JP4373658B2 - Artificial skin with improved contractility - Google Patents

Artificial skin with improved contractility Download PDF

Info

Publication number
JP4373658B2
JP4373658B2 JP2002289573A JP2002289573A JP4373658B2 JP 4373658 B2 JP4373658 B2 JP 4373658B2 JP 2002289573 A JP2002289573 A JP 2002289573A JP 2002289573 A JP2002289573 A JP 2002289573A JP 4373658 B2 JP4373658 B2 JP 4373658B2
Authority
JP
Japan
Prior art keywords
cells
skin
cell
artificial skin
cultured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002289573A
Other languages
Japanese (ja)
Other versions
JP2004121523A (en
Inventor
茂彦 鈴木
賢司 富畑
嗣良 平
泰之 稲継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2002289573A priority Critical patent/JP4373658B2/en
Publication of JP2004121523A publication Critical patent/JP2004121523A/en
Application granted granted Critical
Publication of JP4373658B2 publication Critical patent/JP4373658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、熱傷、外傷などの急性皮膚欠損創ならびに褥瘡、潰瘍などの慢性皮膚欠損創に皮膚組織を再生させる為の真皮、表皮および真皮層を併せもつ細胞組込型人工皮膚に関する。
【0002】
【従来の技術】
皮膚の欠損が広範囲にわたる場合、早期に皮膚欠損部を閉鎖する必要がある。欠損した皮膚の再生方法としては、細胞を使わずに鋳型としてのコラーゲンスポンジを生体に移植して生体内で疑似真皮組織を再生させる方法(人工真皮)や表皮細胞のみを培養し、シート状にして移植することにより表皮層のみを再生させる方法(培養表皮)などがある。人工真皮の場合には真皮様組織が再生した後に薄い分層植皮を行うか培養表皮を移植する必要がある。また、培養表皮は真皮成分が含まれないために真皮層をも欠損した全層皮膚欠損創には生着しにくいという欠点があった。
【0003】
そこで、真皮成分を含む培養皮膚がBellらにより開発された。(非特許文献1参照)。われわれは2種類のコラーゲンスポンジを使用して線維芽細胞と表皮細胞を播種した後に気液界面培養することにより真皮層と重層化した表皮層をもつ培養皮膚を作製することに成功した。(非特許文献2、特許文献1、特許文献2参照)。この方法を用いることにより、従来と比べて短期間で培養皮膚を作製することが可能となった。培養皮膚に自家細胞を用いた場合には拒絶反応もなく、永久に生着することが期待できる。また、表皮と真皮を併せ持つことから従来のように表皮のみを分層植皮する必要がなくなるとともに、移植初期から表皮組織が存在することにより外部からの感染にも強くなる。
一方、コラーゲンと他の素材を複合化した構成について本出願人が出願した特許が例示できる。(特許文献3、特許文献4参照)
また、その後これに関連する出願もなされている。(特許文献5、特許文献6、特許文献7参照)
【0004】
【非特許文献1】
Science,211,1052(1981)
【非特許文献2】
Marguchiら、Plast.Reconst.Surg.,93,537(1994)
【特許文献1】
特許2858066号公報
【特許文献2】
特開2001−104346号公報
【特許文献3】
特許2805086号公報
【特許文献4】
特許2987464号公報
【特許文献5】
特開平11−319068号公報
【特許文献6】
特開2000−245450号公報
【特許文献7】
特開2002−143290号公報
【0005】
細胞を組み込まない人工真皮は人体に適用して、或いは、これに細胞を播種した細胞組込型の培養人工皮膚においては、基材に細胞を播種した後に移植するまでの間(in vitro培養を行っている間)に細胞が産生するコラーゲンなどにより培養皮膚が収縮する現象が発生する。即ち、培養皮膚に含まれる細胞が増殖する一方で培養皮膚自体の大きさは小さくなってしまう。
【0006】
このような現象がおこると、当初予測していた移植面積に対して準備できる培養皮膚の面積が少なくなってしまう事態が発生することとなる。創の閉鎖は早く行われなければならず、このように移植できる培養皮膚の面積が予測より足りない場合には完全に創を閉鎖することができないことにもなりうる。また移植後においても、培養皮膚の収縮は創の拘縮をきたすこととなるので、整容性の面からも好ましくはない。
また、移植の際に創面への固定が不十分であると、移植した培養皮膚の生着率が低下するということがある。培養皮膚を固定する方法として縫合糸によって固定する方法があるが、培養皮膚基材が脆い場合には何らかの補強材料が必要である。本発明のごとく生体吸収性保形材が存在することによって、縫合時の補強にもなりうる。
【0007】
【発明が解決しようとする課題】
本発明は、真皮として人体に適用して、或いは、細胞を播種して培養する過程において、また移植後の創面において、その面積が変化しないことを特徴とする細胞組込型人工皮膚を提供するものである。
【0008】
【課題を解決するための手段】
しかるに、本発明は、
項1.生体吸収性保形材及び生体吸収性多孔質基材を含む細胞組込型人工皮膚であって、
前記生体吸収性保形材は、乳酸−ε−カプロラクトン共重合体からなり、かつ、メッシュ状であり、前記生体吸収性多孔質基材は、コラーゲンスポンジからなり、
前記細胞組込型人工皮膚は、ヒト組織由来線維芽細胞とヒト組織由来表皮角化細胞の両方の細胞を播種したものであることを特徴とする細胞組込型人工皮膚。
項2.播種する細胞が自家組織由来の細胞である項1に記載の細胞組込型人工皮膚。
項3.培養液を用いた気液界面培養を14日間培養しても、面積の変化が10%以下であることを特徴とする項1に記載の細胞組込型人工皮膚。
【0009】
【発明の実施の形態】
本発明における生体吸収性多孔質基材とは、合成高分子または動物、植物、微生物などから分離・精製により得られる天然高分子であって、かつ生体内で吸収される高分子からなる。具体的には合成高分子としてはグリコール酸、乳酸、トリメチレンカーボネート、ジオキサノン、カプロラクトンのホモポリマーやこれらのうちから選択された2以上の物質の共重合体があげられ、天然高分子としてはコラーゲン、ゼラチン、ヒアルロン酸、コンドロイチン硫酸、アルギン酸、アガロース、スターチおよびそれらの混合物なども含むものである。さらには、前述の合成高分子と天然高分子を組み合わせることもできる。線維芽細胞および表皮細胞を播種し培養するためには、細胞の接着性がよいことからコラーゲンが最も好ましい。さらにはヒアルロン酸を一定量含むものであってもよい。
【0010】
細胞の再生、或いは細胞を播種し、三次元的に組織を再生させるための基材としては、多孔構造を有するものであることが望ましい。多孔構造を有するものとしては、不織布や多孔質フィルム、あるいはスポンジ状の基材が考えられる。本発明の細胞組込型人工皮膚は真皮および表皮を同時に再生させることから、線維芽細胞播種用には孔の径が70〜100μmの基材を、表皮細胞播種用には孔の径が5〜30μmの基材をそれぞれ用い、この二種類の多孔質基材を重ねて気液界面培養することにより移植用培養皮膚を作製する。
【0011】
生体内での吸収が早すぎる場合には組織が再生する前に基材が無くなり、三次元的に皮膚組織を構築することができず、一方、吸収が遅すぎる場合には異物として残るために再生した組織および生体に良くない影響を与えることから、吸収期間については架橋を導入することにより所定の吸収速度を有する多孔質基材を作製することが可能である。
【0012】
本発明における生体吸収性保形材とは、合成高分子または動物、植物、微生物などから分離・精製により得られる天然高分子であって、かつ生体内で吸収される高分子からなる。具体的には合成高分子としてはグリコール酸、乳酸、トリメチレンカーボネート、ジオキサノン、カプロラクトンのホモポリマーやこれらのうちから選択された2以上の物質の共重合体があげられ、天然高分子としてはコラーゲン、ゼラチン、ヒアルロン酸、コンドロイチン硫酸、アルギン酸、アガロース、スターチおよびそれらの混合物なども含むものである。これらの材料から繊維を作製して補強材として用いることができる。これらの繊維を編成、あるいは織成することにより、メッシュ状や布状にして用いることが理想的であり、さらには不織布状にして用いることも可能である。また、多孔質フィルムとして作製して保形材料として用いることも可能である。
【0013】
上述のような生体吸収性多孔質基材と生体吸収性保形材料を組み合わせることにより、本発明の目的である収縮の少ない人工真皮、および細胞組込型人工皮膚を作製することが可能となる。
【0014】
本発明における細胞組込型人工皮膚の場合は、前述の多孔質基材に線維芽細胞および表皮細胞を播種することにより作製されるものである。細胞については、培養皮膚移植の対象患者の正常皮膚から切手大の組織を採取し、通常の方法により表皮細胞および線維芽細胞を分離・培養する。
【0015】
採取した細胞を、前述の多孔質基材に1×10〜10cells/cm2の播種密度で播種した後に、一定時間気液界面培養することにより移植用培養皮膚を作製する。
【0016】
そこで本発明では、生体吸収性多孔質基材と生体吸収性保形材料を複合化させた構成により、また、かかる基材に線維芽細胞および表皮細胞を播種することにより、in vitro培養および移植後の創面において収縮が少ない培養皮膚を作製することを可能としたものである。
【0017】
参考例1】
以下に実施例及び参考例を示して本発明を具体的に説明するが、本発明はこれらに限られるものではない。
(1)生体吸収性保形材料の作製
乳酸−カプロラクトン共重合体を溶融紡糸することにより、繊維径が約0.1mmのモノフィラメント糸を作製した。これを目付22g/mとなるように横編みし、張力をかけた状態で温度100°Cにて1時間熱セットを行った。このように作製したメッシュを保形材料として用いた。
(2)保形材を含有する多孔質基材の作製
3mg/mlに希釈したType1コラーゲン溶液50gにクロロホルム0.5g添加し、ホモジナイザーを用いて6,000rpmで1分間ホモジナイズしたものを、(1)で作製した生体吸収性保形メッシュを置いたステンレス製枠に流し込んだ後に−40°Cで凍結し、これを真空減圧下(0.01mmHg)30°Cにて24時間凍結乾燥した。さらに熱架橋、グルタルアルデヒド架橋をした後に再び凍結乾燥して吸収性保形材料を含有したポアサイズ90μm、厚さ3mmのコラーゲンスポンジの人工真皮を得た。
(3)埋植試験
(2)の方法で作製した人工真皮を2×2cmの大きさにカットし、エチレンオキサイドガスで滅菌した。対照として保形材を含有しないコラーゲンスポンジを用いた。動物は5週齢のハートレー雄モルモットをもちいた。背部正中線に沿って2×2cmの全層皮膚欠損を2ヶ所作製し、それぞれの部分に前述の2区の人工皮膚を1ヶ所ずつ埋植した。埋植後、1及び2週間後に埋植部位の大きさを測定した。その結果を表1に示す。
【0018】
【表1】

Figure 0004373658
【0019】
かかる結果からも明らかなように、埋植2週間後、メッシュ(保形材)なしの群では埋植部位の面積が当初に比べて約40%の面積になったのに対し、保形材入りの群では面積の変化が30%以下であった。即ち、生体内での収縮が面積比において30%以下である人工皮膚(人工真皮)であった。
【0020】
【実施例2】
参考例1における(1)、(2)で構成された人工真皮に対し、以下の処理を行った。
(3)表皮細胞培養用多孔質培養基材の作製
0.3%水溶液(pH3)のType1コラーゲンを、15%エタノールで3倍希釈し、0.1%コラーゲン、10%エタノール水溶液とした。さらに、この溶液15gを直径9cmのシャーレに流し込み、−135°Cで凍結した後に真空度0.1、乾燥温度40°C、乾燥時間24時間の条件で凍結乾燥を行い、30μm、厚さ3mmコラーゲンスポンジを得た。その後、このコラーゲンスポンジをポリテトラフルオロエチレンシートおよび厚さ3mmのステンレス板にはさんで50Kgで荷重をかけた。さらに、この状態のまま真空下、105°C、24時間熱架橋を行い、表皮細胞培養用多孔質細胞培養基材を得た。かかる基材のポアサイズは5〜30μmで、厚さは40μmであった。
(4)細胞の培養
線維芽細胞はDulbecco’s Modified Eagle Mediumにウシ胎児血清を10%となるように添加した培地中で培養を行った。表皮細胞は無血清培地(DK−SFM;GIBCO社)を用いて培養を行った。
(5)培養皮膚の作製
培養した線維芽細胞を(2)に示した方法で作製した一辺が3cmの正方形コラーゲンスポンジに4.0×10/cmの播種密度となるように播種した。37°C、5%COインキュベーター中で約6時間培養した後、この上に(3)に示した方法で作製した一辺が3cmの正方形表皮細胞培養用多孔質培養基材を置いた。その上に、表皮細胞を4.0×10/cmの播種密度となるように播種した。表皮細胞用無血清培地を用いて1晩、37°C、5%COインキュベーター中で気液界面培養を行うことにより培養皮膚を作製した。翌日培地を5%ウシ胎児血清添加DMEM培地に変えて、2日毎に培地を交換しながらin vitro気液界面培養を行った。
(6)評価
培養開始から1,4,7,12日後に培養皮膚の面積を測定した(n=3)。結果を表2に示す。
【0021】
【表2】
Figure 0004373658
【0022】
かかる結果からも明らかなようにメッシュ(保形材)無しの群では12日培養後当初の面積に比べて約半分の面積になったのに対して、メッシュ入り群では面積の変化が10%以下であった。即ち、本発明により作製された細胞組込型人工皮膚は収縮が面積比で10%以下であった。
【発明の効果】
以上のように本発明構成における人工皮膚は、保形成に優れる、即ち、収縮防止能を有するもので、人体への適用において従来にない優れた特徴を有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cell-embedded artificial skin having both dermis, epidermis and dermis layer for regenerating skin tissue in acute skin defect wounds such as burns and trauma and chronic skin defect wounds such as pressure sores and ulcers.
[0002]
[Prior art]
When skin defects are widespread, it is necessary to close the skin defect early. As a method for regenerating deficient skin, a method is used in which a collagen sponge as a template is transplanted into a living body without using cells, and the artificial dermis tissue is regenerated in vivo (artificial dermis), or only epidermal cells are cultured to form a sheet. There is a method of regenerating only the epidermis layer (cultured epidermis). In the case of artificial dermis, it is necessary to perform thin layered skin grafting after transplanting dermis-like tissue or transplant cultured epidermis. In addition, since the cultured epidermis does not contain a dermis component, there is a drawback that it is difficult to engraft in a full-thickness skin defect wound in which the dermis layer is also lost.
[0003]
Therefore, a cultured skin containing a dermal component was developed by Bell et al. (Refer nonpatent literature 1). We succeeded in producing a cultured skin with a dermis layer and a stratified epidermis layer by seeding fibroblasts and epidermis cells using two types of collagen sponge and then culturing them at the gas-liquid interface. (See Non-Patent Document 2, Patent Document 1, and Patent Document 2.) By using this method, it has become possible to produce cultured skin in a shorter period of time than before. When autologous cells are used for cultured skin, there is no rejection reaction and it can be expected that the cells are permanently engrafted. Moreover, since it has both the epidermis and the dermis, it is not necessary to carry out split-skin transplantation of the epidermis as in the prior art, and the presence of the epidermal tissue from the initial stage of transplantation makes it more resistant to external infection.
On the other hand, a patent filed by the present applicant for a configuration in which collagen and other materials are combined can be exemplified. (See Patent Document 3 and Patent Document 4)
Further, an application related to this has been filed. (See Patent Document 5, Patent Document 6, and Patent Document 7)
[0004]
[Non-Patent Document 1]
Science, 211 , 1052 (1981)
[Non-Patent Document 2]
Marguchi et al., Plast.Reconst.Surg., 93,537 (1994)
[Patent Document 1]
Japanese Patent No. 2858066 [Patent Document 2]
JP 2001-104346 A [Patent Document 3]
Japanese Patent No. 2805086 [Patent Document 4]
Japanese Patent No. 29987464 [Patent Document 5]
JP-A-11-319068 [Patent Document 6]
JP 2000-245450 A [Patent Document 7]
Japanese Patent Application Laid-Open No. 2002-143290
Artificial dermis that does not incorporate cells is applied to the human body, or in the case of cell-embedded cultured artificial skin in which cells are seeded, until the cells are seeded on the substrate and transplanted (in vitro culture). During the process, the cultured skin contracts due to collagen produced by the cells. That is, while the cells contained in the cultured skin proliferate, the size of the cultured skin itself decreases.
[0006]
When such a phenomenon occurs, a situation occurs in which the area of cultured skin that can be prepared with respect to the initially estimated transplant area is reduced. Wound closure must occur early, and if the area of cultured skin that can be transplanted in this way is less than expected, the wound may not be completely closed. In addition, even after transplantation, contraction of the cultured skin causes wound contracture, which is not preferable from the viewpoint of accommodation.
Moreover, if the fixation to the wound surface is insufficient during transplantation, the survival rate of the transplanted cultured skin may be reduced. As a method of fixing the cultured skin, there is a method of fixing with cultured sutures. However, when the cultured skin base material is brittle, some kind of reinforcing material is required. The presence of the bioabsorbable shape-retaining material as in the present invention can also be a reinforcement during suturing.
[0007]
[Problems to be solved by the invention]
The present invention provides a cell-embedded artificial skin characterized in that the area does not change in the process of applying to the human body as the dermis, or seeding and culturing cells, or in the wound surface after transplantation. Is.
[0008]
[Means for Solving the Problems]
However, the present invention
Item 1. A cell-embedded artificial skin comprising a bioabsorbable shape-retaining material and a bioabsorbable porous substrate ,
The bioabsorbable shape-retaining material is made of a lactic acid-ε-caprolactone copolymer and has a mesh shape, and the bioabsorbable porous substrate is made of a collagen sponge,
The cell-embedded artificial skin is characterized by seeding both human tissue-derived fibroblasts and human tissue-derived epidermal keratinocytes.
Item 2. Item 2. The cell-embedded artificial skin according to Item 1, wherein the cells to be seeded are cells derived from autologous tissue.
Item 3. Item 2. The cell-embedded artificial skin according to Item 1, wherein the change in area is 10% or less even when the gas-liquid interface culture using the culture solution is cultured for 14 days.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The bioabsorbable porous substrate in the present invention is a synthetic polymer or a natural polymer obtained by separation / purification from animals, plants, microorganisms, etc., and is a polymer that is absorbed in vivo. Specifically, synthetic polymers include glycolic acid, lactic acid, trimethylene carbonate, dioxanone, caprolactone homopolymers, and copolymers of two or more substances selected from these. Natural polymers include collagen. , Gelatin, hyaluronic acid, chondroitin sulfate, alginic acid, agarose, starch and mixtures thereof. Furthermore, the aforementioned synthetic polymer and natural polymer can be combined. Collagen is most preferred for seeding and culturing fibroblasts and epidermal cells because of their good cell adhesion. Further, it may contain a certain amount of hyaluronic acid.
[0010]
As a substrate for cell regeneration or seeding cells to regenerate a tissue three-dimensionally, it is desirable to have a porous structure. As the material having a porous structure, a non-woven fabric, a porous film, or a sponge-like substrate can be considered. Since the cell-embedded artificial skin of the present invention regenerates the dermis and epidermis simultaneously, a substrate having a pore diameter of 70 to 100 μm is used for fibroblast seeding, and a pore diameter of 5 is used for epidermal cell seeding. A culture skin for transplantation is prepared by superposing these two kinds of porous base materials and carrying out gas-liquid interface culture using the base materials of ˜30 μm.
[0011]
If the absorption in the living body is too early, the base material is lost before the tissue is regenerated, and the skin tissue cannot be constructed three-dimensionally. On the other hand, if the absorption is too slow, it remains as a foreign substance. Since it has an adverse effect on the regenerated tissue and living body, it is possible to produce a porous substrate having a predetermined absorption rate by introducing cross-linking for the absorption period.
[0012]
The bioabsorbable shape-retaining material in the present invention is a synthetic polymer or a natural polymer obtained by separation / purification from animals, plants, microorganisms, etc., and is a polymer that is absorbed in vivo. Specifically, synthetic polymers include glycolic acid, lactic acid, trimethylene carbonate, dioxanone, caprolactone homopolymers, and copolymers of two or more substances selected from these. Natural polymers include collagen. , Gelatin, hyaluronic acid, chondroitin sulfate, alginic acid, agarose, starch and mixtures thereof. Fibers can be produced from these materials and used as reinforcing materials. These fibers are ideally used in the form of a mesh or cloth by knitting or weaving, and can also be used in the form of a nonwoven fabric. It can also be produced as a porous film and used as a shape-retaining material.
[0013]
By combining the bioabsorbable porous substrate and the bioabsorbable shape-retaining material as described above, it is possible to produce the artificial dermis and the cell-embedded artificial skin with less shrinkage, which is the object of the present invention. .
[0014]
The cell-embedded artificial skin according to the present invention is produced by seeding fibroblasts and epidermal cells on the aforementioned porous substrate. As for cells, a stamp-sized tissue is collected from the normal skin of a subject patient for cultured skin transplantation, and epidermal cells and fibroblasts are separated and cultured by a usual method.
[0015]
The collected cells are seeded on the aforementioned porous base material at a seeding density of 1 × 10 4 to 10 7 cells / cm 2 , and then cultured for gas-liquid interface for a certain period of time to produce a cultured skin for transplantation.
[0016]
Therefore, in the present invention, in vitro culture and transplantation have a structure in which a bioabsorbable porous substrate and a bioabsorbable shape-retaining material are combined, and by seeding fibroblasts and epidermal cells on the substrate. It is possible to produce cultured skin with less shrinkage on the subsequent wound surface.
[0017]
[ Reference Example 1]
EXAMPLES The present invention will be specifically described below with reference to examples and reference examples , but the present invention is not limited to these.
(1) Production of bioabsorbable shape-retaining material A monofilament yarn having a fiber diameter of about 0.1 mm was produced by melt spinning a lactic acid-caprolactone copolymer. This was knitted so as to have a basis weight of 22 g / m 2, and heat set at a temperature of 100 ° C. for 1 hour in a state where tension was applied. The mesh produced in this way was used as a shape retaining material.
(2) Preparation of porous substrate containing shape-retaining material 0.5 g of chloroform was added to 50 g of Type 1 collagen solution diluted to 3 mg / ml, and homogenized at 6,000 rpm for 1 minute using (1 And poured into a stainless steel frame on which the bioabsorbable shape-retaining mesh prepared in (1) was placed, frozen at −40 ° C., and freeze-dried at 30 ° C. for 24 hours under vacuum and reduced pressure (0.01 mmHg). Further, after thermal crosslinking and glutaraldehyde crosslinking, freeze-drying was performed again to obtain an artificial dermis of collagen sponge having a pore size of 90 μm and a thickness of 3 mm containing an absorbent shape retaining material.
(3) Implantation test The artificial dermis produced by the method of (2) was cut into a size of 2 × 2 cm and sterilized with ethylene oxide gas. A collagen sponge containing no shape-retaining material was used as a control. The animals were 5 week old Hartley male guinea pigs. Two 2 × 2 cm full-thickness skin defects were prepared along the back midline, and one of the above-mentioned two artificial skins was implanted in each part. The size of the implantation site was measured after 1 and 2 weeks after implantation. The results are shown in Table 1.
[0018]
[Table 1]
Figure 0004373658
[0019]
As is clear from these results, after 2 weeks of implantation, the area without the mesh (shape retention material) had an area of the implantation site of about 40% of the original area, whereas the shape retention material was The change in area was 30% or less in the entering group. That is, it was artificial skin (artificial dermis) whose shrinkage in the living body was 30% or less in area ratio.
[0020]
[Example 2]
The following treatment was performed on the artificial dermis constituted by (1) and (2) in Reference Example 1.
(3) Production of Porous Culture Substrate for Epidermal Cell Culture Type 1 collagen in 0.3% aqueous solution (pH 3) was diluted 3 times with 15% ethanol to obtain 0.1% collagen and 10% ethanol aqueous solution. Further, 15 g of this solution was poured into a petri dish having a diameter of 9 cm, frozen at −135 ° C., and then freeze-dried under the conditions of a degree of vacuum of 0.1, a drying temperature of 40 ° C., and a drying time of 24 hours, 30 μm, and a thickness of 3 mm. A collagen sponge was obtained. Thereafter, the collagen sponge was sandwiched between a polytetrafluoroethylene sheet and a stainless steel plate having a thickness of 3 mm, and a load of 50 kg was applied. Further, in this state, thermal crosslinking was performed at 105 ° C. for 24 hours under vacuum to obtain a porous cell culture substrate for epidermal cell culture. The substrate had a pore size of 5 to 30 μm and a thickness of 40 μm.
(4) Cell Culture Fibroblasts were cultured in a medium in which fetal bovine serum was added to Dulbecco's Modified Eagle Medium at 10%. Epidermal cells were cultured using a serum-free medium (DK-SFM; GIBCO).
(5) Preparation of cultured skin The cultured fibroblasts were seeded on a 3 cm square collagen sponge prepared by the method shown in (2) so as to have a seeding density of 4.0 × 10 5 / cm 2 . After culturing in a 37 ° C., 5% CO 2 incubator for about 6 hours, a porous culture substrate for culturing a square epidermal cell having a side of 3 cm prepared by the method shown in (3) was placed thereon. On top of that, the epidermal cells were seeded to a seeding density of 4.0 × 10 5 / cm 2 . Cultured skin was prepared by performing gas-liquid interface culture in a 37 ° C, 5% CO 2 incubator overnight using a serum-free medium for epidermal cells. On the next day, the medium was changed to DMEM medium supplemented with 5% fetal bovine serum, and in vitro gas-liquid interface culture was performed while changing the medium every two days.
(6) Evaluation The area of the cultured skin was measured 1, 4, 7, and 12 days after the start of the culture (n = 3). The results are shown in Table 2.
[0021]
[Table 2]
Figure 0004373658
[0022]
As is clear from these results, the group without mesh (shape-retaining material) had an area about half of the original area after 12 days of culturing, whereas the mesh group had an area change of 10%. It was the following. That is, the cell-embedded artificial skin prepared according to the present invention had a contraction of 10% or less in terms of area ratio.
【The invention's effect】
As described above, the artificial skin according to the configuration of the present invention is excellent in shape retention, that is, has an anti-shrinkage ability, and has an excellent characteristic that has not been found in the past in application to the human body.

Claims (3)

生体吸収性保形材及び生体吸収性多孔質基材を含む細胞組込型人工皮膚であって、
前記生体吸収性保形材は、乳酸−ε−カプロラクトン共重合体からなり、かつ、メッシュ状であり、
前記生体吸収性多孔質基材は、コラーゲンスポンジからなり、
前記細胞組込型人工皮膚は、ヒト組織由来線維芽細胞とヒト組織由来表皮角化細胞の両方の細胞を播種したものである
ことを特徴とする細胞組込型人工皮膚。
A cell-embedded artificial skin comprising a bioabsorbable shape-retaining material and a bioabsorbable porous substrate ,
The bioabsorbable shape-retaining material is made of a lactic acid-ε-caprolactone copolymer, and has a mesh shape.
The bioabsorbable porous substrate is made of a collagen sponge,
The cells embedded artificial skin cell embedded artificial skin, wherein the <br/> that is obtained by seeding the cells of both human tissue-derived fibroblasts and human tissue-derived epidermal keratinocytes.
播種する細胞が自家組織由来の細胞である請求項に記載の細胞組込型人工皮膚。The cell-embedded artificial skin according to claim 1 , wherein the cells to be seeded are cells derived from autologous tissue. 培養液を用いた気液界面培養を14日間培養しても、面積の変化が10%以下であることを特徴とする請求項に記載の細胞組込型人工皮膚。The cell-embedded artificial skin according to claim 1 , wherein the change in area is 10% or less even if the gas-liquid interface culture using the culture solution is cultured for 14 days.
JP2002289573A 2002-10-02 2002-10-02 Artificial skin with improved contractility Expired - Fee Related JP4373658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289573A JP4373658B2 (en) 2002-10-02 2002-10-02 Artificial skin with improved contractility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289573A JP4373658B2 (en) 2002-10-02 2002-10-02 Artificial skin with improved contractility

Publications (2)

Publication Number Publication Date
JP2004121523A JP2004121523A (en) 2004-04-22
JP4373658B2 true JP4373658B2 (en) 2009-11-25

Family

ID=32281699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289573A Expired - Fee Related JP4373658B2 (en) 2002-10-02 2002-10-02 Artificial skin with improved contractility

Country Status (1)

Country Link
JP (1) JP4373658B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2716752A1 (en) * 2008-02-29 2009-09-03 Showa University Method for producing artificial skin
KR102442046B1 (en) 2021-03-15 2022-09-13 경희대학교 산학협력단 Artificial skin capable of adjusting elasticity of each region and manufacturing method for the same

Also Published As

Publication number Publication date
JP2004121523A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
EP1273312B1 (en) Implant for cartilage tissue regeneration
Kempf et al. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting
US5665391A (en) Cultured, full-thickness integument substitutes based on three-dimensional matrix membranes
CA2031532C (en) Method for implanting large volumes of cells on polymeric matrices
CA2566765C (en) Hybrid tissue scaffolds containing extracellular matrix
US8097274B2 (en) Skin substitutes, preparation methods and uses thereof
CA2591979A1 (en) Tissue engineering devices for the repair and regeneration of tissue
JPH10234844A (en) Base material for regenerating cartilaginous tissue and regenerating method of cartilaginous tissue using the same
US20050107876A1 (en) Dermal substitute consisting of amnion and biodegradable polymer, the preparation method and the use thereof
WO2004028584A1 (en) Dermal substitute consisting of amnion and biodegradable polymer, the preparation method and the use thereof
JP3603179B2 (en) Cardiovascular tissue culture substrate and tissue regeneration method
JP4923235B2 (en) Bone-cartilage tissue regeneration implant
JP3521226B2 (en) Crosslinked composite biomaterial
JP2004195103A (en) Oral cavity graft
EP1923457B1 (en) Cell culture support embeddable in vivo
JP4373658B2 (en) Artificial skin with improved contractility
JP4314421B2 (en) HELP
AU2004231307A1 (en) A seeded tear resistant scaffold
JP2003126236A (en) Porous support body prepared from biodegradable polymer for regeneration of damaged ocular tissue
JP4313021B2 (en) Cultured mucosa / skin production method and cultured mucosa / skin
KR20030050168A (en) Bioartificial skin prepared from mesenchymal cells of hair follicle
JP2003325652A (en) Cell incorporated cultured skin
KR100644078B1 (en) Dermal substitute consisting of amnion and biodegradable polymer, the preparation method and the use thereof
JP5557084B2 (en) Tissue regeneration method
KR100427557B1 (en) Bone collagen scaffold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees