JP4373600B2 - Electrically insulated bus and method for manufacturing the same - Google Patents

Electrically insulated bus and method for manufacturing the same Download PDF

Info

Publication number
JP4373600B2
JP4373600B2 JP2000353165A JP2000353165A JP4373600B2 JP 4373600 B2 JP4373600 B2 JP 4373600B2 JP 2000353165 A JP2000353165 A JP 2000353165A JP 2000353165 A JP2000353165 A JP 2000353165A JP 4373600 B2 JP4373600 B2 JP 4373600B2
Authority
JP
Japan
Prior art keywords
sheath
voltage conductor
insulating member
coaxial cylindrical
cylindrical insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000353165A
Other languages
Japanese (ja)
Other versions
JP2002157923A (en
Inventor
正広 花井
克巳 鈴木
浩邦 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000353165A priority Critical patent/JP4373600B2/en
Publication of JP2002157923A publication Critical patent/JP2002157923A/en
Application granted granted Critical
Publication of JP4373600B2 publication Critical patent/JP4373600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Installation Of Bus-Bars (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中送電線路に係わり、特に、絶縁媒体として、固体絶縁物を適用するにもかかわらず、現地にて組み立てて敷設するタイプの電気絶縁母線及びその製造方法に関する。
【0002】
【従来の技術】
従来より、地中送電線路においては、絶縁性能の優れた架橋ポリエチレンを絶縁媒体としたCVケーブルが適用されて普及し、都内の長距離線路として主流を成している。現在は、このCVケーブルの550kVへの高電圧化が求められ、一部実用化されている。また、最近では、地中送電線の高電圧大容量化の要請からSF6(六フッ化硫黄)ガスを主な絶縁媒体とした管路気中送電線路が採用されている。これらの地中送電線路は社会のエネルギー流通の根幹を成すことから、高い信頼性が要求されることは勿論であるが、さらに経済性および地球環境問題も要求され、一層の縮小化、環境調和が望まれている。以下には、CVケーブルと管路気中送電線路の具体的な構成について説明する。
【0003】
最初に、CVケーブルの一般構造部の断面図の一例を図6に示す。この図6に示すように、CVケーブルは、撚り線導体1とその周囲に押し出し成形によって順次配置された内部半導電層2、架橋ポリエチレン絶縁体3及び外部半導電層4とから構成されている。外部半導電層4の外側には、透水防止のために、金属遮蔽5とビニルシース6が施されている。
【0004】
図7にCVケーブルの接続部の構造図の一例を示す。この図7に示すように、CVケーブルの端末Tが削られ、その撚り線導体1同士が導体接続管7で接続されている。施工現場で小型押し出し機を用いてケーブル原材料を金型内に押し出すことにより、端末Tの架橋ポリエチレン絶縁体3と補強絶縁体8が一体成形されている。導体接続管7と補強絶縁体8の外周には半導電層9がそれぞれ設けられ、架橋によりそれぞれ導体接続管7及び補強絶縁体8と一体化されている。さらに、最外周には、透水防止のために、金属遮蔽5と防水コンパウンド10と保護管11が施されている。この構造のCVケーブルにおいては、電圧階級に応じて架橋ポリエチレン絶縁体3の絶縁厚さを選定している。
【0005】
次に、管路気中送電線路の構造断面図を図8に示す。管路気中送電線路は同軸円筒構造をしており、中心に高電圧大電流を流す高電圧導体12、外部にシース13を備え、高電圧導体12とシース13の間には絶縁特性の優れたSF6ガス14が充填されている。高電圧導体12はエポキシ樹脂製の絶縁スペーサ15によってシース13内に数m間隔で支持されており、10数m単位で1つのユニットを構成している。このユニットを工場で組立て、現地に搬送した後、ユニット同士を接続して地中送電線路を構成している。また、トンネル内でユニットを多数接続することにより発生する熱伸縮および地震時の変位を吸収する目的で、ユニバーサルベローズ16が数10m毎に配置されている。
【0006】
【発明が解決しようとする課題】
ところで、従来多用されている上記の地中送電線路にはいくつかの問題点がある。まず、CVケーブルについては、可撓性があり曲線変位や地盤変位への対応が容易で長距離線路に適しているが、反面、架橋ポリエチレン絶縁体3と撚り線導体1が一体成形されているため、撚り線導体1の断面積に制約があり、大電流送電に対して熱的な問題が生じてしまう。すなわち、CVケーブルでは、一回線当たりの送電容量が限定されて、大容量送電が不可能となる。これを補うには、多数回線による送電が必要になり、経済性が損なわれることになる。
【0007】
他方、管路気中送電線路については、CVケーブルに比べて高電圧導体12の断面積を大きくでき、熱放散性に優れていることから、一回線当たりの送電容量を大きくできるのが利点である。そのため、都市部での電源線など大容量の地中送電線路に適している。しかし、現地での接続箇所が多く、金属異物の混入という問題が発生する。特に、管路気中送電線路の主な絶縁媒体であるSF6ガス14の絶縁性能は、金属異物に対して著しく低下するため、その対策が必要となる。
【0008】
例えば、絶縁スペーサ15への金属異物付着防止のため、金属異物を捕捉して無害化するパーティクルトラップを設けるなど、余分な付属物が多数必要となる。当然その分コストアップになり、経済性が損なわれる。さらに、SF6ガスも温室効果ガスとして削減対象に入っているため、将来的に総量制限等、使用量に規制がかかる可能性を有している。そのため、環境調和に対する問題点の一つになる可能性がある。
本発明は上記の点を考慮してなされたもので、その目的とするところは、高電圧大容量の電力送電が可能で、保守管理と高信頼性の確保が容易で、かつトータルコストを低減でき、環境に優しい電気絶縁母線及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、高電圧及び大電流を通電する高電圧導体を接地電位を有するシースの内部空間軸方向に配設した電気絶縁母線において、次のような技術的特徴を有するものである。
【0010】
請求項1に記載の発明は、前記高電圧導体と前記シースとの間に同軸円筒状絶縁部材を配設し、前記高電圧導体の外周と前記同軸円筒状絶縁部材の間に所定の間隙を形成するとともに、前記シース内壁面と前記同軸円筒状絶縁部材の間にも所定の間隙を形成し、前記各々の所定の間隙に配置される電位接続部材を介して前記高電圧導体は前記シース内に絶縁支持されるとともに、前記高電圧導体、前記シース、前記同軸円筒状絶縁部材及び前記電位接続部材は予め各々分離独立可能に構成されて成ることを特徴とする。
【0011】
請求項1記載の発明によれば、高電圧導体と同軸円筒状絶縁部材が互いに分離し、独立しているため、一体成形しているときのように高電圧導体の大電流通電による発熱が同軸円筒状絶縁部材に直接伝達しない。そのため、高電圧大電流の大容量送電が可能な電気絶縁母線の信頼性向上を図ることができる。また、高電圧導体と同軸円筒状絶縁部材の間、及び同軸円筒状絶縁部材とシースの間にそれぞれ空隙を設けることにより、高電圧導体からの熱伝達を抑制できるため、より大電流の通電が可能になるとともに、同軸円筒状絶縁部材の熱的信頼性向上を図ることができる。
【0012】
請求項2に記載の発明は、請求項1記載の電気絶縁母線において、前記高電圧導体、前記同軸円筒状絶縁部材及び前記シースの各々は、輸送制限内の所定の長さでユニット化されており、各ユニットをそれぞれ接続してなるユニット接続構造であることを特徴とする。
以上のような請求項2記載の発明によれば、高電圧導体、同軸円筒状絶縁部材及びシースがユニット化され、また、ユニットの輸送及び接続が可能となるため、現地にユニットを輸送し、ユニット同士を接続することが可能になり、全体を組み立てることができる。そのため、長距離の高電圧大電流の大容量送電が可能な電気絶縁母線を実現することができる。
【0013】
請求項3に記載の発明は、請求項2記載の電気絶縁母線において、前記高電圧導体、前記同軸円筒状絶縁部材及び前記シースの各ユニット接続構造は、それぞれ所定長さごとに軸方向及び半径方向の変位を吸収可能な変位対策構造部を含むことを特徴とする
以上のような請求項記載の発明によれば、高電圧導体、同軸円筒状絶縁部材及びシースそれぞれが熱伸縮及び地震変位を吸収可能な変位対策構造部を備え、高信頼性の電気絶縁母線を実現することができる。
【0014】
請求項4に記載の発明は、請求項3記載の電気絶縁母線において、前記変位対策構造部は、前記高電圧導体についてはスライド接触子構造、前記シースについてはベローズ構造、前記同軸円筒状絶縁部材についてはゴム状エラストマ材料の接触構造であることを特徴とする。
請求項4記載の発明によれば、変位対策構造部が熱伸縮及び地震変位を吸収可能になり、高信頼性の電気絶縁母線を実現することができる。
【0015】
請求項5に記載の発明は、請求項1、2、3または4記載の電気絶縁母線において、前記同軸円筒状絶縁部材と前記シースの間の空隙には、強制的に乾燥ガスが封入されていることを特徴とする。
請求項5記載の発明によれば、同軸円筒状絶縁部材への吸湿がなく、水トリーなど絶縁性能低下に及ぼす悪影響が除去でき電気絶縁母線の絶縁信頼性向上を図ることができる。
【0016】
請求項6に記載の発明は、請求項1、2、3、4または5記載の電気絶縁母線において、前記同軸円筒状絶縁部材の内周面と外周面には、半導電層が施されており、内周面の半導電層は前記高電圧導体の電位に、外周面の半導電層は前記シースの電位に設定されていることを特徴とする。
請求項6記載の発明によれば、高電圧導体と同軸円筒状絶縁部材の間及び同軸円筒状絶縁部材とシースの間の空隙に電圧が印加されることがない。そのため、高電圧導体とシースの現地溶接で、同軸円筒状絶縁部材間の空隙に金属異物が混入しても放電することがない。すなわち、部分放電の発生も無く、絶縁信頼性の向上を図ることができる。
【0017】
請求項7に記載の発明は、請求項6記載の電気絶縁母線において、前記同軸円筒状絶縁部材の前記高電圧導体の電位および前記シースの電位は、前記電位接続部材による強制的接続により設定されていることを特徴とする。
請求項7記載の発明によれば、同軸円筒状絶縁部材の各ユニット同士の接続部分の半導電層の電位を確実に確保することによって、サージ電圧が侵入した場合に過渡電圧が生じないようにし、絶縁劣化の原因を除去し、電気絶縁母線の絶縁信頼性の向上を図ることができる。
【0018】
請求項8に記載の発明は、請求項2または3記載の電気絶縁母線において、前記高電圧導体の各ユニットには、2個以上の貫通孔が設けられていることを特徴とする。
請求項8記載の発明によれば、高電圧導体の貫通孔を通して、熱対流が可能になり、対流作用により冷却効果が得られるため同軸円筒状絶縁部材に直接伝達することがなく、したがって電気絶縁母線の耐熱信頼性の向上を図ることができる。
【0019】
【発明の実施の形態】
以下、本発明の電気絶縁母線の一つの実施形態を、図1、2、3、4及び図5に基いて具体的に説明する。
【0020】
(1)電気絶縁母線の構成
図1は本実施形態に係る電気絶縁母線の全体構成図を示す。高電圧および大電流を通電する高電圧導体12と、この高電圧導体12を覆うパイプ状であって接地電位のシース13間に、円筒状の固体絶縁構造物17が高電圧導体12を内周面に挿通して主絶縁部を構成している。図2は工場で輸送可能な長さにユニット化された高電圧導体12、シース13および固体絶縁構造物17を現地で接続して組み立てた一般構造部(図1のA)を示し、図3は一般構造部のC−C断面図である。
【0021】
高電圧導体12は、導体ユニット12a同士を導体溶接12bで接続して構成されている。シース13は、パイプユニット13a同士をパイプ溶接13bで接続して構成されている。固体絶縁構造物17は、絶縁構造物ユニット17a同士を絶縁物接着17bで接続して構成されている。絶縁構造物ユニット17aの内周面と外周面には、高電圧側半導電層18と接地側半導電層19が施されている。
【0022】
そして、固体絶縁構造物17の絶縁接着部17bの内周面の高電圧電位接続管20は、高電圧側半導電層18と同電位に構成され、固体絶縁構造物17の絶縁接着部17bの外周面の接地電位接続管21は、接地側半導電層19と同電位に構成されている。
また、高電圧電位接続管20の半径方向の厚さ分だけ、高電圧導体12及び固体絶縁構造物17間に高電圧側空隙22が構成され、接地電位接続管21の半径方向の厚さ分だけ、固体絶縁構造物17及びシース13間に接地側空隙23が構成されている。さらに、導体ユニット12aには、貫通孔12cが2箇所以上設けられている。
【0023】
次に、図4は、熱伸縮および地震変位の変位対策構造部(図1のB)を示す。図5は変位対策構造部のD−D断面図である。それぞれの導体ユニット12a、パイプユニット13aおよび絶縁構造物ユニット17a同士を接続した所定の長さ毎に、高電圧導体12はスライド接触子24で接続し、シース13はベローズ25で接続し、固体絶縁構造物17はゴム状エラストマ部材26で接続して構成されている。スライド接触子24にはねじ山が設けられており、導体ユニット12aには、スライド接触子24のねじ山と同径のねじ穴が設けられている。
【0024】
(2)製造方法
以上のような構成を有する電気絶縁母線は、次のようにして組み立てることができる。すなわち、工場で導体ユニット12a、パイプユニット13aと、高電圧側半導電層18及び接地側半導電層19を有する絶縁構造物ユニット17aとをそれぞれ輸送可能な長さで製造し、ユニット毎に現地に搬入し、各種類のユニット毎に接続することにより、全体を組み立てることができる。
【0025】
この場合、各導体ユニット12aおよびパイプユニット13aの溶接は、自動溶接機にて実施することができる。また、絶縁構造物ユニット17aには、予め高電圧電位接続管20と接地電位接続管21を挿入しておき、絶縁接着部17bで接着した後、内周面において、高電圧側半導電層18と高電圧電位接続管20を強制的に同電位に固定し、外周面において、接地側半導電層19と接地電位接続管21を強制的に同電位に固定する。この場合、高電圧電位接続管20と導体ユニット12aは同電位になるように接触構造とし、接地電位接続管21とパイプユニット13aも同様に同電位になるように接触構造とする。この状態で、固体絶縁構造物17とシース13の間の接地側空隙23に乾燥空気を圧力を加えて封入する。さらに、高電圧導体12と固体絶縁構造物17間の高電圧側空隙22の空隙幅を5mm以上設け、熱対流を起こせるような空間構造とする。
【0026】
また、変位対策構造部において、高電圧導体12は、スライド接触子24のねじ回し作業で密着接続し、シース13はパイプユニット13a同士をベローズ25を間に挟んで溶接する。固体絶縁構造物17は、絶縁構造物ユニット17a同士を予め接続型に組み込み、その中にゴム状エラストマ材料を流し込みゴム状エラストマ部材26を形成する。ゴム状エラストマ部材26の内周面および外周面には半導電層を形成し、内周面は絶縁構造物ユニット17aの高電圧側半導電層18と強制的に同電位を構成し、外周面は絶縁構造物ユニット17aの接地側半導電層19と強制的に同電位を構成する。
【0027】
(3)作用効果
以上のような構成を有する本実施形態に係る電気絶縁母線及びその製造方法によれば、次のような作用効果が得られる。すなわち、高電圧導体と固体絶縁構造物が完全に分離し、独立しているため、一体成形した場合のように高電圧導体の大電流通電による発熱が直接固体絶縁構造物に伝達しない。そして、高電圧導体12の断面積を大きくでき、高電圧大電流の大容量送電が可能である。
【0028】
また、高電圧導体12と固体絶縁構造物17の高電圧側半導電層18が同電位になっており、シース13と固体絶縁構造物17の接地側半導電層19も同電位になっているため、高電圧導体12とシース13間の高電圧通電の絶縁は固体絶縁構造物17のみで負担する。従って、高電圧導体12と固体絶縁構造物17間の高電圧側空隙22及びシース13と固体絶縁構造物17間の接地側空隙23は無電圧状態になる。そのため、導体ユニット12a、パイプユニット13aの現地溶接で発生した金属粉塵が、高電圧側空隙22および接地側空隙23に存在したとしても、絶縁特性に何ら影響せず、無害である。また、高電圧導体12の通電による熱応力に対して剥離やクラックの発生が無く、高温時の絶縁性能が損なわれることがない。すなわち、固体絶縁構造物17の耐熱特性は、自身の材料物性から決まるため、高耐熱性に優れた構造となる。
【0029】
さらに、高電圧電位接続管20が存在し、高電圧側空隙22が個別に密閉された空間であるとしても、導体ユニット12aに貫通孔12cが2箇所以上あるため、高電圧導体12での発熱は、対流作用により冷却効果があり、固体絶縁構造物17に直接伝達することがなく、耐熱特性上からも優れた構成となる。
【0030】
(4)他の実施の形態
本発明は、上記のような実施形態に限定されるものではなく、他にも多様な形態が実施可能である。例えば、以下のような形態も包含するものである。
すなわち、空隙23を無くし固体絶縁構造物17とシース13を一体成形とすれば、固体絶縁構造物17とシース13の間に金属異物が混入するおそれがなく、絶縁信頼性の向上を図ることができる。
また、上記の実施形態においては、乾燥ガスの例として乾燥空気を使用したが、有害性及び危険性がなければ他の気体を使用しても良い。
さらに、高電圧電位接続管20に通気孔を設け、高電圧側空隙22を可能な限り、容積の大きい一体化した空間とすれば、高電圧導体12の発熱による対流作用をより高め、冷却効果の向上を図ることができる。
【0031】
【発明の効果】
以上述べたように、本発明の電気絶縁母線は、従来のCVケーブルに比べて、同等の絶縁信頼性を確保しながら、しかも、高電圧大電流送電が可能である。また、管路気中送電線路に比べても、同等の大電流通電性能を確保しながら、しかも、ガス絶縁特有の金属異物に対する絶縁信頼性の低下の問題や地球温暖化の環境問題も無く、長距離の高電圧大電流の地中送電線路が実現可能である。したがって、本発明によれば、高電圧大容量の電力送電が可能で、保守管理と高信頼性の確保が容易で、かつトータルコストを低減でき、環境に優しい電気絶縁母線を提供することができる。
【図面の簡単な説明】
【図1】本発明による電気絶縁母線の全体構成の代表的な一例を示す断面図。
【図2】本発明による電気絶縁母線の一般構造部の代表的な一例を示す断面図。
【図3】本発明による電気絶縁母線の一般構造部の代表的な一例を示すC−C断面図。
【図4】本発明による電気絶縁母線の変位対策構造部の代表的な一例を示す断面図。
【図5】本発明による電気絶縁母線の変位対策構造部の代表的な一例を示すD−D断面図。
【図6】従来のCVケーブルの一般構造部の代表的な一例を示す断面図。
【図7】従来のCVケーブルの接続構造部の代表的な一例を示す断面図。
【図8】従来の管路気中線路の代表的な一例を示す断面図。
【符号の説明】
1・・・・撚り線導体
2・・・・内部半導電層
3・・・・架橋ポリエチレン絶縁体
4・・・・外部半導電層
5・・・・金属遮蔽
6・・・・ビニルシース
7・・・・導体接続管
8・・・・補強絶縁体
9・・・・半導電層
10・・・防水コンパウンド
11・・・保護管
12・・・高電圧導体
12a・・導体ユニット
12b・・導体溶接
12c・・貫通孔
13・・・シース
13a・・パイプユニット
13b・・パイプ溶接
14・・・SF6ガス
15・・・絶縁スペーサ
16・・・ユニバーサルベローズ
17・・・固体絶縁構造物
17a・・絶縁構造物ユニット
17b・・絶縁接着部
18・・・高電圧側半導電層
19・・・接地側半導電層
20・・・高電圧電位接続管
21・・・接地電位接続管
22・・・高電圧側空隙
23・・・接地側空隙
24・・・スライド接触子
25・・・ベローズ
26・・・ゴム状エラストマ部材
T・・・・CVケーブル端末
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underground power transmission line, and more particularly, to an electrically insulated bus of the type assembled and laid on site in spite of applying a solid insulator as an insulating medium and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, in underground power transmission lines, CV cables using a crosslinked polyethylene having an excellent insulating performance as an insulating medium have been applied and have become widespread, and have become mainstream as long-distance lines in Tokyo. At present, the CV cable is required to have a high voltage of 550 kV, and a part of the CV cable has been put into practical use. In recent years, a pipeline air transmission line using SF6 (sulfur hexafluoride) gas as a main insulating medium has been adopted due to the demand for high voltage and large capacity of underground transmission lines. These underground power transmission lines form the basis of social energy distribution, so of course high reliability is required, but also economic and global environmental issues are required, and further reduction and environmental harmony are required. Is desired. Below, the specific structure of a CV cable and a pipe line power transmission line is demonstrated.
[0003]
First, an example of a cross-sectional view of a general structure portion of a CV cable is shown in FIG. As shown in FIG. 6, the CV cable is composed of a stranded conductor 1, an inner semiconductive layer 2, a cross-linked polyethylene insulator 3, and an outer semiconductive layer 4 sequentially disposed around the stranded conductor 1 by extrusion molding. . A metal shield 5 and a vinyl sheath 6 are provided outside the outer semiconductive layer 4 to prevent water permeation.
[0004]
FIG. 7 shows an example of a structure diagram of the connection portion of the CV cable. As shown in FIG. 7, the terminal T of the CV cable is cut and the stranded conductors 1 are connected to each other by a conductor connecting pipe 7. The cross-linked polyethylene insulator 3 and the reinforcing insulator 8 of the terminal T are integrally formed by extruding the cable raw material into the mold using a small extruder at the construction site. Semiconductive layers 9 are respectively provided on the outer circumferences of the conductor connecting pipe 7 and the reinforcing insulator 8, and are integrated with the conductor connecting pipe 7 and the reinforcing insulator 8 by cross-linking. Furthermore, a metal shield 5, a waterproof compound 10 and a protective tube 11 are provided on the outermost periphery to prevent water permeation. In the CV cable having this structure, the insulation thickness of the crosslinked polyethylene insulator 3 is selected according to the voltage class.
[0005]
Next, FIG. 8 shows a sectional view of the structure of the pipeline air transmission line. The in-pipe air transmission line has a coaxial cylindrical structure, and includes a high-voltage conductor 12 through which a high-voltage and large-current flows at the center and a sheath 13 on the outside, and excellent insulation characteristics between the high-voltage conductor 12 and the sheath 13. The SF6 gas 14 is filled. The high voltage conductor 12 is supported in the sheath 13 at intervals of several meters by insulating spacers 15 made of epoxy resin, and constitutes one unit in units of several tens of meters. After this unit is assembled at a factory and transported to the site, the units are connected to form an underground transmission line. Moreover, the universal bellows 16 is arrange | positioned every several tens of meters in order to absorb the thermal expansion and contraction which generate | occur | produces by connecting many units in a tunnel, and the displacement at the time of an earthquake.
[0006]
[Problems to be solved by the invention]
By the way, there are some problems with the above-described underground power transmission lines that are frequently used. First, the CV cable is flexible and can easily cope with curved displacement and ground displacement and is suitable for a long-distance line. On the other hand, the cross-linked polyethylene insulator 3 and the stranded wire conductor 1 are integrally formed. For this reason, there is a restriction on the cross-sectional area of the stranded wire conductor 1, which causes a thermal problem with respect to large current transmission. That is, with a CV cable, the transmission capacity per line is limited, and large-capacity transmission becomes impossible. To compensate for this, power transmission by a large number of lines is required, and the economic efficiency is impaired.
[0007]
On the other hand, for the pipeline air transmission line, the cross-sectional area of the high-voltage conductor 12 can be increased compared to the CV cable, and the heat dissipation is excellent, so that the transmission capacity per line can be increased. is there. Therefore, it is suitable for large capacity underground power transmission lines such as power lines in urban areas. However, there are many connection points at the site, and there is a problem that metal foreign matter is mixed. In particular, the insulating performance of the SF6 gas 14, which is the main insulating medium of the pipeline air transmission line, is significantly reduced with respect to metallic foreign matter, so that countermeasures are required.
[0008]
For example, in order to prevent metallic foreign matter from adhering to the insulating spacer 15, many extra accessories are required, such as providing a particle trap that captures and detoxifies the metallic foreign matter. Naturally, the cost is increased accordingly, and the economic efficiency is impaired. Furthermore, since SF6 gas is also included in the reduction target as a greenhouse gas, there is a possibility that the usage amount will be regulated in the future, such as total amount restriction. Therefore, it may become one of the problems for environmental harmony.
The present invention has been made in consideration of the above points. The purpose of the present invention is to enable high-voltage, large-capacity power transmission, easy maintenance and high reliability, and a reduction in total cost. It is possible to provide an environment-friendly electrical insulation bus and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to an electrical insulation bus in which a high voltage conductor for passing a high voltage and a large current is disposed in the axial direction of the inner space of a sheath having a ground potential. It has characteristics.
[0010]
In the first aspect of the present invention , a coaxial cylindrical insulating member is disposed between the high voltage conductor and the sheath, and a predetermined gap is provided between the outer periphery of the high voltage conductor and the coaxial cylindrical insulating member. And a predetermined gap is also formed between the inner wall surface of the sheath and the coaxial cylindrical insulating member, and the high-voltage conductor is connected to the sheath through the potential connection member disposed in each of the predetermined gaps. The high-voltage conductor, the sheath, the coaxial cylindrical insulating member, and the potential connecting member are each configured to be separated and independent in advance.
[0011]
According to the first aspect of the present invention, since the high voltage conductor and the coaxial cylindrical insulating member are separated from each other and independent from each other, the heat generated by energizing the high voltage conductor with a large current is coaxial as in the case of integral molding. Do not transmit directly to the cylindrical insulating member. Therefore, it is possible to improve the reliability of the electrically insulated bus that can perform high-capacity power transmission with high voltage and current. In addition, by providing gaps between the high voltage conductor and the coaxial cylindrical insulating member, and between the coaxial cylindrical insulating member and the sheath, heat transfer from the high voltage conductor can be suppressed, so that a larger current can be applied. In addition, it is possible to improve the thermal reliability of the coaxial cylindrical insulating member.
[0012]
According to a second aspect of the present invention, in the electrically insulated bus according to the first aspect, each of the high-voltage conductor, the coaxial cylindrical insulating member, and the sheath is unitized with a predetermined length within a transport limit. And a unit connection structure in which the units are connected to each other.
According to the invention of claim 2 as described above, the high voltage conductor, the coaxial cylindrical insulating member, and the sheath are unitized, and the unit can be transported and connected. Units can be connected to each other and the whole can be assembled. Therefore, it is possible to realize an electrically insulated bus that can transmit a large amount of power with a high voltage and a large current over a long distance.
[0013]
According to a third aspect of the present invention, in the electrically insulated bus according to the second aspect, the unit connection structure of the high-voltage conductor, the coaxial cylindrical insulating member, and the sheath has an axial direction and a radius for each predetermined length. It includes a displacement countermeasure structure that can absorb the displacement in the direction .
According to the invention described in claim 3 as described above, the high voltage conductor, the coaxial cylindrical insulating member and the sheath each include the displacement countermeasure structure portion capable of absorbing thermal expansion and contraction and seismic displacement, and a highly reliable electric insulated bus. Can be realized.
[0014]
According to a fourth aspect of the present invention, in the electrically insulated bus according to the third aspect, the displacement countermeasure structure portion is a sliding contact structure for the high voltage conductor, a bellows structure for the sheath, and the coaxial cylindrical insulating member. Is characterized by being a contact structure of a rubber-like elastomer material.
According to the fourth aspect of the present invention, the displacement countermeasure structure can absorb thermal expansion and contraction and seismic displacement, and a highly reliable electrically insulated bus can be realized.
[0015]
According to a fifth aspect of the present invention, in the electrically insulated bus according to the first, second, third, or fourth aspect, a dry gas is forcibly enclosed in a gap between the coaxial cylindrical insulating member and the sheath. It is characterized by being.
According to the fifth aspect of the present invention, there is no moisture absorption to the coaxial cylindrical insulating member, and the adverse effect on the insulation performance degradation such as a water tree can be removed, and the insulation reliability of the electrical insulation bus can be improved.
[0016]
According to a sixth aspect of the present invention, in the electrically insulated bus according to the first, second, third, fourth, or fifth aspect, a semiconductive layer is provided on an inner peripheral surface and an outer peripheral surface of the coaxial cylindrical insulating member. The semiconductive layer on the inner peripheral surface is set to the potential of the high-voltage conductor, and the semiconductive layer on the outer peripheral surface is set to the potential of the sheath.
According to the sixth aspect of the present invention, no voltage is applied to the gap between the high voltage conductor and the coaxial cylindrical insulating member and between the coaxial cylindrical insulating member and the sheath. For this reason, even if a metal foreign object enters the gap between the coaxial cylindrical insulating members in the field welding of the high voltage conductor and the sheath, there is no discharge. That is, partial discharge does not occur and insulation reliability can be improved.
[0017]
According to a seventh aspect of the present invention, in the electrically insulated bus according to the sixth aspect, the potential of the high voltage conductor and the potential of the sheath of the coaxial cylindrical insulating member are set by forced connection by the potential connecting member. It is characterized by.
According to the seventh aspect of the present invention, by ensuring the potential of the semiconductive layer at the connection portion between the units of the coaxial cylindrical insulating member, it is possible to prevent a transient voltage from being generated when a surge voltage enters. Thus, it is possible to remove the cause of the insulation deterioration and improve the insulation reliability of the electric insulation bus.
[0018]
According to an eighth aspect of the present invention, in the electrically insulated bus according to the second or third aspect , each unit of the high-voltage conductor is provided with two or more through holes.
According to the eighth aspect of the present invention, thermal convection is possible through the through-hole of the high-voltage conductor, and since a cooling effect is obtained by convection action, there is no direct transmission to the coaxial cylindrical insulating member. The heat resistance reliability of the busbar can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, one embodiment of the electrically insulated bus according to the present invention will be described in detail with reference to FIGS.
[0020]
(1) Configuration of Electrically Insulated Bus Bar FIG. 1 is an overall configuration diagram of an electrically insulated bus bar according to the present embodiment. Between the high-voltage conductor 12 for passing a high voltage and a large current and a pipe-shaped sheath 13 covering the high-voltage conductor 12, a cylindrical solid insulating structure 17 surrounds the high-voltage conductor 12 on the inner periphery. The main insulating part is formed by being inserted into the surface. FIG. 2 shows a general structure (A in FIG. 1) assembled by connecting the high voltage conductor 12, the sheath 13 and the solid insulation structure 17 unitized to a length that can be transported in a factory. These are CC sectional drawing of a general structure part.
[0021]
The high voltage conductor 12 is configured by connecting the conductor units 12a to each other by conductor welding 12b. The sheath 13 is configured by connecting the pipe units 13a to each other by pipe welding 13b. The solid insulation structure 17 is configured by connecting the insulation structure units 17a to each other with an insulation adhesive 17b. A high-voltage-side semiconductive layer 18 and a ground-side semiconductive layer 19 are provided on the inner and outer peripheral surfaces of the insulating structure unit 17a.
[0022]
The high-voltage potential connecting tube 20 on the inner peripheral surface of the insulating bonding portion 17b of the solid insulating structure 17 is configured to have the same potential as the high-voltage side semiconductive layer 18, and the insulating bonding portion 17b of the solid insulating structure 17 The ground potential connection tube 21 on the outer peripheral surface is configured to have the same potential as the ground side semiconductive layer 19.
Further, the high voltage side gap 22 is formed between the high voltage conductor 12 and the solid insulating structure 17 by the thickness in the radial direction of the high voltage potential connection tube 20, and the thickness in the radial direction of the ground potential connection tube 21. Only the ground-side gap 23 is formed between the solid insulating structure 17 and the sheath 13. Furthermore, the conductor unit 12a is provided with two or more through holes 12c.
[0023]
Next, FIG. 4 shows a displacement countermeasure structure (B in FIG. 1) for thermal expansion and contraction and earthquake displacement. FIG. 5 is a DD cross-sectional view of the displacement countermeasure structure. The high voltage conductor 12 is connected by a slide contact 24 and the sheath 13 is connected by a bellows 25 for each predetermined length in which the conductor units 12a, the pipe unit 13a, and the insulating structure unit 17a are connected to each other. The structure 17 is connected by a rubber-like elastomer member 26. The slide contact 24 is provided with a screw thread, and the conductor unit 12a is provided with a screw hole having the same diameter as the screw thread of the slide contact 24.
[0024]
(2) Manufacturing method An electrically insulated bus having the above-described configuration can be assembled as follows. That is, the conductor unit 12a, the pipe unit 13a, and the insulating structure unit 17a having the high-voltage side semiconductive layer 18 and the ground side semiconductive layer 19 are manufactured in a length that can be transported at the factory. The whole can be assembled by carrying in and connecting to each type of unit.
[0025]
In this case, welding of each conductor unit 12a and the pipe unit 13a can be implemented with an automatic welding machine. Further, after the high voltage potential connecting tube 20 and the ground potential connecting tube 21 are inserted in the insulating structure unit 17a in advance and bonded by the insulating bonding portion 17b, the high voltage side semiconductive layer 18 is formed on the inner peripheral surface. The high-voltage potential connection tube 20 is forcibly fixed to the same potential, and the ground-side semiconductive layer 19 and the ground potential connection tube 21 are forcibly fixed to the same potential on the outer peripheral surface. In this case, the high-voltage potential connecting pipe 20 and the conductor unit 12a have a contact structure so as to have the same potential, and the ground potential connecting pipe 21 and the pipe unit 13a similarly have a contact structure so as to have the same potential. In this state, dry air is sealed by applying pressure to the ground-side gap 23 between the solid insulating structure 17 and the sheath 13. Further, the high-voltage side gap 22 between the high-voltage conductor 12 and the solid insulating structure 17 is provided with a space width of 5 mm or more so that a heat convection can occur.
[0026]
Further, in the displacement countermeasure structure portion, the high voltage conductor 12 is closely connected by a screwing operation of the slide contactor 24, and the sheath 13 is welded with the bellows 25 between the pipe units 13a. In the solid insulation structure 17, the insulation structure units 17a are assembled in advance in a connection type, and a rubber-like elastomer material is poured therein to form a rubber-like elastomer member 26. A semiconductive layer is formed on the inner peripheral surface and the outer peripheral surface of the rubber-like elastomer member 26, and the inner peripheral surface forcibly forms the same potential as the high voltage side semiconductive layer 18 of the insulating structure unit 17a. Forcibly forms the same potential as that of the ground-side semiconductive layer 19 of the insulating structure unit 17a.
[0027]
(3) Operational Effects According to the electrically insulated bus and the manufacturing method thereof according to the present embodiment having the above-described configuration, the following operational effects are obtained. That is, since the high voltage conductor and the solid insulation structure are completely separated and independent, heat generated by energizing the high voltage conductor with a large current is not directly transmitted to the solid insulation structure as in the case of integral molding. And the cross-sectional area of the high-voltage conductor 12 can be enlarged, and high-capacity power transmission with a high voltage and large current is possible.
[0028]
The high voltage conductor 12 and the high voltage side semiconductive layer 18 of the solid insulating structure 17 are at the same potential, and the sheath 13 and the ground side semiconductive layer 19 of the solid insulating structure 17 are also at the same potential. Therefore, the insulation of the high voltage conduction between the high voltage conductor 12 and the sheath 13 is borne only by the solid insulation structure 17. Accordingly, the high-voltage side gap 22 between the high-voltage conductor 12 and the solid insulation structure 17 and the ground-side gap 23 between the sheath 13 and the solid insulation structure 17 are in a non-voltage state. Therefore, even if metal dust generated in the field welding of the conductor unit 12a and the pipe unit 13a exists in the high-voltage side gap 22 and the ground-side gap 23, the insulation characteristics are not affected at all and are harmless. Further, no peeling or cracking occurs due to thermal stress caused by energization of the high voltage conductor 12, and the insulation performance at high temperature is not impaired. That is, since the heat resistance characteristics of the solid insulating structure 17 are determined by the physical properties of the material, the structure has excellent high heat resistance.
[0029]
Furthermore, even if the high-voltage potential connecting tube 20 exists and the high-voltage side gap 22 is a space that is individually sealed, the conductor unit 12a has two or more through holes 12c, so that heat is generated in the high-voltage conductor 12. Has a cooling effect due to the convection action, does not transmit directly to the solid insulating structure 17, and has an excellent structure in terms of heat resistance.
[0030]
(4) Other Embodiments The present invention is not limited to the embodiment as described above, and various other forms can be implemented. For example, the following forms are also included.
That is, if the solid insulation structure 17 and the sheath 13 are formed integrally by eliminating the gap 23, there is no possibility that foreign metal is mixed between the solid insulation structure 17 and the sheath 13, and the insulation reliability can be improved. it can.
In the above embodiment, dry air is used as an example of the dry gas. However, other gases may be used if there is no harmfulness and danger.
Further, if the high-voltage potential connecting pipe 20 is provided with a vent hole and the high-voltage side gap 22 is made as an integrated space having a large volume as much as possible, the convection action due to heat generation of the high-voltage conductor 12 is further enhanced and the cooling effect is improved. Can be improved.
[0031]
【The invention's effect】
As described above, the electrically insulated bus of the present invention can achieve high voltage and large current transmission while ensuring equivalent insulation reliability as compared with the conventional CV cable. In addition, compared with the pipeline air transmission line, while ensuring the equivalent large current carrying performance, there is also no problem of deterioration of insulation reliability for metal foreign objects unique to gas insulation and environmental problems of global warming, Long-distance, high-voltage, high-current underground transmission lines can be realized. Therefore, according to the present invention, high-voltage and large-capacity power transmission is possible, maintenance management and high reliability can be easily ensured, total cost can be reduced, and an environmentally friendly electrical insulated bus can be provided. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a typical example of the overall configuration of an electrically insulated bus according to the present invention.
FIG. 2 is a sectional view showing a typical example of a general structure portion of an electrically insulated bus according to the present invention.
FIG. 3 is a cross-sectional view taken along the line CC, showing a typical example of the general structure of the electrically insulated bus according to the present invention.
FIG. 4 is a cross-sectional view showing a typical example of a displacement countermeasure structure portion of an electrically insulated bus according to the present invention.
FIG. 5 is a DD cross-sectional view showing a typical example of a displacement countermeasure structure portion of an electrically insulated bus according to the present invention.
FIG. 6 is a cross-sectional view showing a typical example of a general structure portion of a conventional CV cable.
FIG. 7 is a cross-sectional view showing a typical example of a conventional CV cable connection structure.
FIG. 8 is a cross-sectional view showing a typical example of a conventional pipeline air line.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stranded wire conductor 2 ... Internal semiconductive layer 3 ... Crosslinked polyethylene insulator 4 ... External semiconductive layer 5 ... Metal shielding 6 ... Vinyl sheath 7 ... ... Conductor connection tube 8 ... Reinforcing insulator 9 ... Semiconductive layer 10 ... Waterproof compound 11 ... Protection tube 12 ... High voltage conductor 12a ... Conductor unit 12b ... Conductor Weld 12c ·· Through hole 13 ··· Sheath 13a ·· Pipe unit 13b ·· Pipe weld 14 ··· SF6 gas 15 ··· Insulating spacer 16 ··· Universal bellows 17 ··· Solid insulating structure 17a ··· Insulating structure unit 17b .. Insulating adhesive 18 ... High voltage side semiconductive layer 19 ... Ground side semiconductive layer 20 ... High voltage potential connection tube 21 ... Ground potential connection tube 22 ... High voltage side air gap 23 ... Ground side air gap 24 ... Slide contact 25 ... Bellows 26 ... Rubber elastomer member T ... CV cable terminal

Claims (8)

高電圧及び大電流を通電する高電圧導体を接地電位を有するシースの内部空間軸方向に配設した電気絶縁母線において、
前記高電圧導体と前記シースとの間に同軸円筒状絶縁部材を配設し、
前記高電圧導体の外周と前記同軸円筒状絶縁部材の間に所定の間隙を形成するとともに、前記シース内壁面と前記同軸円筒状絶縁部材の間にも所定の間隙を形成し、
前記各々の所定の間隙に配置される電位接続部材を介して前記高電圧導体は前記シース内に絶縁支持されるとともに、前記高電圧導体、前記シース、前記同軸円筒状絶縁部材及び前記電位接続部材は予め各々分離独立可能に構成されて成ることを特徴とする電気絶縁母線。
In an electrically insulated bus in which a high voltage conductor for passing a high voltage and a large current is arranged in the inner space axial direction of the sheath having a ground potential,
A coaxial cylindrical insulating member is disposed between the high voltage conductor and the sheath,
A predetermined gap is formed between the outer periphery of the high-voltage conductor and the coaxial cylindrical insulating member, and a predetermined gap is also formed between the sheath inner wall surface and the coaxial cylindrical insulating member,
The high voltage conductor is insulated and supported in the sheath via a potential connection member disposed in each predetermined gap, and the high voltage conductor, the sheath, the coaxial cylindrical insulating member, and the potential connection member Are configured in advance so as to be separable and independent from each other.
前記高電圧導体、前記同軸円筒状絶縁部材及び前記シースの各々は、輸送制限内の所定の長さでユニット化されており、各ユニットをそれぞれ接続してなるユニット接続構造であることを特徴とする請求項1記載の電気絶縁母線。  Each of the high-voltage conductor, the coaxial cylindrical insulating member, and the sheath is unitized with a predetermined length within transport restrictions, and has a unit connection structure in which each unit is connected. The electrically insulated bus according to claim 1. 前記高電圧導体、前記同軸円筒状絶縁部材及び前記シースの各ユニット接続構造は、それぞれ所定長さごとに軸方向及び半径方向の変位を吸収可能な変位対策構造部を含むことを特徴とする請求項2記載の電気絶縁母線。  Each of the unit connection structures of the high-voltage conductor, the coaxial cylindrical insulating member, and the sheath includes a displacement countermeasure structure that can absorb axial and radial displacement for each predetermined length. Item 3. The electrically insulated bus according to Item 2. 前記変位対策構造部は、前記高電圧導体についてはスライド接触子構造、前記シースについてはベローズ構造、前記同軸円筒状絶縁部材についてはゴム状エラストマ材料の接触構造であることを特徴とする請求項3記載の電気絶縁母線。  4. The displacement countermeasure structure portion has a sliding contact structure for the high-voltage conductor, a bellows structure for the sheath, and a contact structure made of a rubbery elastomer material for the coaxial cylindrical insulating member. Electrically insulated busbar as described. 前記同軸円筒状絶縁部材と前記シースの間の空隙には、強制的に乾燥ガスが封入されていることを特徴とする請求項1、2、3または4記載の電気絶縁母線。  5. The electrically insulated bus according to claim 1, wherein a dry gas is forcibly enclosed in a gap between the coaxial cylindrical insulating member and the sheath. 前記同軸円筒状絶縁部材の内周面と外周面には、半導電層が施されており、内周面の半導電層は前記高電圧導体の電位に、外周面の半導電層は前記シースの電位に設定されていることを特徴とする請求項1、2、3、4または5記載の電気絶縁母線。  A semiconductive layer is provided on the inner peripheral surface and the outer peripheral surface of the coaxial cylindrical insulating member, the semiconductive layer on the inner peripheral surface is at the potential of the high voltage conductor, and the semiconductive layer on the outer peripheral surface is the sheath. 6. The electrically insulated bus according to claim 1, wherein the electrical insulated bus is set to a potential of 前記同軸円筒状絶縁部材の前記高電圧導体の電位および前記シースの電位は、前記電位接続部材による強制的接続により設定されていることを特徴とする請求項6記載の電気絶縁母線。  The electric insulated bus according to claim 6, wherein the potential of the high-voltage conductor and the potential of the sheath of the coaxial cylindrical insulating member are set by forced connection by the potential connecting member. 前記高電圧導体の各ユニットには、2個以上の貫通孔が設けられていることを特徴とする請求項2または3記載の電気絶縁母線。  4. The electrically insulated bus according to claim 2, wherein each unit of the high voltage conductor is provided with two or more through holes.
JP2000353165A 2000-11-20 2000-11-20 Electrically insulated bus and method for manufacturing the same Expired - Fee Related JP4373600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353165A JP4373600B2 (en) 2000-11-20 2000-11-20 Electrically insulated bus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353165A JP4373600B2 (en) 2000-11-20 2000-11-20 Electrically insulated bus and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002157923A JP2002157923A (en) 2002-05-31
JP4373600B2 true JP4373600B2 (en) 2009-11-25

Family

ID=18825959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353165A Expired - Fee Related JP4373600B2 (en) 2000-11-20 2000-11-20 Electrically insulated bus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4373600B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564466B2 (en) * 2006-03-31 2010-10-20 株式会社東芝 Gas insulation equipment
WO2012108048A1 (en) 2011-02-10 2012-08-16 三菱電機株式会社 Power conversion device
CN106251942A (en) * 2016-08-31 2016-12-21 国家电网公司 A kind of transmission of electricity bus of improved structure
CN113555155A (en) * 2021-07-23 2021-10-26 哈尔滨济安轨道交通装备有限公司 High-voltage cable spiral protective sleeve

Also Published As

Publication number Publication date
JP2002157923A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
JP5674961B2 (en) High voltage electric cable
US3391243A (en) Enclosed electric power transmission conductor
RU2681643C1 (en) Cable fittings for connecting a high-voltage cable with a high-voltage component
CN211556179U (en) Tubular bus connecting structure with middle joint insulation seal
US7674979B2 (en) Synthetic material end for a DC electric cable
CN206236465U (en) A kind of anti-extrusion cable of high resiliency
US11006484B2 (en) Shielded fluoropolymer wire for high temperature skin effect trace heating
KR20150101353A (en) Power cable having termination connection box
JP4373600B2 (en) Electrically insulated bus and method for manufacturing the same
RU2337447C1 (en) Coupling joint for power cable
KR20210120368A (en) Connecting Structure of Power Cable Conductor And Connecting Box Of Power Cable Using The Same
CN106856666B (en) High voltage transmission line
Pompili et al. MV underground power cable joints premature failures
CN102957123A (en) Stop joint of oil-filled cables
US4571450A (en) Moisture impervious power cable and conduit system
EP3756418A1 (en) Shielded fluoropolymer wire for high temperature skin effect trace heating
US20180279418A1 (en) High Voltage Skin Effect Heater Cable with Ribbed Semiconductive Jacket
KR101625812B1 (en) A tubular insulation device, a high voltage power arrangement and a method for providing an insulated high voltage power cable
EP3128630B1 (en) Method for electrical separation of the metallic sheath a hvdc mi cable
JP7366412B2 (en) Insulated conductor connection
JP7240606B2 (en) Intermediate connection structure of power cable
CN209929940U (en) High-voltage crosslinked polyethylene insulated cable molding type insulated joint
KR20210111531A (en) Termination connection box for power cable
EP2954603B1 (en) A tubular insulation device, a high voltage power arrangement and a method for providing an insulated high voltage power cable
KR20160112365A (en) Apparatus and method for joining sleeve for cable joint assembly

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees