JP4373881B2 - Multiple crack growth analysis method and apparatus - Google Patents

Multiple crack growth analysis method and apparatus Download PDF

Info

Publication number
JP4373881B2
JP4373881B2 JP2004250410A JP2004250410A JP4373881B2 JP 4373881 B2 JP4373881 B2 JP 4373881B2 JP 2004250410 A JP2004250410 A JP 2004250410A JP 2004250410 A JP2004250410 A JP 2004250410A JP 4373881 B2 JP4373881 B2 JP 4373881B2
Authority
JP
Japan
Prior art keywords
crack
cracks
reference value
minute time
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004250410A
Other languages
Japanese (ja)
Other versions
JP2006064652A (en
Inventor
雅雄 板谷
政之 淺野
正明 菊池
利之 斎藤
徳彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004250410A priority Critical patent/JP4373881B2/en
Publication of JP2006064652A publication Critical patent/JP2006064652A/en
Application granted granted Critical
Publication of JP4373881B2 publication Critical patent/JP4373881B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、構造物のき裂の進展を解析するための、複数き裂の進展解析方法および装置に関する。   The present invention relates to a multiple crack growth analysis method and apparatus for analyzing the crack propagation of a structure.

き裂の評価は、構造物の強度の判定において重要な指標であるため、これまでにも種種の解析方法や解析装置によりき裂の進展が解析されている。こうした従来の解析方法および装置において3個以上の複数き裂の進展解析を実施したものはなく、一般に、き裂が2個の場合についてのみを対象として解析している。   Since crack evaluation is an important index in determining the strength of a structure, the progress of cracks has been analyzed by various analysis methods and analyzers. None of these conventional analysis methods and apparatuses have performed the analysis of the growth of three or more cracks, and in general, analysis is performed only for the case of two cracks.

2つのき裂を対象とした複数き裂の進展解析方法および装置の場合、まずそれぞれのき裂の進展解析評価を単独で実施して時間とき裂寸法の関係を横並びに並べ、どの時点で最初に隣り合うき裂同士が合体したかを手作業で探し、いずれかの隣り合うき裂同士が合体したと判定された場合には、その時点で一つの大きいき裂に置き換えて進展解析を継続する。   In the case of multiple crack growth analysis methods and devices for two cracks, first, the crack growth analysis evaluation is performed separately for each crack, and the relationship between time and crack size is arranged side by side. If it is determined that any of the adjacent cracks have joined together, replace with one large crack at that point and continue the growth analysis. To do.

こうしたき裂の解析方法の従来の例として、以下のようなものが挙げられる(例えば、特許文献1参照)。
特開2003−207489号公報
The following are examples of conventional crack analysis methods (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2003-204789

しかしながら、上述したような従来の複数き裂の進展解析手段は、個々のき裂の進展解析を順次個別に実施し、それらの結果を横並びにしてどの時点で隣り合うき裂同士の間隔が合体判定の基準値を下回ったかを判定するものである。そのため、合体と判定された時点以降の計算が無駄となってしまう。従って、これらの無駄な時間が積み重なるため、構造物全体の解析には、多大な時間を要するという問題があった。   However, the conventional multiple crack growth analysis means as described above performs the individual crack growth analysis one after another, and the results are arranged side by side so that the intervals between adjacent cracks are merged. It is determined whether or not the value is below the reference value for determination. Therefore, the calculation after the time point determined to be merged is wasted. Therefore, since these useless times are accumulated, there is a problem that it takes a lot of time to analyze the entire structure.

また、従来のき裂の解析方法において、構造物における複数き裂の発生と合体との繰返しによる進展について判定し、合体後のき裂についての取扱方法に言及したものはなかった。   In addition, in the conventional crack analysis method, there was no reference to a method for handling cracks after coalescence after judging the occurrence of multiple cracks in the structure and the progress of coalescence.

本発明は、上述した課題を解決するためになされたものであり、構造物のき裂解析において、複数き裂の発生と合体の繰返しによる進展を対象とする解析が可能で、短時間で進展解析結果を提供することのできる複数き裂の進展解析方法および装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and in a crack analysis of a structure, an analysis can be performed for progress due to generation of multiple cracks and repetition of coalescence, and the progress can be made in a short time. An object of the present invention is to provide a method and an apparatus for analyzing the propagation of a plurality of cracks, which can provide an analysis result.

本発明の複数き裂の進展解析方法は、上述した課題を解決するために、構造物に複数のき裂状欠陥が検出された場合に、前記データ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数計算部にて応力拡大係数を計算し、前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、き裂進展量計算部にて微小時間増分後のそれぞれのき裂寸法を計算し、合体判定部にて隣り合うき裂同士の間隔と予め定めた基準値とを比較し、隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なしてき裂置換部にて一つのき裂に置き換え、次の微小時間後におけるき裂の寸法を計算する複方法であって、前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値より下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分の後の時刻より差し引いて前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記超過分の時間幅に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分の超過量を前記微小時間増分後の前記き裂の寸法から差し引くことにより、前記合体時刻での前記き裂のそれぞれの寸法をもとめ、さらに前記き裂同士を一つのき裂に置き換えることを特徴とする方法である。 In order to solve the above-described problem, the method for analyzing the growth of a plurality of cracks according to the present invention is a member of the structure input to the data input unit when a plurality of crack-like defects are detected in the structure. The stress intensity factor calculation unit calculates the stress intensity factor for each crack from the size, stress and crack size, and the crack growth characteristic data of the material constituting the structure input to the data input unit and the Based on the stress intensity factor, the crack growth amount calculation unit calculates the size of each crack after a minute time increment, and the coalescence judgment unit compares the interval between adjacent cracks with a predetermined reference value. If the interval between adjacent cracks is equal to or less than the reference value, the two corresponding cracks are considered to be combined and replaced by a single crack at the crack replacement part, and the crack after the next minute time a multi-how to calculate the dimensions, said-out裂同workers When the interval is larger than the reference value and falls below the reference value after a minute time increment, the amount less than the reference value is divided by the sum of the growth rates of the cracks between the cracks. Find the time width of the minute, subtract the time width of this excess from the time after the minute time increment to determine the time when the interval between the cracks just reached the reference value and the coalescence time, By subtracting the excess amount of the crack growth increment, which is obtained by multiplying the time width of the excess by the growth rate of each crack, from the size of the crack after the minute time increment, the crack time at the coalescence time is subtracted. It is a method characterized by determining each dimension and further replacing the cracks with one crack .

また、本発明の複数き裂の進展解析装置は、上述した課題を解決するために、構造物に複数のき裂状欠陥が検出された場合に、前記構造物の部材寸法と応力とき裂寸法とが入力されるデータ入力部と、このデータ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数を計算する応力拡大係数計算部と、前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、微小時間増分後のそれぞれのき裂寸法を計算し、隣り合うき裂同士の間隔と予め定めた基準値とを比較する合体判定部と、隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なして一つのき裂に置き換えるき裂置換部と、次の微小時間後におけるき裂の寸法を計算するき裂進展量計算部とを備えた複数き裂の進展解析装置であって、前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値より下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分の後の時刻より差し引いて前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記超過分の時間幅に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分の超過量を前記微小時間増分後の前記き裂の寸法から差し引くことにより、前記合体時刻での前記き裂のそれぞれの寸法をもとめ、さらに前記き裂同士を一つのき裂に置き換えることを特徴とするものである。 Further, in order to solve the above-described problem, the multiple crack growth analysis device of the present invention is configured such that when a plurality of crack-like defects are detected in the structure, the member dimensions and stress and crack dimensions of the structure are detected. And a stress intensity factor calculator for calculating a stress intensity factor for each crack from the member dimensions and stress and crack dimensions of the structure input to the data input part, and Based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each crack size after a minute time increment is calculated, and the interval between adjacent cracks Ki replaced when the coalescence judging unit for comparing the predetermined reference value, it is assumed that the interval of Ki fit adjacent cleft coalesced two crack corresponding to the case is less than the reference value into one crack and cleft replacement unit, you after the next minute time A development apparatus for analyzing multiple Crack a Ruki crack propagation amount calculation unit to calculate the dimensions of Ruki裂, spacing of the-out裂同mechanic greater than the reference value, after a small time increment When the amount is less than the reference value, the amount of time less than the reference value is divided by the sum of the growth rates of the cracks between the cracks to obtain an excess time width. Subtract from the time after the minute time increment to determine the time when the interval between the cracks has just reached the reference value and set it as the coalescence time, and the growth rate of each of the cracks in the excess time width Is subtracted from the crack size after the minute time increment to obtain the respective dimensions of the cracks at the coalescence time. those characterized by be replaced with crack A.

本発明の複数き裂の進展解析方法および装置によれば、構造物における複数き裂の発生と合体との繰返しによる進展を短時間で解析するので、構造物の強度の計算結果を迅速に得ることが可能となる。   According to the multiple crack growth analysis method and apparatus of the present invention, the progress of multiple cracks in a structure and the progress due to repeated coalescence are analyzed in a short time, so that the calculation result of the strength of the structure can be obtained quickly. It becomes possible.

以下、本発明に係る複数き裂の進展解析方法および装置の実施例について、図面を参照して説明する。   Hereinafter, embodiments of a method and an apparatus for analyzing crack propagation according to the present invention will be described with reference to the drawings.

図1を用いて実施例1の複数き裂の進展解析装置について説明する。実施例1の複数き裂の進展解析装置10は、データ入力部1と複数き裂進展計算部2とからなり、データ入力部1は、例えば解析の判断で使用される寸法等の部材データ、位置、寸法等のき裂データ、応力データ、き裂進展速度等の材料データ等が入力される。そして、複数き裂進展計算部2は、応力拡大係数計算部5とき裂進展量計算部6と合体判定部7とき裂置換部8とから構成される。   With reference to FIG. 1, a multiple crack growth analysis apparatus according to the first embodiment will be described. The multiple crack growth analysis apparatus 10 of the first embodiment includes a data input unit 1 and a multiple crack growth calculation unit 2. The data input unit 1 includes, for example, member data such as dimensions used in analysis determination, Crack data such as position and size, stress data, and material data such as crack propagation speed are input. The multiple crack growth calculation unit 2 includes a stress intensity factor calculation unit 5, a crack growth amount calculation unit 6, a coalescence determination unit 7, and a crack replacement unit 8.

図2に本実施例にて解析するき裂のモデル図を示す。図2は、構造物20の表面のき裂21、き裂22、き裂23、き裂24、き裂25を図示しており、図2縦方向をX軸としてき裂長さの基準としている。   FIG. 2 is a model diagram of a crack analyzed in this example. FIG. 2 illustrates a crack 21, a crack 22, a crack 23, a crack 24, and a crack 25 on the surface of the structure 20, and the longitudinal direction of FIG. .

ここで、添え字aは、き裂最深点におけるき裂の深さを表す。また、添え字cは、表面点を表しており、記号2cとは、構造物20の表面上でのき裂のX軸方向の長さを表す。添え字iは、き裂の番号を示す。なお、き裂進展機構が疲労の場合には、応力拡大係数KaおよびKcをそれぞれ応力拡大係数範囲ΔKaおよびΔKcに読み替え、微小時間Δtを微小繰返し数ΔNに読み替えて解析する。   Here, the subscript a represents the crack depth at the deepest crack point. The subscript c represents a surface point, and the symbol 2 c represents the length of the crack on the surface of the structure 20 in the X-axis direction. The subscript i indicates the crack number. When the crack growth mechanism is fatigue, the stress intensity factors Ka and Kc are read as stress intensity factor ranges ΔKa and ΔKc, respectively, and the minute time Δt is interpreted as the minute repetition number ΔN for analysis.

データ入力部1には、構造材を構成する部材の寸法、応力、半だ円表面き裂の位置xと初期寸法(き裂深さa,き裂長さ2c)、および材料のき裂進展特性データが入力される。応力拡大係数計算部5においては、応力と部材寸法およびき裂寸法から個々のき裂の応力拡大係数KaおよびKcが計算される。一方、き裂進展量計算部6においては、応力拡大係数計算部5で計算された応力拡大係数とき裂進展特性データから微小時間Δtにおけるき裂進展量ΔaおよびΔ2cが総てのき裂について同時に計算され、これらが元のき裂の寸法に足し合わされる。合体判定部7においては、き裂間の距離が基準値以下となるものがないかどうかを総ての隣り合うき裂同士について確認する。き裂置換部8においては、き裂同士の合体が検出された場合にそれらのき裂を一つのき裂に置き換える。ここで微小時間とは、本発明の複数き裂の進展解析方法および装置において、解析の時間幅として任意に設定される時間幅である。 The data input unit 1 includes dimensions of members constituting the structural material, stresses, semi-elliptical surface crack positions x i and initial dimensions (crack depth a i , crack length 2c i ), and material cracks. Crack growth characteristic data is input. In the stress intensity factor calculation unit 5, the stress intensity factors Ka and Kc of individual cracks are calculated from the stress, the member size, and the crack size. On the other hand, in the crack growth amount calculation unit 6, the crack growth amounts Δa i and Δ2c i in a minute time Δt are all cracks from the stress intensity factor and crack growth characteristic data calculated by the stress intensity factor calculation unit 5. Are simultaneously calculated and added to the original crack size. The coalescence determination unit 7 checks all adjacent cracks to see if there is anything whose distance between the cracks is equal to or less than a reference value. In the crack replacement part 8, when the coalescence of cracks is detected, those cracks are replaced with one crack. Here, the minute time is a time width arbitrarily set as a time width for analysis in the method and apparatus for analyzing the propagation of multiple cracks according to the present invention.

図3に、本実施例の複数き裂の進展解析方法における合体判定の仕組みについて図示する。   FIG. 3 illustrates the mechanism of coalescence determination in the multiple crack propagation analysis method of the present embodiment.

合体判定部7において、図3に示す方法により、総ての隣接する二つのき裂同士(き裂31およびき裂32)の間隔を基準値sと比較する。時刻tにおいて基準値s以下であった(図3(A))き裂同士の間隔dが、時刻t+Δtにおいて基準値sを下回ったと判定された場合(図3(B))、き裂置換部8において、これら二つのき裂のうち深さが深い方のき裂32のものと深さが等しく、これら二つのき裂31とき裂32の両端を結んだものと長さが等しい一つの大きいき裂33に置き換える(図3(C))。   In the coalescence determination unit 7, the distance between all two adjacent cracks (crack 31 and crack 32) is compared with the reference value s by the method shown in FIG. When it is determined that the distance d between the cracks is less than the reference value s at time t + Δt (FIG. 3B), which is equal to or less than the reference value s at time t (FIG. 3B). 8, one of these two cracks having the same depth as that of the deeper crack 32, and one large having the same length as that of the two cracks 31 and connecting both ends of the crack 32. Replace with the crack 33 (FIG. 3C).

なお、図3(B)において点線は、時刻tでのき裂を表現したものであり、また、図3(C)において点線は、時刻t+Δtでのき裂を表現したものである。   In FIG. 3B, a dotted line represents a crack at time t, and in FIG. 3C, a dotted line represents a crack at time t + Δt.

このように構成された本実施例においては、複数のき裂の微小時間ごとの進展量を同時に計算し、同時刻における隣接するき裂間の間隔をステップ毎に基準値と比較しながら進展解析を実施する。すなわち合体判定を常に監視しながらき裂進展解析を行うアルゴリズムとなっている。   In this embodiment configured as described above, the amount of progress of a plurality of cracks at every minute time is calculated simultaneously, and the progress analysis is performed while comparing the interval between adjacent cracks at the same time with the reference value at each step. To implement. In other words, it is an algorithm that performs crack growth analysis while constantly monitoring the coalescence determination.

従って、本実施例の複数き裂の進展解析装置10によれば、き裂同士の合体判定を常に監視しながら一度に複数のき裂進展解析を行うので、短時間で構造物全体の複数き裂の進展解析を実施することが可能である。   Therefore, according to the multiple crack growth analysis apparatus 10 of the present embodiment, a plurality of crack growth analyzes are performed at a time while constantly monitoring the coalescence determination of the cracks. It is possible to perform crack growth analysis.

次に、本発明に係る複数き裂の進展解析方法および装置の実施例2について、図4および図5を参照して説明する。   Next, a second embodiment of the method and apparatus for analyzing crack propagation according to the present invention will be described with reference to FIGS.

時刻tにおいては、図4(A)に示すように、隣接する二つのき裂41とき裂42との間隔dは、合体判定の基準値sより大きいため、それぞれ独立したき裂として取り扱われているが、微小時間増分Δt後に図4(B)のように両き裂の間隔が基準値sをsovだけ下回ったとする。なお、図4(B)における点線は、時刻tにおける両き裂の寸法を示している。この場合、下記式(1)

Figure 0004373881
At time t, as shown in FIG. 4 (A), the distance d between two adjacent cracks 41 and 42 is larger than the reference value s for merging determination, so that they are treated as independent cracks. However, after a minute time increment Δt, it is assumed that the interval between both cracks is less than the reference value s by s ov as shown in FIG. In addition, the dotted line in FIG.4 (B) has shown the dimension of both the cracks at the time t. In this case, the following formula (1)
Figure 0004373881

により求められるΔt´だけ時刻を遡ることにより、二つのき裂の間隔がちょうど基準値sとなった(図4(C))ときの時刻を求めることができる。この時刻を合体時刻とする。ここで式(1)dc/dtおよびdc/dti+1とは、それぞれき裂41(き裂番号i)とき裂42(き裂番号i+1)の表面上でのそれぞれの進展速度である。 By going back the time by Δt ′ obtained by the above, it is possible to obtain the time when the interval between the two cracks has just become the reference value s (FIG. 4C). This time is defined as the coalescence time. Here, the expressions (1) dc / dt i and dc / dt i + 1 are the respective propagation speeds on the surface of the crack 41 (crack number i) and the crack 42 (crack number i + 1).

このように、合体時刻からの超過分の時間幅Δt´を定義することにより、合体時刻t+Δt−Δt´におけるき裂41およびき裂42の寸法は、時刻t+Δtにおけるそれぞれのき裂寸法からき裂長さについてdc/dt×Δt´、き裂深さについてda/dt×Δt´だけ差し引くことにより決定することができる。合体判定の対象となった二つのき裂41およびき裂42は、合体時刻において一つのき裂に置き換えられる。なお、合体判定の基準値sが0である場合には、時刻t+Δt−Δt´において隣接する二つのき裂41およびき裂42は、ちょうど接触することになる。   Thus, by defining the excess time width Δt ′ from the coalescence time, the dimensions of the crack 41 and the crack 42 at the coalescence time t + Δt−Δt ′ are determined from the respective crack dimensions at the time t + Δt. It is possible to determine by subtracting dc / dt × Δt ′ for the crack and da / dt × Δt ′ for the crack depth. The two cracks 41 and the cracks 42 subject to the merge determination are replaced with one crack at the merge time. When the reference value s for determining the coalescence is 0, the two adjacent cracks 41 and 42 are just in contact at time t + Δt−Δt ′.

図5に、実施例2の複数き裂の進展解析方法のアルゴリズムを示す。この図5に示すように、本実施例の複数き裂の進展解析方法においては、ステップ51にて、時刻tにおけるき裂寸法が定義され、ステップ52にて微小時間後の時刻t+Δtにおけるき裂寸法を計算する。次にステップ53にて隣接するき裂同士の間隔と基準値とを比較し、ステップ54にてき裂同士の間隔が基準値以下と判定された場合、ステップ55にて超過分の時間幅Δt´を計算する。次にステップ56にて合体時刻t+Δt−Δt´におけるき裂寸法を計算する。次に、ステップ57にて終了条件の判定を行い、終了条件に達していない場合、き裂の寸法を更新して次の微小時間増分に移る。一方、ステップ54にてき裂同士の間隔が基準値より大きいと判定された場合には、直接ステップ57にて終了条件の判定を行う。   FIG. 5 shows an algorithm of a method for analyzing the growth of a plurality of cracks according to the second embodiment. As shown in FIG. 5, in the multiple crack growth analysis method of the present embodiment, the crack size at time t is defined in step 51, and the crack at time t + Δt after a minute time is defined in step 52. Calculate the dimensions. Next, in step 53, the interval between adjacent cracks is compared with a reference value. If it is determined in step 54 that the interval between cracks is equal to or less than the reference value, the excess time width Δt ′ is determined in step 55. Calculate Next, at step 56, the crack size at the coalescence time t + Δt−Δt ′ is calculated. Next, the end condition is determined in step 57. If the end condition is not reached, the crack size is updated and the next minute time increment is started. On the other hand, if it is determined in step 54 that the interval between the cracks is larger than the reference value, the end condition is directly determined in step 57.

なお、ステップ58にてき裂寸法の更新をする場合に、ステップ54にてき裂の間隔が基準値以下である場合には、ステップ51のaをa´に、2cを2c´に更新する。一方、き裂の間隔が基準値よりも大きいと判定された場合、ステップ51のaをa″に、2cを2c″に更新する。 When the crack size is updated in step 58 and the crack interval is equal to or smaller than the reference value in step 54, ai in step 51 is set to a i ′, and 2c i is set to 2c i ′. Update. On the other hand, if it is determined that the crack interval is larger than the reference value, a i in step 51 is updated to a i ″ and 2c i to 2c i ″.

次に、本発明に係る複数き裂の進展解析方法および装置の実施例3について、図4および図6を参照して説明する。   Next, a third embodiment of the method and apparatus for analyzing crack propagation according to the present invention will be described with reference to FIGS.

実施例3の複数き裂の進展解析方法においては、実施例2と同様に、時刻t(図4(A))において、隣接する二つのき裂41とき裂42の間隔dが、合体判定の基準値sより大きいため、それぞれ独立したき裂として取り扱われているが、微小時間増分Δt後(図4(B))に両き裂の間隔dが基準値sをsovだけ下回ったとする。式(1)によりΔt´を定義する。 In the multiple crack growth analysis method of the third embodiment, as in the second embodiment, at time t (FIG. 4A), the interval d between the two adjacent cracks 41 and the crack 42 is determined as a unity determination. Since it is larger than the reference value s, each crack is treated as an independent crack. However, it is assumed that the interval d between both cracks is less than the reference value s by s ov after a minute time increment Δt (FIG. 4B). Δt ′ is defined by equation (1).

次に、修正微小時間増分Δt″をΔt″=Δt−Δt´と定義する。この修正微小時間増分Δt″を微小時間増分前の時刻tに加えることにより、二つのき裂41およびき裂42の間隔dがちょうど基準値sとなったときの時刻を求めることができる。   Next, the corrected minute time increment Δt ″ is defined as Δt ″ = Δt−Δt ′. By adding the corrected minute time increment Δt ″ to the time t before the minute time increment, the time when the distance d between the two cracks 41 and the crack 42 is exactly the reference value s can be obtained.

図6に、実施例3の複数き裂の進展解析方法のアルゴリズムを示す。このように修正微小時間増分Δt″を定義することにより、図6に示すように、合体時刻t+Δt″におけるき裂のそれぞれの寸法は、ステップ61において、時刻tおけるき裂寸法に、き裂長さについてdc/dt×Δt″、き裂深さについてda/dt×Δt″だけ加えることにより決定することができる。図6において、図5と同様の構成については、同一符号を付して説明を省略する。   FIG. 6 shows an algorithm of a method for analyzing the growth of a plurality of cracks according to the third embodiment. By defining the corrected minute time increment Δt ″ in this way, as shown in FIG. 6, the dimensions of the cracks at the coalescence time t + Δt ″ are changed to the crack size at the time t in step 61. It can be determined by adding dc / dt × Δt ″ for, and da / dt × Δt ″ for crack depth. In FIG. 6, the same components as those in FIG.

合体判定の対象となった二つのき裂41およびき裂42は、合体判定時刻において一つのき裂に置き換えられる。また、本実施例において合体判定の基準値sが0である場合には、時刻t+Δt″において隣接する二つのき裂41およびき裂42は、ちょうど接触することになる。   The two cracks 41 and the cracks 42 subjected to the merge determination are replaced with one crack at the merge determination time. Further, in the present embodiment, when the reference value s for merging determination is 0, the two adjacent cracks 41 and 42 are just in contact at time t + Δt ″.

次に、本発明に係る複数き裂の進展解析方法および装置の実施例4について、図7を参照して説明する。   Next, a fourth embodiment of the multiple crack propagation analysis method and apparatus according to the present invention will be described with reference to FIG.

本実施例の構成によれば、材料のき裂進展特性データは、データ入力部と別のデータベース71として記憶媒体に記録されている。このような構成とした本実施例の複数き裂の進展解析装置70によれば、データ入力部1にて材料名を入力するか、あるいは材料名リストから材料名を選択することにより、解析の度に材料のき裂進展特性を調査して数値入力することなく、容易に複数き裂の進展を解析することが可能となる。   According to the configuration of this embodiment, the crack growth characteristic data of the material is recorded in the storage medium as a database 71 separate from the data input unit. According to the multiple crack growth analysis apparatus 70 of this embodiment configured as described above, the analysis is performed by inputting the material name in the data input unit 1 or selecting the material name from the material name list. It is possible to easily analyze the growth of multiple cracks without investigating the crack propagation characteristics of the material each time and entering numerical values.

次に、本発明に係る複数き裂の進展解析方法および装置の実施例5について、図8を参照して説明する。   Next, a fifth embodiment of the method and apparatus for analyzing the propagation of multiple cracks according to the present invention will be described with reference to FIG.

本実施例の複数き裂の進展解析装置80は、入力データおよび計算結果を記録媒体に保存するデータ保存部81を有することを特徴とする。このような構成とすることにより、後日計算結果を参照する際に、再度同じデータを入力して計算を行わなくとも、随時計算結果を引き出すことが可能となる。なお、計算を中断した場合などは、入力データのみを保存することも可能である。   The multiple crack growth analysis apparatus 80 of this embodiment has a data storage unit 81 that stores input data and calculation results in a recording medium. With such a configuration, when referring to the calculation result at a later date, it is possible to draw out the calculation result at any time without performing the calculation by inputting the same data again. Note that only input data can be saved when the calculation is interrupted.

次に、本発明に係る複数き裂の進展解析方法および装置の実施例6について、図9を参照して説明する。   Next, Embodiment 6 of the multiple crack propagation analysis method and apparatus according to the present invention will be described with reference to FIG.

構造物の解析において、同一の部材形状、応力分布、およびき裂形状について解析する場合にも、複数の適用可能な応力拡大係数計算式が存在する場合がある。例えば、単純な引張応力と曲げ応力を受ける平板中の半だ円表面き裂に対しては、Newman & Rajuの式、Shiratoriの式、API規格の式などがある。そこで本実施例の複数き裂の進展解析方法90は、これらの適用可能な応力拡大係数計算式を記憶媒体であるデータベース71に記憶しておき、データ入力部1にて応力拡大係数の計算式の識別名のみを入力するかあるいはリストから選択することにより、評価者が最適な計算式を選択することが可能な構成としたものである。このような構成の複数き裂の進展解析装置によれば、解析制度や目的に応じて応力拡大係数計算式を選択することが可能である。   When analyzing the same member shape, stress distribution, and crack shape in the analysis of a structure, there may be a plurality of applicable stress intensity factor calculation formulas. For example, for a semi-elliptical surface crack in a flat plate subjected to simple tensile stress and bending stress, there are Newman & Raju's formula, Shiratori's formula, API standard formula, and the like. Therefore, the multiple crack propagation analysis method 90 of this embodiment stores these applicable stress intensity factor calculation formulas in the database 71 which is a storage medium, and the data input unit 1 calculates the stress intensity factor calculation formulas. In this configuration, the evaluator can select an optimal calculation formula by inputting only the identification name of the name or selecting from the list. According to the multiple crack growth analysis apparatus having such a configuration, it is possible to select a stress intensity factor calculation formula according to the analysis system and purpose.

本発明に係る複数き裂の進展解析装置の構成図。1 is a configuration diagram of a multiple crack growth analysis apparatus according to the present invention. FIG. 複数き裂のモデル例を図示する模式図。The schematic diagram which illustrates the example of a model of multiple cracks. 複数き裂の合体判定と置換の実施を示す模式図。The schematic diagram which shows the unification determination and replacement | exchange of multiple cracks. 複数き裂の合体時刻の判定を示す模式図。The schematic diagram which shows determination of coalescence time of multiple cracks. 実施例2の複数き裂の進展解析方法のアルゴリズムを示す図。The figure which shows the algorithm of the several crack growth analysis method of Example 2. FIG. 実施例3の複数き裂の進展解析方法のアルゴリズムを示す図。The figure which shows the algorithm of the several crack growth analysis method of Example 3. FIG. 実施例4の複数き裂の進展解析装置の構成図。FIG. 6 is a configuration diagram of a multiple crack growth analysis apparatus according to a fourth embodiment. 実施例5の複数き裂の進展解析装置の構成図。FIG. 6 is a configuration diagram of a multiple crack growth analysis apparatus according to a fifth embodiment. 実施例6の複数き裂の進展解析手段の構成図。The block diagram of the multiple crack growth analysis means of Example 6. FIG.

符号の説明Explanation of symbols

1 データ入力部
2 複数き裂進展計算部
5 応力拡大係数計算部
6 き裂進展量計算部
7 合体判定部
8 き裂置換部
10 複数き裂の進展解析装置
21、22、23、24、25 き裂
31、32、33 き裂
41、42 き裂
51、52、53、54、55、56、57、58 ステップ
61 ステップ
70 複数き裂の進展解析装置
71 データベース
80 複数き裂の進展解析装置
81 データ保存部
90 複数き裂の進展解析装置
DESCRIPTION OF SYMBOLS 1 Data input part 2 Multiple crack growth calculation part 5 Stress intensity factor calculation part 6 Crack growth amount calculation part 7 Coalition determination part 8 Crack replacement part 10 Multiple crack growth analysis apparatus 21, 22, 23, 24, 25 Crack 31, 32, 33 Crack 41, 42 Crack 51, 52, 53, 54, 55, 56, 57, 58 Step 61 Step 70 Multiple crack propagation analysis device 71 Database 80 Multiple crack propagation analysis device 81 Data storage unit 90 Multiple crack growth analyzer

Claims (6)

構造物に複数のき裂状欠陥が検出された場合に、データ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数計算部にて応力拡大係数を計算し、前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、き裂進展量計算部にて微小時間増分後のそれぞれのき裂寸法を計算し、合体判定部にて隣り合うき裂同士の間隔と予め定めた基準値とを比較し、隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なしてき裂置換部にて一つのき裂に置き換え、次の微小時間後におけるき裂の寸法を計算する複数き裂の進展解析方法であって、
前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値より下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分の後の時刻より差し引いて前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記超過分の時間幅に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分の超過量を前記微小時間増分後の前記き裂の寸法から差し引くことにより、前記合体時刻での前記き裂のそれぞれの寸法をもとめ、さらに前記き裂同士を一つのき裂に置き換えることを特徴とする複数き裂の進展解析方法。
When multiple crack-like defects are detected in the structure, the stress intensity factor calculation unit calculates the stress for each crack from the structure member dimensions and stress and crack size input to the data input unit. A coefficient is calculated, and based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each of the crack growth amount calculation unit after a minute time increment The crack size is calculated, and the coalescence judgment unit compares the interval between adjacent cracks with a predetermined reference value, and the two cracks corresponding to the case where the interval between adjacent cracks is equal to or less than the reference value. replaced by a crack in crack replacement unit has assumed coalesced a crack, a progress analysis method-out multiple dimensions you calculate crack after the next minute time cracks,
When the interval between the cracks is greater than the reference value and falls below the reference value after a minute time increment, the amount below the reference value is the sum of the growth rates of the cracks between the cracks. The time width of the excess is calculated by dividing the time width by subtracting the time width of the excess from the time after the minute time increment to obtain the time when the interval between the cracks has just reached the reference value. And subtracting the excess amount of the crack growth increment obtained by multiplying the time width of the excess by the respective growth rate of the crack from the size of the crack after the minute time increment, the-out determine the respective dimensions of the crack progress analysis in more than one way cracks further characterized by replacing the-out裂同mechanic to one of a crack.
構造物に複数のき裂状欠陥が検出された場合に、データ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数計算部にて応力拡大係数を計算し、前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、き裂進展量計算部にて微小時間増分後のそれぞれのき裂寸法を計算し、合体判定部にて隣り合うき裂同士の間隔と予め定めた基準値とを比較し、隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なしてき裂置換部にて一つのき裂に置き換え、次の微小時間後におけるき裂の寸法を計算する複数き裂の進展解析方法であって、
前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値よりも下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分より差し引いて修正微小時間増分をもとめ、この修正微小時間増分を前記微小時間増分の前の時刻に加えることにより前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記微小時間増分の前の時刻での前記き裂のそれぞれの寸法に前記修正微小時間増分に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分を加えて前記合体時刻での前記き裂のそれぞれの寸法を求め、さらに前記き裂同士を一つのき裂に置き換えることを特徴とする複数き裂の進展解析方法。
When multiple crack-like defects are detected in the structure, the stress intensity factor calculation unit calculates the stress for each crack from the structure member dimensions and stress and crack size input to the data input unit. A coefficient is calculated, and based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each of the crack growth amount calculation unit after a minute time increment The crack size is calculated, and the coalescence judgment unit compares the interval between adjacent cracks with a predetermined reference value, and the two cracks corresponding to the case where the interval between adjacent cracks is equal to or less than the reference value. replaced by a crack in crack replacement unit has assumed coalesced a crack, a progress analysis method-out multiple dimensions you calculate crack after the next minute time cracks,
When the interval between the cracks is larger than the reference value and falls below the reference value after a minute time increment, the amount below the reference value is reduced by the amount of growth of each crack between the cracks. Divide by the sum to obtain the excess time width, subtract the excess time width from the minute time increment to obtain the corrected minute time increment, and add this corrected minute time increment to the time before the minute time increment. As a result, the time when the interval between the cracks has just reached the reference value is obtained and set as the coalescence time, and the dimension of the crack at the time before the minute time increment is set to the corrected minute time increment. Adding crack growth increments obtained by multiplying the respective growth rates of the cracks to determine the respective dimensions of the cracks at the coalescence time, and further replacing the cracks with one crack. -out multiple Way of progress analysis.
構造物に複数のき裂状欠陥が検出された場合に、データ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数計算部にて応力拡大係数を計算し、前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、き裂進展量計算部にて微小時間増分後のそれぞれのき裂寸法を計算し、合体判定部にて隣り合うき裂同士の間隔と予め定めた基準値とを比較し、隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なしてき裂置換部にて一つのき裂に置き換え、次の微小時間後におけるき裂の寸法を計算する複数き裂の進展解析方法であって、
前記構造物において実際に検出された欠陥よりも大きい複数き裂モデルを想定し、前記構造物を構成する材料のき裂進展特性データに基づいて、微小時間増分後における前記き裂モデルのそれぞれの寸法を同時に計算により求め、前記き裂モデル同士の間隔が前記基準値以下である場合に前記き裂モデル同士が合体したものと見なして一つのき裂モデルに置き換える一方、前記き裂モデル同士の間隔が前記基準値に達しない場合はそのままとして、次の微小時間後におけるき裂モデルの寸法を同時に計算することを特徴とする複数き裂の進展解析方法。
When multiple crack-like defects are detected in the structure, the stress intensity factor calculation unit calculates the stress for each crack from the structure member dimensions and stress and crack size input to the data input unit. A coefficient is calculated, and based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each of the crack growth amount calculation unit after a minute time increment The crack size is calculated, and the coalescence judgment unit compares the interval between adjacent cracks with a predetermined reference value, and the two cracks corresponding to the case where the interval between adjacent cracks is equal to or less than the reference value. A crack growth analysis method that considers cracks to be combined and replaces them with a single crack at the crack replacement part, and calculates the crack dimensions after the next minute time,
Assuming a multiple crack model larger than the defects actually detected in the structure, each crack model after a minute time increment is determined based on the crack growth characteristic data of the material constituting the structure. The size is obtained by calculation at the same time, and when the distance between the crack models is equal to or less than the reference value, the crack models are considered to be combined with each other and replaced with one crack model, while the crack models A method for analyzing the propagation of a plurality of cracks, characterized in that if the interval does not reach the reference value, the dimensions of the crack model after the next minute time are calculated simultaneously .
構造物に複数のき裂状欠陥が検出された場合に、前記構造物の部材寸法と応力とき裂寸法とが入力されるデータ入力部と、
このデータ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数を計算する応力拡大係数計算部と、
前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、微小時間増分後のそれぞれのき裂寸法を計算し、隣り合うき裂同士の間隔と予め定めた基準値とを比較する合体判定部と、
隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なして一つのき裂に置き換えるき裂置換部と、
次の微小時間後におけるき裂の寸法を計算するき裂進展量計算部とを備えた複数き裂の進展解析装置であって、
前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値より下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分の後の時刻より差し引いて前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記超過分の時間幅に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分の超過量を前記微小時間増分後の前記き裂の寸法から差し引くことにより、前記合体時刻での前記き裂のそれぞれの寸法をもとめ、さらに前記き裂同士を一つのき裂に置き換えることを特徴とする複数き裂の進展解析装置
When a plurality of crack-like defects are detected in the structure, a data input section for inputting the member dimensions, stress and crack dimensions of the structure;
And the stress intensity factor calculation unit for calculating stress intensity factors for individual crack from the member dimensions and stress when裂寸method of the structure that has been input to the data input unit,
Based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each crack size after a minute time increment is calculated, and A coalescence determination unit that compares the interval with a predetermined reference value ;
A crack replacement portion that considers that two corresponding cracks are combined when the interval between adjacent cracks is equal to or less than the reference value, and replaces the crack with one crack ;
A development apparatus for analyzing multiple Crack a Ruki crack propagation amount calculation unit to calculate the dimensions of the crack after the next minute time,
When the interval between the cracks is greater than the reference value and falls below the reference value after a minute time increment, the amount below the reference value is the sum of the growth rates of the cracks between the cracks. The time width of the excess is calculated by dividing the time width by subtracting the time width of the excess from the time after the minute time increment to obtain the time when the interval between the cracks has just reached the reference value. And subtracting the excess amount of the crack growth increment obtained by multiplying the time width of the excess by the respective growth rate of the crack from the size of the crack after the minute time increment, the crack determine the respective dimensions, further wherein-out裂同mechanic evolution analyzer of multiple cracks and replaces the one crack of.
構造物に複数のき裂状欠陥が検出された場合に、前記構造物の部材寸法と応力とき裂寸法とが入力されるデータ入力部と、
このデータ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数を計算する応力拡大係数計算部と、
前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、微小時間増分後のそれぞれのき裂寸法を計算し、隣り合うき裂同士の間隔と予め定めた基準値とを比較する合体判定部と、
隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なして一つのき裂に置き換えるき裂置換部と、
次の微小時間後におけるき裂の寸法を計算するき裂進展量計算部とを備えた複数き裂の進展解析装置であって、
前記き裂同士の間隔が前記基準値よりも大きく、微小時間増分の後に前記基準値を下回った場合に、前記基準値よりも下回った量を前記き裂同士のそれぞれのき裂の進展速度の和で除して超過分の時間幅を求め、この超過分の時間幅を前記微小時間増分より差し引いて修正微小時間増分をもとめ、この修正微小時間増分を前記微小時間増分の前の時刻に加えることにより前記き裂同士の間隔がちょうど前記基準値に達した時刻を求めて合体時刻とするとともに、前記微小時間増分の前の時刻での前記き裂のそれぞれの寸法に前記修正微小時間増分に前記き裂のそれぞれの進展速度を掛け合わせたき裂進展増分を加えて前記合体時刻での前記き裂のそれぞれの寸法を求め、さらに前記き裂同士を一つのき裂に置き換えることを特徴とする複数き裂の進展解析装置
When a plurality of crack-like defects are detected in the structure, a data input section for inputting the member dimensions, stress and crack dimensions of the structure;
And the stress intensity factor calculation unit for calculating stress intensity factors for individual crack from the member dimensions and stress when裂寸method of the structure that has been input to the data input unit,
Based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each crack size after a minute time increment is calculated, and A coalescence determination unit that compares the interval with a predetermined reference value ;
A crack replacement portion that considers that two corresponding cracks are combined when the interval between adjacent cracks is equal to or less than the reference value, and replaces the crack with one crack ;
A development apparatus for analyzing multiple Crack a Ruki crack propagation amount calculation unit to calculate the dimensions of the crack after the next minute time,
When the interval between the cracks is larger than the reference value and falls below the reference value after a minute time increment, the amount below the reference value is reduced by the amount of growth of each crack between the cracks. Divide by the sum to obtain the excess time width, subtract the excess time width from the minute time increment to obtain the corrected minute time increment, and add this corrected minute time increment to the time before the minute time increment. As a result, the time when the interval between the cracks has just reached the reference value is obtained and set as the coalescence time, and the dimension of the crack at the time before the minute time increment is set to the corrected minute time increment. Adding crack growth increments obtained by multiplying the respective growth rates of the cracks to determine the respective dimensions of the cracks at the coalescence time, and further replacing the cracks with one crack. -out multiple Progress analysis device.
構造物に複数のき裂状欠陥が検出された場合に、前記構造物の部材寸法と応力とき裂寸法とが入力されるデータ入力部と、
このデータ入力部に入力された前記構造物の部材寸法と応力とき裂寸法とから個々のき裂について応力拡大係数を計算する応力拡大係数計算部と、
前記データ入力部に入力された前記構造物を構成する材料のき裂進展特性データと前記応力拡大係数に基づいて、微小時間増分後のそれぞれのき裂寸法を計算し、隣り合うき裂同士の間隔と予め定めた基準値とを比較する合体判定部と、
隣り合うき裂の間隔が前記基準値以下である場合に該当する二つのき裂を合体したものと見なして一つのき裂に置き換えるき裂置換部と、
次の微小時間後におけるき裂の寸法を計算するき裂進展量計算部とを備えた複数き裂の進展解析装置であって、
前記構造物において実際に検出された欠陥よりも大きい複数き裂モデルを想定し、前記構造物を構成する材料のき裂進展特性データに基づいて、微小時間増分後における前記き裂モデルのそれぞれの寸法を同時に計算により求め、前記き裂モデル同士の間隔が前記基準値以下である場合に前記き裂モデル同士が合体したものと見なして一つのき裂モデルに置き換える一方、前記き裂モデル同士の間隔が前記基準値に達しない場合はそのままとして、次の微小時間後におけるき裂モデルの寸法を同時に計算することを特徴とする複数き裂の進展解析装置
When a plurality of crack-like defects are detected in the structure, a data input section for inputting the member dimensions, stress and crack dimensions of the structure;
A stress intensity factor calculator that calculates a stress intensity factor for each crack from the member dimensions and stress and crack dimensions of the structure input to the data input part;
Based on the crack growth characteristic data of the material constituting the structure input to the data input unit and the stress intensity factor, each crack size after a minute time increment is calculated, and A coalescence determination unit that compares the interval with a predetermined reference value;
A crack replacement portion that considers that two corresponding cracks are combined when the interval between adjacent cracks is equal to or less than the reference value, and replaces the crack with one crack;
A crack growth analysis device comprising a crack growth amount calculation unit for calculating a crack size after the next minute time,
Assuming a multiple crack model larger than the defects actually detected in the structure, each crack model after a minute time increment is determined based on the crack growth characteristic data of the material constituting the structure. The size is obtained by calculation at the same time, and when the distance between the crack models is equal to or less than the reference value, the crack models are considered to be combined with each other and replaced with one crack model, while the crack models A multi-crack growth analysis apparatus that calculates the size of a crack model after the next minute time at the same time if the interval does not reach the reference value .
JP2004250410A 2004-08-30 2004-08-30 Multiple crack growth analysis method and apparatus Expired - Fee Related JP4373881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004250410A JP4373881B2 (en) 2004-08-30 2004-08-30 Multiple crack growth analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250410A JP4373881B2 (en) 2004-08-30 2004-08-30 Multiple crack growth analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2006064652A JP2006064652A (en) 2006-03-09
JP4373881B2 true JP4373881B2 (en) 2009-11-25

Family

ID=36111255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250410A Expired - Fee Related JP4373881B2 (en) 2004-08-30 2004-08-30 Multiple crack growth analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4373881B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722246B1 (en) * 2005-04-20 2010-05-25 Carty William M Method for determining the thermal expansion coefficient of ceramic bodies and glazes
JP5152078B2 (en) * 2008-05-09 2013-02-27 新日鐵住金株式会社 Fatigue life estimation device for welded structure, fatigue life estimation method for welded structure, and computer program
US9541530B2 (en) * 2012-01-23 2017-01-10 Siemens Energy, Inc. Method and system of deterministic fatigue life prediction for rotor materials
JP7051433B2 (en) * 2017-12-28 2022-04-11 三菱重工コンプレッサ株式会社 Remaining life evaluation method for rotating machines, remaining life evaluation system for rotating machines, and remaining life evaluation program for rotating machines
CN115790320B (en) * 2022-12-02 2023-07-14 北京建工集团有限责任公司 Device and method for detecting width of structural crack

Also Published As

Publication number Publication date
JP2006064652A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
Straub et al. Reliability analysis of deteriorating structural systems
Kamariotis et al. Value of information from vibration-based structural health monitoring extracted via Bayesian model updating
Wellalage et al. Calibrating Markov chain–based deterioration models for predicting future conditions of railway bridge elements
Donthu et al. Benchmarking marketing productivity using data envelopment analysis
Huynh et al. Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking
Todorov et al. Activity signature functions for high-frequency data analysis
JP4282717B2 (en) Periodic inspection data analysis apparatus and method
WO2017071369A1 (en) Method and device for predicting user unsubscription
Pokropek Missing by design: Planned missing-data designs in social science
JP4373881B2 (en) Multiple crack growth analysis method and apparatus
Walgama Wellalage et al. Bridge deterioration modeling by Markov Chain Monte Carlo (MCMC) simulation method
Zhang et al. Predicting growth and interaction of multiple cracks in structural systems using Dynamic Bayesian Networks
Inoue et al. Software reliability growth modeling frameworks with change of testing-environment
Karlén et al. On the effect of random defects on the fatigue notch factor at different stress ratios
Celik et al. A systematic approach to the solution of the design optimization problem
JP2004288144A (en) Apparatus and method for analyzing operation result of manufacturing process, and computer-readable storage medium
Frøseth et al. Finding the train composition causing greatest fatigue damage in railway bridges by Late Acceptance Hill Climbing
JP4498666B2 (en) Prediction device, prediction program, and recording medium
Banjara et al. Remaining fatigue life of steel railway bridges under enhanced axle loads
Ando et al. How does defect removal activity of developer vary with development experience?
JP2005063208A (en) Software reliability growth model selection method, software reliability growth model selection apparatus, software reliability growth model selection program and program recording medium
JP5225027B2 (en) Computer system, method and computer program for predictive detection of risk in project
Shantz Uncertainty quantification in crack growth modeling under multi-axial variable amplitude loading
JP4653526B2 (en) Quality analysis method, quality analysis apparatus, computer program, and computer-readable storage medium
Madlenak et al. Reliability enhancement using optimization analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees