JP4373527B2 - Cement admixture - Google Patents
Cement admixture Download PDFInfo
- Publication number
- JP4373527B2 JP4373527B2 JP13849499A JP13849499A JP4373527B2 JP 4373527 B2 JP4373527 B2 JP 4373527B2 JP 13849499 A JP13849499 A JP 13849499A JP 13849499 A JP13849499 A JP 13849499A JP 4373527 B2 JP4373527 B2 JP 4373527B2
- Authority
- JP
- Japan
- Prior art keywords
- retarder
- concrete
- organic compound
- cement
- cement admixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/06—Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
- C04B40/0658—Retarder inhibited mortars activated by the addition of accelerators or retarder-neutralising agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
- C04B20/1018—Coating or impregnating with organic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/0041—Non-polymeric ingredients chosen for their physico-chemical characteristics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/20—Retarders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/34—Non-shrinking or non-cracking materials
- C04B2111/343—Crack resistant materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コンクリートに高い流動性を与え、かつセメントの水和熱による温度の上昇・降下によるコンクリートのひび割れの発生を抑制することが可能なセメント用添加剤に関する。
【0002】
【従来の技術】
近年、超高層建築や原子力発電などの大型構造物には、マスコンクリートと分類されるコンクリートの使用が増加している。このマスコンクリートではセメントの水和熱による温度の上昇・降下に伴って内部並びに外部拘束応力が作用し、ひび割れが発生しやすい。また、高強度コンクリートと分類されるコンクリートの使用も増加している。この高強度コンクリートでは水セメント比を低く抑えているため、コンクリート内部の温度が上昇して温度応力によるコンクリートのひび割れが発生しやすく、また時間が経過すると長期間に亘って期待されているコンクリート強度の伸びがなくなる。更に鉄筋に対して残留歪みを与えやすい。
【0003】
このような原因によるひび割れなどの損傷を防止するために、コンクリートの温度上昇を抑制する方法が取られている。例えば、マスコンクリートでは液体窒素ガスや氷片を混入させてコンクリートを冷却したり、フッ化物もしくはカルボン酸等の遅延剤を添加したり、コンクリートの中に埋設したパイプに冷却水を通して水和反応を抑制することがおこなわれている。
【00004】
さらに、コンクリートの打設作業を容易にするために、流動性を付与する化学物質を添加することが通常行われている。このような添加剤としては、特開昭63−285140、特開平2−163108ではポリエチレングリコールと無水マレイン酸との共重合体物を、特表平9−508612ではイミド化アクリルポリマーを、特開平6−293543ではアクリルアミドアルキルスルホン酸を添加できることを開示している。
【0005】
【発明が解決しようとする課題】
前述のひび割れを防止するためにコンクリートを冷却する方法では、現場近くに大がかりな装置を設置する必要があり、さらに打設したコンクリートを均一に冷やすことは困難な場合が多かった。このため、必ずしも有効なひび割れ防止技術までには至っていない。
【0006】
他の方法である遅延剤を添加する方法では、セメントの水和反応を遅延させて急激な水和熱の発生を抑制し温度上昇を防止する。しかし、水和反応の反応速度が遅くなっているので、打設したコンクリート全体が固化するのに時間を要するという欠点が生じていた。そこで固化する時間を調整するために遅延剤の添加量を少なくすると、コンクリート自体がもつ断熱作用により、打設したコンクリートの水和熱がコンクリートの中心部にずっと籠もってしまい、実質的に温度の上昇を抑制できないケースが度々発生していた。
【0007】
このような遅延剤の欠点を改善するため、コンクリートの通常の強度発現に必要な程度の水和反応をあまり抑制することなく、ひび割れの原因となる急激な温度上昇をもたらす水和反応のみを防止する方法として、遅延剤をマイクロカプセルで内包することを、本件発明の出願人らは特開平10−81552で提案した。
【0008】
【課題を解決するための手段】
本件発明のセメント用混和剤は、4〜20℃の温度範囲の水に不溶または難溶性であって、かつその溶融温度の範囲が30℃〜100℃の有機化合物であって、その平均粒径が10〜500ミクロンの粉体に、遅延剤を混在させた化合物である。前記遅延剤には、フッ化物、リン酸塩、ホウ酸塩、オキシカルボン酸もしくはその塩、ケトカルボン酸もしくはその塩、または糖もしくは糖アルコール中から少なくとも一種以上が選ばれる。前記有機化合物には、ロウ、油脂、脂肪酸、脂肪酸エステル、金属セッケン、高級アルコール、または熱可塑性樹脂の中から少なくとも一種以上が選ばれる。さらに好ましくは、有機化合物が平均粒径で50〜300ミクロンの球形微粒子である。
【0009】
本発明に用いる遅延剤は前述の各種酸または糖であればよく、特定の物質に限定されるものではない。特に好ましい遅延剤としては、分子内にヒドロキシ基とカルボン酸基を有するオキシカルボン酸である。具体的に、グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸、クエン酸等の化合物名が、特開昭61−40854号、特開平6−263502号、特開平10−53444号等に開示されている。これら物質のカルボン酸基が、水和反応に関与するセメントのカルシウムイオンと錯体を形成することで遅延効果を発現する。
【0010】
本発明は、この遅延剤を溶融温度の範囲が30℃〜100℃の有機化合物の粉体に混在させる。有機化合物の溶融温度が30℃以上でなければならない理由は、遅延剤による水和反応の抑制作用を不要とする場合(例えば打設したコンクリートの水和熱による急激な温度上昇が起こらない場合)には、有機化合物は溶融することなくかつ水に不溶もしくは難溶なので、この遅延剤を固定化したままでコンクリートへ放出しない結果、コンクリートは遅延剤の抑制作用を受けることなく、通常の通りの水和反応で固化させるためである。逆に、溶融温度が30℃未満では遅延剤が容易に放出されてコンクリートの固化が遅くなりやすい。他方、溶融温度が100℃超では、水和反応でコンクリート温度が水の沸点まで上昇しても有機化合物は溶融せずに遅延剤を固定化したままとなり、温度上昇の抑制効果が働かず熱くなったコンクリートから水が急速に蒸発してしまい正常な水和反応を期待できなくなるからである。
【0011】
なお、本件発明の溶融温度には、結晶性物質の溶ける温度を示す「融点」だけでなく、混合物や熱可塑性樹脂などのように明確な融点のない物質が固形状から軟化して液状化へ変化する温度も含むものとする。
【0012】
本件発明では、有機化合物の粉体に遅延剤を混在させる方法としては、前述の特開平10−81552に記載した界面重合法、In−Situ法、不溶化反応法、コアセルベーション法、液中乾燥法、噴霧乾燥法、流動床法などのカプセルの方法だけには限らない。例えば、液状化させた有機化合物に遅延剤を混合させたのち当該有機化合物を冷却固化させ、次いでこの固化物を粉砕して調製してもよい。また多孔質の固体状の有機化合物に遅延剤を含浸させたのち粉砕したり、多孔質の有機化合物の粉体へ直接に遅延剤を含浸させて調製してもよい。さらには、有機化合物の粉体の表面に遅延剤を吸着、固着させる場合でもよい。本件発明のセメント用混和剤では、有機化合物の粉体の中に遅延剤を存在させる場合だけでなく、粉体の表面に遅延剤が露出している場合でもよい。
【0013】
つまり、「有機化合物の粉体に遅延剤を混在する」とは、遅延剤が有機化合物によって固定化されて有機化合物と遅延剤が一体化されている状態をいう。そして、この有機化合物の粉体がセメントの水和熱で溶融して液状に変化し、一体化されていた遅延剤がセメント組成物中へ放出されることで、水和反応を遅延化させて急激な温度上昇を抑制する。
【0014】
さらに、本件発明のセメント用混和剤はセメント組成物に対して流動性を付与する作用を有する。この流動性は、セメント用混和剤の成分である有機化合物の官能基による化学的作用、または有機化合物の物性に基づく物理的作用のいずれかによって発現される。例えば、化学的作用には、有機化合物の官能基がセメント組成物である骨材の粒子表面に化学結合もしくは化学吸着してその界面活性作用によりコンクリートの粘性を下げたり、または水の表面張力を下げたりする場合が挙げられる。物理的作用には、骨材やセメントなどの粒子間でこの有機化合物の球状微粒子が固体潤滑剤のような働きをして骨材等の粒子を滑り易くする場合が挙げられる。
【0015】
本件発明では、有機化合物の粉体の平均粒径は10〜500ミクロンが好ましい。500ミクロン以上では通常のセメントの粒子より極めて大きくなり、結果としてコンリート強度を低下させてしまうからである。逆に、10ミクロン以下では有機化合物がコンクリート中で遅延剤を固定化する作用が弱く、水和熱によらなくても容易に遅延剤をセメント組成物中に放出してしまうからである。特に好ましい平均粒径としては50〜300ミクロンである。この範囲の平均粒径が、前述のコンクリートに対する流動性を上げる物理的作用を最も発揮し易く、かつ粉体がセメント組成物中に均一に分散しやすく、水和反応の抑制作用を広範囲に発現することができるからである。
【0016】
有機化合物は、4〜20℃の温度範囲では水に不溶または難溶性であって、かつその溶融温度が30℃〜100℃の物性を有していなければならない。本件発明では、前記の物性を有する有機化合物であればいずれでもよく、特定の化合物に限定されるものではない。このような物性を有する周知の化合物としては、ロウ、油脂、脂肪酸、脂肪酸エステル、金属セッケン、高級アルコール、または熱可塑性樹脂を挙げることができる。ロウとは脂肪酸と一価または二価の高級アルコールとのエステル化合物をさし、油脂は脂肪酸とグリセリンとのエステル化合物をいう。また、脂肪酸とは油脂から加水分解して得られるカルボン酸をいい、脂肪酸エステルとは脂肪酸と低級アルコールとのエステル化合物をいい、金属セッケンとは、前記脂肪酸の重金属塩をいう。熱可塑性樹脂とは、一般に直鎖状の重合体のことをいう。これらの化合物の前記の定義は一般的な区分けにすぎず、本発明の有機化合物を特定するものではない。
【0017】
【発明の実施の形態】
本件発明のセメント用混和剤の製造方法を説明する。
【0018】
実施例1;溶融温度が40℃〜45℃の範囲で4℃〜20℃の温度範囲の水に不溶性の合成高分子ワックス(商品名;CX−ST200、日本触媒社製)を70℃まで加熱して溶融させておき、そこにオキシカルボン酸塩の遅延剤(商品名;パリックT、藤沢薬品工業社製)を、ワックス:遅延剤=6:4の重量比で混合して、混合溶液を調製する。この混合溶液をスプレードライヤー装置(大原化工機社製)で噴霧・乾燥処理を行い、合成高分子ワックスの球形粒子(平均粒径約250ミクロン)の中に遅延剤の微粒子が約40重量%で点在しているセメント用混和剤を調製した。
【0019】
実施例2;溶融温度が72℃〜86℃の範囲で4℃〜20℃の温度範囲の水に不溶性のカーナバロウを95℃まで加熱して溶融させておき、そこにオキシカルボン酸塩の遅延剤(商品名;パリックT、藤沢薬品工業社製)を、カーナバロウ:遅延剤=5:5の重量比で混合して、混合溶液を調製する。この混合溶液を冷却して固形状に戻した後、さらにこの固形物をボールミルで粉砕して、カーナバロウの不定形粒子(平均粒径約300ミクロン)の中に遅延剤の微粒子が約50重量%で点在しているセメント用混和剤を調製した。
【0020】
実施例3;融点が55℃で4℃〜20℃の温度範囲の水に難溶性の2−メチルオクタデカン酸を60℃まで加熱して溶融させておき、そこに遅延剤としてグルコン酸ナトリウム塩を、2−メチルオクタデカン酸:グルコン酸Na塩=4:6の重量比で混合して、混合溶液を調製する。この混合溶液をスプレードライヤー装置(大原化工機社製)で噴霧・乾燥処理を行い、2−メチルオクタデカン酸の粒子(平均粒径約50ミクロン)の中に前記のグルコン酸Na塩の微粒子が約60重量%で点在している本件発明のセメント用混和剤を調製した。
【0021】
実施例1、2、3のセメント用混和剤を次のコンクリートで評価した。
セメント;ポルトランドセメント
粗骨材;粗粒率の異なる2種類の砕石を混合
細骨材;砂、細骨材率48.2%
減水剤;(商品名)パリックK(藤沢薬品工業社製)、0.25重量%(セメントを基準)
空気量;4.0%
水セメント比;50%
スランプ;18.0cm、JIS A 1101で測定
【0022】
上記の調合割合で強制練りミキサーを用いてまずセメントと水と減水剤を3分間混練して、次いで骨材と実施例のセメント用混和剤を加えて3分間混練した。なお、遅延剤成分がセメントに対して0.5重量%なる量で、実施例のセメント用混和剤をコンクリートにそれぞれ添加した。混練したコンクリートはスランプフロー試験(JIS A 1101)を行うともに、高さ50cm、幅33cm、厚さ15cmの型枠内に打設して、型枠内の中心部の温度の経時変化を測定した。なお、この型枠は断熱材で覆って周囲の温度によって影響されないようした。さらに、セメント用混和剤の性能を比較するために、有機化合物中に混在させることなく市販のままの状態で遅延剤(商品名)パリックTを前述のコンクリートに添加して、比較試験を行った。
【0023】
評価結果を表1に示す。
【0024】
【表1】
【0025】
本件発明のセメント用混和剤は、スランプフローが13.0〜14.0cmと低くコンクリートに流動性を付与していることが判る。また、水和反応による最高温度は遅延剤無添加のコンクリートに比べて約15℃程低くなり、急激な温度上昇が抑制されて緩い温度変化をしていることが判る。つまり、本件発明のセメント用混和剤は、水和熱による温度上昇前から遅延効果を発揮することなく遅延剤無添加のコンクリートと同様に混練初期から水和反応を開始させることが可能で、温度上昇が始まってコンクリートの温度が高くなりかけると水和反応を抑制して緩慢な温度上昇と温度降下させる働きをする。
【0026】
【発明の効果】
本件発明のセメント用混和剤を混合すると、コンクリートに流動性が付与されるとともにその流動性は長時間維持されているので、ポンプ圧送におけるスランプロスは小さくなり輸送トラブルが軽減し、型枠への打設作業も容易にすることができる。
【0027】
さらに、打設後において水和反応によりコンクリートの温度が上昇した場合に、本件発明のセメント用混和剤が液状に変質して遅延剤をコンクリート中に放出し、この遅延剤は水和反応を抑制して急激な温度上昇を防止する。逆に、打設したコンクリートの表面付近では放熱作用により温度上昇はおきにくいので、セメント用混和剤は水に溶解することなくかつ溶融しないので、遅延剤をコンクリート中に放出することなく、通常の水和反応が維持される。結果として、打設したコンクリート全体の温度分布が均一となり、温度差から生じる内部拘束応力を低減してひび割れを防止する。
【0028】
また、通常の水和反応に必要な温度以上に到達するような温度上昇を抑制させる結果、コンクリート全体の熱膨張や急激な温度降下を抑えて外部拘束応力を低減して、同様にひび割れを防止する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an additive for cement capable of imparting high fluidity to concrete and suppressing the occurrence of cracks in the concrete due to temperature rise / fall due to the heat of hydration of cement.
[0002]
[Prior art]
In recent years, the use of concrete classified as mass concrete is increasing for large structures such as high-rise buildings and nuclear power generation. In this mass concrete, internal and external restraint stress acts as the temperature rises and falls due to the heat of hydration of cement, and cracks are likely to occur. Also, the use of concrete classified as high-strength concrete is increasing. In this high-strength concrete, the water-cement ratio is kept low, so that the temperature inside the concrete rises and the concrete is easily cracked due to temperature stress, and the concrete strength expected over a long period of time No longer grows. Furthermore, residual strain is likely to be applied to the reinforcing bars.
[0003]
In order to prevent damage such as cracks due to such a cause, a method of suppressing the temperature rise of concrete has been taken. For example, in mass concrete, liquid nitrogen gas or ice pieces are mixed to cool the concrete, a retarder such as fluoride or carboxylic acid is added, or cooling water is passed through pipes embedded in the concrete to cause a hydration reaction. It is being suppressed.
[0004]
Furthermore, in order to facilitate the concrete placing work, it is usual to add a chemical substance imparting fluidity. Examples of such additives include a copolymer of polyethylene glycol and maleic anhydride in JP-A-63-285140, JP-A-2-163108, and imidized acrylic polymer in JP-A-9-508612. 6-293543 discloses that acrylamide alkyl sulfonic acid can be added.
[0005]
[Problems to be solved by the invention]
In the method of cooling concrete in order to prevent the above-described cracks, it is necessary to install a large-scale apparatus near the site, and it is often difficult to cool the cast concrete uniformly. For this reason, an effective crack prevention technique has not necessarily been achieved.
[0006]
In another method of adding a retarder, the hydration reaction of the cement is delayed to suppress the rapid generation of heat of hydration and prevent the temperature from rising. However, since the reaction rate of the hydration reaction is slow, there is a drawback that it takes time for the entire cast concrete to solidify. Therefore, if the amount of retarder added is reduced to adjust the solidification time, the heat of hydration of the cast concrete will remain in the center of the concrete due to the heat insulation effect of the concrete itself, and the temperature will be substantially reduced. There were many cases where the rise could not be suppressed.
[0007]
In order to remedy the drawbacks of these retarders, only the hydration reaction that causes a rapid temperature rise that causes cracking is prevented without significantly suppressing the hydration reaction to the extent necessary for normal strength development of concrete. In order to achieve this, the applicant of the present invention has proposed in JP-A-10-81552 that the retarder is encapsulated in microcapsules.
[0008]
[Means for Solving the Problems]
The cement admixture of the present invention is an organic compound that is insoluble or sparingly soluble in water in the temperature range of 4 to 20 ° C. and has a melting temperature in the range of 30 to 100 ° C. Is a compound in which a retarder is mixed in a powder of 10 to 500 microns. Wherein the retarder, fluorides, phosphates, borates, oxycarboxylic acid or its salt, ketocarboxylic acid or a salt thereof, or at least one or more on the sugar or sugar alcohol, it is Bareru selected. The said organic compound, waxes, fats, fatty acids, fatty acid esters, metal soaps, the barrel at least one or more on the selection from among the higher alcohol or a thermoplastic resin. More preferably, the organic compound is a spherical fine particle having an average particle diameter of 50 to 300 microns.
[0009]
The retarder used in the present invention may be any of the various acids or sugars described above, and is not limited to a specific substance. A particularly preferable retarder is an oxycarboxylic acid having a hydroxy group and a carboxylic acid group in the molecule. Specifically, compound names such as gluconic acid, glucoheptonic acid, alabonic acid, malic acid, and citric acid are disclosed in JP-A-61-2854, JP-A-6-263502, JP-A-10-53444, and the like. Yes. The carboxylic acid groups of these substances exhibit a delay effect by forming a complex with the calcium ion of the cement involved in the hydration reaction.
[0010]
In the present invention, this retarder is mixed in an organic compound powder having a melting temperature range of 30 ° C to 100 ° C. Reasons melting temperature of the organic compound should be 30 ° C. or more, (if rapid temperature rise, for example by pouring the heat of hydration of the concrete does not occur) To eliminate the need for inhibitory action of the hydration reaction due retarder the, and because insoluble or hardly soluble in water without organic compound to melt, the retarder the Iyui fruit such releases to the concrete remains immobilized, concrete without receiving an inhibitory effect of the delay, usually It is for solidifying by the hydration reaction as follows. Conversely, if the melting temperature is less than 30 ° C., the retarder is easily released and the solidification of the concrete tends to be delayed. On the other hand, at the 100 ° C. greater than the melting temperature of the organic compound even if the concrete temperature is Noboru Ue in the boiling point between water hydration reaction will remain immobilized retarder without melting, work effect of suppressing the temperature rise This is because water rapidly evaporates from the heated concrete and normal hydration reaction cannot be expected.
[0011]
The melting temperature of the present invention includes not only the “melting point” indicating the melting temperature of the crystalline substance, but also a substance having no clear melting point such as a mixture or a thermoplastic resin, which softens from solid to liquefy. It also includes changing temperatures.
[0012]
In the present invention, as a method of mixing a retarder in the organic compound powder, the interfacial polymerization method, In-Situ method, insolubilization reaction method, coacervation method, and drying in liquid described in the above-mentioned JP-A-10-81552 are used. It is not limited to capsule methods such as the method, spray drying method, fluidized bed method. For example, the retarder may be mixed with the liquefied organic compound, the organic compound may be cooled and solidified, and then the solidified product may be pulverized. Alternatively, a porous solid organic compound may be impregnated with a retarder and then pulverized, or a porous organic compound powder may be directly impregnated with a retarder. Furthermore, the retarder may be adsorbed and fixed on the surface of the organic compound powder. In the admixture for cement of the present invention, not only when the retarder is present in the powder of the organic compound, but also when the retarder is exposed on the surface of the powder.
[0013]
That is, the "mixed to the retarder in the powder of the organic compound" refers to a state in which the retarder is integrated delay agent is immobilized an organic compound by an organic compound. The organic compound powder is melted by the heat of hydration of the cement to change into a liquid state, and the integrated retarder is released into the cement composition, thereby delaying the hydration reaction. Suppresses rapid temperature rise.
[0014]
Furthermore, the admixture for cement of the present invention has an effect of imparting fluidity to the cement composition. This fluidity is expressed by either a chemical action by a functional group of an organic compound that is a component of a cement admixture or a physical action based on the physical properties of the organic compound. For example, in the chemical action, the functional group of the organic compound is chemically bonded or chemisorbed on the surface of the aggregate particles of the cement composition to reduce the viscosity of the concrete by the surface active action, or the surface tension of water is reduced. It can be lowered. The physical action includes a case where the spherical fine particles of the organic compound act as a solid lubricant between particles such as aggregate and cement to make particles such as aggregate easy to slip.
[0015]
In the present invention, the average particle size of the organic compound powder is preferably 10 to 500 microns. This is because if it is 500 microns or more, it becomes extremely larger than ordinary cement particles, and as a result, the concrete strength is lowered. Conversely, when the thickness is 10 microns or less, the organic compound has a weak effect of fixing the retarder in the concrete, and the retarder is easily released into the cement composition without depending on the heat of hydration. A particularly preferable average particle diameter is 50 to 300 microns. The average particle size in this range is most likely to exert the physical effect of increasing the fluidity of the above-mentioned concrete, and the powder tends to be uniformly dispersed in the cement composition, so that the hydration reaction can be suppressed over a wide range. Because it can be done.
[0016]
The organic compound must be insoluble or sparingly soluble in water in the temperature range of 4 to 20 ° C. and have a physical property of a melting temperature of 30 to 100 ° C. In the present invention, any organic compound having the above physical properties may be used, and the present invention is not limited to a specific compound. Well-known compounds having such physical properties include waxes, fats and oils, fatty acids, fatty acid esters, metal soaps, higher alcohols, and thermoplastic resins. Wax refers to an ester compound of a fatty acid and a monovalent or divalent higher alcohol, and fats and oils refer to an ester compound of a fatty acid and glycerin. Moreover, refers to carboxylic acids obtained by hydrolysis from fats and oils and fatty acid refers to an ester compound of a lower alcohol and a fatty acid is a fatty acid ester, a metallic soap refers to the heavy metal salts of the fatty acids. A thermoplastic resin generally refers to a linear polymer. The above definitions of these compounds are only general categories and do not identify the organic compounds of the present invention.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A method for producing the cement admixture of the present invention will be described.
[0018]
Example 1: Heating a synthetic polymer wax (trade name; CX-ST200, manufactured by Nippon Shokubai Co., Ltd.) insoluble in water at a melting temperature of 40 ° C. to 45 ° C. and a temperature range of 4 ° C. to 20 ° C. to 70 ° C. Then, an oxycarboxylate retarder (trade name; PARIC T, manufactured by Fujisawa Pharmaceutical Co., Ltd.) is mixed therewith at a weight ratio of wax: retarder = 6: 4 to obtain a mixed solution. Prepare. This mixed solution is sprayed and dried with a spray dryer (Ohara Chemical Co., Ltd.). The spherical particles (average particle size is about 250 microns) of the synthetic polymer wax contain about 40% by weight of the retarder fine particles. Interspersed cement admixtures were prepared.
[0019]
Example 2 A water-insoluble carnauba wax having a melting temperature in the range of 72 ° C. to 86 ° C. and a temperature in the range of 4 ° C. to 20 ° C. is heated to 95 ° C. and melted, and there is an oxycarboxylate retarder. (Trade name; Parrick T, manufactured by Fujisawa Pharmaceutical Co., Ltd.) is mixed at a weight ratio of carnauba wax: retarding agent = 5: 5 to prepare a mixed solution. The mixed solution was cooled to return to a solid state, and then the solid was further pulverized by a ball mill. The amount of retarder fine particles was about 50% by weight in irregular shaped particles (average particle size of about 300 microns) of carnauba wax. A cement admixture interspersed with was prepared.
[0020]
Example 3; 2-methyloctadecanoic acid, which is hardly soluble in water at a melting point of 55 ° C. and in a temperature range of 4 ° C. to 20 ° C., is heated to 60 ° C. and melted, and sodium gluconate is used as a retarder there. 2-methyloctadecanoic acid: gluconic acid Na salt = 4: 6 in a weight ratio to prepare a mixed solution. This mixed solution is sprayed and dried with a spray dryer (Ohara Chemical Co., Ltd.), and the above-mentioned Na gluconate salt particles are contained in 2-methyloctadecanoic acid particles (average particle diameter of about 50 microns). A cement admixture according to the present invention, which was scattered at 60% by weight, was prepared.
[0021]
The cement admixtures of Examples 1, 2, and 3 were evaluated using the following concrete.
Cement; Portland cement coarse aggregate; 2 types of crushed stones with different coarse grain ratios mixed fine aggregate; sand, fine aggregate ratio 48.2%
Water reducing agent; (trade name) Palic K (Fujisawa Pharmaceutical Co., Ltd.), 0.25 wt% (based on cement)
Air volume: 4.0%
Water cement ratio: 50%
Slump: 18.0 cm, measured according to JIS A 1101
First, cement, water, and a water reducing agent were kneaded for 3 minutes using a forced kneading mixer at the above mixing ratio, and then the aggregate and the cement admixture of Examples were added and kneaded for 3 minutes. The cement admixtures of the examples were added to the concrete in such an amount that the retarder component was 0.5% by weight based on the cement. The kneaded concrete was subjected to a slump flow test (JIS A 1101), and placed in a mold having a height of 50 cm, a width of 33 cm, and a thickness of 15 cm, and the change with time of the temperature at the center of the mold was measured. . This formwork was covered with a heat insulating material so that it was not affected by the ambient temperature. Furthermore, in order to compare the performance of the admixture for cement, a retarder (trade name) Parrick T was added to the above-mentioned concrete in a commercially available state without being mixed in an organic compound, and a comparative test was performed. .
[0023]
The evaluation results are shown in Table 1.
[0024]
[Table 1]
[0025]
It can be seen that the cement admixture of the present invention has a slump flow as low as 13.0 to 14.0 cm and imparts fluidity to concrete. In addition, the maximum temperature due to the hydration reaction is about 15 ° C. lower than that of the concrete without the addition of the retarder, and it is understood that the rapid temperature rise is suppressed and the temperature changes gently. That is, the cement admixture of the present invention can start the hydration reaction from the beginning of the kneading in the same manner as the concrete without the addition of the retarder without exhibiting the retard effect before the temperature rise due to the heat of hydration. When the rise begins and the concrete temperature starts to rise, the hydration reaction is suppressed and the temperature rises and falls slowly.
[0026]
【The invention's effect】
When mixing the cement admixture of the present invention, since the fluidity concrete both its flowability when it is applied is maintained for a long time, slump loss will transport trouble reduced small in pumping, the mold The placing work can be made easy.
[0027]
Furthermore, when the concrete temperature rises due to the hydration reaction after placement, the cement admixture of the present invention changes into a liquid and releases the retarder into the concrete, which retards the hydration reaction. To prevent rapid temperature rise. On the contrary, since the temperature does not easily rise near the surface of the cast concrete due to heat radiation, the cement admixture does not dissolve in water and does not melt, so that it does not release the retarder into the concrete. Hydration reaction is maintained. As a result, the temperature distribution of the entire cast concrete becomes uniform, and the internal restraint stress resulting from the temperature difference is reduced to prevent cracking.
[0028]
In addition, as a result of suppressing the temperature rise that exceeds the temperature required for the normal hydration reaction, it suppresses thermal expansion and rapid temperature drop of the entire concrete to reduce external restraint stress and prevent cracking as well. To do.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13849499A JP4373527B2 (en) | 1999-05-19 | 1999-05-19 | Cement admixture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13849499A JP4373527B2 (en) | 1999-05-19 | 1999-05-19 | Cement admixture |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000327382A JP2000327382A (en) | 2000-11-28 |
JP4373527B2 true JP4373527B2 (en) | 2009-11-25 |
Family
ID=15223435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13849499A Expired - Fee Related JP4373527B2 (en) | 1999-05-19 | 1999-05-19 | Cement admixture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4373527B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0417144B1 (en) | 2003-12-01 | 2017-03-28 | Gcp Applied Tech Inc | method for modifying a cementitious composition |
JP2005289718A (en) * | 2004-03-31 | 2005-10-20 | Hirozo Mihashi | Admixture for cement, and its production process |
JP7239397B2 (en) * | 2019-06-06 | 2023-03-14 | 株式会社フローリック | Manufacturing method of additive for cement |
-
1999
- 1999-05-19 JP JP13849499A patent/JP4373527B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000327382A (en) | 2000-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4568430B2 (en) | Method for preparing pumpable formulations and method for forming waste foam | |
JP2866017B2 (en) | Manufacturing method of phosphomagnesia cement | |
FR2997944A1 (en) | INSULATION BUILDING MATERIALS BASED ON PLANT ADDITION | |
JPH03146599A (en) | Production of massive high density detergent composition | |
JPH02286799A (en) | Detergent composition and its manufacture | |
CN110125322A (en) | A kind of anti-vein additive for casting | |
CN114436578A (en) | Controlled-release quick-setting functional particles and application thereof in 3D printing of cement-based materials | |
JP4373527B2 (en) | Cement admixture | |
CN115925305A (en) | Reinforcing material suitable for recycled concrete and application method thereof | |
JP2879017B2 (en) | Heat of hydration control concrete and concrete crack control method | |
JP4462713B2 (en) | Setting retarder and method for adjusting cement setting | |
JP2005289718A (en) | Admixture for cement, and its production process | |
JP5870613B2 (en) | Steelmaking slag hydrated hardened body and method for producing the same | |
JP2740873B2 (en) | Cement hydration heat inhibitor and method for suppressing temperature rise due to heat of hydration of cement | |
WO1999025664A1 (en) | Hydration modifying agent for mortar or concrete with limited shrinkage | |
US11219943B2 (en) | Plate, in particular covering plate for molten metal, and method for producing the plate and use thereof | |
CN115611570B (en) | C70 high-performance concrete | |
JP2000517368A (en) | Method for producing paraffin-containing foam control agent | |
JPS60191071A (en) | Manufacture of freeze-resistant alc | |
JP2002284555A (en) | Cement setting accelerator and method for manufacturing solidified concrete product | |
JPH09169554A (en) | Microcapsuled cement hydration exothermicity suppressing material and production of cement hardened material using the same | |
JPS5835559B2 (en) | Granular detergent builder composition | |
JPS58104050A (en) | Solidification preventing agent for blast furnace quenched slag | |
JPS62158181A (en) | Preparation of heavy concrete | |
KR20200054573A (en) | Non-Shrinkage Grout Composition Using Ground Fly Ash |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060313 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060313 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090904 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |