection amount error corresponding to a change in fuel injection rate that occurs based on a pressure factor, and a change in fuel injection rate that occurs based on the pressure factor in the fully open period The fuel injection rate compensation correction amount is calculated by calculating a fuel injection rate compensation correction amount for the fully open period that compensates for the fuel injection amount error.
A fuel injection control apparatus for a direct injection internal combustion engine.
請求項1又は2において、前記推定燃料噴射率は、予め、筒内圧力、燃料圧力及び前記要求燃料噴射量をパラメータとするマップから、燃料噴射時における実際の筒内圧力、燃料圧力及び前記要求燃料噴射量に基づいて算出されることを特徴とする直噴式内燃機関の燃料噴射制御装置。 3. The estimated fuel injection rate according to claim 1, wherein the estimated fuel injection rate is calculated in advance from a map having in-cylinder pressure, fuel pressure, and the required fuel injection amount as parameters. A fuel injection control device for a direct injection type internal combustion engine, characterized in that the fuel injection amount is calculated based on a fuel injection amount. 請求項1〜3のいずれかにおいて、前記圧力要因とは筒内圧力及び燃料圧力であることを特徴とする直噴式内燃機関の燃料噴射制御装置。 4. The fuel injection control device for a direct injection internal combustion engine according to claim 1, wherein the pressure factors are in-cylinder pressure and fuel pressure. 請求項2において、前記圧力要因とは筒内圧力及び燃料圧力であり、前記開弁時期補償補正時間算出手段は、前記開弁時期補償補正時間を、燃料噴射時における実際の筒内圧力と標準筒内圧力との差と、実際の燃料圧力の値に基づいて求めた噴射時期補正係数との積に基づいて算出することを特徴とする直噴式内燃機関の燃料噴射制御装置。3. The pressure factor is an in-cylinder pressure and a fuel pressure, and the valve opening timing compensation correction time calculating means calculates the valve opening timing compensation correction time from an actual in-cylinder pressure and a standard at the time of fuel injection. A fuel injection control device for a direct injection internal combustion engine, characterized in that the calculation is based on a product of a difference between the in-cylinder pressure and an injection timing correction coefficient obtained based on an actual fuel pressure value. 請求項1〜5のいずれかにおいて、前記圧力要因とは筒内圧力及び燃料圧力であり、前記補正量算出手段は、実際の燃料圧力と燃料噴射時における実際の筒内圧力との圧力差と、実際の燃料圧力と標準筒内圧力との圧力差との比に基づいて、標準燃料噴射率と実際の燃料噴射率との噴射率差と、標準燃料噴射率との比を表す変化燃料噴射率比を算出するとともに、前記全開期間燃料噴射率補償補正量を前記変化燃料噴射率比と一次式の関係に基づいて算出し、前記過渡期間燃料噴射率補償補正量を前記変化燃料噴射率比と二次式の関係に基づいて算出することを特徴とする直噴式内燃機関の燃料噴射制御装置。6. The pressure factor according to claim 1, wherein the pressure factor is an in-cylinder pressure and a fuel pressure, and the correction amount calculation means includes a pressure difference between an actual fuel pressure and an actual in-cylinder pressure at the time of fuel injection. Based on the ratio of the difference between the actual fuel pressure and the standard in-cylinder pressure, the change fuel injection represents the ratio between the standard fuel injection rate and the difference between the standard fuel injection rate and the actual fuel injection rate. And calculating the fully open period fuel injection rate compensation correction amount based on the relationship between the change fuel injection rate ratio and a linear expression, and calculating the transition period fuel injection rate compensation correction amount as the change fuel injection rate ratio. A fuel injection control device for a direct-injection internal combustion engine, which is calculated based on the relationship between and a quadratic equation. 請求項3、5又は6において、前記燃料噴射時における実際の筒内圧力は、燃料噴射時における推定値又は実測値であることを特徴とする直噴式内燃機関の燃料噴射制御装置。7. The fuel injection control device for a direct injection internal combustion engine according to claim 3, wherein the actual in-cylinder pressure at the time of fuel injection is an estimated value or an actual measurement value at the time of fuel injection.
JP2004158104A 2004-05-27 2004-05-27 Fuel injection control device for direct injection internal combustion engine Expired - Lifetime JP4375123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158104A JP4375123B2 (en) 2004-05-27 2004-05-27 Fuel injection control device for direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158104A JP4375123B2 (en) 2004-05-27 2004-05-27 Fuel injection control device for direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005337138A JP2005337138A (en) 2005-12-08
JP4375123B2 true JP4375123B2 (en) 2009-12-02

Family

ID=35490981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158104A Expired - Lifetime JP4375123B2 (en) 2004-05-27 2004-05-27 Fuel injection control device for direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP4375123B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605038B2 (en) * 2006-02-02 2011-01-05 株式会社デンソー Fuel injection device
JP4483908B2 (en) * 2007-08-23 2010-06-16 株式会社デンソー Fuel injection control device
JP2010048214A (en) * 2008-08-25 2010-03-04 Toyota Motor Corp Fuel injection control device
JP6950489B2 (en) * 2017-11-22 2021-10-13 株式会社デンソー Fuel injection control device and fuel injection control system

Also Published As

Publication number Publication date
JP2005337138A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US8042517B2 (en) Fuel property detector for internal combustion engine
CN105649808B (en) Method and system for adjusting a direct fuel injector
JP4600932B2 (en) Control device for internal combustion engine
US7457700B2 (en) Method and device for operating an internal combustion engine
US7213569B2 (en) Valve characteristic estimation device and controller for internal combustion engine
JP5681813B2 (en) Intake control device for internal combustion engine
JP5949218B2 (en) Engine control device
EP2128417B1 (en) Controller of internal combustion engine
US11112333B2 (en) Sensor failure diagnostic apparatus
CN104675538B (en) Method and measuring device for determining a fresh air mass flow
US11143134B2 (en) Engine controller, engine control method, and memory medium
US20040079332A1 (en) System and method for controlling ignition timing in an engine
US6971358B2 (en) Intake system for internal combustion engine and method of controlling internal combustion engine
JP4747977B2 (en) In-cylinder pressure sensor calibration device
US8286472B2 (en) Diagnostic system for variable valve timing control system
US6725842B2 (en) Fuel injection control device for internal combustion engine
JP4375123B2 (en) Fuel injection control device for direct injection internal combustion engine
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP5664463B2 (en) Control device for internal combustion engine
JP2010048125A (en) Determination device for sensor failure of internal combustion engine
JP2011157942A (en) Egr control device of internal combustion engine
JP2000104610A (en) Fuel injection control device for internal combustion engine
JPH08200119A (en) Fuel injection amount controller of internal combustion engine
US10408145B2 (en) EGR control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R151 Written notification of patent or utility model registration

Ref document number: 4375123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4