JP4374955B2 - SIR measurement method - Google Patents
SIR measurement method Download PDFInfo
- Publication number
- JP4374955B2 JP4374955B2 JP2003316539A JP2003316539A JP4374955B2 JP 4374955 B2 JP4374955 B2 JP 4374955B2 JP 2003316539 A JP2003316539 A JP 2003316539A JP 2003316539 A JP2003316539 A JP 2003316539A JP 4374955 B2 JP4374955 B2 JP 4374955B2
- Authority
- JP
- Japan
- Prior art keywords
- iscp
- combined
- sir measurement
- rscp
- finger part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Description
本発明はSIR(Signal to Interference ratio)測定方法に関し、特にCDMA方式移動体通信の送信電力制御において使用するSIRの測定方法に関する。 The present invention relates to an SIR (Signal to Interference ratio) measurement method, and more particularly to an SIR measurement method used in transmission power control of CDMA mobile communication.
移動体通信の伝送方式として、近年、周波数利用効率の良いCDMA(Code Division Multiple Access)方式が注目されサービスを開始している。 As a mobile communication transmission system, a CDMA (Code Division Multiple Access) system with high frequency utilization efficiency has recently been attracting attention and has started a service.
CDMA方式では、通信品質を維持して加入者容量を確保するために、受信側が受ける干渉波の影響を低く抑えることが必要となる。このため、受信側の受信品質に応じて送信側の送信電力を増減させるインナーループ送信電力制御機能を設けている。 In the CDMA system, in order to maintain communication quality and secure subscriber capacity, it is necessary to suppress the influence of interference waves received on the receiving side. For this reason, an inner loop transmission power control function for increasing or decreasing the transmission power on the transmission side according to the reception quality on the reception side is provided.
受信信号の品質を図る尺度としてSIR(Signal to Interference Ratio)が用いられる。SIRは、希望信号電力(RSCP:Received Signal Code Power)と干渉信号電力(ISCP:Interference Signal Code Power)との比(RSCP/ISCP)である。 SIR (Signal to Interference Ratio) is used as a measure for the quality of the received signal. The SIR is a ratio (RSCP / ISCP) between desired signal power (RSCP: Received Signal Code Power) and interference signal power (ISCP: Interference Signal Code Power).
一般に、CDMA方式の移動体通信機が送信側から送信される信号を受信してインナーループ送信電力制御を行う場合、例えば図5に示すように、各パスに対応して設けられたフィンガー部において、拡散符号により逆拡散して希望信号成分および干渉信号成分を抽出し、各フィンガー部の希望信号成分および干渉信号成分をそれぞ合算してSIRを測定し、このSIR測定値と目標SIRとを比較判定して送信電力制御(TPC)ビットを生成し送信側へ送出している。 In general, when a CDMA mobile communication device receives a signal transmitted from a transmission side and performs inner loop transmission power control, for example, as shown in FIG. 5, in a finger portion provided corresponding to each path. The desired signal component and the interference signal component are extracted by despreading using the spreading code, and the SIR is measured by adding the desired signal component and the interference signal component of each finger part, and the SIR measurement value and the target SIR are obtained. A transmission power control (TPC) bit is generated by comparison and determination and sent to the transmission side.
ここで、SIR測定値が目標SIRよりも小さい場合は送信電力の増大を指示する送信電力制御(TPC)ビットを生成し、目標SIRよりも大きい場合は送信電力の減少を指示する送信電力制御(TPC)ビットを生成して送信側へ送出している。(例えば、特許文献1参照。)
このようなインナーループ送信電力制御において、受信側のSIR測定精度が低下した場合、送信側に対して適正な送信電力制御を指示できなくなり、その結果、送信側に過剰な送信電力を要求したときは、他の受信側に干渉を与えて収容できる回線数が減ってしまったりする。また、送信側に過小な送信電力を要求したときは、受信信号品質が低下して通話が切れやすくなったりする。従って、精度の高いSIR測定を行って適正な送信電力制御を行うことが必要となる。
Here, when the SIR measurement value is smaller than the target SIR, a transmission power control (TPC) bit for instructing an increase in transmission power is generated. When the SIR measurement value is larger than the target SIR, a transmission power control for instructing a decrease in transmission power ( TPC) bits are generated and sent to the transmitting side. (For example, refer to Patent Document 1.)
In such inner loop transmission power control, when the SIR measurement accuracy on the receiving side is reduced, it is impossible to instruct the transmission side to perform appropriate transmission power control, and as a result, excessive transmission power is requested from the transmission side. May reduce the number of lines that can be accommodated by interfering with other receivers. In addition, when the transmission side is requested to have an excessively low transmission power, the received signal quality is lowered and the call is likely to be disconnected. Therefore, it is necessary to perform accurate transmission power control by performing highly accurate SIR measurement.
従来は、SIR測定値として下記の式(1),(2)のいずれかを採用している。 Conventionally, either of the following formulas (1) and (2) is adopted as the SIR measurement value.
式(1):SIR測定値=(各フィンガー部の希望信号電力(RSCP)の合成値)/(各フィンガー部の干渉信号電力(ISCP)の合成値)……(1)
式(2):SIR測定値=(各フィンガー部の希望信号電力(RSCP)の合成値)/(各フィンガー部の干渉信号電力(ISCP)の合成値を有効フィンガー数で平均化)……(2)
ところで、基地局から送信される信号を受信する場合、基地局から直接到来する直接波と、ビルなどに反射し遅延して到来する反射遅延波とがある。そして、異なる拡散符号で拡散された信号同士は互いに干渉成分になるが、同じ拡散符号で拡散されている信号同士は互いに干渉成分にならない。すなわち、直接波とその反射遅延波とは、同じ拡散符号で拡散されているので互いに干渉成分にならない。
Expression (1): SIR measurement value = (combined value of desired signal power (RSCP) of each finger part) / (combined value of interference signal power (ISCP) of each finger part) (1)
Equation (2): SIR measurement value = (combined value of desired signal power (RSCP) of each finger part) / (average value of the combined value of interference signal power (ISCP) of each finger part by the number of effective fingers). 2)
By the way, when a signal transmitted from a base station is received, there are a direct wave coming directly from the base station and a reflected delayed wave coming reflected after being reflected by a building or the like. Signals spread with different spreading codes become interference components, but signals spread with the same spreading code do not become interference components. That is, since the direct wave and the reflected delayed wave are spread with the same spreading code, they do not become interference components.
上記式(1)を採用した場合、各フィンガー部が複数の基地局からの直接波をそれぞれ受信している場合はSIR測定値として有効であるが、しかし、直接波およびその反射遅延波を受信している場合は、その反射遅延波は干渉成分にならないにも拘らず分母の干渉信号電力(ISCP)として余計に合算されるので、SIR測定値として適切ではない。 When the above equation (1) is adopted, it is effective as a SIR measurement value when each finger unit receives direct waves from a plurality of base stations, but the direct wave and its reflected delayed wave are received. In this case, the reflected delayed wave is not appropriate as the SIR measurement value because it is added as the interference signal power (ISCP) of the denominator although it is not an interference component.
また上記式(2)は、複数の基地局から直接波およびその反射遅延波を受信している場合のSIR測定値としては有効であるが、しかし、直接波だけを受信している場合は、異なる拡散符号で拡散された直接波は互いに干渉するにも拘らず分母の合成ISCPを有効フィンガー数で平均化して過小評価するので、SIR測定値として適切ではない。 Further, the above equation (2) is effective as an SIR measurement value when receiving a direct wave and its reflected delayed wave from a plurality of base stations, but when receiving only a direct wave, Although direct waves spread with different spreading codes interfere with each other, the combined ISCP of the denominator is averaged with the number of effective fingers and is underestimated, so it is not appropriate as a SIR measurement value.
このように従来のSIR測定方法では、ある条件下において不適切なSIR測定値により送信電力制御を行うことになり、通信品質および加入者容量を確保できない可能性があるという問題点を有している。 As described above, in the conventional SIR measurement method, transmission power control is performed by an inappropriate SIR measurement value under certain conditions, and there is a possibility that communication quality and subscriber capacity may not be ensured. Yes.
本発明の目的は、直接波だけを受信している場合であっても、直接波およびその反射遅延波を受信している場合であっても、常に正しいSIR測定値が得られ、適切な送信電力制御を可能にして通信品質および加入者容量を確保できるSIR測定方法を提供することにある。 The object of the present invention is to always obtain a correct SIR measurement value regardless of whether only a direct wave is received or whether a direct wave and its reflected delayed wave are received. An object of the present invention is to provide an SIR measurement method that enables power control to ensure communication quality and subscriber capacity.
本発明のSIR測定方法は、拡散符号を用いた通信を行う通信機が、各パスに対応して備えられたフィンガー部により受信信号を逆拡散して希望信号成分および干渉信号成分を抽出し、希望信号成分および干渉信号成分をそれぞれ合算してSIR(Signal to Interference Ratio)を測定するSIR測定方法において、通信機が、フィンガー部の受信するパスの拡散符号を識別する工程と、同じ拡散符号の信号を受信するパスに対応するフィンガー部の希望信号電力(RSCP)を合算して第1の合成RSCPを求める工程と、同じ拡散符号の信号を受信するパスに対応するフィンガー部の干渉信号電力(ISCP)を合算し、合算した干渉信号電力(ISCP)をフィンガー数で平均化して第1の合成ISCPを求める工程と、同じ拡散符号毎に第1の合成RSCPを算出する工程と、同じ拡散符号毎に算出した第1の合成RSCPを合算して第2の合成RSCPを算出する工程と、同じ拡散符号毎に第1の合成ISCPを算出する工程と、同じ拡散符号毎に算出した第1の合成ISCPを合算して第2の合成ISCPを算出する工程と、第2の合成RSCPと第2の合成ISCPとの比を算出してSIR測定値とする工程と、を備える。 In the SIR measurement method of the present invention, a communication device that performs communication using a spread code despreads a received signal by a finger unit provided corresponding to each path to extract a desired signal component and an interference signal component, In the SIR measurement method of measuring the SIR (Signal to Interference Ratio) by adding the desired signal component and the interference signal component, respectively , the communication device has the same spreading code as the step of identifying the spreading code of the path received by the finger unit. The desired signal power (RSCP) of the finger part corresponding to the path for receiving the signal is added to obtain the first combined RSCP, and the interference signal power of the finger part corresponding to the path for receiving the signal of the same spreading code ( ISCP), and the summed interference signal power (ISCP) is averaged by the number of fingers to obtain the first combined ISCP. A step of calculating, a step of calculating a first combined RSCP for each of the same spreading codes , a step of calculating a second combined RSCP by adding the first combined RSCP calculated for each of the same spreading codes , and the same spreading code A step of calculating a first combined ISCP every time, a step of calculating a second combined ISCP by adding the first combined ISCP calculated for each spreading code, a second combined RSCP and a second combined It calculates the ratio between the ISCP comprising the steps of: a SIR measurement value.
本発明のSIR測定方法は、拡散符号を用いた通信を行う通信機が、各パスに対応して備えられたフィンガー部により受信信号を逆拡散して希望信号成分および干渉信号成分を抽出し、希望信号成分および干渉信号成分をそれぞれ合算してSIRを測定するSIR測定方法において、通信機が、フィンガー部が受信するパスに送信側からの直接波の他に反射遅延波が含まれるか否かを判定する判定手段を備え、判定手段によりフィンガー部の受信信号に直接波のみが含まれると判定されたときは、SIR測定値=(各フィンガー部の希望信号電力(RSCP)の合成値)/(各フィンガー部の干渉信号電力(ISCP)の合成値)の式によりSIR測定値を求める。 In the SIR measurement method of the present invention, a communication device that performs communication using a spread code despreads a received signal by a finger unit provided corresponding to each path to extract a desired signal component and an interference signal component, In the SIR measurement method of measuring the SIR by adding the desired signal component and the interference signal component, whether the communication device includes a reflected delay wave in addition to the direct wave from the transmission side in the path received by the finger unit comprising a determining means for determining, (combined value of the desired signal power of each finger portion (RSCP)) when it is determined that contains only a direct wave in the received signal of the fingers by determining means, SIR measurement = / The SIR measurement value is obtained by the equation (combined value of interference signal power (ISCP) of each finger part).
本発明のSIR測定方法の判定手段は、フィンガー部の受信するパスの拡散符号を識別し、拡散符号の数と有効フィンガー数とが一致する場合はフィンガー部の受信信号に直接波のみが含まれると判定してもよい。The determination means of the SIR measurement method of the present invention identifies the spreading code of the path received by the finger part, and if the number of spreading codes and the number of effective fingers match, only the direct wave is included in the received signal of the finger part. May be determined.
本発明のSIR測定方法の判定手段は、パス合成後の受信信号のブロックエラーレート(BLER)を測定し、ブロックエラーレート(BLER)が、ある閾値未満の場合はフィンガー部の受信信号に直接波のみが含まれると判定してもよい。The determination means of the SIR measurement method of the present invention measures the block error rate (BLER) of the received signal after path synthesis, and if the block error rate (BLER) is less than a certain threshold, a direct wave is applied to the received signal of the finger part. May be included.
本発明のSIR測定方法は、判定手段によりフィンガー部の受信信号に直接波および反射遅延波が含まれると判定されたときは、SIR測定値=(各フィンガー部の合成RSCP)/(各フィンガー部の合成ISCP*重み付け係数)、重み付け係数=(拡散符号の数)/(有効フィンガー数)の式によりSIR測定値を求める。In the SIR measurement method of the present invention, when it is determined by the determination means that the direct wave and the reflected delayed wave are included in the reception signal of the finger part, SIR measurement value = (combined RSCP of each finger part) / (each finger part) (Synthesized ISCP * weighting coefficient), weighting coefficient = (number of spreading codes) / (number of effective fingers).
本発明によれば、直接波だけを受信している場合であっても、直接波およびその反射遅延波を受信している場合であっても、常に正しいSIR測定値が得られ、適切な送信電力制御を可能にして通信品質および加入者容量を確保できると共に通信断を防止できる。 According to the present invention, even when only a direct wave is received or when a direct wave and its reflected delayed wave are received, a correct SIR measurement value can always be obtained and appropriate transmission can be performed. It is possible to control power and secure communication quality and subscriber capacity, and prevent communication interruption.
次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.
図1は本発明の第1の実施形態を示すフローチャートである。 FIG. 1 is a flowchart showing a first embodiment of the present invention.
本発明では、異なる拡散符号で拡散された信号同士は互いに干渉するが、同じ拡散符号で拡散されている直接波とその反射遅延波とは干渉信号成分にならないことに着目してSIRを測定する。 In the present invention, signals spread with different spreading codes interfere with each other, but the SIR is measured focusing on the fact that the direct wave spread with the same spreading code and its reflected delayed wave do not become interference signal components. .
すなわち、図1において、まず、各パスに対応する各フィンガー部の受信するパスの拡散符号を識別する(ステップ101)。 That is, in FIG. 1, first, the spreading code of the path received by each finger unit corresponding to each path is identified (step 101).
次に、同じ拡散符号のパスの各フィンガー部の希望信号電力(RSCP)を合算して第1の合成RSCPを求める(ステップ102)。 Next, the first combined RSCP is obtained by adding the desired signal power (RSCP) of each finger part of the same spreading code path (step 102).
また、同じ拡散符号のパスの各フィンガー部の干渉信号電力(ISCP)を合算し、この合算した干渉信号電力(ISCP)をフィンガー数で平均化して第1の合成ISCPを求める(ステップ103)。 Also, the interference signal power (ISCP) of each finger part of the same spreading code path is summed, and the summed interference signal power (ISCP) is averaged by the number of fingers to obtain a first combined ISCP (step 103).
次に、同じ拡散符号毎に算出した第1の合成RSCPを加算して第2の合成RSCPを算出し(ステップ104)、また、同じ拡散符号毎に算出した第1の合成ISCPを合算して第2の合成ISCPを算出する(ステップ105)。 Next, the first combined RSCP calculated for each same spreading code is added to calculate a second combined RSCP (step 104), and the first combined ISCP calculated for each same spreading code is added together. A second composite ISCP is calculated (step 105).
そして、第2の合成RSCPと第2の合成ISCPとの比を算出し、これを最終のSIR測定値とする(ステップ106)。 Then, a ratio between the second combined RSCP and the second combined ISCP is calculated and used as the final SIR measurement value (step 106).
例えば、図4に示したように、移動通信機3が基地局1および基地局2から送信される直接波および反射遅延波を受信する場合を一例として説明する。 For example, as illustrated in FIG. 4, a case where the mobile communication device 3 receives a direct wave and a reflected delayed wave transmitted from the base station 1 and the base station 2 will be described as an example.
ここで、移動通信機3が3つのフィンガー部により、基地局1からの反射遅延波S11および直接波S12、並びに基地局2からの直接波S21を受信するものとする。 Here, it is assumed that the mobile communication device 3 receives the reflected delayed wave S11 and the direct wave S12 from the base station 1 and the direct wave S21 from the base station 2 by the three finger portions.
すなわち、#1フィンガー部が基地局1からの反射遅延波S11を受信し、#2フィンガー部が基地局1からの直接波S12を受信し、#3フィンガー部が基地局2からの直接波S21を受信するものとする。 That is, the # 1 finger part receives the reflected delayed wave S11 from the base station 1, the # 2 finger part receives the direct wave S12 from the base station 1, and the # 3 finger part receives the direct wave S21 from the base station 2. Shall be received.
この場合、#1フィンガー部の希望信号は反射遅延波S11であり、直接波S12および直接波S21は干渉信号となる。また、#2フィンガー部の希望信号は直接波S12であり、反射遅延波S11および直接波S21は干渉信号となる。また、#3フィンガー部の希望信号は直接波S21であり、反射遅延波S11および直接波S12は干渉信号となる。 In this case, the desired signal of the # 1 finger part is the reflected delayed wave S11, and the direct wave S12 and the direct wave S21 are interference signals. Further, the desired signal of the # 2 finger part is a direct wave S12, and the reflected delayed wave S11 and the direct wave S21 are interference signals. The desired signal of the # 3 finger part is a direct wave S21, and the reflected delayed wave S11 and the direct wave S12 are interference signals.
また、基地局1からの反射遅延波S11および直接波S12は同じ拡散符号(第1の拡散符号とする)であり、基地局2からの直接波S21の拡散符号(第2の拡散符号とする)とは異なっているものとする。 The reflected delayed wave S11 and the direct wave S12 from the base station 1 are the same spreading code (referred to as the first spreading code), and the spreading code of the direct wave S21 from the base station 2 (referred to as the second spreading code). ) Is different.
まず、上記ステップ101において、#1フィンガー部および#2フィンガー部のパスの拡散符号が同じ拡散符号(第1の拡散符号とする)であることを識別し、#3フィンガー部のパスの拡散符号が異なる拡散符号(第2の拡散符号とする)であることを識別する。
First, in
次にステップ102において、第1の拡散符号のパスの#1フィンガー部および#2フィンガー部の希望信号電力(RSCP)を合算して第1の合成RSCP(これをRSCP1とする)を求める。
Next, in
また、第2の拡散符号のパスの#3フィンガー部の希望信号電力(RSCP)を第1の合成RSCP(これをRSCP2とする)とする。 Also, the desired signal power (RSCP) of the # 3 finger part of the second spreading code path is defined as a first combined RSCP (this is RSCP2).
次にステップ103において、第1の拡散符号のパスの#1フィンガー部および#2フィンガー部の干渉信号電力(ISCP)を合算し、この合算した干渉信号電力(ISCP)をフィンガー数(ここでは2)で平均化(除算)して第1の合成ISCP(これをISCP1とする)を求める。
Next, in
また、第2の拡散符号のパスの#3フィンガー部の干渉信号電力(ISCP)をフィンガー数(ここでは1)で平均化(除算)して第1の合成ISCP(これをISCP2とする)を求める。 Also, the interference signal power (ISCP) of the # 3 finger part of the path of the second spreading code is averaged (divided) by the number of fingers (here, 1) to obtain the first combined ISCP (this is ISCP2). Ask.
次にステップ104において、同じ拡散符号のパスのフィンガー部毎に算出した第1の合成RSCPを合算して第2の合成RSCP(=RSCP1+RSCP2)を算出する。
Next, in
またステップ105において、同じ拡散符号のパスのフィンガー部毎に算出した第1の合成ISCPを合算して第2の合成ISCP(=ISCP1+ISCP2)を算出する(ステップ105)。
In
そしてステップ106において、最終のSIR測定値を求める。
最終のSIR測定値=第2の合成RSCP/第2の合成ISCP=(RSCP1+RSCP2)/(ISCP1+ISCP2)
一般的に、第n(n=1,2,3,……)の拡散符号のパスのフィンガーの希望信号電力(RSCP)を合算した第1の合成RSCPをRSCP(n)とし、第n(n=1,2,3,……)の拡散符号のパスのフィンガー部の干渉信号電力(ISCP)を合算しフィンガー数で平均化(除算)した第1の合成ISCPをISCP(n)とすれば、
第2の合成RSCP=RSCP1+RSCP2+・・・+RSCP(n)、
第2の合成ISCP=ISCP1+ISCP2+・・・+ISCP(n)となり、
最終のSIR測定値=(RSCP1+RSCP2+・・・+RSCP(n))/(ISCP1+ISCP2+・・・+ISCP(n))……(3)となる。
In
Final SIR measurement = second synthesized RSCP / second synthesized ISCP = (RSCP1 + RSCP2) / (ISCP1 + ISCP2)
In general, the first combined RSCP obtained by adding the desired signal power (RSCP) of the fingers of the nth (n = 1, 2, 3,...) Spreading code path is RSCP (n), and nth ( The first combined ISCP obtained by adding up the interference signal power (ISCP) of the finger portions of the spread code path of n = 1, 2, 3,... and averaging (dividing) by the number of fingers is denoted as ISCP (n). If
Second combined RSCP = RSCP1 + RSCP2 +... + RSCP (n),
The second composite ISCP = ISCP1 + ISCP2 +... + ISCP (n)
Final SIR measurement value = (RSCP1 + RSCP2 +... + RSCP (n)) / (ISCP1 + ISCP2 +... + ISCP (n)) (3)
このように、同じ拡散符号のパスのフィンガー部毎に合成RSCPおよび合成ISCPを求め、式(3)を使用してSIR測定値を測定することにより、直接波だけを受信している場合であっても、直接波およびその反射遅延波を受信している場合であっても、常に正しいSIR測定値が得られる。 In this way, only the direct wave is received by obtaining the combined RSCP and the combined ISCP for each finger part of the same spreading code path and measuring the SIR measurement value using Equation (3). Even when the direct wave and the reflected delayed wave are received, the correct SIR measurement value can always be obtained.
図2は本発明の第2の実施形態を示すフローチャートである。 FIG. 2 is a flowchart showing a second embodiment of the present invention.
既に述べたように、式(1)により求めたSIR測定値は各フィンガー部が直接波だけを受信している場合に有効であり、また、直接波だけを受信している場合は、有効フィンガー数と拡散符号の数とが一致する。 As described above, the SIR measurement value obtained by the equation (1) is effective when each finger part receives only the direct wave, and when only the direct wave is received, the effective finger is obtained. The number matches the number of spreading codes.
よって、図2において、各フィンガー部が受信するパスの拡散符号を識別した結果(ステップ201)、(拡散符号の数)=(有効フィンガー数) が成立する場合は(ステップ202)、各フィンガー部が直接波だけを受信していると判定し(ステップ203)、式(1)を使用してSIR測定値を求めることができる(ステップ204)。 Therefore, in FIG. 2, when the result of identifying the spreading code of the path received by each finger unit (step 201) and (number of spreading codes) = (number of effective fingers) is satisfied (step 202), each finger unit Is receiving only direct waves (step 203), and the SIR measurement can be determined using equation (1) (step 204).
また、ステップ202において、有効フィンガー数=拡散符号の数 が成立しない場合は、各フィンガー部が直接波およびその反射遅延波をそれぞれ受信していると判定し(ステップ205)、下記の式(4)によりSIR測定値を求める(ステップ206)。
In
SIR測定値=(各フィンガー部の合成RSCP)/(各フィンガー部の合成ISCP*重み付け係数)……(4)
但し、重み付け係数=(拡散符号の数)/(有効フィンガー数)
このようにすることにより、各フィンガー部が直接波だけを受信している場合のSIR測定値の演算を簡素化できる。
SIR measurement value = (combined RSCP of each finger part) / (combined ISCP of each finger part * weighting coefficient) (4)
However, weighting coefficient = (number of spreading codes) / (number of effective fingers)
By doing in this way, the calculation of the SIR measurement value when each finger part is receiving only a direct wave can be simplified.
図3は本発明の第3の実施形態を示すフローチャートである。 FIG. 3 is a flowchart showing a third embodiment of the present invention.
一般に、パス合成後の受信信号のブロックエラーレート(BLER:Block Error Rate)は、各フィンガー部が直接波だけを受信している場合が最小であり、反射遅延波のパスがあるとBLERは増加するという相関がある。 In general, the block error rate (BLER) of the received signal after path synthesis is the minimum when each finger part receives only a direct wave, and the BLER increases if there is a path of a reflected delay wave. There is a correlation that.
よって、図3に示すように、BLERを測定し(ステップ301)、測定BLERがある閾値未満の場合は(ステップ302)、反射遅延波がない(直接波だけを受信している)と判定し(ステップ303)、式(1)を使用してSIR測定値を求める(ステップ304)。 Therefore, as shown in FIG. 3, BLER is measured (step 301), and when the measured BLER is less than a certain threshold (step 302), it is determined that there is no reflected delayed wave (only a direct wave is received). (Step 303), the SIR measurement value is obtained using the equation (1) (Step 304).
また、ステップ302において、測定BLERがある閾値以上の場合は、反射遅延波があると判定し(ステップ305)、式(4)によりSIR測定値を求める(ステップ306)。
In
このように、パス合成後の受信信号のブロックエラーレート(BLER:Block Error Rate)に基づき反射遅延波の有無を判定し、SIR測定値を求める式を選択するようにしてもよい。 As described above, the presence / absence of the reflected delayed wave may be determined based on the block error rate (BLER) of the received signal after the path synthesis, and the formula for obtaining the SIR measurement value may be selected.
101〜106 第1の実施形態の処理工程を示すステップ
201〜206 第2の実施形態の処理工程を示すステップ
301〜306 第3の実施形態の処理工程を示すステップ
101-106 Steps showing processing steps of the first embodiment 201-206 Steps showing processing steps of the second embodiment 301-306 Steps showing processing steps of the third embodiment
Claims (5)
前記通信機が、
前記フィンガー部の受信するパスの拡散符号を識別する工程と、
同じ拡散符号の信号を受信するパスに対応する前記フィンガー部の希望信号電力(RSCP)を合算して第1の合成RSCPを求める工程と、
前記同じ拡散符号の信号を受信するパスに対応する前記フィンガー部の干渉信号電力(ISCP)を合算し、前記合算した前記干渉信号電力(ISCP)をフィンガー数で平均化して第1の合成ISCPを求める工程と、
前記同じ拡散符号毎に前記第1の合成RSCPを算出する工程と、
前記同じ拡散符号毎に算出した前記第1の合成RSCPを合算して第2の合成RSCPを算出する工程と、
前記同じ拡散符号毎に前記第1の合成ISCPを算出する工程と、
前記同じ拡散符号毎に算出した前記第1の合成ISCPを合算して第2の合成ISCPを算出する工程と、
前記第2の合成RSCPと前記第2の合成ISCPとの比を算出してSIR測定値とする工程と、
を備えることを特徴とするSIR測定方法。 Communication device that performs communication using the spreading codes, despreading to extract the desired signal component and interference signal component received signal by the finger portion provided corresponding to each path, the desired signal component and the interference signal In the SIR measurement method of measuring the SIR (Signal to Interference Ratio) by adding the components together,
The communication device is
Identifying a spreading code of a path received by the finger unit;
Adding the desired signal power (RSCP) of the fingers corresponding to paths that receive signals of the same spreading code to obtain a first combined RSCP;
Summing the finger portion of the interference signal power corresponding to a path for receiving a signal of the same spreading code (ISCP), the first synthetic ISCP by averaging the summed with the interference signal power (ISCP) at the number of fingers The desired process;
Calculating the first combined RSCP for each of the same spreading codes;
Calculating a second combined RSCP by summing the first synthetic RSCP calculated for each of the same spreading code,
Calculating the first combined ISCP for each of the same spreading codes;
Calculating a second combined ISCP by summing the first synthetic ISCP calculated for each of the same spreading code,
Calculating a ratio of the second synthetic RSCP to the second synthetic ISCP to obtain a SIR measurement value ;
SIR measuring method, characterized in that it comprises a.
前記通信機が、
前記フィンガー部が受信するパスに送信側からの直接波の他に反射遅延波が含まれるか否かを判定する判定手段を備え、
前記判定手段により前記フィンガー部の受信信号に直接波のみが含まれると判定されたときは、
SIR測定値=(各フィンガー部の希望信号電力(RSCP)の合成値)/(各フィンガー部の干渉信号電力(ISCP)の合成値)
の式によりSIR測定値を求めることを特徴とするSIR測定方法。 Communication device that performs communication using the spreading codes, despreading to extract the desired signal component and interference signal component received signal by the finger portion provided corresponding to each path, the desired signal component and the interference signal In the SIR measurement method of measuring the SIR by adding up the components,
The communication device is
Comprising a determining means for determining whether include reflected delayed waves other direct wave from the transmission side to the path of the finger portion is received,
When it is determined by the determination means that only the direct wave is included in the reception signal of the finger part ,
SIR measurement value = (combined value of desired signal power (RSCP) of each finger part) / (combined value of interference signal power (ISCP) of each finger part)
A SIR measurement method characterized in that an SIR measurement value is obtained by the following formula.
前記フィンガー部の受信するパスの拡散符号を識別し、
拡散符号の数と有効フィンガー数とが一致する場合は前記フィンガー部の受信信号に直接波のみが含まれると判定することを特徴とする請求項2に記載のSIR測定方法。 The determination means includes
Identifying a spreading code of a path received by the finger part;
3. The SIR measurement method according to claim 2, wherein if the number of spreading codes and the number of effective fingers match, it is determined that only a direct wave is included in the received signal of the finger part .
パス合成後の受信信号のブロックエラーレート(BLER)を測定し、
前記ブロックエラーレート(BLER)が、ある閾値未満の場合は前記フィンガー部の受信信号に直接波のみが含まれると判定することを特徴とする請求項2に記載のSIR測定方法。 The determination means includes
Measure the block error rate (BLER) of the received signal after path synthesis,
3. The SIR measurement method according to claim 2 , wherein when the block error rate (BLER) is less than a certain threshold value, it is determined that only a direct wave is included in the reception signal of the finger unit .
SIR測定値=(各フィンガー部の合成RSCP)/(各フィンガー部の合成ISCP*重み付け係数)、
重み付け係数=(拡散符号の数)/(有効フィンガー数)
の式によりSIR測定値を求めることを特徴とする請求項2に記載のSIR測定方法。 When it is determined by the determination means that the reception signal of the finger part includes a direct wave and a reflected delayed wave,
SIR measurement value = (combined RSCP of each finger part) / (combined ISCP * weighting coefficient of each finger part),
Weighting coefficient = (Number of spreading codes) / (Number of effective fingers)
The SIR measurement method according to claim 2 , wherein the SIR measurement value is obtained by the following formula.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003316539A JP4374955B2 (en) | 2003-09-09 | 2003-09-09 | SIR measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003316539A JP4374955B2 (en) | 2003-09-09 | 2003-09-09 | SIR measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005086492A JP2005086492A (en) | 2005-03-31 |
JP4374955B2 true JP4374955B2 (en) | 2009-12-02 |
Family
ID=34416406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003316539A Expired - Fee Related JP4374955B2 (en) | 2003-09-09 | 2003-09-09 | SIR measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4374955B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1911168A4 (en) * | 2005-07-26 | 2014-10-22 | Nec Corp | Method of measuring channel quality in closed loop transmit diversity communication system |
US8494484B2 (en) | 2005-11-01 | 2013-07-23 | Ntt Docomo, Inc. | Communication apparatus and communication method for tunnel switching |
US20100238818A1 (en) * | 2007-10-11 | 2010-09-23 | Panasonic Corporation | Wireless communication mobile station apparatus and communication quality information generating method |
-
2003
- 2003-09-09 JP JP2003316539A patent/JP4374955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005086492A (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6795422B2 (en) | Method of providing hysteresis in detection of path timing by multiplying delay profile by weighting coefficient | |
US5799004A (en) | Method for eliminating multiple-access interference and a mobile station | |
US6834197B2 (en) | Base station apparatus, mobile communication system, and method of controlling transmission power | |
KR100980131B1 (en) | System and method for the detection and compensation of radio signal time of arrival errors | |
EP1358721B1 (en) | Method and system for controlling device transmit power in a wireless communication network | |
US7483704B2 (en) | Base station and communication method | |
EP1107631A2 (en) | Wireless mobile positioning system and components | |
WO2001073976A1 (en) | Transmission power control device and transmission power control method | |
US7027830B2 (en) | Radio base station, mobile station, radio receiving apparatus, SIR estimation method, transmission power controlling method and program | |
EP1543634B1 (en) | Assessment of delay estimation quality using interference estimates | |
JP2005527160A (en) | Method and system for congestion control in a CDMA system | |
US20040247059A1 (en) | Apparatus and method for sir measurement | |
US7421010B2 (en) | Mobile communication terminal | |
US20040023627A1 (en) | Interference power measurement apparatus, transmission power control apparatus, and method | |
KR20070104901A (en) | Interference estimation in the presence of frequency errors | |
EP1065795A2 (en) | CDMA communication terminal apparatus and radio reception method | |
JP3559030B2 (en) | Wireless receiver and SIR calculation method | |
JP4374955B2 (en) | SIR measurement method | |
JP4138668B2 (en) | System and method for performing speed information through transmission power control command | |
JP2006186757A (en) | Method and apparatus for controlling transmission power in radio communication system | |
US7269437B2 (en) | Transmission power control circuit using W-CDMA method | |
JP2003304177A (en) | Radio receiving method and communication terminal device | |
JP2004320254A (en) | Transmission power controlling device | |
JP4515618B2 (en) | Mobile communication terminal | |
JP2001069073A (en) | Transmission power control circuit and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050314 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060817 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070118 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090202 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090831 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |