JP4374741B2 - JOINT BODY AND MANUFACTURING METHOD THEREOF - Google Patents

JOINT BODY AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP4374741B2
JP4374741B2 JP2000190847A JP2000190847A JP4374741B2 JP 4374741 B2 JP4374741 B2 JP 4374741B2 JP 2000190847 A JP2000190847 A JP 2000190847A JP 2000190847 A JP2000190847 A JP 2000190847A JP 4374741 B2 JP4374741 B2 JP 4374741B2
Authority
JP
Japan
Prior art keywords
foam
molded body
molded
thermoplastic resin
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000190847A
Other languages
Japanese (ja)
Other versions
JP2002001825A (en
Inventor
成夫 上拾石
利治 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000190847A priority Critical patent/JP4374741B2/en
Publication of JP2002001825A publication Critical patent/JP2002001825A/en
Application granted granted Critical
Publication of JP4374741B2 publication Critical patent/JP4374741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックから成るユニットバスの壁、天井やバス分野等の成形品の断熱や結露に対応するため、成形体全面に発泡体を積層被覆するが、更に成形体と発泡体の間に空気層を設け、断熱性能を更に向上させた断熱プラスチック成形体と発泡体の接合体及びその製造法に関する。
【0002】
【従来の技術】
近年、RC工法による住居用高層建造物や軽量鉄骨製の個人住宅の増加に伴いバス、シンク等水廻りのユニット化は常識的になっている。しかし、これらのユニットは成形品であるため、本来は結露防止のためには断熱材の積層あるいは複合化が必須であるが、成形体はその形態保持、強度を持たせるため複雑なリブ等の補強構造となっているため、全面の断熱は難しく、補強構造のリブ間に発泡スチロールやガラス繊維マットなどをその形状にカットした物を接着剤や粘着材によって裏貼りした物や無機繊維を混入した発泡性ディスパージョンを吹き付け被覆したものや、構造的に結露した水を連続的に排出する構造で対応するのが一般的であった。
【0003】
【発明が解決しようとする課題】
しかし、リブ等の補強部分は断熱は難しく、裏貼りや被覆が不十分のため、実質的には断熱が十分には期待できず、従って、結露問題は解決されていなかった。
【0004】
また、プラスチックを成形するにあたり、あらかじめ発泡体をプラスチックと積層一体化したものを各種の方法で成形する事も考案できるが、プラスチック成形体は複雑でかつ比較的深いリブ等の補強構造をしているためリブ構造に追従できず、隙間ができたり、あるいは破れが生じたりする。このことから、あらかじめ成形体表面と同形に成形、はめ込む等の被覆方法も提案されるが、リブは非常にシャープな形状となっており、従って、成形深さにも限界があり、前記提案は本分野で全体をカバーする事は困難であった。また、プラスチックが熱硬化型の場合、成形後のキュアで発熱を伴うため、発泡体部分が劣化するなど困難であった。
【0005】
そこで、本発明はこのような成形体本体表面のみでなくその補強構造部をも容易に断熱材で被覆し、更に断熱性能を向上させる方法及びその構造体を提供するものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、基本的には下記の構成を有する。即ち、「少なくとも片面側に凹凸形状を有するプラスチック成形体と、該成形体の凹凸形状に対向して該凹凸形状にはめ込み接合可能な熱可塑性樹脂系発泡体とが配置され、かつ、該成形体と該発泡体との間には外部と遮断された閉鎖空間を有し、該閉鎖空間の該成形体厚さ方向の長さが0.5〜5cmであり、該成形体と該発泡体とが密着していることを特徴とする接合体。」および、「前記熱可塑性樹脂系発泡体を、前記成形体表面と同型の成形体を押し型を用いて賦形し、このとき発泡体の成形深さを30mm以内にとどめる調整部材を配して、成形することを特徴とする請求項1に記載の接合体の製造方法。」である。
【0007】
【発明の実施の形態】
本発明におけるプラスチック成形体の凹凸形状とは、外部と遮断された閉鎖空間が形成され、かつ、そこに密閉された空気層が保持されるために発泡体と気密に密着可能となるならば特に限定されるものではないが、隔壁形状であることが好ましい。或いはリブ形状であることが好ましい。また、閉鎖空間は、成形体厚さ方向の長さ(空間間隔)が0.5〜5cmであることが好ましい。1〜4cmがより好ましく、1.5〜3.5cmが更に好ましい。前記数値範囲の下限値を下回ると空気層が少なくなり断熱性が低下することなり、上限値を上回ると空間が過大となり断熱の点では好ましいがコンパクト性の点で好ましくないことがある。1つの閉鎖空間の体積は、50〜200cm3であることが好ましい。60〜180cm3がより好ましく、65〜150cm3が更に好ましい。前記数値範囲の下限値を下回ると空間体積が少なく、結果的に断熱性が低下する事となり、上限値を上回ると空間、すなわち空気層が多く断熱性の点では好ましいが、
前記のように嵩張り、コンパクト性に劣るので好ましくない。
【0008】
本発明において、プラスチック成形体と熱可塑性樹脂系発泡体は成形体の凸部分などで密着しているが、少なくとも縁部は完全に密着し、プラスチック成形体と熱可塑性樹脂発泡体の空間部の空気層と外部大気との対流が生じない様にする事が肝要である。尚、閉鎖空間の全合計面積が成形体の面積の10〜50%であることが好ましい。15〜40%がより好ましく、20〜35%が更に好ましい。前記数値範囲の下限値を下回ると実質的に空気層の量が少なく成りすぎ断熱性能が低下することになり、上限値を上回ると閉塞空間が過大となりコンパクト性が低下するので、好ましくないことがある。
【0009】
本発明に用いるプラスチック成形体とは熱可塑性樹脂あるいは熱硬化性樹脂のいずれでも良いが、熱可塑性樹脂としてはABS樹脂、ポリプロピレン樹脂、高密度ポリエチレン樹脂、芳香族ポリエステル樹脂(PET、PBT)、ナイロン樹脂、ポリスチレン系樹脂、ポリアセタール樹脂などが例示できる。中でもガラス繊維などにより繊維強化されたものが好適に用いられる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、メタクリル樹脂、フェノール樹脂などが例示でき、これらをその樹脂の特徴に合わせて加熱圧縮、加熱真空成形、ハンドレイアップ成形等の方法で成形体としたものである。中でも、有機、無機、天然のチョップした短繊維や織物等に不飽和ポリエステル樹脂を含浸させたものが好適に用いられる。
【0010】
本発明に用いる熱可塑性樹脂系発泡体としてはポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂に揮発性ガスを用いて押し出し発泡したいわゆる無架橋型押し出し発泡体や、ポリエチレン系樹脂あるいはポリプロピレン系樹脂に過酸化化合物による化学架橋あるいは電子線を用いた架橋を施して添加した化学発泡剤を分解温度以上に加熱して発泡した架橋型発泡体が例示できる。しかし、好ましいのは架橋型発泡体である。中でも、ポリオレフィン系架橋型発泡体である。その場合、架橋度は好ましくは10〜70%、より好ましくは、15〜60%、見掛け密度は好ましくは0.2〜0.025g/cm3、より好ましくは0.5〜0.03g/cm3、厚さは好ましくは3〜15mmである。架橋度が10%未満では後の加熱真空成形後の形態保持性が悪化するので好ましくなく、70%を越えると伸びが急速に低下するため複雑な形状に成形できなくなるので好ましくない。見掛け密度が0.2g/cm3未満では成形性の点では好ましいが、発泡倍率が低く成りすぎて断熱性能が急速に低下するので好ましくなく、0.025g/cm3を越えると断熱性能の点では好ましいが、発泡体の腰がなくなり成形後の形態保持性が悪化、プラスチック成形体にはめ込む作業時の作業性が悪化するので好ましくない。厚さは3mm未満では真空成形後の絞りのきついところ(特にリブ部)が薄く成りすぎて断熱性能が低下するので好ましくなく、15mmを越えると断熱性能の点では好ましいが、厚みが厚くなるため真空成形条件が狭くなることと、シャープな形状に成形できず、プラスチック成形体にはめ込む時、リブ部などに空間ができやすくなり、断熱性能が低下するので好ましくない。
【0011】
本発明に用いる熱可塑性樹脂系発泡体にはユニット構造体の外部だけでなく、内部の加飾と断熱双方を満足させるために少なくとも片面に繊維布帛やプラスチック製表皮、あるいはプラスチックフィルム等の表皮材が積層したものを用いることもできる。繊維布帛を積層したものはユニット構造体の内部、特に床部分などに用いると滑り止めに成るなどの効果が期待でき、更にプラスチック製表皮、具体的にはPVC製表皮は加熱型等で凹凸模様を付加すると内部壁部分にタイルのような立体的な装飾を付加できるメリットもある。また、フィルムの場合発泡体表面、あるいはフィルムに印刷を施し、印刷面が発泡体側に成るように積層すると自由自在の装飾が付加できる。
【0012】
本発明のプラスチック成形体の少なくとも片面側の好ましくは全面に、その成形体表面と同型に成形された熱可塑性樹脂系発泡体を真空成形し、はめ込み積層するが、プラスチック成形体と発泡体の間に断熱空間を設けた接合体とする方法は、以下の通りである。即ち、熱可塑性樹脂系発泡体を、所望の形に成形されたプラスチック成形体の積層被覆する面と全く同一の形状に真空成形するが、この際に、発泡体のリブ等の絞り深さを30mm以内とするようにリブ間の凹部分に調整部材をあらかじめ配して、その深さを調整し、成形後リブ部分の途中の深さまではめ込まれるようにすればよい。このようにして得られた発泡体の不必要部をカットして、被覆するプラスチック成形体にかぶせ、リブ部分に押し込みながら、はめ込み積層すれば、発泡体の成形品とプラスチック成形体の間に空間が設けられた接合体が得られる。このとき、リブ部分の深さが不足、脱落などの心配があれば、各所に両面テープ等をポイントでセットしておけばより完全に固定化できる。
【0013】
この時、真空成形に用いる金型は、あらかじめ木製やプラスチック、アルミ鋳込み等の金型を作成し、通常の加熱真空成形しても良いが、コストが高くなったり、あるいは実際の製品面を完全に反映するのは難しい。本発明では成形型として、実際のプラスチック成形体を真空成形型として用いるが、このとき、プラスチック成形体のリブ底部のコーナに0.6mm程度の真空孔を開けておくとともに、リブ深さに対しリブ部分が30mm以内になるように石膏や木材などで深さ調整のために調整部材を配した状態のものを用いる。この方法を用いれば、高価な金型を用いる必要もなく、単に真空孔を開けたり、リブ深さ調整の石膏の流し込みや、角材を単純にカットして設置する程度の簡単な方法で成形型が得られる。
【0014】
これらの結果、本発明法によると、従来非常に困難であったユニット構造体の全面の積層による断熱化及びより断熱性の向上したものが安価に、かつ、精度良く得られるのである。
【0015】
【実施例】
次に実施例に基づいて本発明を説明する。
【0016】
本発明における測定法、評価基準は次の通りである。
1.発泡体の架橋度
発泡体を細断し、0.2g精秤する。このものを130℃のテトラリン中に浸積し、攪拌しながら3時間加熱し溶解部分を溶解せしめ、不溶部分を取り出しアセトンで洗浄してテトラリンを除去後、純水で洗浄しアセトンを除去して120℃の熱風乾燥機にて水分を除去して室温になるまで自然冷却する。このものの重量(W1)gを測定し、次式で架橋度を求める。
【0017】
架橋度=[(0.2−W1)/0.2]×100 (%)
2.見掛け密度
発泡体を10×10cmに切り出し、厚み(tmm)、その重量(wg)を測定し
次の算式で見掛け密度を算出する
見掛け密度=w/10×10×t (g/cm3
3.厚み
発泡体を10×10cmに切り出し、その中心部をJIS−K−6767に準じて測定する。
4.成形状態
真空成形した成形品のリブ部等絞りのきついところを目視検査し、極端に薄くなっていないか、破れていないかをみる。また、その部分を切り出し厚みを測定し、真空成型前の元の厚みの1/3以下のものは不合格。
5.はめ込み状態
真空成形したものをはめ込み積層して20分以上経過してから、状態を目視し、はめ込み部が浮いて、膨らんでいないか見る。
6.結露(断熱性)性の評価
断熱性評価室にユニットをセットし、内外気温差20℃、相対湿度45%で放置、24時間後、内外を目視で観察、ユニットの表面に水滴が付着していないか確認する。水滴が発生したものは不合格。
[実施例1]
金型として不飽和ポリエステル樹脂系GFRP製ユニットバス壁用パネル(共和工業(株)社製(図1参照))のリブの各コーナーに0.6mm径の真空孔を開け更に、各リブ間の凹部にそれぞれリブ間より5mm小さく厚さ30mmの角材を両面粘着テープで固定し、台座にセットした。熱可塑性樹脂系発泡体として架橋度が38%、密度が0.033g/cm3、厚みが5mmの架橋ポリプロピレン系発泡体(東レ(株)製トーレペフPP AR60)を準備し、FRP製ユニットバス壁用パネルサイズに合わせてカットし、真空成型機にクランプして、発泡体の表面温度が160℃となるようにヒーター加熱、真空成形した。冷却後、成形品の不要バリ部分をカット、除去してFRP製ユニットバス壁用パネル用の成形品を得た。このものをFRP製ユニットバス壁用パネルのリブ部分先端部に両面粘着テープを適宜配したものに、はめ込み全体を積層体とした。積層体を気温差20℃、相対湿度45%に設定した雰囲気に24時間設置して結露性の評価を行った。結果を表1に示した。
[実施例2]
金型は実施例1と同じ物を用いた。熱可塑性樹脂系発泡体として架橋度が28%、密度が0.030g/cm3、厚みが10mmの架橋ポリエチレン系発泡体(東レ(株)製トーレペフ AG00)を用いた以外は実施例と同じ評価を行った。結果は表1に示した。
[比較例1]
実施例1に用いたFRP製ユニットバス壁用パネルをそのまま用いて評価した。結果は表1に示した。
[比較例2]
実施例1に用いたFRP製ユニットバス壁用パネルのフラットな部分に厚さ6mmのポリウレタン性吹き付け断熱層を設けたものも評価した。結果は表1に示した。
[実施例3]
成形型として実施例1と同様のFRP製ユニットバス壁用パネル(共和工業(株)社製)でリブ深さが50mmのものの各コーナーに0.6mmの真空孔を開けて、更に、各リブ間の凹部にそれぞれリブ間より5mm程度小さく厚さ20mmの角材を両面プで固定、台座にセットして用いた。熱可塑性樹脂系発泡体として架橋度が32%、密度が0.033g/cm3、厚みが6mmの架橋ポリプロピレン系発泡体(東レ(株)製トーレペフPP AP66)を準備し、FRP製ユニットバス壁用パネルサイズに合わせてカットし、真空成型機にクランプして、発泡体の表面温度が160℃となるようにヒーター加熱、真空成形した。冷却後、成形品の目視検査を行ったが、破れや偏肉による極端な厚みの薄い部分は見あたらず良好な成形品であった。この成形品をFRP製ユニットバス壁用パネルのリブ部分に脱離防止に適宜両面粘着テープを配したものにかぶせ、リブ部分にはめ込み全体を積層体とした。20分後、再度積層品の形態を観察したが成形、はめ込み不具合による浮き部分なども認められず、また、この成形積層品を垂直に立てかけたり、あるいは裏返しの状態にしても熱可塑性樹脂系発泡体成形品の脱落はなく、リブ等の部分のはめ込み部がしっかり保持の機能を果たしていることが確認された。この、積層体を気温差20℃、相対湿度45%にした雰囲気に24時間設置して結露の状態を確認した結果、全く結露は認められず断熱効果が確認された。
[比較例3]
断熱材を発泡体に代えて、厚さ6mmにポリウレタンを吹き付けたものである以外は実施例3と同様にした。同様に評価したが、吹き付け断熱したものはリブなど非被覆部分に結露が認められ、断熱性能が不十分であることが確認された。
【0018】
以上より、全面に断熱材をはめ込み被覆、かつ空間を持たせて空気層を配した積層体はユニット成型品の断熱に好適なものであるし、真空成形品をはめ込むことが好適な積層体の製造方法である。
【0019】
【表1】

Figure 0004374741
【0020】
【発明の効果】
本発明法によると、ユニット成形品等の複雑な表面形状を持つ成形品を安価に、全面を断熱被覆するとともに発泡体層と成型品間に断熱空気層を設けたことにより断熱性能が向上し、従来のカット品を貼り付ける方法や吹き付けによる方法のものに比べ圧倒的優れた断熱接合体を得ることができる。
【0021】
本発明法により得られる断熱プラスチック成形体発泡体は、ユニットバスの壁、天井やシンク等のユニット水廻り分野等一体成形ユニットで結露防止を必要とする分野に好適に用いることができる。
【図面の簡単な説明】
【図1】FRP製ユニットバス壁用パネルの平面、断面図
【図2】断熱材被覆したときの断面図(従来品、本発明品)
【図3】真空成形型の真空孔の一例
【図4】熱可塑性樹脂系発泡体の成形例
【図5】真空成形された熱可塑性樹脂系発泡体の断面図
【図6】FRP製ユニットバス壁用パネルに真空成形した熱可塑性樹脂系発泡体をはめ込み積層した例の断面図
【図7】熱可塑性樹脂系発泡体の片面にあらかじめ積層した例
【符号の説明】
1:FRP製ユニットバス壁用パネル
2:補強リブ
3:断熱材カット品
4:熱可塑性樹脂系発泡体成形断熱材
5:空気断熱層
6:調整部材
7:真空孔
8:熱可塑性樹脂系発泡体
9:真空ライン
10:熱可塑性エラストマー製表皮材[0001]
BACKGROUND OF THE INVENTION
In the present invention, foam is laminated on the entire surface of the molded body in order to cope with heat insulation and dew condensation of molded products such as plastic unit bath walls, ceilings, and buses. The present invention relates to a joined body of a heat-insulating plastic molded body and a foam, which is provided with an air layer and further improves the heat-insulating performance, and a method for producing the same.
[0002]
[Prior art]
In recent years, with the increase of residential high-rise buildings and lightweight steel-made private houses by the RC method, unitization of water around buses and sinks has become common sense. However, since these units are molded products, in order to prevent dew condensation, it is essential to laminate or combine heat insulating materials. However, the molded product maintains its form and has strength such as complicated ribs. Because it has a reinforced structure, it is difficult to insulate the entire surface, and a material that is cut with foamed polystyrene or glass fiber mat in its shape between the ribs of the reinforced structure is mixed with a material that is backed by an adhesive or adhesive material, or inorganic fibers It was common to use a structure in which a foamable dispersion is spray-coated or a structure in which structurally condensed water is continuously discharged.
[0003]
[Problems to be solved by the invention]
However, it is difficult to insulate the reinforcing parts such as ribs, and the backing and covering are insufficient. Therefore, the insulation cannot be sufficiently expected substantially, and thus the dew condensation problem has not been solved.
[0004]
In addition, when molding plastics, it is possible to devise various types of moldings in which foams are laminated and integrated with plastics in advance, but plastic moldings are complex and have a reinforcing structure such as relatively deep ribs. Therefore, it cannot follow the rib structure, and a gap is formed or tearing occurs. From this, a coating method such as molding and fitting in the same shape as the surface of the molded body is proposed in advance, but the rib has a very sharp shape, and therefore there is a limit to the molding depth. It was difficult to cover the whole in this field. Further, when the plastic is a thermosetting type, heat is generated by the curing after molding, so that the foam portion is difficult to deteriorate.
[0005]
Accordingly, the present invention provides a method for easily covering not only the surface of the molded body but also the reinforcing structure thereof with a heat insulating material, and further improving the heat insulating performance, and the structure.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention basically has the following configuration. That is, “a plastic molded body having a concavo-convex shape on at least one side and a thermoplastic resin foam that can be fitted and joined to the concavo-convex shape facing the concavo-convex shape of the molded body, and the molded body A closed space that is blocked from the outside, and the length of the closed space in the thickness direction of the molded body is 0.5 to 5 cm. And “the thermoplastic resin-based foam is shaped using a pressing mold having the same shape as the surface of the molded body. The manufacturing method of the joined body according to claim 1, wherein an adjusting member that keeps a forming depth within 30 mm is disposed and formed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The uneven shape of the plastic molded body in the present invention is particularly when a closed space that is blocked from the outside is formed and an air layer sealed therein is held, so that the foam can be airtightly adhered. Although it is not limited, a partition wall shape is preferable. Or it is preferable that it is a rib shape. The closed space preferably has a length (space interval) in the thickness direction of the molded body of 0.5 to 5 cm. 1-4 cm is more preferable, and 1.5-3.5 cm is still more preferable. When the value is below the lower limit of the numerical range, the air layer is reduced and the heat insulation is reduced. When the value exceeds the upper limit, the space is excessive, which is preferable in terms of heat insulation, but not preferable in terms of compactness. The volume of one closed space is preferably 50 to 200 cm 3 . More preferably 60~180cm 3, 65~150cm 3 is more preferable. When the value falls below the lower limit of the numerical range, the space volume is small, resulting in a decrease in heat insulation, and when the value exceeds the upper limit, the space, that is, the air layer is preferred in terms of heat insulation,
Since it is bulky and inferior in compactness as described above, it is not preferable.
[0008]
In the present invention, the plastic molded body and the thermoplastic resin-based foam are in close contact with each other at the convex portion of the molded body, but at least the edges are in close contact with each other, and the space between the plastic molded body and the thermoplastic resin foam is It is important to prevent convection between the air layer and the external atmosphere. In addition, it is preferable that the total total area of closed space is 10 to 50% of the area of a molded object. 15-40% is more preferable and 20-35% is still more preferable. If the value falls below the lower limit of the numerical range, the amount of the air layer will be substantially too small and the heat insulation performance will be reduced.If the value exceeds the upper limit, the closed space will become excessive and the compactness will be reduced, which is not preferable. is there.
[0009]
The plastic molded body used in the present invention may be either a thermoplastic resin or a thermosetting resin, but as the thermoplastic resin, ABS resin, polypropylene resin, high density polyethylene resin, aromatic polyester resin (PET, PBT), nylon Resins, polystyrene resins, polyacetal resins and the like can be exemplified. Among them, those reinforced with glass fiber or the like are preferably used. Examples of thermosetting resins include unsaturated polyester resins, epoxy resins, diallyl phthalate resins, methacrylic resins, phenol resins, etc., and these are heat-compressed, heat-vacuum molded, hand lay-up molded, etc. according to the characteristics of the resin. This is a molded body. Among them, organic, inorganic, natural chopped short fibers or fabrics impregnated with unsaturated polyester resin are preferably used.
[0010]
The thermoplastic resin-based foam used in the present invention is a polystyrene-based resin, a polypropylene-based resin, a polyethylene-based resin, a so-called non-crosslinked-type extruded foam that is extruded using a volatile gas, a polyethylene-based resin, or a polypropylene-based resin. Examples thereof include a cross-linked foam that is foamed by heating a chemical foaming agent added by performing chemical cross-linking with a peroxide compound or cross-linking using an electron beam to a temperature higher than the decomposition temperature. However, cross-linked foams are preferred. Among these, polyolefin cross-linked foams. In that case, the degree of crosslinking is preferably 10 to 70%, more preferably 15 to 60%, and the apparent density is preferably 0.2 to 0.025 g / cm 3 , more preferably 0.5 to 0.03 g / cm. 3. The thickness is preferably 3 to 15 mm. If the degree of cross-linking is less than 10%, the shape retention after the subsequent heat vacuum forming deteriorates, which is not preferable. If it exceeds 70%, the elongation rapidly decreases and it becomes impossible to form a complicated shape. If the apparent density is less than 0.2 g / cm 3 , it is preferable in terms of moldability, but it is not preferable because the expansion ratio becomes too low and the heat insulation performance deteriorates rapidly, and if it exceeds 0.025 g / cm 3 , the heat insulation performance is not good. However, it is not preferable because the foam does not lose its elasticity and the shape retention after molding deteriorates, and the workability during the operation of fitting into the plastic molding deteriorates. If the thickness is less than 3 mm, the tight part (particularly the rib portion) after vacuum forming becomes too thin to reduce the heat insulation performance, and if it exceeds 15 mm, it is preferable in terms of heat insulation performance, but the thickness increases. It is not preferable because the vacuum forming conditions are narrow and it cannot be molded into a sharp shape, and when it is fitted into a plastic molded body, a space is easily formed in the rib part and the like, and the heat insulation performance is lowered.
[0011]
The thermoplastic resin foam used in the present invention is not only the exterior of the unit structure, but also a skin material such as a fiber fabric, a plastic skin, or a plastic film on at least one surface in order to satisfy both the interior decoration and the heat insulation. It is also possible to use a laminate of. A laminate of fiber fabrics can be expected to be non-slip when used in the unit structure, especially on the floor, etc. Furthermore, the plastic skin, specifically the PVC skin, is a heating pattern, etc. If is added, there is an advantage that a three-dimensional decoration such as a tile can be added to the inner wall portion. Further, in the case of a film, if the surface of the foam or the film is printed and laminated so that the printed surface is on the foam side, a free decoration can be added.
[0012]
The thermoplastic resin-based foam molded in the same shape as the surface of the molded body is vacuum-formed and fitted and laminated on at least one side of the plastic molded body of the present invention, preferably between the plastic molded body and the foam. A method of forming a joined body in which a heat insulating space is provided is as follows. That is, the thermoplastic resin-based foam is vacuum-molded into the same shape as the surface of the plastic molded body molded into a desired shape, but at this time, the drawing depth of the foam ribs and the like is reduced. An adjustment member may be arranged in advance in the concave portion between the ribs so as to be within 30 mm, the depth thereof is adjusted, and the rib may be inserted in the middle of the rib portion after molding. By cutting unnecessary parts of the foam obtained in this way, placing it on the plastic molded body to be coated, and inserting and laminating it while pushing into the rib part, a space is formed between the foam molded product and the plastic molded body. A joined body provided with is obtained. At this time, if there is a fear that the rib portion is not deep enough or falls off, it can be more completely fixed by setting double-sided tape or the like at various points.
[0013]
At this time, the mold used for vacuum forming may be made in advance, such as wooden, plastic, or aluminum casting mold, and normal heat vacuum forming may be performed, but the cost increases or the actual product surface is completely It is difficult to reflect on. In the present invention, an actual plastic molded body is used as a vacuum mold as a mold, and at this time, a vacuum hole of about 0.6 mm is formed in a corner at the bottom of the rib of the plastic molded body, and the rib depth is adjusted. A material in which an adjusting member is arranged for adjusting the depth with gypsum or wood so that the rib portion is within 30 mm is used. If this method is used, there is no need to use an expensive mold, and the mold can be simply formed by simply opening a vacuum hole, pouring gypsum for adjusting the rib depth, or simply cutting and installing the square bar. Is obtained.
[0014]
As a result, according to the method of the present invention, it is possible to obtain the heat insulation by the lamination of the entire surface of the unit structure and the improvement of the heat insulation, which has been very difficult in the past, at low cost and with high accuracy.
[0015]
【Example】
Next, this invention is demonstrated based on an Example.
[0016]
The measurement method and evaluation criteria in the present invention are as follows.
1. The foam has a cross-linking degree. The foam is chopped and weighed 0.2 g. This is immersed in tetralin at 130 ° C. and heated for 3 hours with stirring to dissolve the dissolved portion. The insoluble portion is taken out and washed with acetone to remove tetralin and then washed with pure water to remove acetone. Water is removed with a hot air dryer at 120 ° C., and then naturally cooled to room temperature. The weight (W 1 ) g of this product is measured, and the degree of crosslinking is determined by the following formula.
[0017]
Crosslinking degree = [(0.2−W 1 ) /0.2] × 100 (%)
2. The apparent density foam is cut out to 10 × 10 cm, the thickness (tmm) and its weight (wg) are measured, and the apparent density is calculated by the following formula: Apparent density = w / 10 × 10 × t (g / cm 3 )
3. The thick foam is cut into 10 × 10 cm, and the center is measured according to JIS-K-6767.
4). Molding condition Visually inspect the tight parts of the ribs and other parts of the vacuum molded product to see if it is extremely thin or not torn. Moreover, the part was cut out and the thickness was measured, and the thickness below 1/3 of the original thickness before vacuum forming was rejected.
5. Inset state After vacuum forming what has been vacuum-molded and laminated for 20 minutes or more, the state is visually observed to see if the inset is floating and bulging.
6). Evaluation of condensation (thermal insulation) property Set the unit in the thermal insulation evaluation room, leave it at an internal / external temperature difference of 20 ° C, and a relative humidity of 45%. After 24 hours, visually observe the inside and outside, and water droplets are attached to the surface of the unit. Check if there is any. Those with water drops are rejected.
[Example 1]
Open a 0.6mm diameter vacuum hole at each corner of the rib of the unit bus wall panel (made by Kyowa Kogyo Co., Ltd. (see Fig. 1)) made of unsaturated polyester resin GFRP as a mold, and between each rib A square member having a thickness of 5 mm smaller than between the ribs and a thickness of 30 mm was fixed to the concave portion with a double-sided adhesive tape, and set on the pedestal. As a thermoplastic resin foam, a cross-linked polypropylene foam (Toray Pef PP AR60 manufactured by Toray Industries, Inc.) having a cross-linking degree of 38%, a density of 0.033 g / cm 3 and a thickness of 5 mm was prepared, and an FRP unit bath wall It was cut to fit the panel size, clamped in a vacuum molding machine, and heated with a heater and vacuum molded so that the surface temperature of the foam was 160 ° C. After cooling, unnecessary burr portions of the molded product were cut and removed to obtain a molded product for an FRP unit bath wall panel. The whole was made into a laminated body in which this was fitted with a double-sided pressure-sensitive adhesive tape appropriately disposed at the end of the rib portion of the FRP unit bath wall panel. The laminate was placed in an atmosphere set at a temperature difference of 20 ° C. and a relative humidity of 45% for 24 hours to evaluate the dew condensation. The results are shown in Table 1.
[Example 2]
The same mold as in Example 1 was used. The same evaluation as in Examples except that a crosslinked polyethylene foam (Toraypef AG00 manufactured by Toray Industries, Inc.) having a crosslinking degree of 28%, a density of 0.030 g / cm 3 and a thickness of 10 mm was used as the thermoplastic resin foam. Went. The results are shown in Table 1.
[Comparative Example 1]
The FRP unit bath wall panel used in Example 1 was evaluated as it was. The results are shown in Table 1.
[Comparative Example 2]
What provided the polyurethane-type spraying heat insulation layer of thickness 6mm in the flat part of the panel for FRP unit bath walls used for Example 1 was also evaluated. The results are shown in Table 1.
[Example 3]
As a molding die, an FRP unit bath wall panel (made by Kyowa Kogyo Co., Ltd.) similar to that of Example 1 was used, and a 0.6 mm vacuum hole was made in each corner of a rib depth of 50 mm. A square member having a thickness of 20 mm and a thickness of about 5 mm smaller than between the ribs was fixed to each recess between the two sides, and set on a pedestal. As a thermoplastic resin foam, a crosslinked polypropylene foam (Toray Pef PP AP66 manufactured by Toray Industries, Inc.) having a crosslinking degree of 32%, a density of 0.033 g / cm 3 , and a thickness of 6 mm is prepared. It was cut to fit the panel size, clamped in a vacuum molding machine, and heated with a heater and vacuum molded so that the surface temperature of the foam was 160 ° C. After cooling, the molded product was visually inspected, but no extremely thin portion due to tearing or uneven thickness was found and the molded product was a good molded product. This molded product was placed on a rib portion of an FRP unit bath wall panel that was appropriately provided with a double-sided pressure-sensitive adhesive tape for prevention of detachment, and was fitted into the rib portion to form a laminate. After 20 minutes, the form of the laminated product was observed again, but no floating part due to molding or fitting failure was observed. Also, the thermoplastic foamed foam was formed even when the molded laminated product was leaned vertically or turned over. There was no dropout of the body molded product, and it was confirmed that the insets of the ribs and other parts fulfilled the function of holding firmly. The laminate was placed in an atmosphere with a temperature difference of 20 ° C. and a relative humidity of 45% for 24 hours to confirm the state of condensation. As a result, no condensation was observed and a heat insulating effect was confirmed.
[Comparative Example 3]
The same procedure as in Example 3 was performed except that the insulating material was replaced with foam and polyurethane was sprayed to a thickness of 6 mm. Evaluation was made in the same manner, but in the case of insulation by spraying, dew condensation was observed on the non-covered parts such as ribs, and it was confirmed that the heat insulating performance was insufficient.
[0018]
As described above, a laminate in which a heat insulating material is fitted on the entire surface and a space is provided and an air layer is disposed is suitable for heat insulation of a unit molded product, and a laminate that is suitable for fitting a vacuum molded product. It is a manufacturing method.
[0019]
[Table 1]
Figure 0004374741
[0020]
【The invention's effect】
According to the method of the present invention, a heat-insulating performance is improved by providing a heat-insulating coating on the entire surface of a molded product having a complicated surface shape, such as a unit molded product, and providing a heat-insulating air layer between the foam layer and the molded product. As a result, it is possible to obtain a heat-insulated bonded body that is overwhelmingly superior to those of conventional methods of pasting cut products and methods of spraying.
[0021]
The heat-insulated plastic molded body foam obtained by the method of the present invention can be suitably used in a field that requires prevention of dew condensation in an integral molding unit such as a unit watering field such as a unit bath wall, ceiling, or sink.
[Brief description of the drawings]
FIG. 1 is a plan view and a cross-sectional view of an FRP unit bath wall panel. FIG. 2 is a cross-sectional view when a heat insulating material is coated (conventional product, product of the present invention).
3 is an example of a vacuum hole of a vacuum molding die. FIG. 4 is a molding example of a thermoplastic resin foam. FIG. 5 is a cross-sectional view of a vacuum molded thermoplastic resin foam. Cross-sectional view of an example in which a thermoplastic resin foam that has been vacuum-formed is placed on a wall panel and laminated. [Fig. 7] An example of pre-lamination on one side of a thermoplastic resin foam.
1: FRP unit bath wall panel 2: Reinforcement rib 3: Heat insulation material cut product 4: Thermoplastic resin foam molded heat insulation material 5: Air heat insulation layer 6: Adjustment member 7: Vacuum hole 8: Thermoplastic resin foam Body 9: Vacuum line 10: Skin material made of thermoplastic elastomer

Claims (7)

少なくとも片面側に凹凸形状を有するプラスチック成形体と、該成形体の凹凸形状に対向して該凹凸形状にはめ込み接合可能な熱可塑性樹脂系発泡体とが配置され、かつ、該成形体と該発泡体との間には外部と遮断された閉鎖空間を有し、該閉鎖空間の該成形体厚さ方向の長さが0.5〜5cmであり、該成形体と該発泡体とが密着していることを特徴とする接合体。A plastic molded body having a concavo-convex shape at least on one side, and a thermoplastic resin foam that can be fitted and joined to the concavo-convex shape facing the concavo-convex shape of the molded body, and the molded body and the foam There is a closed space between the body and the outside, the length of the closed space in the thickness direction of the molded body is 0.5 to 5 cm, and the molded body and the foam are in close contact with each other. A joined body characterized by 1つの閉鎖空間の体積が50〜200cm3である請求項に記載の接合体。The joined body according to claim 1 , wherein the volume of one closed space is 50 to 200 cm 3 . 前記熱可塑性樹脂系発泡体のゲル分率が10〜70%、見掛け密度が0.2〜0.025g/cm3、厚さが3〜15mmのポリオレフィン系樹脂架橋発泡体である請求項1または2のいずれかに記載の接合体。Gel fraction 10% to 70% of the thermoplastic resin foam, the apparent density of 0.2~0.025g / cm 3, a thickness of the polyolefin resin crosslinked foam 3~15mm claim 1 or The joined body according to any one of 2 above. 前記熱可塑性樹脂系架橋発泡体が、少なくとも片面に繊維布帛、プラスチック製表皮、あるいはプラスチックフィルムが積層されたものである請求項1〜3のいずれかに記載の接合体。The joined body according to any one of claims 1 to 3 , wherein the thermoplastic resin-based crosslinked foam is obtained by laminating a fiber fabric, a plastic skin, or a plastic film on at least one surface. 前記成形体が繊維強化プラスチックから成るものである請求項1〜4のいずれかに記載の接合体。The joined body according to any one of claims 1 to 4 , wherein the molded body is made of a fiber reinforced plastic. 前記プラスチック成形体が強化繊維に熱硬化性樹脂を含浸したFRPである請求項1〜5のいずれかに記載の接合体。The joined body according to any one of claims 1 to 5 , wherein the plastic molded body is FRP in which a reinforcing fiber is impregnated with a thermosetting resin. 前記熱可塑性樹脂系発泡体を、前記成形体表面と同型の成形体を押し型を用いて賦形し、このとき発泡体の成形深さを30mm以内にとどめる調整部材を配して、成形することを特徴とする請求項に記載の接合体の製造方法。The thermoplastic resin-based foam is molded by using a molded body having the same shape as the surface of the molded body by using a pressing die, and at this time, an adjusting member that keeps the molding depth of the foam within 30 mm is arranged and molded. The method for producing a joined body according to claim 1 .
JP2000190847A 2000-06-26 2000-06-26 JOINT BODY AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP4374741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190847A JP4374741B2 (en) 2000-06-26 2000-06-26 JOINT BODY AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190847A JP4374741B2 (en) 2000-06-26 2000-06-26 JOINT BODY AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2002001825A JP2002001825A (en) 2002-01-08
JP4374741B2 true JP4374741B2 (en) 2009-12-02

Family

ID=18690248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190847A Expired - Fee Related JP4374741B2 (en) 2000-06-26 2000-06-26 JOINT BODY AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP4374741B2 (en)

Also Published As

Publication number Publication date
JP2002001825A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
US10647083B2 (en) Panel structure
US5219648A (en) Stampable sheet shaped-product, process for producing the same, and use of the same as sound-absorbing and heat-insulating material
JP4374741B2 (en) JOINT BODY AND MANUFACTURING METHOD THEREOF
JP4857454B2 (en) Manufacturing method of heat insulating plastic molding for unit bath
JP4064029B2 (en) Method for manufacturing heat-insulated plastic molding
KR20160124605A (en) Complex insulator for construction and construction method the same
US6030560A (en) Method for making a cushioned article
JPH0732383A (en) Cushioning container for fluid and its production
JP4029677B2 (en) Insulated floor material
JP3695491B2 (en) Siding materials and composite siding materials
KR20060123191A (en) Temperature sensitive sheet, temperature sensitive member, method of manufacturing the sheet and the member, and method of modifying waterproof pan for bathroom
JP3067511B2 (en) Phenolic resin laminate and method for producing phenolic resin molded article using the same
JP2005042416A (en) Mat made of synthetic resin foam
JPH0144502B2 (en)
JP2575384Y2 (en) Floor panel
JP4358591B2 (en) Composite molded body for bathroom
JPS6024828Y2 (en) siding board
JP2005009246A (en) Mat unit
JP4219690B2 (en) Manufacturing method of composite molded product
JP2002011815A (en) Insulating deep draw plastic molded body and method for producing it
JPS6024829Y2 (en) siding board
JPH08219370A (en) Heat insulating duct
JPS634751Y2 (en)
JP3016436U (en) Building materials and wall / floor structure
JPH0733053Y2 (en) Ceiling cassette type air conditioner panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R151 Written notification of patent or utility model registration

Ref document number: 4374741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees