JP4373152B2 - Polishing sheet - Google Patents

Polishing sheet Download PDF

Info

Publication number
JP4373152B2
JP4373152B2 JP2003276343A JP2003276343A JP4373152B2 JP 4373152 B2 JP4373152 B2 JP 4373152B2 JP 2003276343 A JP2003276343 A JP 2003276343A JP 2003276343 A JP2003276343 A JP 2003276343A JP 4373152 B2 JP4373152 B2 JP 4373152B2
Authority
JP
Japan
Prior art keywords
porous layer
polishing
polar solvent
weight
polishing sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003276343A
Other languages
Japanese (ja)
Other versions
JP2005034971A (en
Inventor
茂一 村田
浩二 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Coatex Co Ltd
Original Assignee
Toray Coatex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Coatex Co Ltd filed Critical Toray Coatex Co Ltd
Priority to JP2003276343A priority Critical patent/JP4373152B2/en
Publication of JP2005034971A publication Critical patent/JP2005034971A/en
Application granted granted Critical
Publication of JP4373152B2 publication Critical patent/JP4373152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、研磨パッドやバックパッドに用いられる研磨シートに関するものであり、特に、液晶ガラス、ガラスディスク、フォトマスク、シリコンウエハー、CCDカバーグラス等の電子部品用表面精密研磨、或いは、ガラス、アルミディスクのテクスチャー、CMP(chemical mechanical polishing)等に適した研磨シートに関する。   The present invention relates to a polishing sheet used for a polishing pad or a back pad, and in particular, surface precision polishing for electronic parts such as liquid crystal glass, glass disk, photomask, silicon wafer, CCD cover glass, or glass, aluminum. The present invention relates to a polishing sheet suitable for disk texture, CMP (chemical mechanical polishing) and the like.

従来、研磨シートは、合成繊維と合成ゴム等よりなる不織布や編織布、又はポリエステルフイルム等を基材にして、その上面にポリウレタン系溶液が塗布され、湿式凝固法により連続気孔を有する多孔層が形成され、必要に応じてその表皮層が研削、除去されることにより(以下表面が研削されたものをスエードと表現する)、製造されている(例えば、特開平11−335979号公報参照)。このような研磨シートは、既に液晶ガラス、ガラスディスク、フォトマスクシリコンウエハー、CCD、カバーグラス等の電子部品用表面精密研磨のための粗研磨から仕上げ用研磨パッドまで広く使用されている。しかし、近年、精密研磨面の測定機器の発達とあいまって、ユーザーからの要求品質が高くなり、ますます精度の高い精密研磨が出来る研磨パットが求められている。
特開平11−335979号公報
Conventionally, a polishing sheet is based on a nonwoven fabric or a woven fabric made of synthetic fibers and synthetic rubber, or a polyester film, and a polyurethane-based solution is applied to the upper surface thereof, and a porous layer having continuous pores by a wet coagulation method. The surface layer is formed and then ground and removed as necessary (hereinafter, the surface of which is ground is expressed as suede) (see, for example, JP-A-11-335979). Such polishing sheets are already widely used from rough polishing for surface precision polishing for electronic parts such as liquid crystal glass, glass disk, photomask silicon wafer, CCD, and cover glass to polishing pads for finishing. However, in recent years, coupled with the development of measuring equipment for precision polishing surfaces, the quality required by users has increased, and there has been a demand for polishing pads that can perform highly accurate precision polishing.
Japanese Patent Laid-Open No. 11-335979

精密研磨を行う研磨パッドの性能を向上させるためには、パッド表面、或いは、スエードの開口径バラツキ、平坦度(表面の凹凸)等の諸精度の向上が課題となる。本発明者らは、これら課題の解決をパッド内部の気孔構造の視点から種々検討した結果、研磨シート内の気孔の大きさや分布がこれら諸精度に大きく影響することを見出した。   In order to improve the performance of a polishing pad that performs precision polishing, it is necessary to improve various accuracies such as pad surface or variation in suede opening diameter and flatness (surface irregularities). As a result of various studies on the solution of these problems from the viewpoint of the pore structure inside the pad, the present inventors have found that the size and distribution of the pores in the polishing sheet greatly affect these various accuracies.

従来の湿式凝固法による研磨パッドの気孔構造は、図1に示すように孔径が数十〜数百μmオーダーの、縦長、ハニカム状のマクロ気孔を主体とし、表層近傍に孔径数〜数十μm以下のミクロ気孔が形成された不均一な構造を有する。特にマクロ気孔は研磨パッド表面の開口径の精度や表面凹凸に大きく影響し、被研磨物表面に悪影響を及ぼす。即ち、マクロ気孔を主体とした従来の研磨パッドは表面凹凸が大きく、平滑性に劣り、開口径や空隙率が大きく、そのバラツキも大きかった。そして、空隙率が大きくなりすぎると被研磨物との接触面積(陸地)が小さくなるため、被研磨物表面に不均一な、局所的に大きな負荷が生じる。その結果、研磨初期段階では被研磨物表面に開口径に応じたピッチで微少なウネリが発生し易くなり、被研磨物の平坦性が悪く、精密な表面形状を得ることが難しいという欠点を有する。また、精密な表面仕上げを得るためには研磨パッドを被研磨物に十分になじませる必要があるが、従来品では表面の凹凸が大きく、被研磨物との密着、フィット性が悪いため、研磨パッドの立ち上げ作業に多くの時間を浪費し、作業効率も悪く、更に、平坦度の高い製品を得るのは難しいという問題があった。   As shown in FIG. 1, the conventional pore structure of the polishing pad by the wet coagulation method is mainly composed of vertically long, honeycomb-like macropores having a pore diameter of the order of several tens to several hundreds of micrometers, and has a pore diameter of several to several tens of micrometers near the surface layer. It has a non-uniform structure in which the following micropores are formed. In particular, macropores greatly affect the accuracy of the opening diameter of the polishing pad surface and the surface irregularities, and adversely affect the surface of the object to be polished. That is, the conventional polishing pad mainly composed of macropores has large surface irregularities, inferior smoothness, large opening diameter and porosity, and large variation. If the porosity is too large, the contact area (land) with the object to be polished becomes small, and therefore a nonuniform and locally large load is generated on the surface of the object to be polished. As a result, in the initial stage of polishing, fine undulation is likely to occur on the surface of the object to be polished at a pitch corresponding to the opening diameter, and the flatness of the object to be polished is poor and it is difficult to obtain a precise surface shape. . Also, in order to obtain a precise surface finish, the polishing pad needs to be fully adapted to the object to be polished. However, the conventional product has large surface irregularities and poor adhesion to the object to be polished. There was a problem that a lot of time was wasted in starting up the pad, work efficiency was poor, and it was difficult to obtain a product with high flatness.

本発明者らは、気孔構造が極性溶媒可溶性高分子材料のゲル化点に依存することに着目し、従来の研磨パッド内の縦長ハニカム状マクロ気孔をミクロ気孔化して、均質化することにより、前記諸精度を向上させ得ると共に、高研磨レート、高寿命等の研磨特性の向上も達成できることを見出し、本発明の完成に至った。   The present inventors pay attention to the fact that the pore structure depends on the gel point of the polar solvent-soluble polymer material, and by making the vertically elongated honeycomb-like macropores in the conventional polishing pad into micropores and homogenizing them, The present inventors have found that the various accuracies can be improved and that polishing characteristics such as a high polishing rate and a long life can be improved, and the present invention has been completed.

すなわち、本発明の研磨シートは、極性溶媒を用いて濃度を1重量%に調整した高分子溶液100cc中に、4枚羽根攪拌機による攪拌下、蒸留水を滴下して高分子溶液が白濁を生じ始めた時の滴定量(ml)をゲル化点とした場合に、連続気孔を有する多孔層が、基材の少なくとも一部に付設、埋設、又は積層されてなる研磨シートであって、多孔層がゲル化点が6以上の極性溶媒可溶性高分子材料からなり、気孔の平均孔径が30μm以下であるものとする(請求項1)。 That is, the abrasive sheet of the present invention, the concentration using a polar solvent in the polymer solution 100cc adjusted to 1% by weight, under stirring with 4-bladed agitator, white turbidity is polymer solution dropwise distilled water When the titration amount (ml) at the beginning is the gel point, the porous layer having continuous pores is an abrasive sheet attached to, embedded in, or laminated on at least a part of the substrate, and the porous layer Is made of a polar solvent-soluble polymer material having a gel point of 6 or more, and the average pore diameter is 30 μm or less (Claim 1).

上記において、多孔層の空隙率は0.3〜0.8であることが好ましい(請求項2)。   In the above, the porosity of the porous layer is preferably 0.3 to 0.8.

また、多孔層の吸水速度は0.1μl/sec以上であることが好ましい(請求項3)。   The water absorption rate of the porous layer is preferably 0.1 μl / sec or more (Claim 3).

極性溶媒可溶性高分子材料としてはポリウレタン系樹脂が好適に用いられ、その100%モジュラスが5〜50MPaであることが好ましい(請求項4)。   As the polar solvent-soluble polymer material, a polyurethane-based resin is suitably used, and its 100% modulus is preferably 5 to 50 MPa (Claim 4).

多孔層は、極性溶媒可溶性高分子材料100重量部に対して微粉末が固形分比で5〜100重量部の割合で混合されてなるものとすることができる(請求項5)。   The porous layer can be obtained by mixing fine powder in a proportion of 5 to 100 parts by weight with respect to 100 parts by weight of the polar solvent-soluble polymer material.

また、多孔層の表面及び/又は内部に硬化材を添着し、多孔層の硬度を80°以上とすることができる(請求項6)。   Further, a hardening material can be attached to the surface and / or the inside of the porous layer so that the hardness of the porous layer can be 80 ° or more (Claim 6).

本発明の研磨シートは、多孔層をゲル化点が6以上の極性溶媒可溶性高分子材料により形成することにより、問題となるマクロ気孔が実質的に存在せず、平均孔径が30μm以下の均一な気孔からなるものとすることができる。これにより多孔層の開口径のバラツキを小さくし、被研磨物表面への負荷を均一にできるため、精密な研磨面を得ることが可能となる。   In the polishing sheet of the present invention, by forming the porous layer with a polar solvent-soluble polymer material having a gel point of 6 or more, there is substantially no problem of macropores, and the average pore diameter is 30 μm or less. It can consist of pores. Thereby, the variation in the opening diameter of the porous layer can be reduced and the load on the surface of the object to be polished can be made uniform, so that a precise polished surface can be obtained.

多孔層の空隙率が0.3〜0.8であると、被研磨物との密着性に優れ、研磨精度、耐久性が良好となる。   When the porosity of the porous layer is 0.3 to 0.8, the adhesion to the object to be polished is excellent, and the polishing accuracy and durability are good.

また、多孔層の吸水速度が0.1μl/sec以上であると、研磨スラリーの保持性が良くなり、これにより研磨パッドの立上げ時間が短縮するので、作業性が向上する。   Further, when the water absorption rate of the porous layer is 0.1 μl / sec or more, the retention of the polishing slurry is improved, thereby shortening the startup time of the polishing pad and improving workability.

また、高分子材料として100%モジュラスが5〜50MPaのポリウレタン系樹脂を用いた場合、耐摩耗性、圧縮復元性、剛軟性等の点で、特に優れたものとなる。   In addition, when a polyurethane resin having a 100% modulus of 5 to 50 MPa is used as the polymer material, the polymer material is particularly excellent in terms of wear resistance, compression recovery, stiffness and the like.

多孔層の高分子材料に添加材として微粉末を混合することにより、ミクロ気孔化が容易になり、また研磨特性を向上させることができる。   By mixing fine powder as an additive in the polymer material of the porous layer, microporosity can be easily achieved and the polishing characteristics can be improved.

研磨シートの多孔層表面及び/又は内部に硬化材を添着した場合も、研磨特性等をさらに向上させることができる。   Even when a curing material is attached to the surface and / or inside of the porous layer of the polishing sheet, the polishing characteristics and the like can be further improved.

本発明の研磨シートの多孔層は、上記のようにゲル化点が6以上の極性溶媒可溶性高分子材料を必須成分とし、これに必要に応じて微粉末等の添加材が添加されてなり、平均孔径が30μm以下の気孔が形成されたものである。   The porous layer of the polishing sheet of the present invention comprises a polar solvent-soluble polymer material having a gel point of 6 or more as described above as an essential component, and an additive such as fine powder is added thereto as necessary. The pores having an average pore diameter of 30 μm or less are formed.

ゲル化点が6以上の極性溶媒可溶性高分子材料は、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン、N−メチルピロリドン等の極性を有する溶媒に溶解するものであればよく、特に限定されないが、例としては、ポリウレタン系、ポリアクリレート、ポリアクリロニトリル等のアクリル系、ポリ塩化ビニル、ポリ酢酸ビニル、ポリフッ化ビニリデン等のビニル系、エポキシ系、ポリスルホン系、ポリエーテルスルホン系、フェノール系、ポリスチレン系、ポリアミド系、ポリエステル系、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、それらのフッ素、シリコーン誘導体等が挙げられる。中でも、耐摩耗性、圧縮復元性、剛軟性の点で、ポリウレタン系、ポリスルホン系、ポリアクリロニトリル系、ポリ塩化ビニル系、ポリアミド系樹脂が好ましく、100%モジュラスが5〜50MPaのポリウレタン系樹脂が特に好ましい。   A polar solvent-soluble polymer material having a gel point of 6 or more is soluble in a polar solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, dioxane, N-methylpyrrolidone, etc. Although not particularly limited, examples thereof include acrylics such as polyurethane, polyacrylate, and polyacrylonitrile, vinyls such as polyvinyl chloride, polyvinyl acetate, and polyvinylidene fluoride, epoxy, polysulfone, and poly Examples include ether sulfones, phenols, polystyrenes, polyamides, polyesters, styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, fluorines thereof, and silicone derivatives. Among them, polyurethane-based, polysulfone-based, polyacrylonitrile-based, polyvinyl chloride-based, and polyamide-based resins are preferable in terms of wear resistance, compression recovery property, and stiffness, and polyurethane-based resins having a 100% modulus of 5 to 50 MPa are particularly preferable. preferable.

本明細書でいうゲル化点とは、極性溶媒を用いて濃度を1重量%に調整した高分子溶液100cc中に、4枚羽根攪拌機による攪拌下、蒸留水を徐々に滴下し、高分子溶液が白濁を生じ始めた時の滴定量(ml)の数値である。   In the present specification, the gelation point refers to a polymer solution obtained by gradually dropping distilled water into 100 cc of a polymer solution adjusted to a concentration of 1% by weight using a polar solvent while stirring with a four-blade stirrer. Is the numerical value of the titer (ml) when white turbidity starts to appear.

ゲル化点が6未満であるとマクロ気孔が生じ易く、マクロ気孔とミクロ気孔とが混在した不均一な構造となり易い。ゲル化点は研磨シート内の気孔を小さくする点では高い方が好ましいが、高すぎると気孔形成能が低下し易いので、通常15以下が好ましい。   If the gel point is less than 6, macropores are likely to be generated, and a non-uniform structure in which macropores and micropores are mixed is likely to occur. The gel point is preferably higher in terms of reducing the pores in the abrasive sheet, but if it is too high, the pore-forming ability is likely to be lowered, so that it is usually preferably 15 or less.

上記のようにゲル化点が6以上の極性溶媒可溶性高分子材料を用いることにより、マクロ気孔の発生を抑え、平均孔径が30μm以下の微細かつ均一な気孔を容易に形成することができるようになる。平均孔径が30μmを超えると気孔径の増大と共に開口径のバラツキが大きくなり、また被研磨物との接触面積(陸地)の減少による被研磨物表面への不均一な負荷が生じ易く、その結果、微小ウネリの発生や、平坦性の劣化が生じ易くなり、精密な表面形状が得難くなる。表面精度と共に研磨スラリーの保持性、研磨レート、寿命の点で、気孔の平均孔径は0.1〜20μmが好ましく、より好ましくは1〜10μmである。ここで平均孔径とは、研磨シート(多孔層)の縦断面のSEM画像(倍率50〜500倍)を画像解析し、2値化処理し、円相当径として算出した数平均値で表現されるものである。   By using a polar solvent-soluble polymer material having a gel point of 6 or more as described above, generation of macropores can be suppressed, and fine and uniform pores having an average pore diameter of 30 μm or less can be easily formed. Become. When the average pore diameter exceeds 30 μm, the variation in the opening diameter increases with the increase in the pore diameter, and a non-uniform load is likely to occur on the surface of the object to be polished due to the decrease in the contact area (land) with the object to be polished. In addition, generation of minute undulation and deterioration of flatness are likely to occur, and it becomes difficult to obtain a precise surface shape. The average pore diameter of the pores is preferably from 0.1 to 20 μm, more preferably from 1 to 10 μm, in terms of surface slurry accuracy, polishing slurry retention, polishing rate, and life. Here, the average pore diameter is expressed as a number average value calculated as an equivalent circle diameter by image analysis of a SEM image (magnification 50 to 500 times) of a longitudinal section of a polishing sheet (porous layer) and binarization processing. Is.

また、多孔層の空隙率は0.3〜0.8であることが好ましい。空隙率が0.3未満であると圧縮率が低くなり過ぎ、被研磨物との密着性が悪くなる。空隙率が0.8を超えると開口率が大となるので、研磨精度、耐久性、ライフの低下が生じ易い。ここで、空隙率とは、多孔層の厚さと単位面積当たりの重量から求められる嵩比重及び文献・カタログ値から算出された真比重を用い、次式から算出された値である;
空隙率=1−(嵩比重/真比重)
Moreover, it is preferable that the porosity of a porous layer is 0.3-0.8. When the porosity is less than 0.3, the compression rate becomes too low, and the adhesion to the object to be polished is deteriorated. When the porosity exceeds 0.8, the aperture ratio becomes large, so that polishing accuracy, durability, and life are likely to be reduced. Here, the porosity is a value calculated from the following equation using the bulk specific gravity calculated from the thickness of the porous layer and the weight per unit area and the true specific gravity calculated from literature and catalog values;
Porosity = 1- (bulk specific gravity / true specific gravity)

また、多孔層の吸水速度は0.1μl/sec以上であることが好ましい。0.1μl/sec未満であると、研磨スラリーの多孔層への浸透が悪くなり、パッド内の気孔に研磨スラリーが保持され難くなる。その結果、パッドと被研磨物との間に研磨スラリーが介在し難くなり、研磨効率が低下し、立上げ時間が長くなり、作業効率、生産効率が劣る。ここで、吸水速度とは、〔研磨シート表面への蒸留水の滴下量(μl)〕を〔前記滴下量の蒸留水が研磨シート内部に完全に吸収される時間(秒)〕で割った値である。   The water absorption rate of the porous layer is preferably 0.1 μl / sec or more. If it is less than 0.1 μl / sec, the penetration of the polishing slurry into the porous layer will be poor, and it will be difficult to hold the polishing slurry in the pores in the pad. As a result, it becomes difficult for the polishing slurry to intervene between the pad and the object to be polished, the polishing efficiency is lowered, the startup time is lengthened, and the working efficiency and the production efficiency are inferior. Here, the water absorption rate is a value obtained by dividing [amount of dripping water (μl) on the polishing sheet surface (μl)] divided by [a time (second) during which the dripping amount of distilled water is completely absorbed in the polishing sheet]. It is.

上記多孔層の高分子材料には添加材として微粉末を混合することにより、ミクロ気孔化を容易にすると共に研磨特性を向上させることができる。そのような微粉末として、無機系では、炭素、黒鉛、炭酸カルシウム、タルク、ゾノトライト族等の珪酸カルシウム、セリア、シリカ、マグネシア、アルミナ等の金属酸化物、活性炭、ゼオライト、結晶性アルミノリン酸塩型モレキュラーシーブ、シリカゲル、珪藻土、パリゴスカイト、セピオライト等の粒子内に微孔を有する多孔質無機粒子やモンモリロナイト、ベントナイト、スメクタイト、バーミキュライト、カネマイト等の粘土化合物、水酸化アルミニウム、水酸化マグネシウム、粒子表面が疎水化されたシリカ、チタニア、マンガン酸化物等の触媒活性を有する粒子が例示される。また、有機系では、メラミン系、アクリル系、ベンゾグアナミン系の縮合物又は架橋物が例示される。   By mixing a fine powder as an additive to the polymer material of the porous layer, microporosity can be facilitated and polishing characteristics can be improved. As such fine powders, in inorganic systems, calcium silicates such as carbon, graphite, calcium carbonate, talc, zonotlite group, metal oxides such as ceria, silica, magnesia, alumina, activated carbon, zeolite, crystalline aluminophosphate type Porous inorganic particles with fine pores in particles such as molecular sieve, silica gel, diatomaceous earth, palygoskite, sepiolite, clay compounds such as montmorillonite, bentonite, smectite, vermiculite, kanemite, aluminum hydroxide, magnesium hydroxide, particle surface is hydrophobic Examples thereof include particles having catalytic activity such as oxidized silica, titania, and manganese oxide. Examples of the organic type include melamine type, acrylic type, and benzoguanamine type condensates or cross-linked products.

微粉末の粒度はタイラーメッシュで300メッシュパス、平均粒子径で1μm以下が好ましく、0.1μm以下がより好ましい。そのような粒度を持つ微粉末はボールミルやアトライター等の粉砕機を用いて調製することができる。   The particle size of the fine powder is preferably 300 mesh pass for Tyler mesh and 1 μm or less in average particle size, more preferably 0.1 μm or less. The fine powder having such a particle size can be prepared using a pulverizer such as a ball mill or an attritor.

微粉末の好適な例としては、黒鉛、セリア、シリカ、アルミナ、チタニア、マグネシア等が挙げられる。   Preferable examples of the fine powder include graphite, ceria, silica, alumina, titania, magnesia and the like.

上記微粉末を使用する場合の配合量としては、極性溶媒可溶性高分子材料100重量部に対して固形分比で5〜100重量部の割合が好ましい。5重量部未満ではミクロ気孔化や研磨レート、寿命等の研磨特性の向上等の、微粉末使用により期待される効果が充分には得られない。100重量部を超えるとミクロ気孔化や研磨特性に効果を有するものの、高分子材料の割合が低下しすぎて機械的強度の低下や脆さが生じ易くなる。   As a compounding quantity in the case of using the said fine powder, the ratio of 5-100 weight part by solid content ratio with respect to 100 weight part of polar solvent soluble polymeric materials is preferable. If the amount is less than 5 parts by weight, the effects expected from the use of fine powders such as microporosity, improvement in polishing characteristics such as polishing rate and life cannot be obtained sufficiently. If the amount exceeds 100 parts by weight, the effect of microporosity and polishing properties is obtained, but the proportion of the polymer material is too low, and mechanical strength is reduced and brittleness is likely to occur.

また、上記微粉末以外の添加材として、チタン酸カリウム、鉱滓繊維、セラミック繊維、ガラス繊維、炭素繊維、活性炭素繊維等の微細短繊維、ウィスカー類やシリコーン系、フルオロカーボン系、長鎖脂肪酸塩系、長鎖アミン塩系等の撥水及び/又は撥油剤、顔料、界面活性剤、金属塩類、イソシアネート系、アミン系等の架橋剤、ケトン類、アルコール類、水等の他の極性溶剤、キシレン、トルエン等の非極性溶剤等が例示される。これら他の極性溶剤、非極性溶剤及び界面活性剤の混合やその混合率の調整によりミクロ気孔の制御がより容易になる。   Further, as additives other than the above fine powders, fine short fibers such as potassium titanate, mineral fiber, ceramic fibers, glass fibers, carbon fibers, activated carbon fibers, whiskers, silicones, fluorocarbons, long chain fatty acid salts , Long-chain amine salt-based water and / or oil repellents, pigments, surfactants, metal salts, isocyanate-based, amine-based cross-linking agents, ketones, alcohols, other polar solvents such as water, xylene And nonpolar solvents such as toluene. Control of micropores becomes easier by mixing these other polar solvents, nonpolar solvents and surfactants and adjusting the mixing ratio.

また、本発明の研磨シートの多孔層表面及び/又は内部に硬化材を添着し、多孔層の硬度を80°以上に高めて、研磨特性をさらに向上させることができる。そのような硬化材としては、メラミン、尿素、フェノール等の熱硬化性樹脂、ポリメタクリル酸メチル、ハイスチレンSBR、高モジュラスポリウレタン及びそれらの架橋物等が例示される。これらの硬化材を多孔層表面及び/又は内部に添着させるには、これらの硬化材をエマルジョン化又は溶解等により液状にして多孔層表面にコーティングするか、内部まで含浸させたのち、その硬化材に応じた方法で必要に応じて加熱する等して硬化させればよい。   Moreover, a hardening | curing material can be attached to the porous layer surface and / or inside of the polishing sheet of the present invention, and the hardness of the porous layer can be increased to 80 ° or more to further improve the polishing characteristics. Examples of such a curing material include thermosetting resins such as melamine, urea, and phenol, polymethyl methacrylate, high styrene SBR, high modulus polyurethane, and cross-linked products thereof. In order to attach these curing materials to the surface and / or inside of the porous layer, these curing materials are made into a liquid state by emulsification or dissolution, and coated on the surface of the porous layer, or impregnated to the inside, and then the curing material. It may be cured by heating or the like according to need.

本発明の研磨シートに用いられる基材としては、綿、レーヨン、ポリアミド、ポリエステル、ポリアクリロニトリル等の繊維又はこれらの混合物よりなる編織布や不織布、或いは、これらに合成ゴムやポリウレタン等の樹脂を含浸して得られるシート類、又はポリエステルやポリオレフィン等の高分子フイルム等が挙げられるが、これらに限定されるものでない。   As a base material used for the polishing sheet of the present invention, a fabric such as cotton, rayon, polyamide, polyester, polyacrylonitrile, or a woven or non-woven fabric made of a mixture thereof, or impregnated with a resin such as synthetic rubber or polyurethane. Sheets obtained in this manner, or polymer films such as polyester and polyolefin are not limited thereto.

本発明の研磨シートは、上記極性溶媒可溶性高分子材料、極性溶剤、及び必要に応じて用いられる添加材を混合したスラリーを、コーティングやラミネートにより、上記基材の少なくとも一部に付設、埋設、積層させることにより得られる。混合物の基材への付着量は特に限定されるものではないが、固形分で20〜2000g/mが好ましい。 The polishing sheet of the present invention is a slurry in which the polar solvent-soluble polymer material, the polar solvent, and an additive used as necessary are mixed, and is attached to or embedded in at least a part of the substrate by coating or laminating, It is obtained by laminating. Although the adhesion amount of the mixture to the base material is not particularly limited, 20 to 2000 g / m 2 in terms of solid content is preferable.

より具体的には、極性溶媒に高分子材料が溶解され、必要に応じて添加材が混合されたスラリーを、ポリエステル、ポリオレフィン等の高分子フィルム、不織布、織物等の基材シートにコーティングや含浸により付与し、湿式凝固法によりシートの表面や内部に連続多孔層を形成させ、水洗、乾燥し、必要に応じて表皮層を研削することにより、製造することができる。または、上記スラリーを、フィルムや、撥水処理、樹脂コーティング加工された織物等の基材上にコーティングし、湿式凝固法により連続多孔層を形成させ、水洗、乾燥後、多孔層を剥離し、得られた多孔層を、不織布、織布、フィルム等の基材にラミネートして複合化した後、必要に応じて表皮層を研削することにより製造することもできる。   More specifically, a slurry in which a polymer material is dissolved in a polar solvent and an additive is mixed as necessary is coated or impregnated on a substrate sheet such as a polymer film such as polyester or polyolefin, a nonwoven fabric, or a fabric. Can be produced by forming a continuous porous layer on the surface or inside of the sheet by wet coagulation, washing with water, drying, and grinding the skin layer as necessary. Alternatively, the slurry is coated on a substrate such as a film, a water repellent treatment, a fabric coated with a resin coating, and a continuous porous layer is formed by a wet coagulation method. After washing with water and drying, the porous layer is peeled off, After the obtained porous layer is laminated on a base material such as a nonwoven fabric, a woven fabric, or a film to form a composite, it can be produced by grinding the skin layer as necessary.

基材に極性溶媒可溶性高分子スラリーを塗布する方法としては、ロールコーター、ナイフオーバーロールコーター、ダイコーター等が挙げられる。また、湿式凝固法により多孔層を形成させるための凝固液としては、DMF等の極性溶剤とは親和性を有するが、高分子材料は溶解させない溶媒、例えば水或いは水と極性溶剤との混合溶液が用いられる。特に、均質なミクロ気孔層を形成させるには、極性溶媒濃度が10〜60重量%の範囲内である凝固液が好ましい。   Examples of the method for applying the polar solvent-soluble polymer slurry to the substrate include a roll coater, a knife over roll coater, and a die coater. In addition, as a coagulation liquid for forming a porous layer by a wet coagulation method, a solvent that has an affinity for a polar solvent such as DMF but does not dissolve a polymer material, such as water or a mixed solution of water and a polar solvent. Is used. In particular, in order to form a homogeneous microporous layer, a coagulating liquid having a polar solvent concentration in the range of 10 to 60% by weight is preferable.

上記のようにして得られた本発明の研磨シートは、図2及び図3(図2の部分拡大写真)の電子顕微鏡写真に示すように、平均気孔径が30μm以下の気孔が均一に分布した多孔層を有するものとなる。   In the polishing sheet of the present invention obtained as described above, pores having an average pore diameter of 30 μm or less were uniformly distributed as shown in the electron micrographs of FIGS. 2 and 3 (partially enlarged photo of FIG. 2). It has a porous layer.

なお、多孔層の表皮部分を除去させるには、サンドペーパー、ニードルで引っかく方法、ニードルで穴を空ける方法、グラビアロールを使ってDMFを部分的に転写して表皮を溶解させる方法等を使用することができる。   In order to remove the skin portion of the porous layer, sandpaper, a method of scratching with a needle, a method of making a hole with a needle, a method of partially transferring DMF using a gravure roll and dissolving the skin, etc. are used. be able to.

また、本発明の研磨シートの表面には、従来から行われているように、溝切り、エンボス等の加工を施すことができ、裏面には粘着加工を施したり、クッション材等を積層したりすることができる。   Further, the surface of the polishing sheet of the present invention can be subjected to processing such as grooving and embossing as conventionally performed, and the back surface can be subjected to adhesive processing or laminated with a cushioning material or the like. can do.

[実施例1]
ゲル化点が9のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製U−6455D、固形分30%)溶液を厚さ100μmのポリエステルフィルム上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ0.6mmの研磨シートを得た。多孔層内の気孔の平均孔径は7μm、空隙率は0.65であった。
[Example 1]
A polyurethane film (U-6455D manufactured by Toray Cortex Co., Ltd., 30% solids) dissolved in N, N-dimethylformamide having a gel point of 9 is coated on a polyester film having a thickness of 100 μm, and then wet coagulated. Based on this method, a porous layer was formed, washed with water and dried to obtain a polishing sheet having a thickness of 0.6 mm. The average pore diameter of the pores in the porous layer was 7 μm, and the porosity was 0.65.

[実施例2]
ゲル化点が14のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製U−17204D、固形分35%)と1次平均粒子径が0.012μmの乾式法シリカ(日本アエロジル(株)200)を固形分比で前者100重量部に対し後者を6重量部の割合になるように混合して混合スラリーを調製した。この混合スラリーを厚さ100μmのポリエステルフィルム上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ0.5mmの研磨シートを得た。多孔層内の気孔の平均孔径は3μm、空隙率は0.54であった。
[Example 2]
Polyurethane dissolved in N, N-dimethylformamide having a gel point of 14 (U-17204D manufactured by Toray Cortex Co., Ltd., solid content 35%) and dry silica having a primary average particle size of 0.012 μm (Japan) Aerosil Co., Ltd. 200) was mixed at a solid content ratio of 100 parts by weight of the former to 6 parts by weight of the latter to prepare a mixed slurry. After this mixed slurry was coated on a polyester film having a thickness of 100 μm, a porous layer was formed based on a wet coagulation method, washed with water, and dried to obtain a polishing sheet having a thickness of 0.5 mm. The average pore diameter of the pores in the porous layer was 3 μm, and the porosity was 0.54.

[実施例3]
ゲル化点が7のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製U−5561、固形分25%)溶液を厚さ1mmの合成ゴムで固着されたポリエステル不織布上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ2mmの研磨シートを得た。多孔層内の気孔の平均孔径は20μm、空隙率は0.72であった。更に、メラミン樹脂の水溶液を多孔層の表面から含浸、乾燥させることにより、固形分で50g/mのメラミン樹脂を多孔層の表面及び内部に添着させた。
[Example 3]
A polyurethane solution (U-5561 manufactured by Toray Cortex Co., Ltd., solid content 25%) dissolved in N, N-dimethylformamide having a gel point of 7 is placed on a polyester nonwoven fabric fixed with a synthetic rubber having a thickness of 1 mm. After coating, a porous layer was formed based on a wet coagulation method, washed with water, and dried to obtain a polishing sheet having a thickness of 2 mm. The average pore diameter of the pores in the porous layer was 20 μm, and the porosity was 0.72. Furthermore, an aqueous solution of melamine resin was impregnated from the surface of the porous layer and dried, so that 50 g / m 2 of melamine resin in solid content was attached to the surface and inside of the porous layer.

[実施例4]
ゲル化点が9のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製U−6455D、固形分30%)25%溶液100重量部、固形分が22重量%のカーボンブラック20重量部、キシレン10重量部を混合し、混合スラリーを調製した。この混合スラリーを厚さ100μmのポリエステルフィルム上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ0.5mmの研磨シートを得た。多孔層内の気孔の平均孔径は5μm、空隙率は0.48であった。
[Example 4]
Carbon black having 25% solution of polyurethane (U-6455D manufactured by Toray Cortex Co., Ltd., 30% solids) dissolved in N, N-dimethylformamide having a gel point of 9 and 22% by weight solids 20 parts by weight and 10 parts by weight of xylene were mixed to prepare a mixed slurry. After this mixed slurry was coated on a polyester film having a thickness of 100 μm, a porous layer was formed based on a wet coagulation method, washed with water, and dried to obtain a polishing sheet having a thickness of 0.5 mm. The average pore diameter of the pores in the porous layer was 5 μm, and the porosity was 0.48.

[実施例5]
ゲル化点が14のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製U−17204D、固形分35%)25%溶液100重量部、アニオン性界面活性剤1重量部、カーボンブラック20重量部、メチルエチルケトン20重量部を混合し、混合スラリーを調製した。この混合スラリーを厚さ100μmのポリエステルフィルム上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ1mmの研磨シートを得た。多孔層内の気孔の平均孔径は1μm、空隙率は0.6であった。
[Example 5]
100 parts by weight of 25% solution of polyurethane (U-17204D manufactured by Toray Cortex Co., Ltd., solid content 35%) dissolved in N, N-dimethylformamide having a gel point of 14, 1 part by weight of an anionic surfactant, 20 parts by weight of carbon black and 20 parts by weight of methyl ethyl ketone were mixed to prepare a mixed slurry. After coating this mixed slurry on a polyester film having a thickness of 100 μm, a porous layer was formed based on a wet coagulation method, washed with water, and dried to obtain a polishing sheet having a thickness of 1 mm. The average pore diameter of the pores in the porous layer was 1 μm, and the porosity was 0.6.

[比較例1]
ゲル化点が5のN,N−ジメチルホルムアミドに溶解されたポリウレタン(東レコーテックス(株)製CS−6080D、固形分30%)溶液を厚さ100μmのポリエステルフィルム上にコーティングした後、湿式凝固法に基づき多孔層を形成し、水洗、乾燥し、厚さ0.7mmの研磨シートを得た。多孔層内の気孔は形状が縦長で、平均孔径が120μmであり、空隙率は0.89であった。
[Comparative Example 1]
A polyurethane film (CS-6080D manufactured by Toray Cortex Co., Ltd., 30% solids) dissolved in N, N-dimethylformamide having a gel point of 5 is coated on a polyester film having a thickness of 100 μm, followed by wet coagulation. A porous layer was formed based on the method, washed with water, and dried to obtain a polishing sheet having a thickness of 0.7 mm. The pores in the porous layer had a vertically long shape, an average pore diameter of 120 μm, and a porosity of 0.89.

上記実施例1〜5及び比較例1で得られた研磨シートを320番手のサンドペーパーで表面から100μm研削除去し、JIS1994に準拠して表面の粗さを測定し、JISK6301に準拠して硬度を測定した。さらに、研磨シート表面へ50μlの蒸留水を滴下して、この蒸留水が研磨シート内部に完全に吸収される時間(秒)を測定して、その結果より吸水速度を求めた。結果を表1に示す。
The polishing sheets obtained in Examples 1 to 5 and Comparative Example 1 were ground and removed from the surface by a 320th sandpaper, the surface roughness was measured according to JIS 1994, and the hardness was measured according to JIS K6301. It was measured. Furthermore, 50 μl of distilled water was dropped on the surface of the polishing sheet, and the time (seconds) during which this distilled water was completely absorbed inside the polishing sheet was measured, and the water absorption rate was determined from the result. The results are shown in Table 1.

表1から、本発明の研磨シートの表面粗さは、従来のものに比べて1桁小さく、表面精度が極めて優れていることが分かる。   From Table 1, it can be seen that the surface roughness of the polishing sheet of the present invention is an order of magnitude smaller than that of the conventional one, and the surface accuracy is extremely excellent.

本発明の研磨シートは、研磨パッド等として、液晶ガラス、ガラスディスク、フォトマスク、シリコンウエハー、CCDカバーグラス等の電子部品用表面精密研磨、或いは、ガラス、アルミディスクのテクスチャー、CMP等に好適に用いられる。   The polishing sheet of the present invention is suitable as a polishing pad or the like for surface precision polishing for electronic parts such as liquid crystal glass, glass disk, photomask, silicon wafer, CCD cover glass, or texture of glass, aluminum disk, CMP, etc. Used.

従来の研磨シートの多孔層の気孔構造を示す電子顕微鏡写真である。It is an electron micrograph which shows the pore structure of the porous layer of the conventional polishing sheet. 本発明の研磨シートの多孔層の気孔構造を示す電子顕微鏡写真である。It is an electron micrograph which shows the pore structure of the porous layer of the polishing sheet of this invention. 図2に示した本発明の研磨シートの多孔層の気孔構造の一部を10倍に拡大して示す電子顕微鏡写真である。3 is an electron micrograph showing a part of the pore structure of the porous layer of the polishing sheet of the present invention shown in FIG.

Claims (6)

連続気孔を有する多孔層が、基材の少なくとも一部に付設、埋設、又は積層されてなる研磨シートであって、
極性溶媒を用いて濃度を1重量%に調整した高分子溶液100cc中に、4枚羽根攪拌機による攪拌下、蒸留水を滴下して高分子溶液が白濁を生じ始めた時の滴定量(ml)をゲル化点とした場合に、前記多孔層がゲル化点が6以上の極性溶媒可溶性高分子材料からなり、気孔の平均孔径が30μm以下であることを特徴とする研磨シート。
A porous layer having continuous pores is an abrasive sheet that is attached to, embedded in, or laminated on at least a part of a substrate,
Titration volume (ml) when the polymer solution starts to become cloudy by dripping distilled water into 100 cc of the polymer solution adjusted to 1% by weight with a polar solvent while stirring with a 4-blade stirrer A polishing sheet , wherein the porous layer is made of a polar solvent-soluble polymer material having a gel point of 6 or more, and the average pore diameter is 30 μm or less.
前記多孔層の空隙率が0.3〜0.8であることを特徴とする、請求項1に記載の研磨シート。   The polishing sheet according to claim 1, wherein the porosity of the porous layer is 0.3 to 0.8. 前記多孔層の吸水速度が0.1μl/sec以上であることを特徴とする、請求項1又は2に記載の研磨シート。   The abrasive sheet according to claim 1 or 2, wherein the water absorption rate of the porous layer is 0.1 µl / sec or more. 前記極性溶媒可溶性高分子材料がポリウレタン系樹脂であり、かつその100%モジュラスが5〜50MPaであることを特徴とする、請求項1〜3のいずれか1項に記載の研磨シート。   The abrasive sheet according to any one of claims 1 to 3, wherein the polar solvent-soluble polymer material is a polyurethane-based resin and a 100% modulus thereof is 5 to 50 MPa. 前記多孔層が、前記極性溶媒可溶性高分子材料100重量部に対して微粉末が固形分比で5〜100重量部の割合で混合されてなることを特徴とする、請求項1〜4のいずれか1項に記載の研磨シート。   The porous layer is formed by mixing fine powder in a proportion of 5 to 100 parts by weight with respect to 100 parts by weight of the polar solvent-soluble polymer material. The polishing sheet according to claim 1. 前記多孔層の表面及び/又は内部に硬化材が添着され、多孔層の硬度が80°以上であることを特徴とする、請求項1〜5のいずれか1項に記載の研磨シート。   The abrasive sheet according to any one of claims 1 to 5, wherein a curing material is attached to the surface and / or the inside of the porous layer, and the hardness of the porous layer is 80 ° or more.
JP2003276343A 2003-07-17 2003-07-17 Polishing sheet Expired - Fee Related JP4373152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276343A JP4373152B2 (en) 2003-07-17 2003-07-17 Polishing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276343A JP4373152B2 (en) 2003-07-17 2003-07-17 Polishing sheet

Publications (2)

Publication Number Publication Date
JP2005034971A JP2005034971A (en) 2005-02-10
JP4373152B2 true JP4373152B2 (en) 2009-11-25

Family

ID=34212698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276343A Expired - Fee Related JP4373152B2 (en) 2003-07-17 2003-07-17 Polishing sheet

Country Status (1)

Country Link
JP (1) JP4373152B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201547A (en) * 2009-03-03 2010-09-16 Fujibo Holdings Inc Polishing pad
CN103386648A (en) * 2012-05-11 2013-11-13 罗门哈斯电子材料Cmp控股股份有限公司 Hollow Polymeric-Alkaline Earth Metal Oxide Composite
US10071460B2 (en) 2012-03-26 2018-09-11 Fujibo Holdings, Inc. Polishing pad and method for producing polishing pad

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311862B2 (en) * 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
JP4540502B2 (en) * 2005-03-01 2010-09-08 富士紡ホールディングス株式会社 Holding pad
JP5004429B2 (en) * 2005-03-17 2012-08-22 富士紡ホールディングス株式会社 Retainer
JP4562598B2 (en) * 2005-07-04 2010-10-13 富士紡ホールディングス株式会社 Polishing cloth
KR100960585B1 (en) 2005-07-15 2010-06-03 도요 고무 고교 가부시키가이샤 Layered sheets and processes for producing the same
JP4884726B2 (en) 2005-08-30 2012-02-29 東洋ゴム工業株式会社 Manufacturing method of laminated polishing pad
KR101181885B1 (en) 2006-09-08 2012-09-11 도요 고무 고교 가부시키가이샤 Polishing pad
JP4822348B2 (en) * 2006-12-11 2011-11-24 花王株式会社 Manufacturing method of magnetic disk substrate
US8257153B2 (en) * 2007-01-15 2012-09-04 Toyo Tire & Rubber Co., Ltd. Polishing pad and a method for manufacturing the same
JP4237800B2 (en) * 2007-01-15 2009-03-11 東洋ゴム工業株式会社 Polishing pad
JP2009074217A (en) * 2007-09-25 2009-04-09 Toray Coatex Co Ltd Polishing tape
JP4593643B2 (en) 2008-03-12 2010-12-08 東洋ゴム工業株式会社 Polishing pad
JP5274286B2 (en) * 2009-02-06 2013-08-28 富士紡ホールディングス株式会社 Polishing pad manufacturing method
JP5587576B2 (en) * 2009-09-03 2014-09-10 富士紡ホールディングス株式会社 Holding pad
JP5534768B2 (en) * 2009-09-29 2014-07-02 富士紡ホールディングス株式会社 Polishing pad
JP5501722B2 (en) * 2009-09-30 2014-05-28 富士紡ホールディングス株式会社 Polishing pad and method of manufacturing polishing pad
JP5534907B2 (en) * 2010-03-31 2014-07-02 富士紡ホールディングス株式会社 Polishing pad and method of manufacturing polishing pad
JP2011224701A (en) * 2010-04-19 2011-11-10 Teijin Cordley Ltd Method of manufacturing material for polishing pad
JP2012056032A (en) * 2010-09-09 2012-03-22 Fujibo Holdings Inc Foamed sheet material
JP5885183B2 (en) * 2010-09-28 2016-03-15 富士紡ホールディングス株式会社 Polishing pad
JP5711525B2 (en) * 2010-12-22 2015-04-30 富士紡ホールディングス株式会社 Polishing pad and method of manufacturing polishing pad
JP5869264B2 (en) * 2011-09-02 2016-02-24 帝人コードレ株式会社 Method of manufacturing suction pad material for polishing
CN114670119B (en) * 2021-04-27 2024-01-12 宁波赢伟泰科新材料有限公司 Chemical mechanical polishing pad capable of improving polishing efficiency and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201547A (en) * 2009-03-03 2010-09-16 Fujibo Holdings Inc Polishing pad
US10071460B2 (en) 2012-03-26 2018-09-11 Fujibo Holdings, Inc. Polishing pad and method for producing polishing pad
CN103386648A (en) * 2012-05-11 2013-11-13 罗门哈斯电子材料Cmp控股股份有限公司 Hollow Polymeric-Alkaline Earth Metal Oxide Composite

Also Published As

Publication number Publication date
JP2005034971A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP4373152B2 (en) Polishing sheet
JP5336699B2 (en) Polishing method of crystal material
JP4515316B2 (en) Method for polishing an exposed surface of a semiconductor wafer
WO2001045899A1 (en) Polishing pad, and method and apparatus for polishing
KR101333019B1 (en) Coated abrasive products containing aggregates
TW533229B (en) Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
KR101697369B1 (en) Dual-pore structure polishing pad
KR102178213B1 (en) Polishing pad and polishing method
JP2012512037A (en) Rigid or flexible macroporous abrasive article
JP2004358584A (en) Abrasive cloth and polishing method
US11745303B2 (en) Polishing body and manufacturing method therefor
US20030100250A1 (en) Pads for CMP and polishing substrates
JP5274286B2 (en) Polishing pad manufacturing method
JP5711525B2 (en) Polishing pad and method of manufacturing polishing pad
JP2006075914A (en) Abrasive cloth
JP2003170347A (en) Polishing ground fabric and polishing method
AU738132B2 (en) Sponge sheet
JP2012056032A (en) Foamed sheet material
JP2011073085A (en) Polishing pad
JP2005146036A (en) Precision polishing agent
JP5885183B2 (en) Polishing pad
JP7093521B2 (en) Polishing sheet
JPWO2020138198A1 (en) Abrasive pad
EP1489652A2 (en) Method of modifying a surface of a semiconductor wafer
JP2018051645A (en) Polishing pad and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees