JP4372894B2 - Lead-acid battery life judgment device - Google Patents

Lead-acid battery life judgment device Download PDF

Info

Publication number
JP4372894B2
JP4372894B2 JP18660699A JP18660699A JP4372894B2 JP 4372894 B2 JP4372894 B2 JP 4372894B2 JP 18660699 A JP18660699 A JP 18660699A JP 18660699 A JP18660699 A JP 18660699A JP 4372894 B2 JP4372894 B2 JP 4372894B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
storage battery
lead storage
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18660699A
Other languages
Japanese (ja)
Other versions
JP2001015175A (en
Inventor
征児 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP18660699A priority Critical patent/JP4372894B2/en
Publication of JP2001015175A publication Critical patent/JP2001015175A/en
Application granted granted Critical
Publication of JP4372894B2 publication Critical patent/JP4372894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、自動車あるいは自動二輪車などに使用される鉛蓄電池の寿命を判定する装置に関し、特に、試験対象の鉛蓄電池を所定電流で短時間放電させ、その時の電圧低下値から鉛蓄電池の劣化状態を短時間に検出できる寿命判定装置に関する。
【0002】
【従来の技術】
従来、鉛蓄電池の劣化状態を検出する方法として、放電開始一定時間後の放電電圧から劣化状態を推定する方法が一般的であった。この方法は、鉛蓄電池の一定時間後の放電電圧が、その鉛蓄電池の劣化状態と相関関係があることを利用したものである。鉛蓄電池は、劣化すると内部抵抗および分極抵抗が増大し、このため起電力損失が増える。これにより、放電開始一定時間後の放電電圧が、劣化状態と相関を有することになる。
【0003】
図4は、上述した方法を用いた従来の寿命判定装置の要部の構成を示すブロック図である。この装置は、試験対象の電池51の劣化の度合いを判定するものであり、電池51の正極端子および負極端子にそれぞれ接続するためのクリップ52,53を備えており、これらクリップ52,53の間には、直列に、リレー(放電リレー)RYの接点54と抵抗56とが接続されている。また、電池51の端子電圧を測定するために、電圧検出回路としてA/D(アナログ/デジタル)変換器58が設けられており、A/D変換器58からのデジタル出力は、この装置全体の動作を制御する制御回路であるマイクロプロセッサ59に送られている。A/D変換器58およびマイクロプロセッサ59は、いずれも電源電圧を必要するが、この寿命判定装置は、試験対象の電池51から電力の供給を受けて動作するようになっており、このため、電池51からの電力を供給されてA/D変換器58およびマイクロプロセッサ59に電源電圧を供給する定電圧回路57が設けられている。マイクロプロセッサ59は、リレーRYの駆動コイル55を駆動するための放電リレー制御回路61を制御する。
【0004】
この寿命判定装置を用いた劣化状態の検出方法について説明する。まず、リレーRYの接点54が開いた状態で、試験対象の電池51をクリップ52,53によって接続し、次に、放電リレー制御回路61によってリレーRYを駆動し、一定の時間(数秒以下)だけ接点54を閉じ、抵抗56を介して電池51を放電させる。その結果、電池51は所定電流で放電することになる(電池51の充電状態などによって電池の端子電圧は変化し、そのため、放電電流も厳密には一定値からばらつくことなるが、ここでは、一定の抵抗を介して放電させることも所定電流での放電に含まれることとする)。そのときの端子電圧をA/D変換器58によって測定し、この測定結果からマイクロプロセッサ59によって起電力損失を計算し、起電力損失の大きさに応じて電池51の劣化状態を判別する。
【0005】
ここでA/D変換器58の入力側に注目する。試験対象の電池51が車載用の定格12Vの鉛蓄電池である場合、種々のノイズが重畳することや、誤操作などの可能性を考慮すると、クリップ52,53間の電圧は、最大30V程度になると考えられる。そこで、0〜30Vの範囲の電圧ではオーバーレンジとならないようにフルレンジを定めてアナログ/デジタル変換が行われるようにし、そのために、抵抗62と抵抗63で分圧した電圧が、A/D変換器58の入力端子Vinに供給されるようにしている。また、後述するように、起電力損失は小さいので、アナログ/デジタル変換の測定精度を確保する必要があり、そのため、定電圧電源57からの駆動電源とは別に基準電圧回路60を設け、基準電圧回路60で発生した基準電圧をA/D変換器58の基準電圧端子Vrefに供給している。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の寿命判定装置の場合、電池51の端子電圧の測定精度を一定以上に向上させることが困難なため、鉛蓄電池の起電力損失を確保する目的で、100〜200A(アンペア)といった大電流放電を行わせる必要がある。また、鉛蓄電池は劣化末期にならないと起電力損失が大きくならないため、劣化初期および劣化中期の状態検知ができないという問題点があった。また、試験対象の電池への電力消費負担が大きいという問題点があった。これらの問題点は、より分解能が高いA/D変換器を使用すれば解決可能であるものの、高分解能のA/D変換器は極めて高価であり、結果として、寿命判定装置のコストアップにつながる。
【0007】
さらに、大電流を瞬間的に放電することから、例えば放電リレーの接点が閉じた状態で試験対象の電池を寿命判定装置に接続したような場合に、火花発生を伴う可能性があるという問題点もある。放電リレーの接点が開いているときに電池を接続する場合であっても、寿命判定装置内のA/D変換器やマイクロプロセッサなどに供給するための電流が流れるので、やはり、火花発生を伴う可能性がある。このような火花発生の可能性は、火気の存在が好ましくないガソリンスタンドなどの場所で、自動車に搭載された鉛蓄電池の劣化診断を行う場合に、不都合な点となりうる。
【0008】
そこで本発明の目的は、放電電流を小さく抑えつつ、劣化初期状態の鉛蓄電池を測定する場合のような起電力損失が小さい場合であっても高精度に検出可能であり、さらに、接続時の火花発生が防止される寿命判定装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、鉛蓄電池を所定電流で短時間放電させることで劣化状態を検出する装置において、ツェナーダイオード等を用いてA/D変換器(A/D変換素子)への入力電圧を制限し、制限された上限電圧の範囲でA/D変換器のフルレンジを設定することによって、放電電流を100A以下とし、かつ劣化初期状態の鉛蓄電池を測定するような起電力損失が小さい場合であっても、高精度に鉛蓄電池の劣化状態を検出できることを見出し、本発明を完成させた。また、このように構成した場合、A/D変換器に対する駆動電圧をA/D変換器における基準電圧として使用しても、起電力損失が小さいときでも高精度に劣化状態を検出可能であり、従来は別途設置していた基準電圧回路を省略することができ、回路構成を簡便にできることを見出した。さらに、本発明者は、寿命判定装置の駆動電源投入を電池への接続時から数秒遅らせる電源用遅延回路を付加することにより、接続時の火花発生が防止され安全性が大幅に向上することを見出し、本発明を完成さた。
【0010】
すなわち、請求項1に係る発明では、鉛蓄電池の端子電圧を検出してデジタル値に変換するA/D変換器と、A/D変換器への入力電圧の上限電圧を制限する電圧制限素子とを設ける。電圧制限素子としては、ツェナーダイオードなどが好ましく用いられる。この寿命判定装置では、従来は、入力耐電圧30V以上であるA/D変換部への入力上限電圧を電圧制限素子により、6〜28Vの範囲で制限する。これによって、一定のビット数を有するA/D変換器を使用した場合において、入力上限電圧を制限した分だけ測定分解能を向上させることができる。
【0011】
さらに請求項に係る発明では、A/D変換器の駆動電源をA/D変換器の基準電圧源としても使用する。これにより、通常は別途に設置することとなる基準電圧回路を省略することができる。駆動電源の電圧精度を±1.0%以下とすることにより、起電力損失が小さい場合でも高精度に検出可能となる。
【0012】
請求項2、3に係る発明では、鉛蓄電池との電気的接続に使用される接続端子と、鉛蓄電池の端子電圧を検出してデジタル値に変換するA/D変換器と、接続端子を介して鉛蓄電池から電力の供給を受け、少なくともA/D変換器に対して動作電力を供給する定電圧回路と、コンデンサを含む時定数回路を備え、接続端子への鉛蓄電池の電気的接続状態を検出し、鉛蓄電池が接続端子に接続されたときには、時定数回路によって定まる所定の時間だけ遅延させて定電圧回路への電力の供給を開始し、鉛蓄電池が接続端子から取り外されたことを検出したときには直ちに時定数回路を初期状態に復帰させる電源用遅延回路と、を設ける。これにより、接続端子に鉛蓄電池を接続する際の火花発生が防止され安全性が大幅に向上する。
【0013】
【発明の実施の形態】
次に、本発明の好ましい実施の形態について、図面を参照して説明する。図1は、本発明の好ましい実施の形態による寿命判定装置の構成を示すブロック図である。
【0014】
この寿命判定装置10は、試験対象の電池11の劣化の度合いを判定するものであり、電池11の正極端子および負極端子にそれぞれ接続するためのクリップ12,13を備えており、これらクリップ12,13の間には、直列に、放電リレーRYの接点14と放電時の負荷となる抵抗16とが接続されている。放電リレーRYを制御するとともに電池11の端子電圧を測定し、電池11の劣化状態を判定するための回路部分を搭載したプリント基板20が設けられている。また、検出結果を表示するための発光ダイオード(LED)群17と、検出結果を印字するためのプリンタ18とが、この寿命判定装置10に設けられている。
【0015】
プリント基板20には、クリップ12,13により電池11に接続した際に、寿命判定装置10側での電源投入を所定時間(例えば2秒)だけ遅らせるため電源用遅延回路21と、電池11の端子電圧(正極端子と負極端子の間の電圧)を検出し、検出値をデジタル値で出力する電圧検出回路22と、この寿命判定装置10全体の処理を制御する中央演算回路(マイクロプロセッサ)23と、電圧検出回路22や中央演算回路23、プリンタ18に動作電源を供給する定電圧回路24と、放電リレーRYを制御する放電リレー制御回路25と、中央演算回路23からの指令に応じて発光ダイオード群17を駆動するLED表示回路26と、プリンタ18での印字を制御するプリンタ制御回路27とが設けられている。電池11を接続した際に、電源用遅延回路21、電圧検出回路22及び定電圧回路24は、相互に並列に、クリップ11,12を介して、電池11の両端に接続する。ここでは、プリンタ基板20上の各回路を符号21〜27を用いてそれぞれ別個の回路として説明したが、例えば、A/D変換器付きのマイクロプロセッサを使用して電圧検出回路22のA/D変換器部分と中央演算回路23とを同一の半導体装置で実現したり、回路25〜27と中央演算回路23とを同一の半導体装置で実現することも可能である。
【0016】
ここで中央演算回路23についてさらに説明する。中央演算装置は、電圧検出回路22からの検出電圧値(デジタル値)を処理し、試験対象の電池11の劣化状態の判定を行うとともに、LED表示回路25、放電リレー制御回路26及びプリンタ制御回路27を制御する。この寿命判定装置10も、図4に示した従来の寿命判定装置と同様に、短い時間の間、放電用リレーを駆動して電池11を所定電流で放電させ、そのときの起電力損失を検出することによって、電池11の劣化状態を判定するものである。その際、電池の規格(大きさや定格容量など)によって劣化状態の判定基準が異なるので、ここでは、バッテリー選択用のロータリスイッチSW1を設け、試験対象の電池11の種類を入力するようにしている。中央演算回路23は、ロータリスイッチSW1で入力された電池の種類に応じて、劣化状態の判定を行う。同様に、周囲温度や、電池11を単独で測定するのか車載状態のままで測定するのかに応じて、劣化状態の判定基準を変えるようにしてもよい。また、この寿命判定装置10にはスタートボタンPBが設けられており、このスタートボタンを押下することによって、中央演算装置23は、放電用リレーRYの接点14が所定時間(数秒以下)閉じるように、放電リレー制御回路26を制御する。
【0017】
次に、電源用遅延回路21および定電圧回路24の構成について、図2を用いて説明する。
【0018】
定電圧回路24は、ごく一般的な+5Vの3端子型の電圧レギュレータ回路REG2を備えて構成されているが、レギュレータ回路REG2の入力端子INは、リレーRY1のノーマリオープンの接点RY1Cとクリップ12を介して、電池11の正極端子に接続する。レギュレータ回路REG2のコモン端子COMは、クリップ13を介して電池11の負極端子に接続する。したがって、クリップ12,13により電池11を寿命判定装置に接続しただけでは、定電圧回路24には電力は供給されず、中央演算回路23などの回路も動作状態とはならない。
【0019】
電源用遅延回路21は、遅延回路の本体部分31と、本体部分31内の時定数回路のコンデンサC7を放電するための放電回路32とから構成されている。本体部分31では、3端子型の電圧レギュレータ回路REG1が設けられ、このレギュレータ回路REG1の入力端子INには、電池11からの電力が直接供給される。レギュレータ回路REG1の出力端子OUTとコモン端子COMの間には、リレーRY1の駆動コイルRY1AとサイリスタSCR1とが直列に設けられる。サイリスタSCR1のゲートには、レギュレータ回路REG1の出力電圧を抵抗R2および抵抗R12で分圧した電圧が供給される。ただし、コモン側の抵抗R12には並列にコンデンサC7が設けられており、これらによって時定数回路が構成されている。
【0020】
放電回路32には、リレーRY1のもう一つのノーマリオープンの接点RY1Bを介して、レギュレータ回路REG1の出力電圧が供給され、この出力電圧は、ダイオードD3および抵抗R6を介して、トランジスタTR1のベースに供給される。トランジスタTR1は、本体回路31内のコンデンサC7の両端を短絡するためのものである。ダイオードD3と抵抗R6の接続点と、トランジスタTR1のエミッタとの間には、抵抗R11とコンデンサC8とが並列に設けられている。
【0021】
次に、電源用遅延回路21および定電圧回路24の動作について説明する。
【0022】
初期状態としてコンデンサC7,C8がいずれも放電状態であり、このとき、クリップ12,13(図1参照)により電池に接続したとする。接続した時点で、レギュレータ回路REG1が動作を開始するが、コンデンサC7が放電状態なので、サイリスタSCR1のゲート電圧は0Vに近く、サイリスタTR1はターンオフ状態であり、リレーRY1は駆動されず、したがって、定電圧回路24には電池からの電圧は供給されない。その後、コンデンサC7の両端の電圧、すなわち、サイリスタSCR1のゲート電圧が上昇し、数秒後(レギュレータ回路REG1の出力電圧、サイリスタSCR1のターンオン電圧、抵抗R2,R12、コンデンサC7の値などによって決まる)、サイリスタSCR1はターンオン状態となり、リレーRY1が駆動されて、定電圧回路24に電力が供給されるようになる。これと同時に、放電回路32にもレギュレータ回路REG1の出力電圧が供給されるようになり、トランジスタTR1がオン状態となって、コンデンサC7の蓄積電荷を放電させ、サイリスタSCR1のゲート電圧をほぼ0にする。このとき、サイリスタSCR1を流れる電流はその保持電流以上なので、サイリスタSCR1はオン状態のままである。
【0023】
ここで、電池を取り外したとする。その結果、レギュレータ回路REG1の出力電圧は急速に降下し、リレーRY1が非駆動状態となるとともに、サイリスタSCR1はターンオフし、その結果、定電圧回路24および放電回路32は、電池との接続に使用されるクリップ12(図1参照)から切り離される。もし、ここでクリップ12,13のチャッタリング現象などにより電池が再接続したとしても、コンデンサC7は既に強制的に放電させられているので、上述と同様にして、遅延して定電圧回路24に電力が供給されることになる。
【0024】
以上の動作により、電源用遅延回路21自体に流れる電流と、後述する電圧検出回路22への入力電流を除けば、クリップ12,13を電池に接続した瞬間から遅延して電流が流れるようになるので、チャッタリング現象も含めてクリップ12,13での火花の発生を抑えることができ、鉛蓄電池の点検時の安全性が大幅に向上する。
【0025】
次に、電圧検出回路22の構成について、図3を用いて説明する。電圧検出回路22は、クリップ12,13(図1)を介して電池11の正極端子と負極端子との間に直列に接続されることになる分圧用の3本の抵抗R41〜R43と、アナログ/デジタル変換を行うA/D変換器40と、A/D変換器40への入力電圧の上限値を制限するためのツェナーダイオードZD1とを備えている。電池の負極端子側が接地点であるとして、直列接続の抵抗R41〜R43のうち、抵抗R43が接地点側に配置している。そして、抵抗R41と抵抗R42の接続点と、接地点との間にツェナーダイオードZD1が設けられている。また、抵抗R42と抵抗R43との接続点が、A/D変換器40の電圧入力端子Vinに接続している。A/D変換器40の電源端子Vddと基準電圧端子Vrefとは相互に接続するとともに、定電圧回路24(図1)から駆動電源として例えば+5Vの電源電圧が供給されている。ここでは、A/D変換器40への駆動電源を基準電圧源と共通化しており、したがって、図4に示す従来の回路における基準電圧回路は設けられていない。
【0026】
ツェナーダイオードZD1のツェナー電圧は、試験対象の鉛蓄電池の定格電圧(開路電圧)に応じて適宜に定められるものであるが、乗用車用の12Vの鉛蓄電池であれば、16〜18V程度とする。図示した例では18Vとした。二輪車用の6Vの鉛蓄電池、トラック用の24Vの鉛蓄電池を試験対象とする場合には、それらの試験対象に適合したツェナー電圧を有するツェナーダイオードを使用する。
【0027】
A/D変換器40のデジタル出力は、上述したように、中央演算回路23に送られる。ここでは、ツェナーダイオードZD1によって入力上限電圧が18Vに設定されているので、0〜18Vの電圧範囲をフルレンジとして、A/D変換器40を動作させる。
【0028】
以下、ここで述べた電圧検出回路(実施例と称す)と図4に示した従来の電圧検出回路(比較例と称す)とを比較した結果を説明する。ここでは、A/D変換器の分解能が10ビット、(抵抗で分圧される前の)入力電圧が12Vであるとして、基準電圧の変動誤差と1LSB当たりの電圧、A/D変換器の取り込み電圧(A/D変換器の入力端子Vinの電圧)及び測定電圧分解能を比較した。結果を表1に示す。
【0029】
【表1】

Figure 0004372894
本発明によれば、基準電圧の精度が±0.7%(標準的な3端子レギュレータの精度)と従来品よりも悪条件であるにも関わらず、取り込み電圧を約2倍に大きく取れるために、測定電圧分解能を約1/2に細かくすることが可能である。
【0030】
次に、この寿命判定装置10を用いた劣化状態の検出方法について説明する。まず、試験対象の電池11をクリップ12,13によって接続する。このとき、上述した説明から明らかなように、定電圧回路24には電力が供給されず、放電用リレーRYの接点14は開いたままである。クリップ12,13を接続したことによる火花の発生は抑えられている。クリップ12,13による接続後、数秒が経過すると、電源用遅延回路21の作用により、定電圧回路24に電力が供給されるようになり、中央演算回路23などが動作を開始する。次に、スタートボタンPBを押下することによって、中央演算回路23は放電リレー制御回路61によってリレーRYを駆動し、一定の時間(数秒以下)だけ接点14を閉じ、抵抗16を介して電池11を所定電流で放電させる。そして、このとき端子電圧を電圧検出回路22によって測定し、放電後5秒後のドロップ(低下)電圧(ここでドロップ電圧とは、放電時における電池の端子電圧のことをいう)を求める。中央演算回路23は、このドロップ電圧に応じて電池11の劣化状態を判別し、判別結果を発光ダイオード群17を介して表示するとともに、プリンタ18によって印字する。
【0031】
以上、本発明の好ましい実施の形態について説明したが、本発明は、上記の形態のものに限定されるわけではなく、電池の劣化状態を判定するための種々の技術に適用可能である。例えば、放電開始後一定時間後(例えば5秒後)のドロップ電圧のほかに、放電停止から数秒後の回復電圧を測定し、ドロップ電圧と回復電圧の両方から劣化状態を判定するようにしてもよい。
【0032】
【発明の効果】
以上説明したように本発明は、放電電流を小さく抑えつつ、劣化初期状態の鉛蓄電池を測定する場合のような起電力損失が小さい場合であっても、鉛蓄電池の劣化状態を高精度に検出することができるという効果がある。さらに、寿命判定装置への鉛蓄電池の接続時の火花発生が防止でき、安全性が大幅に向上するという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の一形態の寿命判定装置の構成を示すブロック図である。
【図2】電源用遅延回路および定電圧回路の構成を示す回路図である。
【図3】電圧検出回路の構成を示す回路図である。
【図4】従来の寿命判定装置の要部の構成を示すブロック図である。
【符号の説明】
10 寿命判定装置
11 電池
12,13 クリップ
16 抵抗
21 電源用遅延回路
22 電圧検出回路
23 中央演算回路
24 定電圧回路
25 放電リレー制御回路
40 A/D変換器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for determining the life of a lead storage battery used in an automobile or a motorcycle, and in particular, discharges a lead storage battery to be tested for a short time with a predetermined current, and the deterioration state of the lead storage battery from the voltage drop value at that time The present invention relates to a lifetime determination apparatus capable of detecting
[0002]
[Prior art]
Conventionally, as a method for detecting the deterioration state of a lead storage battery, a method of estimating the deterioration state from a discharge voltage after a certain time from the start of discharge has been common. This method utilizes the fact that the discharge voltage after a certain time of a lead storage battery has a correlation with the deterioration state of the lead storage battery. When the lead storage battery deteriorates, the internal resistance and polarization resistance increase, which increases electromotive force loss. As a result, the discharge voltage after a certain time from the start of discharge has a correlation with the deterioration state.
[0003]
FIG. 4 is a block diagram illustrating a configuration of a main part of a conventional life determination apparatus using the above-described method. This apparatus determines the degree of deterioration of the battery 51 to be tested, and includes clips 52 and 53 for connection to the positive terminal and the negative terminal of the battery 51, respectively. Are connected in series with a contact 54 of a relay (discharge relay) RY and a resistor 56. Further, in order to measure the terminal voltage of the battery 51, an A / D (analog / digital) converter 58 is provided as a voltage detection circuit, and the digital output from the A / D converter 58 is supplied to the entire apparatus. It is sent to a microprocessor 59 which is a control circuit for controlling the operation. Each of the A / D converter 58 and the microprocessor 59 requires a power supply voltage, but this life determination device operates by receiving power supply from the battery 51 to be tested. A constant voltage circuit 57 that is supplied with electric power from the battery 51 and supplies a power supply voltage to the A / D converter 58 and the microprocessor 59 is provided. The microprocessor 59 controls the discharge relay control circuit 61 for driving the drive coil 55 of the relay RY.
[0004]
A method of detecting a deterioration state using this life determination device will be described. First, in a state where the contact 54 of the relay RY is opened, the battery 51 to be tested is connected by the clips 52 and 53, and then the relay RY is driven by the discharge relay control circuit 61, and only for a certain time (several seconds or less). The contact 54 is closed and the battery 51 is discharged via the resistor 56. As a result, the battery 51 is discharged at a predetermined current (the terminal voltage of the battery changes depending on the state of charge of the battery 51 and the like. Therefore, the discharge current also varies strictly from a constant value. It is assumed that the discharge through the resistor is included in the discharge at a predetermined current). The terminal voltage at that time is measured by the A / D converter 58, the electromotive force loss is calculated from the measurement result by the microprocessor 59, and the deterioration state of the battery 51 is determined according to the magnitude of the electromotive force loss.
[0005]
Here, attention is paid to the input side of the A / D converter 58. When the battery 51 to be tested is a lead-acid battery with a rating of 12V for in-vehicle use, the voltage between the clips 52 and 53 is about 30V at maximum considering various noises and the possibility of erroneous operation. Conceivable. Therefore, the analog / digital conversion is performed by setting the full range so that the voltage in the range of 0 to 30 V is not overranged. For this purpose, the voltage divided by the resistor 62 and the resistor 63 is converted into an A / D converter. 58 is supplied to the input terminal Vin. Further, as will be described later, since the electromotive force loss is small, it is necessary to ensure the measurement accuracy of analog / digital conversion. For this reason, a reference voltage circuit 60 is provided separately from the driving power supply from the constant voltage power supply 57 to provide a reference voltage. The reference voltage generated by the circuit 60 is supplied to the reference voltage terminal Vref of the A / D converter 58.
[0006]
[Problems to be solved by the invention]
However, in the case of the above-described conventional lifetime determination device, it is difficult to improve the measurement accuracy of the terminal voltage of the battery 51 to a certain level or more, and therefore 100 to 200 A (ampere) is provided for the purpose of securing the electromotive force loss of the lead storage battery. It is necessary to perform such a large current discharge. In addition, since the lead-acid battery does not increase the electromotive force loss unless it is at the end of deterioration, there is a problem that it is impossible to detect the state of the initial stage of deterioration and the middle stage of deterioration. In addition, there is a problem that the power consumption burden on the battery to be tested is large. These problems can be solved by using an A / D converter having a higher resolution, but the high resolution A / D converter is extremely expensive, resulting in an increase in the cost of the lifetime determination device. .
[0007]
Furthermore, since a large current is instantaneously discharged, for example, when a battery to be tested is connected to the life determination device with the contact of the discharge relay closed, there is a possibility that a spark may be generated. There is also. Even when the battery is connected when the contact of the discharge relay is open, the current for supplying to the A / D converter, the microprocessor, etc. in the life determination device flows, so that sparks are also generated. there is a possibility. Such a possibility of occurrence of a spark can be an inconvenient point when performing deterioration diagnosis of a lead storage battery mounted on an automobile in a place such as a gas station where the presence of fire is not preferable.
[0008]
Therefore, the object of the present invention is to detect with high accuracy even when the electromotive force loss is small as in the case of measuring a lead storage battery in the initial stage of deterioration while keeping the discharge current small. An object of the present invention is to provide a lifetime determination device that prevents the occurrence of sparks.
[0009]
[Means for Solving the Problems]
The present inventor limits the input voltage to an A / D converter (A / D conversion element) using a Zener diode or the like in a device that detects a deterioration state by discharging a lead storage battery with a predetermined current for a short time. By setting the full range of the A / D converter within the limited upper limit voltage range, the discharge current is set to 100 A or less, and the electromotive force loss is small, such as when measuring lead acid batteries in the initial stage of deterioration. In addition, the present inventors have found that the deterioration state of the lead storage battery can be detected with high accuracy, and completed the present invention. Further, when configured in this way, even when the driving voltage for the A / D converter is used as the reference voltage in the A / D converter, the deterioration state can be detected with high accuracy even when the electromotive force loss is small. It has been found that a reference voltage circuit that has been separately installed in the past can be omitted, and the circuit configuration can be simplified. Furthermore, the inventor adds a power supply delay circuit that delays the drive power-on of the life determination device by several seconds from the time of connection to the battery, thereby preventing the occurrence of sparks at the time of connection and greatly improving safety. heading, it has led to the completion of the present invention.
[0010]
That is, in the invention according to claim 1, the A / D converter that detects the terminal voltage of the lead storage battery and converts it into a digital value, and the voltage limiting element that limits the upper limit voltage of the input voltage to the A / D converter; Is provided. A Zener diode or the like is preferably used as the voltage limiting element. In this lifetime determination apparatus, conventionally, the input upper limit voltage to the A / D conversion unit having an input withstand voltage of 30 V or higher is limited within a range of 6 to 28 V by a voltage limiting element. As a result, when an A / D converter having a certain number of bits is used, the measurement resolution can be improved by the amount that the input upper limit voltage is limited.
[0011]
Further, in the invention according to claim 1 , the driving power source of the A / D converter is also used as the reference voltage source of the A / D converter. As a result, it is possible to omit a reference voltage circuit that is normally provided separately. By setting the voltage accuracy of the drive power supply to ± 1.0% or less, even when the electromotive force loss is small, it is possible to detect with high accuracy.
[0012]
In the invention which concerns on Claim 2 , 3 , the connection terminal used for electrical connection with a lead storage battery, the A / D converter which detects the terminal voltage of a lead storage battery, and converts it into a digital value, and a connection terminal are used. A constant voltage circuit that receives power from the lead storage battery and supplies operating power to at least the A / D converter, and a time constant circuit including a capacitor, the electrical connection state of the lead storage battery to the connection terminal When a lead storage battery is connected to the connection terminal, the power supply to the constant voltage circuit is started with a delay determined by the time constant circuit, and it is detected that the lead storage battery has been removed from the connection terminal. And a power supply delay circuit for immediately returning the time constant circuit to the initial state. This prevents the occurrence of sparks when connecting the lead storage battery to the connection terminal, and greatly improves safety.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a life determination apparatus according to a preferred embodiment of the present invention.
[0014]
The life determination device 10 is for determining the degree of deterioration of the battery 11 to be tested, and includes clips 12 and 13 for connecting to the positive terminal and the negative terminal of the battery 11, respectively. 13, a contact 14 of the discharge relay RY and a resistor 16 serving as a load during discharge are connected in series. A printed circuit board 20 on which a circuit portion for controlling the discharge relay RY and measuring the terminal voltage of the battery 11 to determine the deterioration state of the battery 11 is provided. Further, a light emitting diode (LED) group 17 for displaying the detection result and a printer 18 for printing the detection result are provided in the life determination apparatus 10.
[0015]
The printed circuit board 20 has a power supply delay circuit 21 and a terminal of the battery 11 for delaying the power-on on the life determination device 10 side by a predetermined time (for example, 2 seconds) when connected to the battery 11 by the clips 12 and 13. A voltage detection circuit 22 that detects a voltage (a voltage between a positive terminal and a negative terminal) and outputs a detection value as a digital value; and a central processing circuit (microprocessor) 23 that controls processing of the entire life determination apparatus 10; A voltage detection circuit 22, a central arithmetic circuit 23, a constant voltage circuit 24 that supplies operating power to the printer 18, a discharge relay control circuit 25 that controls the discharge relay RY, and a light emitting diode in response to a command from the central arithmetic circuit 23. An LED display circuit 26 that drives the group 17 and a printer control circuit 27 that controls printing by the printer 18 are provided. When the battery 11 is connected, the power supply delay circuit 21, the voltage detection circuit 22, and the constant voltage circuit 24 are connected to both ends of the battery 11 via the clips 11 and 12 in parallel with each other. Here, although each circuit on the printer board 20 has been described as a separate circuit using reference numerals 21 to 27, for example, the A / D of the voltage detection circuit 22 using a microprocessor with an A / D converter. It is also possible to realize the converter portion and the central processing circuit 23 with the same semiconductor device, or the circuits 25 to 27 and the central processing circuit 23 with the same semiconductor device.
[0016]
Here, the central processing circuit 23 will be further described. The central processing unit processes the detection voltage value (digital value) from the voltage detection circuit 22 to determine the deterioration state of the battery 11 to be tested, and also the LED display circuit 25, the discharge relay control circuit 26, and the printer control circuit. 27 is controlled. Similarly to the conventional life judging device shown in FIG. 4, this life judging device 10 also drives the discharge relay for a short time to discharge the battery 11 with a predetermined current, and detects the electromotive force loss at that time. By doing so, the deterioration state of the battery 11 is determined. At this time, since the criteria for determining the deterioration state differ depending on the battery standard (size, rated capacity, etc.), the rotary switch SW1 for battery selection is provided here, and the type of the battery 11 to be tested is input. . The central processing circuit 23 determines the deterioration state in accordance with the type of battery input through the rotary switch SW1. Similarly, the determination criterion for the deterioration state may be changed depending on the ambient temperature or whether the battery 11 is measured alone or in a vehicle-mounted state. The life determination device 10 is provided with a start button PB, and when the start button is pressed, the central processing unit 23 closes the contact 14 of the discharging relay RY for a predetermined time (several seconds or less). The discharge relay control circuit 26 is controlled.
[0017]
Next, the configuration of the power supply delay circuit 21 and the constant voltage circuit 24 will be described with reference to FIG.
[0018]
The constant voltage circuit 24 includes a very common + 5V three-terminal voltage regulator circuit REG2, and the input terminal IN of the regulator circuit REG2 is connected to the normally open contact RY1C of the relay RY1 and the clip 12. To the positive terminal of the battery 11. The common terminal COM of the regulator circuit REG2 is connected to the negative terminal of the battery 11 via the clip 13. Therefore, if the battery 11 is simply connected to the life determination device by the clips 12 and 13, power is not supplied to the constant voltage circuit 24, and the circuit such as the central processing circuit 23 is not in an operating state.
[0019]
The power supply delay circuit 21 includes a main body portion 31 of the delay circuit and a discharge circuit 32 for discharging the capacitor C7 of the time constant circuit in the main body portion 31. In the main body portion 31, a three-terminal voltage regulator circuit REG1 is provided, and power from the battery 11 is directly supplied to the input terminal IN of the regulator circuit REG1. Between the output terminal OUT and the common terminal COM of the regulator circuit REG1, the drive coil RY1A of the relay RY1 and the thyristor SCR1 are provided in series. A voltage obtained by dividing the output voltage of the regulator circuit REG1 by the resistor R2 and the resistor R12 is supplied to the gate of the thyristor SCR1. However, the resistor R12 of the common side and the capacitor C7 is connected in parallel, the time constant circuit thus these are configured.
[0020]
The output voltage of the regulator circuit REG1 is supplied to the discharge circuit 32 via another normally open contact RY1B of the relay RY1, and this output voltage is supplied to the base of the transistor TR1 via the diode D3 and the resistor R6. To be supplied. The transistor TR1 is for short-circuiting both ends of the capacitor C7 in the main body circuit 31. A resistor R11 and a capacitor C8 are provided in parallel between the connection point of the diode D3 and the resistor R6 and the emitter of the transistor TR1.
[0021]
Next, operations of the power supply delay circuit 21 and the constant voltage circuit 24 will be described.
[0022]
Assume that the capacitors C7 and C8 are both in a discharged state as an initial state and are connected to the battery by clips 12 and 13 (see FIG. 1). At the time of connection, the regulator circuit REG1 starts operating. However, since the capacitor C7 is in a discharged state, the gate voltage of the thyristor SCR1 is close to 0V, the thyristor TR1 is in a turn-off state, and the relay RY1 is not driven. The voltage from the battery is not supplied to the voltage circuit 24. Thereafter, the voltage across the capacitor C7, that is, the gate voltage of the thyristor SCR1 rises, and after a few seconds (determined by the output voltage of the regulator circuit REG1, the turn-on voltage of the thyristor SCR1, the values of the resistors R2 and R12, the capacitor C7, etc.) The thyristor SCR1 is turned on, the relay RY1 is driven, and power is supplied to the constant voltage circuit 24. At the same time, the output voltage of the regulator circuit REG1 is also supplied to the discharge circuit 32, the transistor TR1 is turned on, the charge stored in the capacitor C7 is discharged, and the gate voltage of the thyristor SCR1 is reduced to almost zero. To do. At this time, since the current flowing through the thyristor SCR1 is equal to or greater than the holding current, the thyristor SCR1 remains on.
[0023]
Here, it is assumed that the battery is removed. As a result, the output voltage of the regulator circuit REG1 drops rapidly, the relay RY1 enters a non-driven state, and the thyristor SCR1 is turned off. As a result, the constant voltage circuit 24 and the discharge circuit 32 are used for connection to the battery. It is cut off from the clip 12 (see FIG. 1). Even if the battery is reconnected due to the chattering phenomenon of the clips 12 and 13 or the like, the capacitor C7 has already been forcibly discharged. Electric power will be supplied.
[0024]
With the above operation, the current flows with a delay from the moment when the clips 12 and 13 are connected to the battery, except for the current flowing in the power supply delay circuit 21 itself and the input current to the voltage detection circuit 22 described later. Therefore, the occurrence of sparks in the clips 12 and 13 including the chattering phenomenon can be suppressed, and the safety at the time of inspection of the lead storage battery is greatly improved.
[0025]
Next, the configuration of the voltage detection circuit 22 will be described with reference to FIG. The voltage detection circuit 22 includes three resistors R41 to R43 for voltage division to be connected in series between the positive terminal and the negative terminal of the battery 11 via the clips 12 and 13 (FIG. 1), and an analog An A / D converter 40 that performs digital conversion and a Zener diode ZD1 for limiting an upper limit value of an input voltage to the A / D converter 40 are provided. Assuming that the negative electrode terminal side of the battery is the ground point, the resistor R43 is disposed on the ground point side among the series-connected resistors R41 to R43. A Zener diode ZD1 is provided between the connection point of the resistor R41 and the resistor R42 and the ground point. The connection point between the resistor R42 and the resistor R43 is connected to the voltage input terminal Vin of the A / D converter 40. The power supply terminal Vdd and the reference voltage terminal Vref of the A / D converter 40 are connected to each other, and a power supply voltage of, for example, +5 V is supplied as a drive power supply from the constant voltage circuit 24 (FIG. 1). Here, the drive power supply to the A / D converter 40 is shared with the reference voltage source, and therefore the reference voltage circuit in the conventional circuit shown in FIG. 4 is not provided.
[0026]
The Zener voltage of the Zener diode ZD1 is appropriately determined according to the rated voltage (open circuit voltage) of the lead storage battery to be tested. However, in the case of a 12V lead storage battery for passenger cars, the Zener voltage is about 16 to 18V. In the illustrated example, the voltage is 18V. When 6V lead-acid storage batteries for motorcycles and 24V lead-acid storage batteries for trucks are to be tested, Zener diodes having a Zener voltage suitable for those test objects are used.
[0027]
The digital output of the A / D converter 40 is sent to the central processing circuit 23 as described above. Here, since the input upper limit voltage is set to 18V by the Zener diode ZD1, the A / D converter 40 is operated with the voltage range of 0 to 18V being the full range.
[0028]
Hereinafter, the result of comparing the voltage detection circuit described here (referred to as an example) with the conventional voltage detection circuit shown in FIG. 4 (referred to as a comparative example) will be described. Here, assuming that the resolution of the A / D converter is 10 bits and the input voltage (before being divided by the resistor) is 12 V, the fluctuation error of the reference voltage, the voltage per 1 LSB, and the A / D converter capture The voltage (the voltage at the input terminal Vin of the A / D converter) and the measured voltage resolution were compared. The results are shown in Table 1.
[0029]
[Table 1]
Figure 0004372894
According to the present invention, since the accuracy of the reference voltage is ± 0.7% (accuracy of a standard three-terminal regulator) and the adverse condition is worse than that of the conventional product, the capture voltage can be increased by about twice. In addition, the measurement voltage resolution can be reduced to about ½.
[0030]
Next, a method for detecting a deterioration state using the lifetime determination apparatus 10 will be described. First, the battery 11 to be tested is connected by the clips 12 and 13. At this time, as is apparent from the above description, no power is supplied to the constant voltage circuit 24, and the contact 14 of the discharging relay RY remains open. Generation of sparks due to the connection of the clips 12 and 13 is suppressed. When several seconds elapse after the connection by the clips 12 and 13, power is supplied to the constant voltage circuit 24 by the action of the power supply delay circuit 21, and the central processing circuit 23 and the like start operating. Next, when the start button PB is pressed, the central processing circuit 23 drives the relay RY by the discharge relay control circuit 61, closes the contact 14 for a certain time (several seconds or less), and connects the battery 11 via the resistor 16. Discharge at a predetermined current. At this time, the terminal voltage is measured by the voltage detection circuit 22 to obtain a drop voltage (reduced voltage) 5 seconds after discharge (here, the drop voltage refers to the terminal voltage of the battery during discharge). The central processing circuit 23 determines the deterioration state of the battery 11 according to the drop voltage, displays the determination result via the light emitting diode group 17, and prints it with the printer 18.
[0031]
As mentioned above, although preferable embodiment of this invention was described, this invention is not necessarily limited to the thing of said form, It can apply to the various technique for determining the deterioration state of a battery. For example, in addition to the drop voltage after a certain time after the start of discharge (for example, after 5 seconds), the recovery voltage after several seconds from the stop of the discharge is measured, and the deterioration state is determined from both the drop voltage and the recovery voltage. Good.
[0032]
【The invention's effect】
As described above, the present invention can detect the deterioration state of the lead storage battery with high accuracy even when the electromotive force loss is small as in the case of measuring the lead storage battery in the initial deterioration state while keeping the discharge current small. There is an effect that can be done. Furthermore, it is possible to prevent the occurrence of sparks when the lead storage battery is connected to the life determination device, and the safety is greatly improved.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a life determination apparatus according to an embodiment of the present invention.
FIG. 2 is a circuit diagram showing configurations of a power supply delay circuit and a constant voltage circuit.
FIG. 3 is a circuit diagram showing a configuration of a voltage detection circuit.
FIG. 4 is a block diagram showing a configuration of a main part of a conventional life judging apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Life determination apparatus 11 Battery 12, 13 Clip 16 Resistance 21 Power supply delay circuit 22 Voltage detection circuit 23 Central processing circuit 24 Constant voltage circuit 25 Discharge relay control circuit 40 A / D converter

Claims (3)

鉛蓄電池を所定電流で短時間放電させることにより、前記鉛蓄電池の劣化状態を検出する寿命判定装置において、
前記鉛蓄電池の端子電圧を検出してデジタル値に変換するA/D変換器と、
前記A/D変換器への入力電圧の上限電圧を制限する電圧制限素子とを有し、
前記A/D変換器の駆動電源を前記A/D変換器の基準電圧源としても使用することを特徴とする鉛蓄電池の寿命判定装置。
In the life determination device for detecting the deterioration state of the lead storage battery by discharging the lead storage battery at a predetermined current for a short time,
An A / D converter that detects a terminal voltage of the lead storage battery and converts it into a digital value;
Have a, a voltage limiting element that limits the upper limit voltage of the input voltage to the A / D converter,
The lead-acid battery life determination device , wherein the driving power source of the A / D converter is also used as a reference voltage source of the A / D converter .
前記鉛蓄電池との電気的接続に使用される接続端子と、
前記接続端子を介して前記鉛蓄電池から電力の供給を受け、少なくとも前記A/D変換器に対して動作電力を供給する定電圧回路と、
コンデンサを含む時定数回路を備え、前記接続端子への前記鉛蓄電池の電気的接続状態を検出し、前記鉛蓄電池が前記接続端子に接続されたときには、前記時定数回路によって定まる所定の時間だけ遅延させて前記定電圧回路への電力の供給を開始し、前記鉛蓄電池が前記接続端子から取り外されたことを検出したときには直ちに前記時定数回路を初期状態に復帰させる電源用遅延回路と、をさらに備える請求項に記載の鉛蓄電池の寿命判定装置。
A connection terminal used for electrical connection with the lead-acid battery;
A constant voltage circuit that receives power from the lead storage battery via the connection terminal and supplies operating power to at least the A / D converter;
A time constant circuit including a capacitor; detecting an electrical connection state of the lead storage battery to the connection terminal; when the lead storage battery is connected to the connection terminal, a delay of a predetermined time determined by the time constant circuit A power supply delay circuit that starts supplying power to the constant voltage circuit and immediately returns the time constant circuit to an initial state when it is detected that the lead storage battery has been removed from the connection terminal. life determining apparatus of a lead-acid battery of claim 1, comprising.
鉛蓄電池を所定電流で短時間放電させることにより、前記鉛蓄電池の劣化状態を検出する寿命判定装置において、
前記鉛蓄電池との電気的接続に使用される接続端子と、
前記鉛蓄電池の端子電圧を検出してデジタル値に変換するA/D変換器と、
前記接続端子を介して前記鉛蓄電池から電力の供給を受け、少なくとも前記A/D変換器に対して動作電力を供給する定電圧回路と、
コンデンサを含む時定数回路を備え、前記接続端子への前記鉛蓄電池の電気的接続状態を検出し、前記鉛蓄電池が前記接続端子に接続されたときには、前記時定数回路によって定まる所定の時間だけ遅延させて前記定電圧回路への電力の供給を開始し、前記鉛蓄電池が前記接続端子から取り外されたことを検出したときには直ちに前記時定数回路を初期状態に復帰させる電源用遅延回路と、を備えることを特徴とする鉛蓄電池の寿命判定装置。
In the life determination device for detecting the deterioration state of the lead storage battery by discharging the lead storage battery at a predetermined current for a short time,
A connection terminal used for electrical connection with the lead-acid battery;
An A / D converter that detects a terminal voltage of the lead storage battery and converts it into a digital value;
A constant voltage circuit that receives power from the lead storage battery via the connection terminal and supplies operating power to at least the A / D converter;
A time constant circuit including a capacitor; detecting an electrical connection state of the lead storage battery to the connection terminal; when the lead storage battery is connected to the connection terminal, a delay of a predetermined time determined by the time constant circuit A power supply delay circuit that immediately starts supplying power to the constant voltage circuit and immediately returns the time constant circuit to the initial state when it is detected that the lead storage battery has been removed from the connection terminal. The life determination apparatus of the lead storage battery characterized by the above-mentioned.
JP18660699A 1999-06-30 1999-06-30 Lead-acid battery life judgment device Expired - Fee Related JP4372894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18660699A JP4372894B2 (en) 1999-06-30 1999-06-30 Lead-acid battery life judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18660699A JP4372894B2 (en) 1999-06-30 1999-06-30 Lead-acid battery life judgment device

Publications (2)

Publication Number Publication Date
JP2001015175A JP2001015175A (en) 2001-01-19
JP4372894B2 true JP4372894B2 (en) 2009-11-25

Family

ID=16191521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18660699A Expired - Fee Related JP4372894B2 (en) 1999-06-30 1999-06-30 Lead-acid battery life judgment device

Country Status (1)

Country Link
JP (1) JP4372894B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631619B2 (en) * 2005-08-31 2011-02-16 パナソニック電工株式会社 Emergency device and emergency system

Also Published As

Publication number Publication date
JP2001015175A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
US6351102B1 (en) Automotive battery charging system tester
US6466025B1 (en) Alternator tester
JP4414757B2 (en) In-vehicle battery monitoring apparatus and method
JPH04271236A (en) Method of controlling voltage while depending upon state of battery charge and controller
US7986055B2 (en) Adjustment of control strategy based on temperature
US20070216366A1 (en) Method for judging service life of primary battery
US20040108855A1 (en) Alternator testing device and method
JP2004201484A (en) Vehicle-mounted battery monitor
US10481212B2 (en) Secondary battery status estimation device and status estimation method
US20050088148A1 (en) Control apparatus and method for vehicle equipped power supply having battery deterioration diagnostic feature
US20150377979A1 (en) Method for testing an energy store in a motor vehicle
JP4929501B2 (en) In-vehicle battery discharge device
JP6603888B2 (en) Battery type determination device and battery type determination method
JP4193745B2 (en) Battery state detection method and battery state detection device
WO2008029820A1 (en) Accumulator
JP2006015896A (en) Method for estimating degree of deterioration and device for estimating degree of deterioration
JP2008053126A (en) Battery deterioration judgement device
US10377239B2 (en) Auxiliary battery status determination device and auxiliary battery status determination method
JP2004289892A (en) In-vehicle power supply system
KR20120004670A (en) Battery sensor for vehicle
US6590396B1 (en) Device and method for indicating in-use charging and abnormal discharging of a combustion engine battery following engine turn-off
JP4372894B2 (en) Lead-acid battery life judgment device
JP2005292035A (en) Method of detecting battery condition
US7477493B2 (en) Alternator control device for vehicle
JP4341556B2 (en) Battery state detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees