JP4373055B2 - Thrust dynamic pressure gas bearing - Google Patents

Thrust dynamic pressure gas bearing Download PDF

Info

Publication number
JP4373055B2
JP4373055B2 JP2002195869A JP2002195869A JP4373055B2 JP 4373055 B2 JP4373055 B2 JP 4373055B2 JP 2002195869 A JP2002195869 A JP 2002195869A JP 2002195869 A JP2002195869 A JP 2002195869A JP 4373055 B2 JP4373055 B2 JP 4373055B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure gas
bearing
thrust dynamic
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002195869A
Other languages
Japanese (ja)
Other versions
JP2004036790A (en
Inventor
浩司 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002195869A priority Critical patent/JP4373055B2/en
Publication of JP2004036790A publication Critical patent/JP2004036790A/en
Application granted granted Critical
Publication of JP4373055B2 publication Critical patent/JP4373055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/08Elastic or yielding bearings or bearing supports, for exclusively rotary movement primarily for axial load, e.g. for vertically-arranged shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数個のテーパランドを周囲に配設して軸受面を構成する形式のスラスト動圧ガス軸受に関するものである。
【0002】
【従来の技術】
この種のスラスト動圧ガス軸受は、ハウジングと回転軸に支承されたディスク等回転体との間に配設されるもので、シャフトに配設されたディスクが高速回転するときテーパランド部に動圧が形成されディスクを浮遊支承させるものである。
【0003】
図9は、この従来技術のスラスト動圧ガス軸受機構の基本的な構成を示す断面図で、シャフト3にはフランジ状のディスク4が鍔設され、このディスク4がハウジング2A、ハウジング2Bに対してスラスト動圧ガス軸受1A、スラスト動圧ガス軸受1Bを介して対応するようになっている。したがってこのシャフト3の軸方向に発生するスラスト荷重はディスク4、スラスト動圧ガス軸受1A、スラスト動圧ガス軸受1Bを介してハウジング2A、ハウジング2Bが支承するようになっている。シャフト3の軸方向と直角方向に発生するラジアル荷重を支承する機構は他の場所にあり、本発明と直接関係がないため省略してある。図9では各スラスト動圧ガスはブロック的に示されている。
【0004】
図8は、上記従来技術のスラスト動圧ガス軸受におけるスラスト動圧ガス軸受たとえばスラスト動圧ガス軸受1Aを取り出してその軸受面を示す図(A)とそのV−V面を示す断面図(B)である。この図8の両図(A)、(B)に示すように、リング状の軸受部材は複数個(図示例では8個)の凹部5Aが形成され8個のテーパランドが周囲に配設された形の軸受け面を構成している。凹部5Aの片方の側面はテーパ部6Aをなし、軸受面に連接されている。また軸受面には耐摩耗性膜8Aがコーティングされている。図9はこのようなスラスト動圧ガス軸受が両側から装着された状態を示す断面図である。さらに図7は、図9におけるX−X断面の展開図で、ハウジング2A、ハウジング2B、ディスク4、スラスト動圧ガス軸受1A、スラスト動圧ガス軸受1B、ディスク進行方向Dの相対的な関係を示し、凹部5Aのテーパ部6Aと凹部5Bのテーパ部6Bはディスク進行方向に対し前方に位置するように付設してある。軸受1Aと軸受1Bの形状は左右対称である。
【0005】
以上のような構成であるからシャフト3が高速回転するとディスク4が矢印方向に高速で変動すると、動圧ガス軸受の軸受面とディスク4とで動圧が形成されディスク4が浮遊支承されることになる。この浮遊支承によりシャフトの超高速回転が可能となる。なお両スラスト動圧ガス軸受1A、1Bが凹部5A、凹部5Bにより分割された各軸受面にはそれぞれ耐磨耗性膜8Aと8Bが施され表面硬度を向上させている。したがって楔状空所に発生する動圧が小さくディスク4を浮遊支承できない低速運転時の起動立ち上げ時と停止時に間に発生する接触摺動による磨耗が防止され摩擦力が軽減される。
【0006】
【発明が解決しようとする課題】
この種のスラスト動圧ガス軸受は、超高速回転が可能な優れたスラスト動圧ガス軸受であるが、このような機能を得るためにはディスク4の面と両スラスト動圧ガス軸受1A、1Bの軸受面との間隙が所定の値になるよう精密に位置関係を保持することが不可欠である。そのため組立調整には数ミクロンの隙間調整が必要であり、高度な組立技術や加工が必要であり、手数を要する困難な作業である。
【0007】
ディスク4の仕上げ加工には精密研磨による平面仕上げが行われるが、微小なうねりが存在している。また軸受の繰り返し使用による起動と停止の際に生ずる磨耗によるうねりも存在する。このようなうねりの存在は、微小隙間として対向する面積が減少することであって形成ガス膜の面積が減少し、軸受としての許容負荷荷重が減少する問題がある。本発明はこのような問題点を解決するスラスト動圧ガス軸受を提供せんとするものである。
【0008】
【課題を解決するための手段】
本発明のスラスト動圧ガス軸受は、上記課題を解決するために、一定間隔が形成された凹部によって分割された軸受面を有するスラスト動圧ガス軸受において、軸受面と反対の背面側に凹部を付設し、かつ軸受面側の凹部と背面側の凹部とは互い違いになるように配置し、前記両凹部間の軸受部材の厚さを薄くしたものである。その結果、この薄肉部は弾性変形が可能となり、隣接する各軸受面が互いに弾性変位する。また背面側の凹部形成によって形成される凸部に弾性部を設ける。このことによりハウジング側の面に対して軸受部材が弾接することができる。
【0009】
【発明の実施の形態】
以下、本発明によるスラスト動圧ガス軸を図面に示す実施例にしたがって説明する。図1は、本発明が提供するスラスト動圧ガス軸受の基本的な構成を示す図で(A)は軸受面示す図、(B)は(A)図のY−Y面の断面図である。
【0010】
スラスト動圧ガス軸受14Aには8個の凹部5Aが形成され軸受面が8分割されて配設され、この各凹部5Aには片側にテーパ部6Aが形成されている。凹部5Aによる分割数は外形の大きさと凹部5Aの円周方向の長さにより増減があり図示の8分割は一例である。また凹部5Aはスラスト動圧ガス軸受14Aのリング中心部からの放射的平行線で形成されているが、これは一例であり分割できれば種々の形状であってもよい。また凹部5Aにより分割された面には耐摩耗性膜8Aが施されている。
【0011】
他方、軸受面と反対側の背面側には凹部13が形成され、しかもこれら凹部13は、軸受面側の凹部5Aと互い違いになるように配設され、軸受部材に薄肉部12が形成されている。すなわち互いに隣接する軸受面が弾性連接されている。さらに隣接する凹部13に挟まれた凸部7(凹部5Aの背面)には板バネ10が固定されている。板バネ10の固定はスポット溶接であってもよくその固定手段や方法は限定されない。
【0012】
図2は、本発明が提供する図1のスラスト動圧ガス軸受14Aと1対として組合せる軸受の基本的な構成を示している。(A)は軸受面の背面からの図であり、(B)は(A)のZ−Z面を示す断面図である。凹部5Bの背面に位置し、隣接する凹部13間に位置する凸部には板バネ10が固定されている。図1の凹部5Aとテーパ部6Aで形成される形状と、図2の凹部5Bとテーパ部6Bで形成される形状とは軸受け全体を比較すると形状の方向が左右対称である。
【0013】
図3は、本発明が提供するスラスト動圧ガス軸受を装着した状態における基本的な構成を示している。シャフト3の軸方向に発生するスラスト荷重は、ディスク4と両スラスト動圧ガス軸受14A、14Bを介してハウジング2A、ハウジング2Bが支承している。軸受面には板バネの弾力を利用し与圧が与られている。このバネ力を利用した与圧発生は両スラスト動圧ガス軸受14A、14Bの許容厚さ寸法に制限がなくなり、その結果、両スラスト動圧ガス軸受14A、14Bをハウジング2A、ハウジング2Bに単純に組み合わせるだけで組立てられる。両スラスト動圧ガス軸受14A、14Bには、回転方向に方向性があり、ディスク4の回転方向も同じ方向である。この回転方向については後述記述する。なおシャフト3の軸方向と直角方向に発生するラジアル荷重を支承する機構は他の場所にあり、本発明と直接関係がないため表記と説明は省略する。
【0014】
図4は、図3におけるW−W断面を展開して示す図で、ディスク4とディスク進行方向K、両スラスト動圧ガス軸受14A、14Bの相対的な関係が示されている。また凹部5Aのテーパ部6Aと凹部5Bのテーパ部6Bは、ディスク4のディスク進行方向Kに対し前方に位置するよう付設されている。スラスト動圧ガス軸受14A、14Bの形状は左右対称である。軸受面とディスク4との間に動圧が発生しディスク4が浮遊支承される。なおスラスト動圧ガス軸受14A、14Bが凹部5A、5Bにより分割された面にはそれぞれ対磨耗性膜8Aと対磨耗性膜8Bがコーティングされている。これは低速運転時の起動立ち上げ時と停止時で動圧が小さくディスク4を浮遊支承できない時における接触摺動による磨耗の防止と摩擦力の軽減を図るためである。
【0015】
以上説明し図3、図4に示すとおり本発明は軸受面側の凹部と背面側凹部とを互い違いになるように配設させ、両側の隣接する凹部間の厚さを薄くしたものであり、また凹凸の組み合わせによるアーチ構造としたものである。また背面側の凸部にはハウジング面に対して弾接する弾性部を設けたものである。すなわち、ディスク4の表面に存在するうねりに対して板バネ10の弾が作用し軸受面に弾接することになり軸受面とディスク4の面におけるガス膜の形成が良好となる。すなわち動圧の発生が確実となり軸受機能が向上する。
【0016】
本発明が提供するスラスト動圧ガス軸受は以上詳述したとおりであるが、上記ならびに図示例に限定されず種々の変形実施例を包含する。図5はその変形実施例であり、板バネ10がハウジング2A、ハウジング2Bの側に固定されている例である。またバネには板バネでなくコイルバネでも同一な効果を得られる。図6は他の変形実施例である。この変形例は図2における凹部13を大形にして大きくして連続させた状態、すなわち凹部5Aの背面の凹部13が存在させない形にしたもので板バネ10がビスで固定してある。(A)図は軸受の背面を示し、(B)図は(A)図のU−U断面を示す図である。また図示例では凸部とハウジング面との間に板バネ10を介在させる例を示したが、このような介在物を介入させる方式ではなく、凸部それ自体に弾性力を持たせるべく加工(エッチング加工)をしてあたかもバネが介在されているかのようにすることも可能である。本発明はこれらのすべての変形実施例を包含する。
【0017】
【発明の効果】
本発明が提供するスラスト動圧ガス軸受は以上のように構成されているので、ディスクの仕上げには精密研磨による平面仕上げがされているが、微小なうねりが存在していても、密着性が良くなりガス膜が確実に形成されて動圧の発生が保障され、軸受としての許容負荷荷重の減少を防止することが可能となる。すなわち軸受の機能を充分に発揮できる。また組立調整時、数ミクロンの高度な組立隙間調整するような作業は不要となり、困難な作業が解消される。
【図面の簡単な説明】
【図1】本発明が提供するスラスト動圧ガス軸受の縦断面と軸受面の基本的な構造を示す図面である。
【図2】本発明が提供するスラスト動圧ガス軸受の縦断面と反軸受面の基本的な構造を示す図面である。
【図3】本発明が提供するスラスト動圧ガス軸受の基本的な構成を示す縦断面図である。
【図4】図3図面におけるW−W断面展開図である。
【図5】本発明の変形実施例を示す図である。
【図6】本発明の変形実施例を示す図である。
【図7】図9におけるX−X断面展開図である。
【図8】従来技術の動圧ガス軸受の縦断面と軸受面の基本的な構造を示す図面である。
【図9】従来技術のスラスト動圧ガス軸受機構の基本的な構成を示す縦断面図である。
【符号の説明】
1A、1B…スラスト動圧ガス軸受
2A、2B…ハウジング
3…シャフト
4…ディスク
5A、5B…凹部
6A、6B…テーパ部
7…凸部
8A、8B…耐摩耗性膜
10…板バネ
12…薄肉部
13…凹部
14A、14B…スラスト動圧ガス軸受
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thrust dynamic pressure gas bearing of a type in which a plurality of tapered lands are arranged around to constitute a bearing surface.
[0002]
[Prior art]
This type of thrust dynamic pressure gas bearing is disposed between a housing and a rotating body such as a disk supported by a rotating shaft. When the disk disposed on the shaft rotates at a high speed, it moves to the taper land portion. Pressure is formed and the disk is suspended.
[0003]
FIG. 9 is a cross-sectional view showing the basic structure of this prior art thrust dynamic pressure gas bearing mechanism. A shaft 4 is provided with a flange-like disk 4, which is connected to the housing 2A and the housing 2B. The thrust dynamic pressure gas bearing 1A and the thrust dynamic pressure gas bearing 1B are used for this. Therefore, the thrust load generated in the axial direction of the shaft 3 is supported by the housing 2A and the housing 2B via the disk 4, the thrust dynamic pressure gas bearing 1A, and the thrust dynamic pressure gas bearing 1B. A mechanism for supporting a radial load generated in a direction perpendicular to the axial direction of the shaft 3 is omitted because it is in another place and is not directly related to the present invention. In FIG. 9, each thrust dynamic pressure gas is shown in a block form.
[0004]
FIG. 8 shows a thrust dynamic pressure gas bearing in the above-described prior art thrust dynamic pressure gas bearing, for example, a thrust dynamic pressure gas bearing 1A, showing its bearing surface (A) and a sectional view showing its VV plane (B). ). As shown in FIGS. 8A and 8B, the ring-shaped bearing member is formed with a plurality of recesses 5A (eight in the illustrated example), and eight taper lands are arranged around the periphery. This constitutes the shape of the bearing surface. One side surface of the recess 5A forms a tapered portion 6A and is connected to the bearing surface. The bearing surface is coated with an abrasion resistant film 8A. FIG. 9 is a cross-sectional view showing a state in which such a thrust dynamic pressure gas bearing is mounted from both sides. Further, FIG. 7 is a developed view of the XX cross section in FIG. 9, and shows the relative relationship of the housing 2A, the housing 2B, the disk 4, the thrust dynamic pressure gas bearing 1A, the thrust dynamic pressure gas bearing 1B, and the disk traveling direction D. The tapered portion 6A of the recessed portion 5A and the tapered portion 6B of the recessed portion 5B are attached so as to be positioned forward with respect to the disk traveling direction. The shapes of the bearings 1A and 1B are symmetrical.
[0005]
With the configuration as described above, when the shaft 3 rotates at high speed and the disk 4 fluctuates at high speed in the direction of the arrow, dynamic pressure is formed between the bearing surface of the dynamic pressure gas bearing and the disk 4 and the disk 4 is supported in a floating manner. become. This floating support allows the shaft to rotate at a very high speed. In addition, wear resistance films 8A and 8B are applied to the bearing surfaces obtained by dividing the thrust dynamic pressure gas bearings 1A and 1B by the recesses 5A and 5B, respectively, to improve the surface hardness. Accordingly, the frictional force is reduced by preventing the wear due to the contact sliding that occurs between the start-up and the stop-time during the low-speed operation in which the dynamic pressure generated in the wedge-shaped space is small and the disk 4 cannot be suspended.
[0006]
[Problems to be solved by the invention]
This type of thrust dynamic pressure gas bearing is an excellent thrust dynamic pressure gas bearing capable of ultra-high speed rotation. In order to obtain such a function, the surface of the disk 4 and both thrust dynamic pressure gas bearings 1A, 1B are used. It is indispensable to maintain the positional relationship precisely so that the gap with the bearing surface becomes a predetermined value. For this reason, assembling adjustment requires adjustment of a gap of several microns, requires advanced assembling technology and processing, and is a difficult task requiring labor.
[0007]
The finishing process of the disk 4 is a flat finish by precision polishing, but there is a slight waviness. There is also undulation due to wear that occurs during starting and stopping due to repeated use of the bearing. The presence of such undulations has a problem that the opposing area decreases as a minute gap, the area of the formed gas film decreases, and the allowable load load as a bearing decreases. The present invention is intended to provide a thrust dynamic pressure gas bearing that solves such problems.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a thrust dynamic pressure gas bearing according to the present invention is a thrust dynamic pressure gas bearing having a bearing surface divided by recessed portions having a constant interval. In addition, the concave portion on the bearing surface side and the concave portion on the back surface side are alternately arranged, and the thickness of the bearing member between the two concave portions is reduced. As a result, this thin portion can be elastically deformed, and adjacent bearing surfaces are elastically displaced from each other. An elastic portion is provided on the convex portion formed by forming the concave portion on the back side. As a result, the bearing member can be brought into elastic contact with the surface on the housing side.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a thrust dynamic pressure gas shaft according to the present invention will be described according to an embodiment shown in the drawings. 1A and 1B are views showing a basic configuration of a thrust dynamic pressure gas bearing provided by the present invention. FIG. 1A is a view showing a bearing surface, and FIG. 1B is a cross-sectional view taken along a YY plane in FIG. .
[0010]
The thrust dynamic pressure gas bearing 14A is formed with eight recesses 5A and the bearing surface is divided into eight parts, and each recess 5A has a tapered portion 6A on one side. The number of divisions by the recesses 5A varies depending on the size of the outer shape and the length of the recesses 5A in the circumferential direction, and the eight divisions shown are examples. The recess 5A is formed by a radial parallel line from the center of the ring of the thrust dynamic pressure gas bearing 14A. However, this is an example, and various shapes may be used as long as it can be divided. A wear-resistant film 8A is provided on the surface divided by the recess 5A.
[0011]
On the other hand, recesses 13 are formed on the back side opposite to the bearing surface, and these recesses 13 are arranged alternately with the recesses 5A on the bearing surface side, and the thin-walled portion 12 is formed on the bearing member. Yes. That is, the bearing surfaces adjacent to each other are elastically connected. Further, the leaf spring 10 is fixed to the convex portion 7 (the back surface of the concave portion 5A) sandwiched between the adjacent concave portions 13. The plate spring 10 may be fixed by spot welding, and its fixing means and method are not limited.
[0012]
FIG. 2 shows a basic configuration of a bearing combined as a pair with the thrust dynamic pressure gas bearing 14A of FIG. 1 provided by the present invention. (A) is a figure from the back surface of a bearing surface, (B) is sectional drawing which shows the ZZ surface of (A). The leaf spring 10 is fixed to the convex portion located between the concave portions 13 adjacent to the concave portion 5B. The shape formed by the concave portion 5A and the tapered portion 6A in FIG. 1 and the shape formed by the concave portion 5B and the tapered portion 6B in FIG.
[0013]
FIG. 3 shows a basic configuration in a state in which the thrust dynamic pressure gas bearing provided by the present invention is mounted. The thrust load generated in the axial direction of the shaft 3 is supported by the housing 2A and the housing 2B via the disk 4 and both thrust dynamic pressure gas bearings 14A and 14B. The bearing surface is pressurized using the elasticity of the leaf spring. The generation of pressurization using this spring force eliminates the limitation on the allowable thickness of both thrust dynamic pressure gas bearings 14A and 14B. As a result, both thrust dynamic pressure gas bearings 14A and 14B are simply attached to housing 2A and housing 2B. Can be assembled simply by combining. Both thrust dynamic pressure gas bearings 14A and 14B have directionality in the rotation direction, and the rotation direction of the disk 4 is also the same direction. This rotation direction will be described later. The mechanism for supporting the radial load generated in the direction perpendicular to the axial direction of the shaft 3 is in another place and is not directly related to the present invention, so the description and description are omitted.
[0014]
FIG. 4 is a developed view of the WW section in FIG. 3, and shows the relative relationship between the disk 4, the disk traveling direction K, and both thrust dynamic pressure gas bearings 14 </ b> A and 14 </ b> B. The tapered portion 6A of the recessed portion 5A and the tapered portion 6B of the recessed portion 5B are attached so as to be positioned forward with respect to the disk traveling direction K of the disk 4. The shapes of the thrust dynamic pressure gas bearings 14A and 14B are symmetrical. A dynamic pressure is generated between the bearing surface and the disk 4 so that the disk 4 is supported in a floating manner. Note that the wear resistant film 8A and the wear resistant film 8B are coated on the surfaces of the thrust dynamic pressure gas bearings 14A and 14B divided by the recesses 5A and 5B, respectively. This is for the purpose of preventing wear due to contact sliding and reducing the frictional force when the dynamic pressure is small at the time of start-up and stop at low speed operation and the disk 4 cannot be suspended.
[0015]
As described above and shown in FIGS. 3 and 4, the present invention is such that the concave portions on the bearing surface side and the concave portions on the back surface side are alternately arranged, and the thickness between the adjacent concave portions on both sides is reduced. In addition, the arch structure is a combination of unevenness. In addition, the convex portion on the back side is provided with an elastic portion that elastically contacts the housing surface. That is, the bullet of the leaf spring 10 acts on the undulation existing on the surface of the disk 4 and comes into elastic contact with the bearing surface, so that the gas film is well formed on the bearing surface and the surface of the disk 4. That is, the generation of dynamic pressure is ensured and the bearing function is improved.
[0016]
The thrust dynamic pressure gas bearing provided by the present invention is as described in detail above, but is not limited to the above and illustrated examples, and includes various modified embodiments. FIG. 5 shows a modified embodiment in which the leaf spring 10 is fixed to the housing 2A and the housing 2B. The same effect can be obtained by using a coil spring instead of a leaf spring. FIG. 6 shows another modified embodiment. In this modification, the concave portion 13 in FIG. 2 is made large and continuous, that is, the concave portion 13 on the back surface of the concave portion 5A is not present, and the leaf spring 10 is fixed with screws. (A) A figure shows the back of a bearing, (B) A figure is a figure which shows the UU cross section of (A) figure. In the illustrated example, the example in which the leaf spring 10 is interposed between the convex portion and the housing surface is shown. However, this is not a method of interposing such an inclusion, and the convex portion itself is processed to have an elastic force ( It is also possible to perform an etching process as if a spring is interposed. The present invention encompasses all these variations.
[0017]
【The invention's effect】
Since the thrust dynamic pressure gas bearing provided by the present invention is configured as described above, the surface of the disk is finished by precision polishing, but the adhesion is good even if minute waviness exists. As a result, the gas film is surely formed and the generation of the dynamic pressure is ensured, and the reduction of the allowable load load as the bearing can be prevented. That is, the function of the bearing can be sufficiently exhibited. Further, when assembling and adjusting, an operation for adjusting an assembling clearance of several microns is unnecessary, and difficult operations are eliminated.
[Brief description of the drawings]
FIG. 1 is a drawing showing a basic structure of a longitudinal section and a bearing surface of a thrust dynamic pressure gas bearing provided by the present invention.
FIG. 2 is a drawing showing a basic structure of a longitudinal section and a non-bearing surface of a thrust dynamic pressure gas bearing provided by the present invention.
FIG. 3 is a longitudinal sectional view showing a basic configuration of a thrust dynamic pressure gas bearing provided by the present invention.
4 is a developed sectional view taken along the line WW in FIG. 3. FIG.
FIG. 5 is a diagram showing a modified embodiment of the present invention.
FIG. 6 is a diagram showing a modified embodiment of the present invention.
7 is a developed sectional view taken along the line XX in FIG. 9. FIG.
FIG. 8 is a drawing showing a basic structure of a longitudinal section and a bearing surface of a conventional hydrodynamic gas bearing.
FIG. 9 is a longitudinal sectional view showing a basic configuration of a conventional thrust dynamic pressure gas bearing mechanism.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1A, 1B ... Thrust dynamic pressure gas bearing 2A, 2B ... Housing 3 ... Shaft 4 ... Disk 5A, 5B ... Concave part 6A, 6B ... Tapered part 7 ... Convex part 8A, 8B ... Abrasion-resistant film 10 ... Leaf spring 12 ... Thin wall Part 13: Recess 14A, 14B ... Thrust dynamic pressure gas bearing

Claims (2)

軸受面が一定間隔で形成された凹部によって分割された複数個のテーパランドの形で構成されたスラスト動圧ガス軸受において、前記軸受面と反対側の背面に凹部を形成し、かつ前記軸受面側の凹部と背面側凹部と互い違いになるように配設し、両側凹部間における軸受部材の厚さを薄くした部分が弾性変形することで凹部によって分割された前記軸受面がディスクのうねりに応じて個別に弾性変位することを特徴とするスラスト動圧ガス軸受。A thrust dynamic pressure gas bearing configured in the form of a plurality of tapered lands divided by recesses formed at regular intervals, wherein the bearing surface is formed with a recess on the back surface opposite to the bearing surface, and the bearing surface The bearing surface divided by the recesses according to the undulations of the disk is arranged so that the recesses on the side and the recesses on the back side are staggered, and the portion where the thickness of the bearing member between the recesses on both sides is reduced is elastically deformed thrust hydrodynamic gas bearing, characterized in that the elastically displaced individually Te. 背面側の凹部間に形成された凸部をハウジング面に対して弾接するよう構成したことを特徴とする請求項1記載のスラスト動圧ガス軸受。2. The thrust dynamic pressure gas bearing according to claim 1, wherein the convex portion formed between the concave portions on the back side is configured to elastically contact the housing surface.
JP2002195869A 2002-07-04 2002-07-04 Thrust dynamic pressure gas bearing Expired - Fee Related JP4373055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195869A JP4373055B2 (en) 2002-07-04 2002-07-04 Thrust dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195869A JP4373055B2 (en) 2002-07-04 2002-07-04 Thrust dynamic pressure gas bearing

Publications (2)

Publication Number Publication Date
JP2004036790A JP2004036790A (en) 2004-02-05
JP4373055B2 true JP4373055B2 (en) 2009-11-25

Family

ID=31704128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195869A Expired - Fee Related JP4373055B2 (en) 2002-07-04 2002-07-04 Thrust dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JP4373055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127428A (en) * 2008-02-25 2011-06-30 Mitsubishi Heavy Ind Ltd Cooling system of thrust bearing of exhaust turbocharger
US8998494B2 (en) * 2012-03-20 2015-04-07 Flowserve Management Company Dry gas thrust bearing for use in rotating equipment
US10036422B2 (en) 2012-04-24 2018-07-31 Borgwarner Inc. Tapered-land thrust bearing for turbochargers
SG11201709526TA (en) * 2015-05-19 2017-12-28 Lifeng Luo Hybrid dynamic pressure gas radial bearing
WO2019015753A1 (en) * 2017-07-19 2019-01-24 Konzelmann Gmbh Hydrodynamic bearing
JP6767349B2 (en) * 2017-11-30 2020-10-14 大豊工業株式会社 Thrust washer

Also Published As

Publication number Publication date
JP2004036790A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
USRE38373E1 (en) Compliant foil fluid film thrust bearing with a tilting pad underspring
JPH056416Y2 (en)
US6158892A (en) Fluid film thrust bearing having integral compliant foils
EP1001180A1 (en) Compliant fluid foil member for hydrodynamic fluid film thrust bearing
JP2728202B2 (en) Hemispherical type fluid bearing
JP4373055B2 (en) Thrust dynamic pressure gas bearing
KR950008331B1 (en) Ceramic bearing
US2403489A (en) Bearing construction for turbines or the like
JP4525476B2 (en) Preloading method for double row tapered roller bearing unit
JPS62148102A (en) Main spindle device
JPH11280769A (en) Roller bearing
JPH08261231A (en) Squeezed film dumper bearing
JP2003247617A (en) Friction roller type transmission
JPS62127510A (en) Self-aligning bearing for small type motor
JPS62288719A (en) Dynamic pressure thrust bearing
JPH1078029A (en) Fluid bearing with spacer
JP2006189133A (en) Thrust roller bearing
JPH01299317A (en) Roller bearing for engine
JP4356611B2 (en) Bearing device
JP2002349555A (en) Oscillating bearing device
JP2000320649A (en) Gear with bearing
JP2000314425A5 (en)
JPH0814251A (en) Holder for thrust roller bearing
JP2018004062A (en) Rolling bearing
JPH0810013B2 (en) Ceramic bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees