JP4374512B2 - Hot air dryer - Google Patents

Hot air dryer Download PDF

Info

Publication number
JP4374512B2
JP4374512B2 JP34662899A JP34662899A JP4374512B2 JP 4374512 B2 JP4374512 B2 JP 4374512B2 JP 34662899 A JP34662899 A JP 34662899A JP 34662899 A JP34662899 A JP 34662899A JP 4374512 B2 JP4374512 B2 JP 4374512B2
Authority
JP
Japan
Prior art keywords
drying chamber
drying
hot air
dried
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34662899A
Other languages
Japanese (ja)
Other versions
JP2001133151A (en
Inventor
正武 高島
盛男 小林
Original Assignee
盛男 小林
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盛男 小林 filed Critical 盛男 小林
Priority to JP34662899A priority Critical patent/JP4374512B2/en
Publication of JP2001133151A publication Critical patent/JP2001133151A/en
Application granted granted Critical
Publication of JP4374512B2 publication Critical patent/JP4374512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、現在、食品工業の産業廃棄物となっている植物性残渣例えば、豆腐工場から産出されるおから、製餡工場から産出される小豆・豆類粕、清酒工場から産出される酒粕、しょうゆ工場から産出されるしょうゆ粕等を乾燥する乾燥機に関するものである。
【0002】
【従来の技術】
上記植物性残渣は、食品素材や飼料に再利用されているものは、まだ少なく、多くは廃棄されているのが実状である。この事は最近、環境悪化の一因としてクローズアップされているゴミ処理問題に関わることで、この業界でもリサイクルによりゴミの量を減らしていこうと言う動きが強まっている。このような情勢を踏まえ植物性残渣を乾燥し食品素材や飼料に再利用する従来の乾燥機をみると、高価で大型のものが多く、大量に処理する食品工場でないと採算がとれないため、中小規模の工場では処理料を支払って廃棄しているのが現状である。この高価で大型になる理由は、従来の乾燥機の乾燥方式が回転乾燥式と、慣性分級を使用した気流乾燥式である事から小型化は難しいことと、植物性残渣が酸化腐食しやすいものであるため酸素との接触時間を極力少なくする手段例えば食品工場の生産ラインの端末にある植物性残渣産出口に直結し生産ラインのスピードと同調させて処理するする装備が必要なことからその分高価なものになる。具体例として回転方式の撹拌破砕乾燥機は、円筒の乾燥室内に撹拌羽根を装備し、500℃〜550℃の熱風を送って撹拌粉砕乾燥するものであるため、粉砕効率から生産ラインの処理スピードと同調させるには、撹拌部分を長くしなければならず大型で高価なものになってしまう。又高温熱風で処理するため乾燥物に焦げが出やすく、撹拌羽根で行う粉砕は、粒度にばらつきが出る等品質に問題があり用途が限定される。熱風気流乾燥方式のものは、特開平6−105663に示されているように円筒を横に寝かせた乾燥室で乾燥粉砕し、該円筒状乾燥室の真上に吹き上げる形の気流束を発生させ、該気流束により乾燥物を上昇させ、粒径が細かいもの程高く上がる事を利用して、最上部の取り出し口から食品素材に適した粒径のものだけを取り出す慣性分級方式を使用したものであるため、乾燥物として食品素材に適した粒径のものを得る場合は、被乾燥物の処理量が少ない場合でも乾燥機の高さを変えられず小型化することができない。さらに両方式の機械に共通する事で、機械が大型であるため既生産ラインの空きスペースに設置できない場合が多く別途直結するための搬送ラインを設けなければならずその分高価になる。
【0003】
【発明が解決しようとする課題】
上記のようにゴミ処理問題が大きな社会問題になりつつある現状にあって、従来の乾燥方式の乾燥機では、酸化腐敗しやすい植物性残渣を食品素材や飼料として再利用するには、高価で大型のものになってしまい、大量に植物性残渣が産出される食品工場でないと採算がとれない。このため高価で大型の乾燥機を導入できない個人経営を含む中小規模の食品工場では、産廃業者に処理を依頼しているがその処理費用も年々高くなる傾向にあるため導入しやすい低価格で小型の乾燥機が望まれている。
【0004】
【課題を解決するための手段】
上記問題点を解決する手段として、従来の乾燥方式とは異なった遠心分級方式を使用した気流乾燥機としたことにより、小型化、低価格化を可能にした。本発明による乾燥機は、熱風発生装置6と乾燥室13を熱風供給路8で乾燥室13の円筒部内壁の接線に沿って熱風25を供給できるよう連結し、被乾燥物受け口10を備えた被乾燥物供給路12を乾燥室13の円筒部27に連結し、乾燥室13の上部に乾燥室13と連通した乾燥室14を設け、乾燥室14の上端は排出管17を介し乾燥物回収装置としてのサイクロン48に連結してなるもので、該乾燥室13、14は円筒部と該円筒部の上部と下部を円錐状に絞った形状にし、乾燥室13、14内には粉砕乾燥媒体として直径が1mm〜10mmの大小の媒体ボール22と該粉砕乾燥媒体ボールの回転を促し、乾燥室の底部に被乾燥物が堆積しないようにする直径が15mm〜25mmの媒体ボールを配し、処理速度制御、品質維持のための温度制御が行える制御装置を備えたことを特徴とする。
【0005】
上記構成の乾燥機において、乾燥室13における円筒部内壁の接線に沿って熱風25を供給し、螺旋状に上昇する気流束23を発生させ、該気流束23とその周辺にできる渦流24により媒体ボール22を乾燥室13、14の内壁に沿って転がり回転させながら被乾燥物供給路8から供給される被乾燥物9を粉砕する。これと並行して熱風25からの対流伝熱及び媒体ボール22と乾燥室13,14からの伝導伝熱で被乾燥物9を乾燥し、粉体状になった粒の重力と、遠心力に対する向心力と、気流束の方向及び風力のバランスにより粒径の大きな重いものは乾燥室の下方に集まり、媒体ボールによりさらに細かく粉砕され、粒径が小さくなって軽くなるに従い上昇する一連の作用(遠心分級)が行われ、必要な粒径になった乾燥物だけが乾燥室14の上端に連結された排出管17を経てサイクロン18に送られサイクロンの作用により排風32と乾燥物20に分離される。この際に、被乾燥物9の性状に合わせ、熱風25の風速を10m/秒〜50m/秒の適当な速度に設定し、乾燥室14の上部に形成した円錐部31の傾斜を30°〜60°の適当な角度に設定する事により処理速度と取り出す乾燥物の粒径を自在に変えることができる。さらに円錐部28,31の形成位置を下げ円筒部27,30を短くすることで、媒体ボール22と被乾燥物9の接触を密にでき、粉砕効率が上がるため粒径が均一で良品質のものが得られると共に乾燥機を小型化でき低価格化をも実現した。
【0006】
【発明の実施の形態】
本発明の実施の一例を図面に基づいて詳細に説明する。本実施例は豆腐製造業者から産出されたおからを乾燥する乾燥機の例を示すもので、被乾燥物となるおからの成分は、乾物重量比で蛋白質22.7%、脂質15.5%、繊維17.8%、糖質40%、灰分4%のものとし、含水率は、85%のものとする。図1、2において、プロパンガスボンベ2とガスバーナー4をガス管33で接続し、該ガス管の任意位置に比例弁3を設け、図示してない自動点火機構とガス漏れ対策機構とを備え、送風機5で熱風25が送られる構成の熱風発生装置6と乾燥室13を熱風供給路8で連結する。この乾燥室13と熱風供給路8の連結は乾燥室円筒部内壁15の接線に沿って熱風25が供給されるよう連結し、該熱風供給路8には熱風温度を検知する温度センサー7を付設する。乾燥室13と熱風供給路8とが連結する部分の上方向に被乾燥物供給口12を連結し、該被乾燥物供給路12の上端には被乾燥物受け口8を設け、中間部にはロータリーフィーダー11を設ける。乾燥室13内の熱風供給路8と被乾燥物供給路12が連結される部分には熱風25と被乾燥物9の供給口をガードする形で当て板34を設け、媒体ボール22が熱風25と被乾燥物9の供給口に当たって風向を乱すことを防ぐ事と併せて供給された被乾燥物9が容易に熱風25中に拡散されるのを促進する。乾燥室13、14は円筒部27,30とその上端下端を円錐状に絞った部分26、28、29、31で形成され、該円錐状に絞った部分を通過できる被乾燥物と媒体ボールの大きさを制限する。乾燥室13の上部には乾燥室14を連通させて形成し、乾燥室14には温度センサー16を付設し、乾燥室13内には媒体ボール22を配す。乾燥室14の上端とサイクロン18を排出管17で連結し、サイクロン18の上部には、排気管19を設ける。
【0007】
制御装置21にはインバーターと温度センサーの温度制御部を備えてあって、被乾燥物の成分、含水率により、熱風温度、乾燥状態温度、風量(風速)を設定でき、食品工場の生産ラインから出てくる植物性残渣産出速度に合わせロータリーフィーダー11の速度を設定する事ができる。これらの設定値は実験にて求めてあるもので、本実施例の場合、熱風温度を330℃〜340℃、含水率8%〜10%の乾燥物を得る際の乾燥中の乾燥状態温度を83℃〜85℃、風速を25m/秒〜27m/秒にした。又中小規模の食品工場から出てくる植物性残渣産出速度は80kg/時間〜90kg/時間であるからそれに合わせロータリーフィーダーの速度を設定する。又制御装置21に接続されている比例弁3、温度センサー7は、乾燥室に送られる熱風温度を外気温、始動時、過熱時の変動に関わらず上述制御装置21で設定した温度に維持できるよう制御するためのもので、温度センサー7にて検知した熱風温度と制御装置21で設定した温度との差により比例弁3を動作させガスバーナー4へのガス供給量を調節する方法で行う。又制御装置に接続されている温度センサー16は乾燥状態温度を上述制御装置21で設定した温度に維持できるよう制御するためのもので、温度センサー16により検知した温度と制御装置で設定した温度との差により比例弁3を動作させガスバーナー4へのガス供給量を調節する方法で行う。この乾燥状態温度制御は、熱風温度制御に優先する。
【0008】
図3〜図4にて熱風及び被乾燥物の流れと遠心分級について説明する。熱風供給路8より乾燥室13に供給される熱風25は、乾燥室13の円筒部27内壁の接線方向から供給され、気流束23となって乾燥室13,14の内壁に沿って螺旋状に上昇し乾燥室14の出口36へ向かう。この螺旋状に上昇する気流束23の内側には図4に示すように渦流24が発生し渦流24の中心部35は圧力が低下する。この状況は熱風の導入口付近で特に顕著で出口36付近に近づくに従い気流束23は崩れ均等化されながら出口36方向への層流37となる。又該渦流24の中心部35の圧力が低い部分に向かって下方向への流れ38が生じる。そこで乾燥室13内に被乾燥物9を供給すると以下のような遠心分級が行われる。熱風供給路8の上方に設けられた被乾燥物供給路12から乾燥室13内に被乾燥物9を供給すると、気流束23に捕捉され、媒体ボールと乾燥室13、14の内壁とにより粉砕されるが大きな重量の固まりは遠心力により乾燥室13の内壁に押しつけられ失速し下方向へ落下するかもしくは気流束23の薄い部分に至って中央部の下方向への流れ38に沿って落下する。落下したものは、再び気流束23に捕捉され、媒体ボールと乾燥室13、14の内壁により粉砕されるという動作が繰り返され、被乾燥物9の固まりが粉砕乾燥され粉体になり製品水準の粒径になったものだけが気流束23により上昇し出口38より排出される。
【0009】
図3〜図6にて乾燥室の構成について説明する。乾燥室13は円筒部分27と円筒部分27の上端と下端を円錐状に絞った部分26、28で形成し、該乾燥室13の上に連通して形成される乾燥室14は円筒部分30と円筒部分30の上端と下端を円錐状に絞った部分29、31で形成したものである。この円錐状に絞った部分26,27,28,31の形状と機能について以下に述べる。円錐状に絞った部分26,29は円筒部27、30に対する傾斜を本実施例のおからの場合45°で形成する事により、被乾燥物が角部に堆積しないようにしたものである。円錐状に絞った部分28は円筒部27に対する傾斜を本実施例のおからの場合50°で形成する事により、乾燥室13内に配される媒体ボール22−a、22−b(図7で説明するもの)及び比較的大きな固まりの被乾燥物9が円錐状に絞った部分28より上に上昇しないようにし、該円錐状に絞った部分28を通過する物体の大きさを制限することで媒体ボール22と被乾燥物9との接触を密にできるから粉砕乾燥効率を上げられる。これについてさらに詳細に述べると、該媒体ボール22−a、22−bと被乾燥物9は螺旋状に上昇する気流束23に捕捉され乾燥室13内を回転上昇するため、それらには遠心力による向心力と自重による重力及び気流束23による上昇力がはたらき、力のバランスで上昇したり下降したりするので、円錐状に絞った部分28での力のバランスが下向きになるようにすれば、それより上には上昇しないことになる。即ち円錐状に絞った部分28での力の向きをみると遠心力による向心力は円錐状面に対して垂直方向になり水平面に対して下方向の力となるから、自重による重力と向心力を加えた下方向の力が気流束25による上昇力より大きくなるよう円錐状面の傾斜を適宜変えることにより円錐状に絞った部分28より上に上昇しないようにできる。尚この円錐状に絞った部分28で阻止しきれなかった比較的大きな固まりの被乾燥物は前記熱風と被乾燥物の流れの中で説明したように下方向への流れに沿って落下し再粉砕されるかもしくは乾燥室14内に留まり粉砕乾燥される。
【0010】
円錐状に絞った部分31は円筒部30に対する傾斜を本実施例のおからの場合50°で形成する事により、乾燥室14内に配される媒体ボール22−c、22−d(図7で説明するもの)と製品としての乾燥水準に達してない被乾燥物9が上記円錐状に絞った部分28と同様の原理で円錐状に絞った部分31より上に上昇しないようにし、該円錐状に絞った部分31を通過する物体の大きさを制限することで媒体ボール22−c、22−dと被乾燥物9との接触を密にできるから粉砕乾燥効率を上げられる。
【0011】
頭7〜図9により媒体ボール22について説明する。図7では媒体ボールの総称を22とし、重量の重いものから軽いものへ順に22−a、22−b、22−c、22−dとして説明する。乾燥室13,14内に配されるセラミック等の耐摩耗性の高い材質を使用した媒体ボール22は粉砕乾燥媒体として用いるもので、気流束23の風力と媒体ボール22の重量及び遠心力のバランスにより重量の重いもの22−aは低い位置で、軽くなるに従い22−b、22−c、22−dと順に高い位置で乾燥室13,14内を回転させるようにし、被乾燥物9と接触させ、該媒体ボール22が乾燥室内壁を転がることで粉砕すると同時に気流束23の熱と媒体ボール22の伝導伝熱で乾燥する。この媒体ボール22の回転の軌跡は図4に於ける渦流24の軌跡に類似し気流束23を避けた形で図8のように回転する。又この気流束23が螺旋状に回転していることと、種々重量の異なった媒体ボール22が異なった高さで回転していることから真上からみると図9のように乾燥室13,14内を満遍なく回転するので粉砕が効率良く行われる。又媒体ボールの直径が小さくなるほど粉砕される粒径が小さくなるので、上記のような媒体ボールの動きの中に被乾燥物を供給すると乾燥室13内に供給されたばかりの大きな固まりの被乾燥物は重量の重い大きな径の媒体ボールで比較的大きく粉砕され、徐々に軽くなって上昇するに従い重量の軽い小さな径の媒体ボールで小さく粉砕されるようになるので、粒径の小さな、ばらつきのない乾燥物を効率よく得る事ができる。本実施例の場合、直径が25mmのボールを4〜5個と直径が8mm、4mm、2mmのボールをそれぞれ200〜250個を乾燥室内に配した。
【0013】
上記実施例では、プロパンガスによる熱風装置の使用例を示したがこれに限定されることはなく電気、石油等を使用する方式の熱風装置でも構わない。
【0014】
また、上記実施例では乾燥室を2段に重ねたものとしたが被乾燥物の性状、処理量により1〜数段重ねたものとすることができる。
【0015】
さらに、上記実施例では乾燥室13,14の円錐状に絞った部分26、29の傾斜を45°とし、円錐状に絞った部分28,31の傾斜を50°としたが、被乾燥物が変わっても植物性残渣であれば、その成分、含水率により30°〜60°の範囲で選択設定すれば上記実施例と同じ機能が得られる。
【0016】
また、上記実施例では媒体ボール22−aの径を25mmとしたが、被乾燥物である植物性残渣の成分、含水率が変わっても15mm〜25mmの範囲で選択設定すれば上記実施例と同じ機能が得られる。
【0017】
上記実施例では、熱風温度を330℃〜340℃、乾燥状態温度を83℃〜85℃、風速を25m/秒〜27m/秒としたが被乾燥物である植物性残渣の成分、含水率が変わっても熱風温度を300℃〜350℃、乾燥状態温度を80℃〜85℃、風速を10m/秒〜50m/秒の範囲で選択設定する事により上記実施例と同様の機能が得られる。
【0018】
また、上記実施例では被乾燥物の搬送手段としてロータリーフィーダー11を用いたがスクリュウ等他の搬送手段でも構わない。
【0019】
その他、乾燥室13,14に掃除点検用の扉や点検用窓を設けるとか、外側を断熱材で覆う等の付帯構成は図示してないが、本発明の意図する範囲を逸脱しないように構成するものであるならば自由に設計変更できる。
【0020】
【発明の効果】
以上説明したように、本発明は植物性残渣乾燥用の遠心分級式気流乾燥機を構築し、且つ、乾燥室内に粉砕乾燥のための媒体ボールを配し、乾燥室に円錐状に絞った部分を設け、その部分を通過する被乾燥物と媒体ボールの大きさを制限できるようにしたことにより、単位体積あたりの被乾燥物と媒体ボールの接触を密にでき、粉砕乾燥効率を高める事ができるようにしたので、装置の小型化と併せて低価格化をも可能にした。
【図面の簡単な説明】
【図1】植物性残渣を乾燥処理する熱風による気流乾燥機の全体構成図
【図2】図1のA−A矢視図
【図3】乾燥室の構成と乾燥室内に於ける熱風及び被乾燥物の流れと遠心分級についての説明図
【図4】図3のB−B矢視図
【図5】図3のD部拡大図
【図6】図3のE部拡大図
【図7】媒体ボールの動作説明図
【図8】図7のC−C断面図
【図9】図8の補足説明図
【符号の説明】
1 気流乾燥機 20 乾燥物
2 ガスボンベ 21 制御装置
3 比例弁 22 媒体ボール
4 ガスバーナー 23 気流束
5 送風機 24 渦流
6 熱風発生装置 25 熱風
7 温度センサー 26 円錐状に絞った部分
8 熱風供給路 27 円筒部
9 被乾燥物 28 円錐状に絞った部分
10 被乾燥物受け口 29 円錐状に絞った部分
11 ロータリーフィーダー 30 円筒部
12 被乾燥物供給路 31 円錐状に絞った部分
13 乾燥室 32 排風
14 乾燥室 33 ガス管
15 円筒部内壁
16 温度センサー 35 渦流の中心部
17 排出管 36 出口
18 サイクロン 37 層流
19 排気管 38 下方向への流れ
[0001]
[Industrial application fields]
The present invention is a vegetable residue that is currently an industrial waste of the food industry, for example, okara produced from a tofu factory, red beans / bean curd produced from a brewing factory, sake lees produced from a sake factory, The present invention relates to a dryer for drying soy sauce cake produced from a soy sauce factory.
[0002]
[Prior art]
As for the above-mentioned vegetable residue, what is reused as a food material and feed is still small, and the fact is that many are discarded. This has recently been related to the problem of waste disposal that has been highlighted as a cause of environmental degradation, and there is an increasing movement in this industry to reduce the amount of waste through recycling. Based on this situation, when looking at conventional dryers that dry plant residues and reuse them in food materials and feeds, there are many expensive and large-sized ones, and it can not be profitable unless it is a food factory that processes a large amount, At present, small and medium-sized factories are disposed of after paying treatment fees. The reason for this high price and large size is that the conventional drying method is rotary drying and airflow drying using inertia classification, so it is difficult to downsize, and plant residues are susceptible to oxidative corrosion Therefore, it is necessary to equip the means for reducing the contact time with oxygen as much as possible, for example, equipment that is directly connected to the vegetable residue production outlet at the terminal of the production line of the food factory and is processed in synchronization with the speed of the production line. It becomes expensive. As a specific example, a rotating stirring crusher / dryer is equipped with a stirring blade in a cylindrical drying chamber, and is stirred and pulverized and dried by sending hot air of 500 ° C to 550 ° C. In order to synchronize with the above, it is necessary to lengthen the stirring portion, which becomes large and expensive. In addition, since it is treated with high-temperature hot air, the dried product is easily burnt, and pulverization performed with a stirring blade has a problem in quality such as variation in particle size, and its application is limited. In the hot air flow drying method, as shown in JP-A-6-105663, a dry air pulverization is carried out in a drying chamber in which a cylinder is laid down horizontally and blown right above the cylindrical drying chamber. , Using the inertia classification method to take out only those having a particle size suitable for food material from the uppermost take-out port, using the fact that the dry matter is raised by the air flow bundle and the particle size becomes higher as the particle size becomes higher Therefore, when obtaining a dried product having a particle size suitable for a food material, the height of the dryer cannot be changed even when the amount of the processed material to be dried is small, and the size cannot be reduced. Furthermore, since both machines are common, the machine is large, so it is often impossible to install it in an empty space on an existing production line, and a separate transport line for direct connection must be provided.
[0003]
[Problems to be solved by the invention]
In the current situation where the waste disposal problem is becoming a major social problem as described above, it is expensive to recycle vegetable residues that are susceptible to oxidative spoilage as food materials and feed in conventional dryers. It will be large, and it will not be profitable unless it is a food factory that produces a large amount of plant residues. For this reason, in small and medium-sized food factories including private businesses that cannot introduce expensive and large dryers, processing is requested from industrial waste disposal companies, but the processing costs tend to increase year by year. A dryer is desired.
[0004]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, an air-flow dryer using a centrifugal classification system different from the conventional drying system is made possible to reduce the size and the price. The dryer according to the present invention includes a hot-air generator 6 and a drying chamber 13 connected via a hot-air supply path 8 so that hot air 25 can be supplied along a tangent to the inner wall of the cylindrical portion of the drying chamber 13, and includes an object receiving target 10. The drying object supply path 12 is connected to the cylindrical portion 27 of the drying chamber 13, and a drying chamber 14 communicating with the drying chamber 13 is provided in the upper portion of the drying chamber 13, and the upper end of the drying chamber 14 is recovered through the discharge pipe 17. The drying chambers 13 and 14 are connected to a cyclone 48 as an apparatus, and the drying chambers 13 and 14 are formed by concentrating the cylindrical portion and the upper and lower portions of the cylindrical portion in a conical shape. A medium ball 22 having a diameter of 1 mm to 10 mm and a medium ball having a diameter of 15 mm to 25 mm for urging the rotation of the pulverized and dried medium ball to prevent the material to be dried from accumulating on the bottom of the drying chamber. For speed control and quality maintenance Characterized by comprising a control device capable of performing temperature control of.
[0005]
In the dryer configured as described above, hot air 25 is supplied along the tangent to the inner wall of the cylindrical portion in the drying chamber 13 to generate a spirally rising airflow bundle 23, and the airflow bundle 23 and the eddy current 24 generated around the medium are used as a medium. The material to be dried 9 supplied from the material to be dried supply path 8 is pulverized while rolling and rotating the balls 22 along the inner walls of the drying chambers 13 and 14. In parallel with this, the object to be dried 9 is dried by convection heat transfer from the hot air 25 and conduction heat transfer from the medium balls 22 and the drying chambers 13 and 14, and against the gravity of the powdered particles and the centrifugal force Due to the balance between the centripetal force, the direction of the air flow bundle and the wind force, heavy objects with large particle diameters gather below the drying chamber and are further finely crushed by the media balls. Only the dried product having the required particle size is sent to the cyclone 18 through the discharge pipe 17 connected to the upper end of the drying chamber 14 and separated into the exhaust air 32 and the dried product 20 by the action of the cyclone. The At this time, in accordance with the properties of the material 9 to be dried, the wind speed of the hot air 25 is set to an appropriate speed of 10 m / sec to 50 m / sec, and the inclination of the conical portion 31 formed at the upper part of the drying chamber 14 is 30 ° to 30 °. By setting an appropriate angle of 60 °, the processing speed and the particle size of the dried product to be taken out can be freely changed. Further, by lowering the positions where the conical portions 28 and 31 are formed and shortening the cylindrical portions 27 and 30, the contact between the medium ball 22 and the material to be dried 9 can be made dense, and the grinding efficiency is increased, so the particle size is uniform and of good quality. As a result, the dryer was downsized and the price was reduced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to the drawings. This example shows an example of a dryer for drying okara produced by a tofu manufacturer. Okara components to be dried are 22.7% protein and 15.5 lipids by dry matter weight ratio. %, Fiber 17.8%, sugar 40%, ash 4%, and moisture content 85%. 1 and 2, a propane gas cylinder 2 and a gas burner 4 are connected by a gas pipe 33, a proportional valve 3 is provided at an arbitrary position of the gas pipe, and an automatic ignition mechanism and a gas leakage countermeasure mechanism not shown are provided. The hot air generator 6 configured to send the hot air 25 by the blower 5 and the drying chamber 13 are connected by the hot air supply path 8. The drying chamber 13 and the hot air supply path 8 are connected so that hot air 25 is supplied along a tangent to the inner wall 15 of the drying chamber cylindrical portion, and the hot air supply path 8 is provided with a temperature sensor 7 for detecting the temperature of the hot air. To do. A to-be-dried object supply port 12 is connected to an upper portion of a portion where the drying chamber 13 and the hot air supply path 8 are connected, and a to-be-dried object receiving port 8 is provided at the upper end of the to-be-dried object supply path 12. A rotary feeder 11 is provided. At the portion where the hot air supply path 8 and the material to be dried supply path 12 are connected in the drying chamber 13, a backing plate 34 is provided so as to guard the supply port of the hot air 25 and the material 9 to be dried, and the medium ball 22 has the hot air 25. In addition to preventing the wind direction from being disturbed by hitting the supply port of the object to be dried 9, the supplied object 9 to be dried is easily diffused into the hot air 25. The drying chambers 13 and 14 are formed of cylindrical portions 27 and 30 and portions 26, 28, 29, and 31 whose upper and lower ends are constricted in a conical shape. Limit the size. A drying chamber 14 is formed in communication with the upper portion of the drying chamber 13, a temperature sensor 16 is attached to the drying chamber 14, and a medium ball 22 is disposed in the drying chamber 13. The upper end of the drying chamber 14 and the cyclone 18 are connected by a discharge pipe 17, and an exhaust pipe 19 is provided in the upper part of the cyclone 18.
[0007]
The control device 21 is provided with an inverter and a temperature control unit of a temperature sensor, and the hot air temperature, the drying state temperature, and the air volume (air speed) can be set according to the composition and moisture content of the object to be dried. The speed of the rotary feeder 11 can be set according to the vegetable residue production speed to come out. These set values are obtained through experiments. In the case of this example, the temperature of the hot air is 330 ° C. to 340 ° C., and the dry state temperature during drying when obtaining a dried product having a water content of 8% to 10% is determined. The temperature was 83 ° C to 85 ° C, and the wind speed was 25 m / sec to 27 m / sec. Moreover, since the vegetable residue production speed | velocity which comes out from a small and medium-sized food factory is 80 kg / hour-90 kg / hour, the speed | rate of a rotary feeder is set according to it. Further, the proportional valve 3 and the temperature sensor 7 connected to the control device 21 can maintain the temperature of the hot air sent to the drying chamber at the temperature set by the control device 21 regardless of fluctuations in the outside air temperature, starting time, and overheating. The proportional valve 3 is operated by the difference between the hot air temperature detected by the temperature sensor 7 and the temperature set by the control device 21 to adjust the gas supply amount to the gas burner 4. The temperature sensor 16 connected to the control device is for controlling the drying state temperature so as to be maintained at the temperature set by the control device 21. The temperature detected by the temperature sensor 16 and the temperature set by the control device are The proportional valve 3 is operated based on the difference between the two to adjust the gas supply amount to the gas burner 4. This dry state temperature control has priority over the hot air temperature control.
[0008]
The flow of hot air and the material to be dried and centrifugal classification will be described with reference to FIGS. The hot air 25 supplied from the hot air supply path 8 to the drying chamber 13 is supplied from the tangential direction of the inner wall of the cylindrical portion 27 of the drying chamber 13 and becomes an airflow bundle 23 in a spiral shape along the inner walls of the drying chambers 13 and 14. Ascend to the exit 36 of the drying chamber 14. As shown in FIG. 4, a vortex 24 is generated inside the spirally rising airflow bundle 23, and the pressure in the central portion 35 of the vortex 24 is reduced. This situation is particularly conspicuous near the hot air inlet, and as it approaches the vicinity of the outlet 36, the air flow bundle 23 is collapsed and equalized, resulting in a laminar flow 37 toward the outlet 36. Further, a downward flow 38 is generated toward a portion where the pressure in the central portion 35 of the vortex 24 is low. Accordingly, when the material to be dried 9 is supplied into the drying chamber 13, the following centrifugal classification is performed. When an object to be dried 9 is supplied into the drying chamber 13 from an object supply path 12 provided above the hot air supply path 8, it is captured by the air flow bundle 23 and pulverized by the medium balls and the inner walls of the drying chambers 13 and 14. However, a large mass of weight is pushed against the inner wall of the drying chamber 13 by centrifugal force and stalls and falls downward, or reaches a thin portion of the airflow bundle 23 and falls along the downward flow 38 in the center. . The fallen thing is again captured by the airflow bundle 23 and is repeatedly pulverized by the medium balls and the inner walls of the drying chambers 13 and 14, and the mass of the material 9 to be dried is pulverized and dried to become powder and become the product level. Only the particles having a particle size rise by the air flow bundle 23 and are discharged from the outlet 38.
[0009]
The configuration of the drying chamber will be described with reference to FIGS. The drying chamber 13 is formed by a cylindrical portion 27 and portions 26 and 28 in which the upper and lower ends of the cylindrical portion 27 are conically constricted. The drying chamber 14 formed in communication with the drying chamber 13 is connected to the cylindrical portion 30. The upper and lower ends of the cylindrical portion 30 are formed by conical portions 29 and 31. The shape and function of the conical portions 26, 27, 28, 31 will be described below. The conical constricted portions 26 and 29 are formed so that the object to be dried does not accumulate at the corners by forming an inclination with respect to the cylindrical portions 27 and 30 at 45 ° in the case of the present embodiment. The conical constricted portion 28 is inclined with respect to the cylindrical portion 27 by 50 ° in the case of the present embodiment, whereby the medium balls 22-a, 22-b arranged in the drying chamber 13 (FIG. 7). And a relatively large lump to-be-dried object 9 does not rise above conical constricted portion 28, and limits the size of an object passing through conical constricted portion 28. Thus, the contact between the medium ball 22 and the material 9 to be dried can be made dense, so that the grinding and drying efficiency can be increased. More specifically, the medium balls 22-a, 22-b and the object to be dried 9 are trapped by the spirally rising airflow bundle 23 and rotate up in the drying chamber 13, so that centrifugal force is applied to them. Since the centripetal force due to gravity and the gravity force due to its own weight and the ascending force due to the air flow bundle 23 work and rise and fall with the balance of force, if the balance of the force at the constricted portion 28 is made downward, It will not rise above that. That is, when looking at the direction of the force at the constricted portion 28, the centripetal force due to the centrifugal force is perpendicular to the conical surface and is downward with respect to the horizontal plane. By appropriately changing the inclination of the conical surface so that the downward force becomes larger than the ascending force by the air flow bundle 25, it can be prevented from rising above the conical constricted portion 28. It should be noted that the relatively large mass to be dried that could not be prevented by the constricted portion 28 falls along the downward flow as described in the flow of the hot air and the material to be dried. It is pulverized or stays in the drying chamber 14 and pulverized and dried.
[0010]
The conical constricted portion 31 is inclined with respect to the cylindrical portion 30 at 50 ° in the case of the present embodiment, so that the media balls 22-c, 22-d (FIG. 7) disposed in the drying chamber 14 are formed. And the dried product 9 that has not reached the dry level as a product is prevented from rising above the conical constricted portion 31 on the same principle as the conical constricted portion 28, By restricting the size of the object passing through the narrowed portion 31, the contact between the medium balls 22-c, 22-d and the object to be dried 9 can be made dense, so that the pulverization drying efficiency can be increased.
[0011]
The medium ball 22 will be described with reference to FIGS. In FIG. 7, the generic name of the medium ball is 22, and the description will be made in the order of 22-a, 22-b, 22-c, and 22-d in order from heavy to light. A medium ball 22 made of a highly wear-resistant material such as ceramic disposed in the drying chambers 13 and 14 is used as a pulverized drying medium, and the balance between the wind force of the airflow bundle 23 and the weight and centrifugal force of the medium ball 22. As a result, the heavier one 22-a is rotated in the drying chambers 13 and 14 in order of 22-b, 22-c, and 22-d in order of increasing weight, and comes into contact with the object 9 to be dried. The medium ball 22 is pulverized by rolling on the inner wall of the drying chamber, and at the same time, the medium ball 22 is dried by the heat of the air flow bundle 23 and the conduction heat transfer of the medium ball 22. The trajectory of the rotation of the medium ball 22 is similar to the trajectory of the vortex 24 in FIG. 4 and rotates as shown in FIG. In addition, since the airflow bundle 23 rotates in a spiral manner and the medium balls 22 having different weights rotate at different heights, the drying chamber 13, as shown in FIG. Since the inside of 14 rotates evenly, pulverization is performed efficiently. Also, the smaller the diameter of the medium ball, the smaller the particle size to be crushed. Therefore, when the material to be dried is supplied during the movement of the medium ball as described above, the large volume of material to be dried just supplied into the drying chamber 13. Is pulverized relatively large with heavy media balls with a large diameter, and gradually pulverized with small media balls with a light weight and small diameter as it rises gradually. A dry product can be obtained efficiently. In the case of this example, 4 to 5 balls having a diameter of 25 mm and 200 to 250 balls having a diameter of 8 mm, 4 mm, and 2 mm were disposed in the drying chamber.
[0013]
In the above-described embodiment, an example of using a hot air device using propane gas is shown, but the present invention is not limited to this, and a hot air device using electricity, oil, or the like may be used.
[0014]
Moreover, in the said Example, although the drying room was piled up in 2 steps | paragraphs, it can be set as 1 to several steps | paragraphs depending on the property of the to-be-dried object, and the processing amount.
[0015]
Further, in the above embodiment, the slopes of the conical constricted portions 26 and 29 of the drying chambers 13 and 14 are set to 45 °, and the conical constricted portions 28 and 31 are inclined to 50 °. Even if it changes, if it is a vegetable residue, the same function as the said Example will be obtained if it selects and sets in the range of 30 degrees-60 degrees with the component and moisture content.
[0016]
Moreover, in the said Example, although the diameter of the medium ball | bowl 22-a was 25 mm, even if the component of the vegetable residue which is a to-be-dried substance and a moisture content change, if it sets and sets in the range of 15 mm-25 mm, it will be with the said Example. The same function is obtained.
[0017]
In the above example, the hot air temperature was 330 ° C. to 340 ° C., the dry state temperature was 83 ° C. to 85 ° C., and the wind speed was 25 m / sec to 27 m / sec. Even if it changes, the same function as the above-mentioned embodiment can be obtained by selectively setting the hot air temperature in the range of 300 ° C. to 350 ° C., the dry state temperature in the range of 80 ° C. to 85 ° C., and the wind speed in the range of 10 m / sec to 50 m / sec.
[0018]
Moreover, in the said Example, although the rotary feeder 11 was used as a conveyance means of to-be-dried material, other conveyance means, such as a screw, may be sufficient.
[0019]
In addition, although an incidental configuration such as providing a cleaning inspection door or inspection window in the drying chambers 13 and 14 or covering the outside with a heat insulating material is not shown, it is configured not to depart from the intended scope of the present invention. You can freely change the design if you want to.
[0020]
【The invention's effect】
As described above, the present invention constructs a centrifugal classification type airflow dryer for drying plant residues, arranges a medium ball for pulverization drying in the drying chamber, and constricts the conical shape in the drying chamber. The size of the material to be dried and the medium ball that passes through the portion can be restricted, so that the contact between the material to be dried and the medium ball per unit volume can be made dense, and the crushing and drying efficiency can be improved. As a result, it has become possible to reduce the cost together with downsizing of the device.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an air dryer using hot air for drying plant residues. FIG. 2 is a view taken along arrow AA in FIG. 1. FIG. Explanatory drawing about the flow of dry matter and centrifugal classification [FIG. 4] BB view of FIG. 3 [FIG. 5] D section enlarged view of FIG. 3 [FIG. 6] E section enlarged view of FIG. FIG. 8 is a cross-sectional view taken along the line CC of FIG. 7. FIG. 9 is a supplementary explanatory diagram of FIG. 8.
DESCRIPTION OF SYMBOLS 1 Airflow dryer 20 Dry matter 2 Gas cylinder 21 Control apparatus 3 Proportional valve 22 Media ball 4 Gas burner 23 Airflow bundle 5 Blower 24 Eddy current 6 Hot air generator 25 Hot air 7 Temperature sensor 26 Conical constricted part 8 Hot air supply path 27 Cylinder Part 9 To-be-dried part 28 Conical-squeezed part 10 To-be-dried object receptacle 29 Conical-squeezed part 11 Rotary feeder 30 Cylindrical part 12 To-be-dried object supply path 31 Conical-squeezed part 13 Drying chamber 32 Exhaust air 14 Drying room 33 Gas pipe 15 Cylindrical inner wall 16 Temperature sensor 35 Centrifugal center part 17 Discharge pipe 36 Outlet 18 Cyclone 37 Laminar flow 19 Exhaust pipe 38 Flow downward

Claims (4)

風量、風速と熱量を可変できる手段を備えた熱風発生装置と円筒状の乾燥室とを設け、該円筒状の乾燥室は上部と下部を円錐状に絞った形を複数段に連通させて形成し、熱風供給装置と乾燥室の連結を乾燥室の底に近い部分に設け、乾燥室円筒部の内壁の接線に沿って熱風が供給されるようにし、上部の円錐状に排気筒を接続し、乾燥室下部から供給する熱風と共に植物性残さを導入し、円筒状の乾燥室壁面に沿って旋回しながら上昇させ、乾燥し微粉となった植物性残さを上部排気筒からの排気と共に取り出すようにした遠心分級式植物性残さ乾燥装置。A hot-air generator equipped with means capable of changing the air volume, wind speed, and heat quantity and a cylindrical drying chamber are provided, and the cylindrical drying chamber is formed by concentrating the upper and lower parts into a conical shape in multiple stages. The hot air supply device and the drying chamber are connected to the portion near the bottom of the drying chamber so that hot air is supplied along the tangent to the inner wall of the drying chamber cylinder, and the exhaust pipe is connected in a conical shape at the top. Introduce plant residue along with hot air supplied from the bottom of the drying chamber, raise it while swirling along the cylindrical drying chamber wall surface, and take out the plant residue that has become dry and fine powder together with the exhaust from the upper stack Centrifugal classification plant residue drying device. 請求項1の乾燥室における円錐状に絞った部分の傾斜を円筒部に対して30°〜60°とした遠心分級式植物性残さ乾燥機。The centrifugal classification type plant residue dryer which made the inclination of the part restrict | squeezed conically in the drying chamber of Claim 1 30 degrees-60 degrees with respect to the cylindrical part. 請求項1の乾燥室を1段〜多段連接した遠心分級式植物性残さ乾燥機。A centrifugal classification type vegetable residue drier in which the drying chamber of claim 1 is connected in one stage to multiple stages. 請求項1,2,3の乾燥室内に直径が1mm〜10mmの粉砕乾燥媒体ボールを配し、該粉砕乾燥媒体ボールの回転を促し乾燥室底部の被乾燥物の塊を粉砕し被乾燥物が堆積しないようにする直径が、15mm〜25mmの粉体乾燥媒体ボールを配した遠心分級式植物性残さ乾燥装置。A pulverized drying medium ball having a diameter of 1 mm to 10 mm is disposed in the drying chamber according to claim 1, 2, 3, the rotation of the pulverized drying medium ball is urged, and a mass of the material to be dried at the bottom of the drying chamber is pulverized. Centrifugal classification plant residue drying apparatus provided with a powder drying medium ball having a diameter of 15 mm to 25 mm to prevent accumulation.
JP34662899A 1999-10-29 1999-10-29 Hot air dryer Expired - Fee Related JP4374512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34662899A JP4374512B2 (en) 1999-10-29 1999-10-29 Hot air dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34662899A JP4374512B2 (en) 1999-10-29 1999-10-29 Hot air dryer

Publications (2)

Publication Number Publication Date
JP2001133151A JP2001133151A (en) 2001-05-18
JP4374512B2 true JP4374512B2 (en) 2009-12-02

Family

ID=18384739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34662899A Expired - Fee Related JP4374512B2 (en) 1999-10-29 1999-10-29 Hot air dryer

Country Status (1)

Country Link
JP (1) JP4374512B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196817B2 (en) * 2007-03-14 2013-05-15 株式会社ブリヂストン Drying equipment
KR100887175B1 (en) 2007-10-31 2009-03-09 한국에너지기술연구원 A drying unit using pulsation airstream
JP2013126613A (en) * 2011-12-16 2013-06-27 Takeo Yoshida Crusher, and in-liquid foreign matter separator having the same
KR101288041B1 (en) 2012-04-05 2013-07-19 한국에너지기술연구원 Drying device with a unitary cylinder using swirling air current
KR101384339B1 (en) 2012-06-21 2014-04-14 주식회사 부성엔지니어링 A mesuring and control apparatus of air volume for ventilation dry
KR101724208B1 (en) * 2015-10-15 2017-04-06 류봉현 system for drying a machine
CN105875894A (en) * 2016-06-30 2016-08-24 贵州四季春茶业有限责任公司 Broadleaf holly leaf fixation machine
CN107937206A (en) * 2017-12-06 2018-04-20 四川理工学院 A kind of vinasse airing of Multi-sensor Fusion adds bent intelligent monitoring method
KR102039481B1 (en) * 2018-02-13 2019-11-01 조해준 A sterilization apparatus for powdered red pepper
JP7237630B2 (en) * 2019-02-13 2023-03-13 藤森工業株式会社 Resin composition, resin molded product, and method for producing resin composition

Also Published As

Publication number Publication date
JP2001133151A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
US7967226B2 (en) Drying mill and method of drying ground material
JP4374512B2 (en) Hot air dryer
CA2314634C (en) Flash drying apparatus
US3950146A (en) Continuous process for energy conserving cooperative coal feeding and ash removal of continuous, pressurized coal gasifiers and the like, and apparatus for carrying out the same
WO2008032655A1 (en) Crushed material producing device
TW302298B (en)
US5133137A (en) Method and apparatus for heat treating a particulate product
CN206056199U (en) Potent heating flash evaporation drying machine
JP2019136697A (en) Dry powder crusher
JP2004507349A (en) Crushing and drying equipment with cyclone
CN113188292A (en) Continuous treatment system and method for wet basic magnesium carbonate material
JP2007163088A (en) Drying apparatus
JP2003268394A (en) Wooden fuel and its production process
WO2019244357A1 (en) Grinding system
JP2010243032A (en) Dryer
CN107649386A (en) The special powder concentrator of sandstone
JP2012072974A (en) Fuel supply method of cement kiln
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
JP6993795B2 (en) Crushing system
CN211552319U (en) Flash drying device
CN211552288U (en) Flash drying system
RU2536133C1 (en) Installation for thermal treatment of loose food products
JP3805645B2 (en) Airflow drying apparatus and airflow drying method
CN212870640U (en) Flash evaporation dryer for drying gypsum
CN107462051A (en) It is a kind of to separate the controllable starch drying equipment of fineness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees