JP4372816B2 - Leg joint drive device for legged robot and control method thereof - Google Patents

Leg joint drive device for legged robot and control method thereof Download PDF

Info

Publication number
JP4372816B2
JP4372816B2 JP2007227307A JP2007227307A JP4372816B2 JP 4372816 B2 JP4372816 B2 JP 4372816B2 JP 2007227307 A JP2007227307 A JP 2007227307A JP 2007227307 A JP2007227307 A JP 2007227307A JP 4372816 B2 JP4372816 B2 JP 4372816B2
Authority
JP
Japan
Prior art keywords
joint
output shaft
rotary motion
motion output
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007227307A
Other languages
Japanese (ja)
Other versions
JP2009056567A5 (en
JP2009056567A (en
Inventor
イヴァン ゴドレール
Original Assignee
イヴァン ゴドレール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イヴァン ゴドレール filed Critical イヴァン ゴドレール
Priority to JP2007227307A priority Critical patent/JP4372816B2/en
Publication of JP2009056567A publication Critical patent/JP2009056567A/en
Publication of JP2009056567A5 publication Critical patent/JP2009056567A5/ja
Application granted granted Critical
Publication of JP4372816B2 publication Critical patent/JP4372816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Toys (AREA)

Description

本発明は、たとえば2足歩行ロボットといった脚式ロボットの脚関節駆動装置及びその制御方法に関する。   The present invention relates to a leg joint drive device for a legged robot such as a biped robot and a control method therefor.

2足歩行ロボット、4足歩行ロボットまたは5足以上の脚式ロボットが多く研究されている。脚式ロボットの歩行の実現には2通りある。即ち、受動歩行(passive walking)および能動歩行(active walking)である(たとえば、非特許文献1参照)。受動歩行は、ロボットにアクチュエータを一切搭載せず或いは搭載されたアクチュエータを使用することなしに、緩やかな下り坂を下ってくる歩行形態である。この歩行は自然の中で観察できる歩行に最も近く、少ない消費エネルギで歩行を可能にする歩行形態であり、エネルギ消費量をロボットの重量と移動距離の積で除した比機械的移動コストcmtが0.1以下である(非特許文献2、1083頁参照)。しかしながら、エネルギ供給がないため平地での持続歩行が不可能であり、また制御が行われていないために、荒れ地での歩行ができない。 Many researches have been conducted on biped robots, quadruped robots, or legged robots with five or more legs. There are two ways to implement legged robot walking. That is, they are passive walking and active walking (for example, refer nonpatent literature 1). Passive walking is a walking form that moves down a gentle downhill without mounting any actuator on the robot or using any mounted actuator. This walking is closest to walking that can be observed in nature, and is a walking form that enables walking with less energy consumption, and the specific mechanical movement cost c mt obtained by dividing the energy consumption by the product of the weight of the robot and the movement distance. Is 0.1 or less (see Non-Patent Document 2, page 1083). However, since there is no energy supply, continuous walking on flat ground is impossible, and since control is not performed, walking on wasteland is not possible.

一方、現在、歩行ロボットで最も一般的に行われている歩行は、能動的歩行である(たとえば、特許文献1、特許文献2参照)。これらの特許文献に開示のロボットにあっては、関節と駆動モータが常に結合されていて常時関節が駆動され、制御されている。その結果、消費エネルギが増大し、トータルエネルギ/(ロボット重量×移動距離)で表される移動用エネルギコストが3以上になる(非特許文献2、1083頁参照)。   On the other hand, the most commonly performed walking with a walking robot is active walking (see, for example, Patent Document 1 and Patent Document 2). In the robots disclosed in these patent documents, the joint and the drive motor are always coupled, and the joint is always driven and controlled. As a result, energy consumption increases, and the energy cost for movement represented by total energy / (robot weight × movement distance) becomes 3 or more (see Non-Patent Document 2, page 1083).

他方、近年の研究(カーネギーメロン大学(米国)、MIT(米国)、Delft大学(オランダ)))では、従来、緩やかな下り坂歩行しかできなかった受動歩行機構に、平地での歩行に必要なエネルギを供給し、平地でも受動歩行に近い「受動動的歩行」(passive dynamic walking)の実験結果が発表されている(たとえば、非特許文献3、非特許文献4参照)。   On the other hand, in recent studies (Carnegie Mellon University (USA), MIT (USA), Delft University (Netherlands)), a passive walking mechanism that has traditionally been capable of only gentle downhill walking is necessary for walking on flat ground. Experimental results of “passive dynamic walking” that supplies energy and is close to passive walking even on flat ground have been published (see, for example, Non-Patent Document 3 and Non-Patent Document 4).

T.McGeer,「Passive dynamic walking」Int.J.Robot.Res.,vol.9,no.2,pp.62-82,Apr.1990.T. McGeer, `` Passive dynamic walking '' Int. J. Robot. Res., Vol. 9, no. 2, pp. 62-82, Apr. 1990. S.Collins,A.Ruina,R.Tedrake,M.Wisse,「Efficient Bipedal Robots Based on Passive DynamicWalkers,」Science,vol.307,pp.1082-1085,Feb.2005.S. Collins, A. Ruina, R. Tedrake, M. Wisse, `` Efficient Bipedal Robots Based on Passive Dynamic Walkers, '' Science, vol. 307, pp. 1082-1085, Feb. 2005. S.Collins,A.Ruina, M.Wisse,「A Three Dimensional Passive-Dynamic Walking Robot With Two Knee and Legs,」Int. J. Robotics Research,Vol.20,S. Collins, A. Ruina, M. Wisse, "A Three Dimensional Passive-Dynamic Walking Robot With Two Knee and Legs," Int. J. Robotics Research, Vol. 20, M.Wisse,D.G.E.Hobbelen,A.L.Schwab,「Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism,」IEEE Trans.Rob.,vol.23,no.1,pp.112-123,Feb.2007.M. Wisse, DGE Hobbelen, AL Schwab, `` Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism, '' IEEE Trans.Rob., Vol. 23, no. 1, pp. 112-123, Feb .2007. 特開平09−094784号公報JP 09-094784 A 特開平09−094785号公報JP 09-094785 A

しかしながら、非特許文献3、非特許文献4に開示の技術においては、特許文献1、特許文献2に開示されているロボットのような駆動技術、即ちサーボモータと減速機の組み合わせ或いは人工筋肉(たとえば、McKibben muscles,(非特許文献4、p.118、Fig.9)を使用しているため、受動歩行を実現するために必要なモータと関節の分離を行うための専用の装置が必要となり、而して、ロボットの関節が大きくかつ複雑になる。また、人工筋肉(たとえば、McKibben muscles,)の場合、エネルギ源が圧縮ガスであるので、制御が困難であるのみならず性能面、コスト面で問題がある。   However, in the technologies disclosed in Non-Patent Document 3 and Non-Patent Document 4, a driving technique such as a robot disclosed in Patent Document 1 and Patent Document 2, that is, a combination of a servo motor and a speed reducer, or an artificial muscle (for example, , McKibben muscles, (Non-Patent Document 4, p.118, Fig. 9), a dedicated device is required to separate the motor and joints necessary to realize passive walking. As a result, the joints of the robot become large and complicated, and in the case of artificial muscles (for example, McKibben muscles), the energy source is compressed gas, which makes it difficult to control as well as performance and cost. There is a problem.

本発明は、簡単な構造でありながら緩やかな下り坂における受動歩行(関節と駆動モータを駆動系として完全に分離する)、平地や緩やかな上り坂での受動動的歩行(必要なエネルギのみを供給する)、さらには、急坂や階段の上り下りといった能動的歩行(駆動モータと関節とを常時結合する)の3種類の歩行を、特別な付加装置や切り換え機構を用いることなく、駆動モータの制御のみで実現することができる脚式ロボットの脚関節駆動装置及びその制御方法を提供することを目的とする。   The present invention has a simple structure and a passive walking on a gentle downhill (completely separating the joint and the drive motor as a drive system), and a passive dynamic walking on a flat ground and a gentle uphill (only the necessary energy is consumed). Supply), and active walking (steeply connecting the drive motor and the joint) such as steep slopes and up and down stairs, without using any additional device or switching mechanism. It is an object of the present invention to provide a leg joint drive device for a legged robot that can be realized only by control and a control method thereof.

上記課題を解決するための請求項1に記載の発明は、少なくとも2本の線・条の一端を回転運動出力軸端の軸心部に固定するとともに、該線・条の他端を前記回転運動出力軸方向に沿う運動を行う運動体の、前記回転運動出力軸の軸心に関し対称となるとともに軸心から所定距離A離隔する部位に固定し、また、該所定距離A、前記線・条の長さL、前記線・条の半径R、前記回転運動出力軸の回転角度αを前記運動体の運動変位量xのパラメータとするとともに駆動モータのトルクTと前記運動体を前記回転運動出力軸の方向に変位せしめる引張り力Fの関係を律するパラメータとして、前記回転運動出力軸の回転によって前記少なくとも2本の線・条に捩りを生ぜしめて前記回転運動出力軸の回転運動を前記回転運動出力軸方向に沿う運動を行う運動体の変位に変換しまた、前記運動体の変位を前記回転運動出力軸の回転運動に変換するよう構成してなる運動変換装置を、脚式ロボットの腰関節、膝関節、および足首関節の少なくとも1つに装着したことを特徴とする脚式ロボットの脚関節駆動装置である。 The invention according to claim 1 for solving the above-mentioned problem is to fix at least one end of at least two wires / strips to the axial center of the rotary motion output shaft end and to rotate the other end of the wires / strip to the rotation of the moving body to perform the movement along the motor output axis, and fixed with a symmetrical about the axis of the rotary motion output shaft from the axis at a site spaced apart a predetermined distance a, also the predetermined distance a, the line- Article of length L, a radius R of the wire-strip, the rotary motion output shaft the rotary movement of the moving body and the torque T of the drive motor with a rotational angle α and the parameters of the motion displacement x of the movement of As a parameter governing the relationship with the tensile force F that is displaced in the direction of the output shaft, the rotation of the rotary motion output shaft causes twisting of the at least two wires / stripes by the rotation of the rotational motion output shaft. Along the motion output axis direction Converting the displacement of the moving body to perform the movement, also the movement body motion converter comprising configured to convert the displacement into rotational motion of the rotary motion output shaft of the legged robot hip joint, knee joint, And a leg joint drive device for a legged robot, which is mounted on at least one of the ankle joints.

請求項2に記載の発明は、少なくとも2本の線・条の一端を回転運動出力軸端の軸心部に固定し、該線・条の他端を前記回転運動出力軸方向に沿う運動を行う運動体の、前記回転運動出力軸の軸心に関し対称となるとともに該軸心から所定距離A離隔する部位に固定し、前記所定距離A、前記線・条の長さL、前記線・条の半径R、前記回転運動出力軸の回転角度αを前記運動体の運動変位量xのパラメータとするとともに駆動モータのトルクTと前記運動体を前記回転運動出力軸の方向に変位せしめる引張り力Fとの関係を律するパラメータとして、前記回転運動出力軸の回転によって前記少なくとも2本の線・条に捩りを生じさせ、前記回転運動出力軸の回転運動を前記回転運動出力軸方向に沿う運動を行う運動体の変位に変換し、また、前記運動体の変位を前記回転運動出力軸の回転運動に変換するよう構成してなる運動変換装置を、脚式ロボットの腰関節、膝関節、および足首関節の少なくとも1つに装着し、前記運動変換装置が、前記引張り力Fと前記被装着関節の回動角度の少なくとも1つを検出し、該検出結果に基づいて前記引張り力F、および/または、前記被装着関節の回動角度所望の制御量となるよう、前記回転角度αおよび前記トルクTの何れか一方または双方を制御することを特徴とする脚式ロボットの脚関節駆動装置の制御方法である。 According to the second aspect of the present invention, at least one end of at least two wires / strips is fixed to the axial center of the rotary motion output shaft end, and the other end of the wire / strip is moved along the rotational motion output shaft direction. The moving body to be performed is fixed to a portion which is symmetric with respect to the axis of the rotary motion output shaft and is separated from the axis by a predetermined distance A, and the predetermined distance A, the length L of the line / strip, the line / strip And the rotational angle α of the rotary motion output shaft as parameters of the motion displacement amount x of the moving body, and the torque T of the drive motor and the tensile force F that displaces the moving body in the direction of the rotary motion output shaft. As a parameter governing the relationship between the rotational motion output shaft, the rotation of the rotational motion output shaft causes twisting of the at least two lines / strips, and the rotational motion of the rotational motion output shaft moves along the rotational motion output shaft direction. Converted to displacement of the moving body, and A motion conversion device configured to convert the displacement of the moving body into a rotational motion of the rotational motion output shaft is attached to at least one of a hip joint, a knee joint, and an ankle joint of a legged robot, and the motion The conversion device detects at least one of the pulling force F and the rotation angle of the mounted joint, and the pulling force F and / or the rotation angle of the mounted joint is desired based on the detection result. A control method for a leg joint drive device of a legged robot, wherein either one or both of the rotation angle α and the torque T is controlled so as to obtain a control amount of

請求項3に記載の発明は、請求項1に記載の脚式ロボットの脚関節駆動装置を用いて、前記回転運動出力軸の回転角度を前記線・条を捩り込んでいない状態として前記駆動モータと前記被装着関節が駆動系として分離された状態を作り、脚式ロボットに受動歩行を行わしめ、前記脚式ロボットの歩行サイクルの所定範囲においてのみ前記駆動モータによって前記被装着関節にトルクを加え、該脚式ロボットに受動動的歩行を行わしめ、さらに、前記駆動モータと前記被装着関節前記線・条を介して駆動系として結合状態として能動歩行を行わしめことを特徴とする脚式ロボットの脚関節駆動装置の制御方法である。 Invention of claim 3, wherein the drive motor in a state where the legged with leg joint driving apparatus for a robot, not the rotation angle of the rotary motion output shaft not crowded twisting the strip the wire-according to claim 1 the make state the mounted joint was isolated as a drive system, tighten performed passive walking legged robot, the torque to the mating attachment joint applied by the drive motor only in a predetermined range of the walking cycle of the legged robot with , tighten performed passive dynamic walking to the legged robot, further characterized in that the object to be mounted joint and the drive motor which accounts made active walking as coupling state as the driving system via the Article the line-leg It is a control method of the leg joint drive device of a robot.

本発明によれば、簡単な構造で、受動歩行、受動動的歩行、および能動的歩行の3種類の歩行を、特別な付加装置や切り換え機構を要することなく駆動モータの制御のみで実現できる脚式ロボットの脚関節駆動装置及びその制御方法を提供できる。また、低消費エネルギの歩行が可能である。さらに、駆動モータの逆回転によって線・条を弛めることによってロボット脚の関節と駆動モータを駆動系として分離して関節をフリーな状態とすることができ、人間とロボットが予期しない状況で接触したときにも人間への危害に対する安全性を高めることができるとともに、ロボットが転倒したときもロボットの故障を防げる確率を高め得る。   According to the present invention, a leg that can realize three types of walking, that is, passive walking, passive dynamic walking, and active walking, by simply controlling the drive motor without requiring a special additional device or switching mechanism, with a simple structure. A leg joint drive device for a robot and a control method therefor can be provided. In addition, walking with low energy consumption is possible. Furthermore, by loosening the line / strip by reverse rotation of the drive motor, the joint of the robot leg and the drive motor can be separated as the drive system to make the joint free, and humans and the robot contacted in unexpected situations Sometimes it is possible to increase the safety against human harm, and it is possible to increase the probability of preventing a robot failure even when the robot falls.

先ず、従来の脚式ロボットの脚関節駆動機構を説明すると、平地で受動動的歩行を実現する場合、腰の関節を駆動し膝にロック機構を搭載して足首を固くし足裏は、たとえば非特許文献3の611頁、Fig.5に見られるように、円形にする。歩行を持続するためには、支持脚が遊脚に変わる瞬間にその脚のロックを外し遊脚になった脚を前の方向に蹴るように腰関節に一時的にトルクを加える。しかし、従来のサーボモータとギヤの組合せからなる関節駆動装置では、専用のクラッチ機構などを搭載しない限り遊脚を前の方向に自由に振ることができず、モータが常に能動的に遊脚の運動に追従する必要がある。これによって、エネルギの消費が大きくなる。   First, the leg joint drive mechanism of a conventional legged robot will be described. When passive dynamic walking is realized on a flat ground, the hip joint is driven and a lock mechanism is mounted on the knee to fix the ankle and the sole is, for example, As shown in Fig. 5 on page 611 of Non-Patent Document 3, make it circular. In order to continue walking, at the moment when the supporting leg changes to a free leg, the leg is unlocked and a torque is temporarily applied to the hip joint so that the leg that has become a free leg is kicked in the forward direction. However, in a conventional joint drive device comprising a combination of a servo motor and a gear, the free leg cannot be freely swung in the forward direction unless a dedicated clutch mechanism or the like is mounted. It is necessary to follow the movement. This increases energy consumption.

また、空気圧式人工筋肉の場合、足を自由に振ることができるけれども、正確かつ迅速な制御が困難であるため、安定した歩行を実現することが難しく性能的に劣っている。   In the case of pneumatic artificial muscles, the legs can be freely shaken, but accurate and quick control is difficult, so that it is difficult to realize a stable walking and performance is inferior.

本発明において、関節を駆動するための駆動機構を説明する。関節の駆動機構の基本形を図1に示す。駆動モータ11の回転運動出力軸12端部の軸心部に少なくとも2本の線・条13の一端を固定し、他端を直線運動体14に、回転運動出力軸12の軸心から半径方向にそれぞれ所定距離Aだけ離隔せしめて固定する。回転運動出力軸12が角度αだけ回転すると線・条13は互いに捩り込み、直線運動体14が回転運動出力軸12の軸心方向に沿ってxだけ変位する。この変位は、直線方向又は、たとえば関節を回動せしめるときのように弧状の変位である。 In the present invention, a drive mechanism for driving the joint will be described. The basic form of the joint drive mechanism is shown in FIG. One end of at least two wires / stripes 13 is fixed to the shaft center of the rotary motion output shaft 12 of the drive motor 11, and the other end is fixed to the linear motion body 14 from the shaft center of the rotary motion output shaft 12 in the radial direction. Are fixed apart by a predetermined distance A. When the rotary motion output shaft 12 rotates by an angle α, the lines / stripes 13 are twisted together, and the linear motion body 14 is displaced by x along the axial direction of the rotary motion output shaft 12. This displacement is a linear direction or an arcuate displacement, for example, when the joint is rotated.

ここで、最小のスペースで十分なストロークを得るために、設計パラメータである線・条13の他端を直線運動体14に固定するときの回転運動出力軸12の軸心からの半径方向への所定距離A及び線・条13の長さLを適切に選ぶ必要がある。また、モータ(回転駆動源)11のトルクTと、線・条13の捩り込みによる駆動モータの軸方向へ運動体14を変位させる引張り力Fの関係は線・条13の太さ(直径)によって左右されるから、モータ(回転駆動源)11のトルクTを大きな引張り力に変換するためには、細い線・条13を使うことが望ましい。 Here, in order to obtain a sufficient stroke in a minimum space, the radial direction from the axial center of the rotary motion output shaft 12 when the other end of the line / strip 13 which is a design parameter is fixed to the linear motion body 14 is used. It is necessary to appropriately select the predetermined distance A and the length L of the line / strip 13. Further, the relationship between the torque T of the motor (rotary drive source) 11 and the tensile force F that displaces the moving body 14 in the axial direction of the drive motor due to the twisting of the wire / strip 13 is the thickness (diameter) of the wire / strip 13. Therefore, in order to convert the torque T of the motor (rotary drive source) 11 into a large tensile force, it is desirable to use a thin wire / strip 13.

2本の線・条13を使う場合、回転運動出力軸12の回転角度α(rad)と、直線運動体14の運動変位量xの関係は、 When two lines / stripes 13 are used, the relationship between the rotation angle α (rad) of the rotary motion output shaft 12 and the motion displacement amount x of the linear motion body 14 is

Figure 0004372816
Figure 0004372816

で与えられる。ここで、Lは線・条13を完全に解いたときの線・条13の長さ、Aは線・条13の、直線運動体14における固定部位の回転運動出力軸12の軸心から半径方向の離隔距離、Rは線・条13の半径である。但し、R<<LかつR<<Aである。 Given in. Here, L is the length of the wire / strip 13 when the wire / strip 13 is completely solved, and A is a radius from the axis of the rotary motion output shaft 12 of the fixed portion of the linear motion body 14 of the wire / strip 13. The distance in the direction, R, is the radius of the line / strip 13. However, R << L and R << A.

選んだ線・条13の長さLと半径R、回転運動出力軸12の軸心から半径方向の離隔距離Aとから理論的最大ストロークxmaxおよびそのときの最大回転角度αmax(rad)は、 The theoretical maximum stroke x max and the maximum rotation angle α max (rad) at that time are determined from the length L and radius R of the selected wire / strip 13 and the radial distance A from the axis of the rotary motion output shaft 12. ,

Figure 0004372816
Figure 0004372816

で与えられる。 Given in.

また、モータ11のトルクTと引張り力Fの関係は、   Further, the relationship between the torque T of the motor 11 and the tensile force F is

Figure 0004372816
Figure 0004372816

で示される。 Indicated by

線・条13としては、可撓性を有するとともに引張り強度に優れ適切な剛性をもちかつ繰り返し曲げに対する十分な耐久性をもつ高強度繊維たとえば、炭素繊維、Kevlar、ザイロン、ナイロン等を用いることができる。
また、線・条13の断面形状としては、円、多角形、または長方形(リボン)とすることができる。長方形(リボン)にすると、同じトルク引張り力変換率でより大きな断面積とすることができ、伝達可能な力容量を増大させ得る。
As the wire / strip 13, a high-strength fiber having flexibility, excellent tensile strength, appropriate rigidity, and sufficient durability against repeated bending, such as carbon fiber, Kevlar, Zylon, nylon, etc. is used. be able to.
In addition, the cross-sectional shape of the wire / strip 13 can be a circle, a polygon, or a rectangle (ribbon). When a rectangular shape (ribbon) is used, a larger cross-sectional area can be obtained with the same torque- to- tensile force conversion ratio, and the force capacity that can be transmitted can be increased.

さらに、線・条13の耐久性を増すために、四弗化エチレン樹脂(登録商標:テフロン)、ナイロンなど摩擦係数の小さな材料でコーティングを線・条13に施し、線・条同士の摩擦および素線同士の摩擦を減少させるとよい。また、線・条13の耐久性(寿命)を向上させる目的で、線・条同士の摩擦を減少せしめるべく、適切な潤滑剤(グリース、オイル、粉末材およびこれらの組み合わせ)を線・条13に適用することができる。たとえば、有機、無機グリース、オイル、四弗化エチレン樹脂(登録商標:テフロン)粉、ナイロン粉、モリコート等およびこれらの組み合わせを用いることができる。   Furthermore, in order to increase the durability of the wire / strip 13, the wire / strip 13 is coated with a material having a small friction coefficient such as tetrafluoroethylene resin (registered trademark: Teflon), nylon, etc. It is good to reduce the friction between strands. In addition, for the purpose of improving the durability (life) of the wire / strip 13, an appropriate lubricant (grease, oil, powder material and a combination thereof) is applied to reduce the friction between the wires / strip 13 Can be applied to. For example, organic, inorganic grease, oil, ethylene tetrafluoride resin (registered trademark: Teflon) powder, nylon powder, Molycoat, and combinations thereof can be used.

本発明の脚式ロボットの脚関節駆動装置及びその制御方法においては、足の構造を従来通りとし、腰関節に、図1に示す基本形を応用した、図2に示す駆動装置を搭載する。この駆動装置は、ロボットの脚6を駆動するために、ロボットの胴体5に固定された駆動モータ1と駆動モータ1の回転出力軸2の軸心部にその一端を固定されるとともに他端をロボットの脚5に回転出力軸2の軸心から半径方向に距離Aだけ離隔して直接固定されるか或いは弾性変形可能な直線運動体4を介して固定される少なくとも2本の線・条3から構成される。弾性変形可能な直線運動体4は、衝撃を和らげ、線・条3の切断を防ぎまた、必要に応じて力の検出を可能にする。駆動モータ1の回転によって少なくとも2本の線・条3が捩り込まれ、脚6または直線運動体4に引張り力が働き、関節の回転を生ずる。   In the leg joint drive device and control method thereof for the legged robot of the present invention, the foot structure is the same as the conventional one, and the drive device shown in FIG. In order to drive the leg 6 of the robot, this drive device has one end fixed to the shaft center of the drive motor 1 fixed to the robot body 5 and the rotation output shaft 2 of the drive motor 1 and the other end. At least two lines / strips 3 which are directly fixed to the robot leg 5 at a distance A in the radial direction from the axis of the rotary output shaft 2 or fixed via an elastically deformable linear motion body 4 Consists of The elastically deformable linear motion body 4 softens the impact, prevents the wire / strip 3 from being cut, and enables detection of force as necessary. At least two wires / stripes 3 are twisted by the rotation of the drive motor 1, and a tensile force acts on the legs 6 or the linear motion body 4 to cause the joint to rotate.

本発明の脚式ロボットの脚関節駆動装置の特徴は、駆動モータ1の制御を行うことのみで、ロボットの脚の関節と駆動モータを駆動系として分離できる点にある。駆動モータ1の回転角度を制御して少なくとも2本の線・条3を捩り込んでいない状態におくと、関節7が可動範囲内で自由に動くようになる。即ち、ロボットの脚の関節と駆動モータが駆動系として分離された状態となる。   The feature of the leg joint drive device of the legged robot according to the present invention is that the joint of the leg of the robot and the drive motor can be separated as a drive system only by controlling the drive motor 1. When the rotational angle of the drive motor 1 is controlled to keep at least two wires / stripes 3 from being twisted, the joint 7 can move freely within the movable range. That is, the joint of the leg of the robot and the drive motor are separated as a drive system.

ロボットの関節の回動角度と駆動モータ1の回転角度αをそれぞれ検出し、適切なプログラムが搭載されたコンピュータCUを用いて駆動モータ1を制御すれば、必要に応じて関節をフリーな状態にすることができる。さらに、直線運動体4に力の検出手段たとえばロードセルを付設すれば、関節の駆動トルクの検出および制御も可能になる。 If the rotation angle α of the joint of the robot and the rotation angle α of the drive motor 1 are detected and the drive motor 1 is controlled using a computer CU equipped with an appropriate program, the joint can be made free as necessary. can do. Further, if a force detecting means such as a load cell is attached to the linear motion body 4, the joint drive torque can be detected and controlled.

この制御システムを図3に示す。図3に示すように、関節駆動装置における直線運動体4即ち回転運動出力軸2の軸方向に沿う運動を行う運動体に作用する力Fおよび関節の回動角度117Aならびに駆動モータ1の回転角度αを検出し、その検出結果を制御装置CUに入力して関節に所望の回動角度と回動トルクTを付与すべく、所与の駆動モータ1の回転角度α、トルクTが操作量として駆動モータ1から出力される。図3において、113はワイヤ式駆動装置117ASは関節角度センサである。 This control system is shown in FIG. As shown in FIG. 3, the force F acting on the linear motion body 4 in the joint drive device, that is, the motion body that moves along the axial direction of the rotary motion output shaft 2, the rotation angle 117 </ b> A of the joint 7 , and the rotation of the drive motor 1. The angle α is detected, and the detection result is input to the control unit CU, and the rotation angle α and torque T of a given drive motor 1 are operated to give the joint 7 a desired rotation angle and rotation torque T. The amount is output from the drive motor 1. In FIG. 3, 113 is a wire-type drive device , and 117AS is a joint angle sensor.

本発明の脚式ロボットの脚関節駆動装置及びその制御方法の一実施例を説明する。図4に、2足歩行ロボットの片足を例に取り上げて、腰関節7に本発明の脚式ロボットの脚関節駆動装置を搭載したものを示す。図4に示すように、本発明の脚式ロボットの脚関節駆動装置を制御することによって、クラッチ機構などがなくとも遊脚が自由に運動でき、かつ脚が支持脚から遊脚に変わる瞬間から関節にトルクを一時的に加えその慣性力により遊脚を自由運動させることができる。遊脚が自由に運動する間には駆動モータが停止することになるので、無駄なエネルギ消費を避けることができる。図4において、T、θは駆動モータのトルクおよび回転角度であり、Tは腰関節の駆動トルクである。 An embodiment of a leg joint driving apparatus and control method for a legged robot according to the present invention will be described. FIG. 4 shows a case where one leg of a biped robot is taken as an example, and the leg joint driving device of the legged robot of the present invention is mounted on the hip joint 7. As shown in FIG. 4, by controlling the leg joint driving device of the legged robot of the present invention, the free leg can freely move without a clutch mechanism and the moment the leg changes from the supporting leg to the free leg. By temporarily applying torque to the joint, the free leg can be freely moved by its inertial force. Since the drive motor stops while the free leg moves freely, wasteful energy consumption can be avoided. In FIG. 4, T M and θ M are the torque and rotation angle of the drive motor, and T H is the drive torque of the hip joint.

遊脚が地面に接触する瞬間(図4において、「支持脚が遊脚に切り替わる時点1」と呼ぶ。)を足裏の接触スイッチや隣接センサなどの検出手段を用いて検出する。この検出された瞬間から膝がロックされているなら膝のロックを解除して腰関節の駆動モータ1に電流を流し、腰関節7にトルクを加える。腰関節7の角度センサ117ASで遊脚の運動を検出し、目標の運動に達すれば遊脚の駆動を終了して駆動モータを初期位置に戻す。この時点からは、外乱補償や歩幅の変更などの必要がなければ、駆動モータ1が停止し、次の「支持脚が遊脚に切り替わる時点1」までは駆動モータ1の消費エネルギがゼロになり、ロボットが受動歩行を行う。図4に示す他方の足(破線で示す)も同様に駆動および制御を加えることによって、平地や緩やかな坂で最も簡単なロボットの受動動的歩行を実現できる。   The moment when the free leg comes into contact with the ground (referred to as “time point 1 when the supporting leg is switched to the free leg” in FIG. 4) is detected by using a detection means such as a contact switch on the sole or an adjacent sensor. If the knee is locked from the moment of detection, the knee is unlocked and a current is supplied to the drive motor 1 of the hip joint to apply torque to the hip joint 7. The motion of the free leg is detected by the angle sensor 117AS of the waist joint 7. When the target motion is reached, the drive of the free leg is terminated and the drive motor is returned to the initial position. From this point of time, if there is no need for disturbance compensation or change of stride, the drive motor 1 stops and the energy consumption of the drive motor 1 becomes zero until the next “time point 1 at which the support leg is switched to the free leg”. The robot performs passive walking. The other leg (shown by a broken line) shown in FIG. 4 is similarly driven and controlled to realize the simplest passive dynamic walking of the robot on a flat ground or a gentle slope.

図4に示す脚の駆動方法では、ロボットの胴体5の傾き(姿勢)の制御が不可能である。そこで、胴体5の傾き制御と歩行を同時に行うためには、それぞれの脚の腰関節7の前方(F)と後方(B)それぞれに本発明の駆動装置を装着する。前方と後方の駆動モータ1の制御によって胴体5の傾き(姿勢)の制御を行う。図5に示すように、たとえば、支持脚(L)が遊脚に変わる瞬間から歩行のためにこの脚の腰関節7に前方の駆動モータLHFを使ってトルクTHLを加える。同時に胴体5が前に傾くので、この傾きを制御するために、同時に支持脚に変わったR脚の後方の駆動モータRHBを使って腰関節に反対方向のトルクTHRを加える。このトルクはロボットの歩行にもエネルギを供給するので、歩行速度(歩幅)および胴体5の傾き(姿勢)を2つの駆動モータ1で同時に制御することが可能になる。また、本発明の脚式ロボットの脚関節駆動装置及びその制御方法は、膝7Nの回転方式や図6に示すような伸縮方式の実現に関係なく適用できる。 With the leg driving method shown in FIG. 4, it is impossible to control the tilt (posture) of the robot body 5. Therefore, in order to perform the tilt control of the torso 5 and walking at the same time, the driving device of the present invention is attached to the front (F) and the rear (B) of the hip joint 7 of each leg. The tilt (posture) of the body 5 is controlled by the control of the front and rear drive motors 1. As shown in FIG. 5, for example, torque T HL is applied to the hip joint 7 of the leg using a front drive motor L HF for walking from the moment when the support leg (L) changes to a free leg. At the same time, the torso 5 tilts forward, and in order to control this tilt, torque T HR in the opposite direction is applied to the hip joint using the drive motor R HB behind the R leg that has changed to the support leg at the same time. Since this torque also supplies energy to the walking of the robot, the walking speed (step length) and the inclination (posture) of the trunk 5 can be controlled simultaneously by the two drive motors 1. Further, the leg joint driving device and control method thereof for the legged robot of the present invention can be applied regardless of the rotation method of the knee 7N or the realization of the expansion / contraction method as shown in FIG.

ロボットは平地だけでなく、多少の段差がある床などの上でも歩ける必要がある。特に、荒れ地での歩行や階段の上り下りをするときには、膝関節7Nの駆動が必要不可欠である。そこで、本発明の装置をロボットの膝関節7Nにも装着し、必要に応じて膝関節7Nを能動的に制御する。また、膝関節7Nの駆動が必要ないときは、駆動モータを初期状態に戻すことによって、膝関節7Nが自由に動くようにする。膝関節駆動装置と該膝関節駆動装置を備えたロボットの脚を図7に示す。   Robots need to be able to walk not only on flat ground but also on floors with slight steps. In particular, when walking in a wasteland or going up and down stairs, it is essential to drive the knee joint 7N. Therefore, the apparatus of the present invention is also mounted on the knee joint 7N of the robot, and the knee joint 7N is actively controlled as necessary. Further, when it is not necessary to drive the knee joint 7N, the knee motor 7N is moved freely by returning the drive motor to the initial state. FIG. 7 shows a knee joint driving device and a leg of a robot equipped with the knee joint driving device.

従来の受動動的歩行ロボットは足首が固く、足裏が円形である例が多く見受けられる。その理由の1つは、省エネルギ歩行を実現するためにアクチュエータの数をできるだけ減らすことにあるが、もう1つの理由は、従来の駆動技術を用いたロボット関節が重く高価であることである。しかし、足首を固くすることによってロボットの歩行が不安定になりやすく、僅かな段差や外乱によってロボットが転倒する。
本発明の脚関節駆動装置を用いることによって軽量かつ安価な足首の関節駆動が可能であるので、段差や外乱に対して強い受動動的歩行が可能になる。図8に、この実施例になる、腰関節7と足首関節7Aに本発明の脚関節駆動装置を備えたロボットの脚を示す。
Many conventional passive dynamic walking robots have a hard ankle and a circular sole. One of the reasons is to reduce the number of actuators as much as possible in order to realize energy-saving walking. Another reason is that the robot joint using the conventional driving technique is heavy and expensive. However, when the ankle is hardened, the robot's walking tends to become unstable, and the robot falls due to a slight step or disturbance.
By using the leg joint driving device of the present invention, it is possible to drive ankle joints that are light and inexpensive, and thus passive dynamic walking that is strong against steps and disturbances is possible. FIG. 8 shows a leg of a robot provided with the leg joint driving device of the present invention at the waist joint 7 and the ankle joint 7A according to this embodiment.

足首の制御と腰関節7の制御によって、従来の、緩やかな坂を下る受動歩行ロボットにこの2つの関節を介してエネルギを供給し、平地でも歩行可能な、より安定した受動動的歩行を実現する。遊脚と支持脚の入れ替わりの瞬間の少し前に足首7Aで床を蹴る動作で下り坂の傾きに相当する効果を得て、腰関節の駆動では歩幅および胴体5の傾き(姿勢)を制御する。平地であれば膝7Nの駆動は不要であり、より消費エネルギの少ない安定的かつロバストな歩行を実現できる。また、もっと軽量かつ安価な足首7Aを実現するために、図9に示すように、後方の駆動装置のみを搭載し、前方の駆動を引張りばね8によって行うこともできる。   By controlling the ankle and the hip joint 7, energy is supplied to the conventional passive walking robot that goes down a gentle slope through these two joints, realizing a more stable passive dynamic walking that can walk even on flat ground. To do. An effect equivalent to the inclination of the downhill is obtained by kicking the floor with the ankle 7A slightly before the moment of switching between the free leg and the supporting leg, and the step length and the inclination (posture) of the trunk 5 are controlled by driving the hip joint. . If it is flat, it is not necessary to drive the knee 7N, and stable and robust walking with less energy consumption can be realized. Further, in order to realize a lighter and cheaper ankle 7A, as shown in FIG. 9, only the rear driving device can be mounted and the front driving can be performed by the tension spring 8.

膝が駆動されていない実施例4におけるロボットの場合、階段の上り下りが不可能である。而して、階段の上り下りも可能な高性能ロボットには、膝関節7Nの駆動も必要である。腰、膝、および足首の全関節を駆動またはフリーにできるロボット脚を、図10に示す。従来のロボット脚駆動方式と比較すると駆動モータの数が増えるが、歯車等の減速機構が必要ないため価格的に有利又は同等である。本発明の脚関節駆動装置及びその制御方法による場合、従来、困難であった各関節における駆動モータと関節を駆動系として簡単に分離できる優れた機能があり、従来のロボット脚駆動方式に比し卓越した優位性をもつ。   In the case of the robot in the fourth embodiment in which the knee is not driven, it is impossible to ascend and descend the stairs. Thus, a high-performance robot capable of going up and down stairs also needs to drive the knee joint 7N. A robot leg that can drive or free all hip, knee and ankle joints is shown in FIG. Compared with the conventional robot leg drive system, the number of drive motors is increased, but since a speed reduction mechanism such as a gear is not required, it is advantageous or equivalent in price. According to the leg joint driving device and the control method thereof according to the present invention, there is an excellent function that can easily separate the driving motor and the joint at each joint, which has been difficult in the past, as a driving system. Has an excellent advantage.

本発明の脚式ロボットの脚関節駆動装置及びその制御方法によれば、歯車等の減速機構がないため少ない消費エネルギでの歩行が可能である。さらに、ロボットの関節をフリーにできることによって、人間とロボットが予期しない状況で接触したときにも人間への危害に対する安全性を高めることができるとともに、ロボットが転倒したときもロボットの故障を防げる確率を高め得る。人間とロボットが予期しない状況で接触したときにも人間への危害に対する安全性を高めることができるとともに、ロボットが転倒したときもロボットの故障を防げる確率を高め得る。 According to the leg joint drive device and control method for a legged robot according to the present invention, since there is no speed reduction mechanism such as a gear, walking with less energy consumption is possible. Furthermore, the ability to make the robot's joints free increases the safety against human injury even when humans and robots come into contact in unexpected situations, and the probability of preventing robot failure when the robot falls. Can increase. When humans and robots come into contact with each other in an unexpected situation, safety against human harm can be increased, and even when a robot falls, the probability of preventing robot failure can be increased.

本発明の脚式ロボットの脚関節駆動装置における関節駆動系の基本形を示す斜視図 (a)は回転運動−直線運動変換機構を示す図、(b)は関節駆動のための回転運動−直線運動変換機構を示す図である。The perspective view which shows the basic form of the joint drive system in the leg joint drive device of the leg type | formula robot of this invention (a) is a figure which shows a rotational motion-linear motion conversion mechanism, (b) is the rotational motion for joint drive-linear motion It is a figure which shows a conversion mechanism. 本発明の脚式ロボットの脚関節駆動装置を示す模式図Schematic diagram showing the leg joint drive device of the legged robot of the present invention 本発明の一実施例に係る脚式ロボットの脚関節駆動装置の制御系を示すブロックダイグラム1 is a block diagram showing a control system of a leg joint drive device of a legged robot according to one embodiment of the present invention. 本発明の一実施例に係る脚式ロボットの脚関節駆動装置における腰関節の駆動装置制御方法を示す模式図The schematic diagram which shows the drive device control method of the hip joint in the leg joint drive device of the legged robot which concerns on one Example of this invention. 本発明の他の実施例に係る脚式ロボットの脚関節駆動装置において、歩行と胴体の姿勢を同時に制御する方法を示す模式図FIG. 6 is a schematic diagram showing a method for simultaneously controlling walking and a posture of a torso in a leg joint driving device for a legged robot according to another embodiment of the present invention. 本発明の他の実施例に係る脚式ロボットの脚関節駆動装置において、歩行と胴体の姿勢を同時に制御する方法を膝関節が伸縮する場合の適用を示す模式図FIG. 5 is a schematic diagram showing an application of a method for simultaneously controlling walking and torso posture when a knee joint expands and contracts in a leg joint driving device for a legged robot according to another embodiment of the present invention. 本発明の他の実施例に係る脚式ロボットの脚関節駆動装置を腰関節と膝関節に適用した脚を示す模式図The schematic diagram which shows the leg which applied the leg joint drive device of the leg type robot which concerns on the other Example of this invention to the waist joint and the knee joint. 本発明の他の実施例に係る脚式ロボットの脚関節駆動装置を腰関節と足首関節に適用した脚を示す模式図The schematic diagram which shows the leg which applied the leg joint drive device of the legged robot which concerns on the other Example of this invention to the waist joint and the ankle joint. 図8に示す実施例において、あしくび関節駆動を軽量化した実施 例を示す模式図FIG. 8 is a schematic diagram showing an embodiment in which the weight of the joint drive is reduced in the embodiment shown in FIG. 本発明の他の実施例に係る脚式ロボットの脚関節駆動装置を腰関節膝関節、および足首関節に適用した脚を示す模式図The schematic diagram which shows the leg which applied the leg joint drive device of the legged robot which concerns on the other Example of this invention to the hip joint knee joint and the ankle joint.

符号の説明Explanation of symbols

1 駆動モータ
2 回転運動出力軸
3 線・条
4 直線運動体
5 胴体
6 脚
7 関節
11 駆動モータ
12 回転運動出力軸
13 線・条
14 直線運動体
17 関節
A 直線運動体における線・条固定端の離隔距離
DESCRIPTION OF SYMBOLS 1 Drive motor 2 Rotation motion output shaft 3 Line | wire / strip | line 4 Linear motion body 5 Torso 6 Leg 7 Joint 11 Drive motor 12 Rotation motion output shaft 13 Line | wire / strip | line 14 Linear motion body 17 Joint A Line | wire and strip fixed end in a linear motion body Separation distance

Claims (3)

少なくとも2本の線・条の一端を回転運動出力軸端の軸心部に固定するとともに、該線・条の他端を前記回転運動出力軸方向に沿う運動を行う運動体の、前記回転運動出力軸の軸心に関し対称となるとともに軸心から所定距離A離隔する部位に固定し、また、該所定距離A、前記線・条の長さL、前記線・条の半径R、前記回転運動出力軸の回転角度αを前記運動体の運動変位量xのパラメータとするとともに駆動モータのトルクTと前記運動体を前記回転運動出力軸の方向に変位せしめる引張り力Fの関係を律するパラメータとして、前記回転運動出力軸の回転によって前記少なくとも2本の線・条に捩りを生ぜしめて前記回転運動出力軸の回転運動を前記回転運動出力軸方向に沿う運動を行う運動体の変位に変換しまた、前記運動体の変位を前記回転運動出力軸の回転運動に変換するよう構成してなる運動変換装置を、脚式ロボットの腰関節、膝関節、および足首関節の少なくとも1つに装着したことを特徴とする脚式ロボットの脚関節駆動装置。 The rotational motion of the moving body that fixes at least one end of at least two lines / strips to the axial center of the rotary motion output shaft end and moves the other end of the wire / strip along the rotational motion output axis direction fixed with a symmetrical about the axis of the output shaft at a site spaced apart a predetermined distance a from the axis, also the predetermined distance a, the length L of the line-Article radius R of the wire-strip, said rotating A parameter that regulates the relationship between the torque T of the drive motor and the tensile force F that displaces the moving body in the direction of the rotary motion output shaft while the rotational angle α of the motion output shaft is used as a parameter of the motion displacement amount x of the moving body. The rotation of the rotary motion output shaft causes the at least two lines / stripes to be twisted to convert the rotational motion of the rotary motion output shaft into the displacement of the moving body that performs the motion along the direction of the rotational motion output shaft. , In addition, the exercise A leg is characterized in that a movement conversion device configured to convert the displacement of the movement into a rotary movement of the rotary movement output shaft is attached to at least one of a hip joint, a knee joint, and an ankle joint of a legged robot. -Type robot leg joint drive device. 少なくとも2本の線・条の一端を回転運動出力軸端の軸心部に固定し、
該線・条の他端を前記回転運動出力軸方向に沿う運動を行う運動体の、前記回転運動出力軸の軸心に関し対称となるとともに該軸心から所定距離A離隔する部位に固定し、
前記所定距離A、前記線・条の長さL、前記線・条の半径R、前記回転運動出力軸の回転角度αを前記運動体の運動変位量xのパラメータとするとともに駆動モータのトルクTと前記運動体を前記回転運動出力軸の方向に変位せしめる引張り力Fとの関係を律するパラメータとして、
前記回転運動出力軸の回転によって前記少なくとも2本の線・条に捩りを生じさせ、
前記回転運動出力軸の回転運動を前記回転運動出力軸方向に沿う運動を行う運動体の変位に変換し、また、前記運動体の変位を前記回転運動出力軸の回転運動に変換するよう構成してなる運動変換装置を、脚式ロボットの腰関節、膝関節、および足首関節の少なくとも1つに装着し、
前記運動変換装置が、前記引張り力Fと前記被装着関節の回動角度の少なくとも1つを検出し、該検出結果に基づいて前記引張り力F、および/または、前記被装着関節の回動角度所望の制御量となるよう、前記回転角度αおよび前記トルクTの何れか一方または双方を制御することを特徴とする脚式ロボットの脚関節駆動装置の制御方法。
Fix one end of at least two wires / strips to the shaft center of the rotary motion output shaft end,
The other end of the wire / strip is fixed to a portion of the moving body that moves along the direction of the rotary motion output axis, symmetrical with respect to the axis of the rotary motion output shaft and separated from the axis by a predetermined distance A,
The predetermined distance A, the length L of the wire / strip, the radius R of the wire / strip, and the rotation angle α of the rotary motion output shaft are used as parameters of the motion displacement amount x of the moving body and the torque T of the drive motor. As a parameter governing the relationship between the tension force F that displaces the moving body in the direction of the rotary motion output axis,
Causing the at least two wires / strips to twist by rotation of the rotary motion output shaft;
The rotary motion of the rotary motion output shaft is converted into the displacement of a moving body that moves along the direction of the rotary motion output axis, and the displacement of the mobile body is converted into the rotational motion of the rotary motion output shaft. The motion conversion device is attached to at least one of a hip joint, a knee joint, and an ankle joint of a legged robot,
The motion conversion device detects at least one of the tensile force F and the rotation angle of the attached joint , and based on the detection result, the tensile force F and / or the rotation angle of the attached joint . A method for controlling a leg joint drive device of a legged robot, wherein either or both of the rotation angle α and the torque T are controlled so that a desired control amount is obtained.
請求項1に記載の脚式ロボットの脚関節駆動装置を用いて、前記回転運動出力軸の回転角度を前記線・条を捩り込んでいない状態として前記駆動モータと前記被装着関節が駆動系として分離された状態を作り、脚式ロボットに受動歩行を行わしめ
前記脚式ロボットの歩行サイクルの所定範囲においてのみ前記駆動モータによって前記被装着関節にトルクを加え、該脚式ロボットに受動動的歩行を行わしめ、さらに
前記駆動モータと前記被装着関節前記線・条を介して駆動系として結合状態として能動歩行を行わしめことを特徴とする脚式ロボットの脚関節駆動装置の制御方法。
With leg joint drive device of the legged robot according to claim 1, as the rotary motion output shaft the mating attachment joint and the drive motor rotation angle in a state where no crowded twisting Clause the line-of drive system Create a separated state, let the legged robot perform passive walking ,
The legged torque to the mating attachment joint by the drive motor only in a predetermined range of the walking cycle of the robot added, tighten performed passive dynamic walking to the legged robot, further,
The method of the leg joint driving device of a legged robot, characterized in that, which accounts made active walking the mating attachment joint and the drive motor as a coupling state as the driving system via the Article the line-.
JP2007227307A 2007-09-03 2007-09-03 Leg joint drive device for legged robot and control method thereof Expired - Fee Related JP4372816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007227307A JP4372816B2 (en) 2007-09-03 2007-09-03 Leg joint drive device for legged robot and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007227307A JP4372816B2 (en) 2007-09-03 2007-09-03 Leg joint drive device for legged robot and control method thereof

Publications (3)

Publication Number Publication Date
JP2009056567A JP2009056567A (en) 2009-03-19
JP2009056567A5 JP2009056567A5 (en) 2009-09-24
JP4372816B2 true JP4372816B2 (en) 2009-11-25

Family

ID=40552787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007227307A Expired - Fee Related JP4372816B2 (en) 2007-09-03 2007-09-03 Leg joint drive device for legged robot and control method thereof

Country Status (1)

Country Link
JP (1) JP4372816B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103433935B (en) * 2013-09-16 2016-02-24 胡明建 The method for designing that magnetic keeps parallel stepping plane of oscillation is driven in a kind of
CN109264415A (en) * 2017-07-18 2019-01-25 山东交通学院 A kind of combination drive four-degree-of-freedom robot stacking mechanism and control method
CN109367643B (en) * 2018-11-02 2021-03-16 常州大学 Four-foot crawling bionic robot based on connecting rod structure
EP3696060A1 (en) * 2019-02-18 2020-08-19 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Robot leg and robotic system
CN111618836A (en) * 2020-05-04 2020-09-04 五邑大学 Double-output winding rope driver
CN114044070B (en) * 2021-12-17 2022-08-26 南京航空航天大学 Multi-degree-of-freedom variable-rigidity bionic gecko pneumatic forearm

Also Published As

Publication number Publication date
JP2009056567A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4372816B2 (en) Leg joint drive device for legged robot and control method thereof
US8237390B2 (en) Drive unit for legged robots and control method thereof
US9446514B2 (en) Lower limb structure for legged robot, and legged robot
US20190160658A1 (en) Joint unit, joint system, robot for manipulation and/or transportation, robotic exoskeleton system and method for manipulation and/or transportation
Grimes et al. The design of ATRIAS 1.0 a unique monopod, hopping robot
JP6927616B2 (en) Knee joint
EP2381910B1 (en) Linear actuator and rehabilitation device incorporating such an actuator
KR101565945B1 (en) Platform of stairs climbing
EP3612358B1 (en) Robotic manipulator
KR102067221B1 (en) An ankle structure for humanoid robot using two cylindrical linear series elastic actuator parallely
KR102213377B1 (en) Robot legs structure for high speed and high torque
US7441614B2 (en) Legged mobile robot
KR20130014286A (en) A method for implemenlation of quadruped robot with low power walking
Moreira et al. An inchworm-inspired robot based on modular body, electronics and passive friction pads performing the two-anchor crawl gait
US11612536B2 (en) Wearable apparatus for assisting muscular strength and a method for controlling the same
Ota et al. Research on a six-legged walking robot with parallel mechanism
Zielinska et al. Mechanical design of multifunctional quadruped
Smith et al. Bounding gait in a hybrid wheeled-leg robot
Kanada et al. Mobile continuum robot with unlimited extensible sections
JP2007307686A (en) Robot arm and robot
Kinugasa et al. Development of a three-dimensional dynamic biped walking via the oscillation of telescopic knee joint and its gait analysis
Yamada A Radial Crank-type continuously variable transmission driven by two ball screws
Rost et al. The QuadHelix-Drive-An improved rope actuator for robotic applications
Tazaki Parallel link-based light-weight leg design for bipedal robots
EP4321772A1 (en) Backdrivable actuator for exoskeleton

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090626

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees