JP4372810B2 - Construction material and manufacturing method thereof - Google Patents
Construction material and manufacturing method thereof Download PDFInfo
- Publication number
- JP4372810B2 JP4372810B2 JP2007179800A JP2007179800A JP4372810B2 JP 4372810 B2 JP4372810 B2 JP 4372810B2 JP 2007179800 A JP2007179800 A JP 2007179800A JP 2007179800 A JP2007179800 A JP 2007179800A JP 4372810 B2 JP4372810 B2 JP 4372810B2
- Authority
- JP
- Japan
- Prior art keywords
- incinerated ash
- construction material
- granulated product
- earth metal
- metal compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/06—Aluminous cements
- C04B28/065—Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/10—Burned or pyrolised refuse
- C04B18/105—Gaseous combustion products or dusts collected from waste incineration, e.g. sludge resulting from the purification of gaseous combustion products of waste incineration
- C04B18/106—Fly ash from waste incinerators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Combustion & Propulsion (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Civil Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、建設材料およびその製造方法に関し、より詳細には、土木工事において発生する高含水率の泥土を土壌として再生する等のために使用し得る建設材料およびその製造方法に関する。 The present invention relates to a construction material and a method for producing the same, and more particularly to a construction material that can be used to regenerate mud soil having a high water content generated in civil engineering as soil, and a method for producing the same.
土木工事において発生する高含水率の泥土を現場から素早く容易に移動させるためには、泥土の水分を吸収し土壌として再生することが必要である。泥土の水分を吸収する手段として、(1)焼却灰、(2)セメント、又は(3)高分子吸収剤などを工事現場において添加混合する方法が知られている。 In order to move the high moisture content mud generated in civil engineering work quickly and easily from the site, it is necessary to absorb the mud's moisture and regenerate it as soil. As means for absorbing the mud's moisture, a method is known in which (1) incineration ash, (2) cement, or (3) a polymer absorbent is added and mixed at the construction site.
しかし、(1)の焼却灰を添加混合する方法は、吸水性に優れてはいるが、微細粒子状でハンドリングが容易でなく、粉塵が発生するという問題がある。また、(2)のセメントを添加混合する方法は、固化強度に優れてはいるが、固化に時間を要するだけでなく、処理後の泥土を再利用する場合に破砕が必要となり、また溶出pHが高いために植生物に悪影響があり、再利用に適していないという問題がある。(3)の高分子吸収剤を添加混合する方法は、吸水性に優れているものの、得られる処理土はゲル状の高分子吸収剤を含んでいるため、埋め立てなどに再利用した場合に地耐力が低いという問題がある。 However, although the method (1) of adding and mixing incineration ash is excellent in water absorption, there is a problem that fine particles are not easy to handle and dust is generated. In addition, the method of adding and mixing the cement of (2) is excellent in solidification strength, but not only does it take time to solidify, but also requires crushing when reusing the mud after treatment, and the elution pH. However, there is a problem that vegetation has an adverse effect and is not suitable for reuse. Although the method (3) of adding and mixing the polymer absorbent is excellent in water absorption, the treated soil obtained contains a gel-like polymer absorbent. There is a problem that the yield strength is low.
更に、(1)の焼却灰は平成15年環境省告示第18号で規制されたホウ素、フッ素などの有害物質を含有しているため、焼却灰を用いる場合は何らかの処理を施すことにより、この法規制を満たすようにしなければならない。 Furthermore, since the incineration ash of (1) contains harmful substances such as boron and fluorine regulated by the Ministry of the Environment Notification No. 18 of 2003, when using the incineration ash, this treatment can be done by applying some kind of treatment. You must meet the regulations.
そこで、焼却灰に含まれる有害物質を不溶化及び/又は難溶化する方策として、燃焼炉に石灰石などを添加する方法が提案されている(例えば、特許文献1)。 Then, the method of adding limestone etc. to a combustion furnace is proposed as a measure which insolubilizes the harmful substance contained in incineration ash, and / or makes it slightly soluble (for example, patent document 1).
また、他の方法として、焼却灰にカルシウム化合物、セメント、硫酸アルミニウムを水の存在下に混合処理し、フッ素及びホウ素の溶出量を土壌環境基準以下に調整する方法が提案されている(例えば、特許文献2)。
しかしながら、特許文献1に記載の方法では、石灰石の固化凝集のため、十分な吸水性が確保できず、また石灰石の粒子径が微細であるため、焼却灰と同様にハンドリング、使用時の粉塵発生に問題があった。また、土壌に混合した場合の土壌に由来する有害物質の除去等については着目していないため、土壌に混合した場合に十分な有害物質除去能を発揮することは難しいと考えられる。
However, in the method described in
特許文献2に記載の方法では、処理した焼却灰自体のフッ素、ホウ素の溶出量は土壌環境基準を満足させることができるが、泥土自体のフッ素溶出量が土壌環境基準以下である泥土に対して、土壌改良材として混合使用すると、混合泥土のフッ素溶出量が大きく増加するという現象が生じる場合があるという問題が知見された。この理由は定かではないが、少なくともセメントを水の存在下で焼却灰と混合してフッ素の溶出量を抑制できるのは、一般的にエトリンガイト結晶構造中にフッ素が取り込まれることによるものとされているが、この結晶構造が二酸化炭素等によって比較的容易に崩れてフッ素を遊離しているものと考えられる。
In the method described in
一方、一般環境の土はフッ素を90〜600ppmの濃度で含有しているものの、フッ素含有量に対して溶出量が0.8ppm未満程度と低いのは、フッ素が土中のアルミニウムなどとイオン的に配位結合しているためと推定されるが、セメントやカルシウム、マグネシウム等のアルカリ性の処理剤で処理した焼却灰や、カルシウム分を多く含む製紙スラッジ焼却灰を原料とする建設材料を泥土と混合すると、アルカリ物質由来の水酸化物イオンがアルミニウムに対して配位し、そのためにフッ素を遊離すると推定される。 On the other hand, although the soil of general environment contains fluorine at a concentration of 90 to 600 ppm, the elution amount is less than about 0.8 ppm relative to the fluorine content because fluorine is ionic with aluminum in the soil. It is presumed that they are coordinated to the soil, but the construction materials made from incineration ash treated with alkaline treatment agents such as cement, calcium, magnesium, and paper sludge incineration ash containing a large amount of calcium are used as mud. When mixed, it is presumed that hydroxide ions derived from alkaline substances coordinate with aluminum and thus liberate fluorine.
このように、泥土との混合によってもフッ素の溶出量が抑制された、安定的な建設材料およびその製造方法はこれまで提案されていなかった。 As described above, a stable construction material and a method for producing the same, in which the fluorine elution amount is suppressed even by mixing with mud, have not been proposed.
本発明は、上述の問題点に鑑みてなされたものであって、高含水率の泥土から水分を吸収しうる焼却灰を主たる原料とする建設材料であって、一般土壌と混合してもフッ素の溶出が抑えられ、耐地力にも優れる建設材料、およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and is a construction material mainly composed of incinerated ash capable of absorbing moisture from mud with a high water content. It is an object of the present invention to provide a construction material that is suppressed in elution and has excellent ground strength, and a method for producing the same.
上述の課題を解決するために用いる本発明の建設材料は、焼却灰、硫酸アルミニウムおよびセメントを主原料とする焼却灰造粒物と、アルカリ土類金属化合物とを配合してなる建設材料であって、前記焼却灰造粒物は、前記焼却灰に、少なくとも水の存在下で前記硫酸アルミニウムと前記セメントとを混合処理し造粒物を得る工程(a)と、前記造粒物を乾燥処理する工程(b)とを経て得られるものであり、JISA1102に規定する骨材のふるい分け試験に準拠すると、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない配合物の質量割合が全体の60質量%以上である。前記焼却灰造粒物の水分含有率は、3質量%以下であることが好ましい。より好ましくは0.5〜3.0質量%、さらに好ましくは1.0〜2.5質量%である
前記アルカリ土類金属化合物は、好ましくは、酸化カルシウム、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、またはこれらの組み合わせである。前記アルカリ土類金属化合物の配合量は、好ましくは、前記焼却灰造粒物の乾燥質量100質量部に対して3〜25質量部である。
The construction material of the present invention used to solve the above-mentioned problems is a construction material obtained by blending an incinerated ash granulated material mainly composed of incinerated ash, aluminum sulfate and cement with an alkaline earth metal compound. The incinerated ash granulated product is obtained by mixing the incinerated ash with the aluminum sulfate and the cement in the presence of at least water to obtain a granulated product (a), and drying the granulated product. In accordance with the aggregate sieving test specified in JISA1102, it passes through a sieve with a nominal opening of 8 mm specified in JISZ8801-1 and passes through a sieve with a nominal opening of 106 μm. The mass ratio of the formulation which does not pass is 60 mass% or more of the whole. The moisture content of the incinerated ash granulated product is preferably 3% by mass or less. More preferably, it is 0.5-3.0 mass%, More preferably, it is 1.0-2.5 mass%, Preferably, the said alkaline earth metal compound is calcium oxide, calcium hydroxide, magnesium oxide, hydroxylation. Magnesium, or a combination thereof. The amount of the alkaline earth metal compound is preferably 3 to 25 parts by mass with respect to 100 parts by mass of the dry mass of the incinerated ash granulated product.
さらに、前記建設材料は、泥土と混合して処理土とした場合の、平成15年環境省告示第18号に基づく溶出試験方法によって測定したフッ素の溶出量が、0.8mg/L以下であることが好ましい。 Furthermore, when the construction material is mixed with mud to make treated soil, the amount of fluorine eluted by the dissolution test method based on the Ministry of the Environment Notification No. 18 of 2003 is 0.8 mg / L or less. It is preferable.
また、本発明は、焼却灰、硫酸アルミニウムおよびセメントを主原料とする焼却灰造粒物と、アルカリ土類金属化合物とを配合してなる建設材料の製造方法であって、前記焼却灰を、少なくとも水の存在下で前記硫酸アルミニウムと前記セメントを混合処理し、造粒物を得る工程(a)と、前記造粒物を乾燥処理する工程(b)とを経て、前記焼却灰造粒物を製造する工程、および前記焼却灰造粒物と前記アルカリ土類金属化合物とを混合する工程、をこの順で含む。 Further, the present invention is a method for producing a construction material comprising a mixture of incinerated ash granulated material mainly composed of incinerated ash, aluminum sulfate and cement, and an alkaline earth metal compound, wherein the incinerated ash is At least in the presence of water, the aluminum sulfate and the cement are mixed to obtain a granulated product (a), and the granulated product is dried (b), and then the incinerated ash granulated product. And the step of mixing the incinerated ash granulated product and the alkaline earth metal compound in this order.
本発明の建設材料により泥土を処理すると、混合後に得られる処理土からのフッ素の溶出を抑制できる。また、本発明の製造方法によれば、泥土と混合した場合にもフッ素の溶出を抑制できる建設材料を提供しうる。 When mud is treated with the construction material of the present invention, it is possible to suppress elution of fluorine from the treated soil obtained after mixing. Further, according to the production method of the present invention, it is possible to provide a construction material capable of suppressing elution of fluorine even when mixed with mud.
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。本発明にかかる建設材料は、乾燥した焼却灰と、焼却灰中の有害物質を不溶出化するための硫酸アルミニウム、セメント、および水を混合した後、造粒し、この造粒物を乾燥させてなる焼却灰造粒物と、アルカリ土類金属化合物とを配合してなる。図1は、本実施形態の建設材料の製造方法を示すフローチャートである。本実施形態においては、図1に示すように、焼却灰を主原料として、硫酸アルミニウム、およびセメントを水の存在下で混合処理し(st1)、混合後の原料を造粒し(st2)、養生を行い、又は行わず、造粒物を乾燥し(st3)、焼却灰造粒物を調製する。そして、乾燥後の焼却灰造粒物にアルカリ土類金属化合物を添加し(st4)、建設材料を製造する。造粒工程(st2)は、泥土と混合した後のフッ素溶出量を低減し、建設材料の粉塵の発生防止とハンドリングを容易とする。本発明に於いて原料として使用される焼却灰は、石炭、RPF(紙、廃材、廃プラ等からなる燃料)、廃タイヤ、木屑、建築廃材または製紙スラッジを燃焼した際に発生する燃焼灰である。本実施形態においては、製紙スラッジを燃焼した際に発生する焼却灰(製紙スラッジ焼却灰)が好適に使用される。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The construction material according to the present invention is a mixture of dried incineration ash and aluminum sulfate, cement, and water for making toxic substances in the incineration ash non-eluting, granulated, and dried the granulated product. An incinerated ash granulated product and an alkaline earth metal compound are blended. FIG. 1 is a flowchart showing a construction material manufacturing method according to this embodiment. In this embodiment, as shown in FIG. 1, incineration ash is used as a main raw material, aluminum sulfate and cement are mixed in the presence of water (st1), and the mixed raw material is granulated (st2). With or without curing, the granulated product is dried (st3) to prepare an incinerated ash granulated product. Then, an alkaline earth metal compound is added to the incinerated ash granulated product after drying (st4) to produce a construction material. The granulation step (st2) reduces the amount of fluorine elution after mixing with mud, and facilitates the prevention and handling of dust from construction materials. The incineration ash used as a raw material in the present invention is combustion ash generated when burning coal, RPF (fuel consisting of paper, waste materials, waste plastics, etc.), waste tires, wood chips, building waste materials or papermaking sludge. is there. In the present embodiment, incineration ash (paper sludge incineration ash) generated when papermaking sludge is burned is preferably used.
この製紙スラッジ焼却灰は、製紙工場からの廃水処理によって生ずる汚泥を焼却処理する際に集塵機に捕捉されるアッシュと、これに焼却炉から飛散せずに焼却炉下部から排出されるアッシュ等の製紙工場から排出され焼却後に一般的に埋めたて処理を余儀なくされていた焼却灰を含めたものをいい、通常、微量ながらフッ素、ホウ素等の環境省告示第18号で規制された有害物質を含んでいる。 This paper sludge incineration ash is made of paper such as ash that is captured by the dust collector when sludge produced by wastewater treatment from the paper mill is incinerated, and ash that is discharged from the lower part of the incinerator without being scattered from the incinerator. This refers to incineration ash that has been discharged from the factory and generally disposed of after being incinerated, and usually contains traces of harmful substances regulated by the Ministry of the Environment Notification No. 18 such as fluorine and boron. It is out.
st1の混合処理において用いる原料には、上述の有害物質を不溶化するため、硫酸アルミニウム、セメント、および水を配合させることが好ましい。上記以外にも、硫酸塩、リン酸塩、アルミニウム化合物等、有害物質凝集能、有害物質吸着能を有する材料を、有害物質の種類、含有量等に応じて単独若しくは組み合わせて調整し、その添加量も適宜調整して使用しても良い。 In order to insolubilize the above-mentioned harmful substances, it is preferable to mix aluminum sulfate, cement, and water with the raw material used in the mixing treatment of st1. In addition to the above, sulfate, phosphate, aluminum compounds, and other materials that have toxic substance aggregating ability and toxic substance adsorbing ability are adjusted individually or in combination depending on the type, content, etc. of toxic substances, and their addition The amount may be adjusted appropriately for use.
また、st1においては、原料中に、得られる建設材料の強度を調整するための固化剤を含有させることが好ましい。固化剤としては、セメント、石膏、石灰などのカルシウム化合物等、水和反応等により固化能、凝集能を発現する材料を単独若しくは組み合わせて調整し、その添加量も適宜調整して使用する。有害物質の不溶化効果を併せて有し、また後述する造粒性の点から、セメントが好ましく用いられる。セメントは、安価であるという利点も有する。セメントとしては、高炉スラグをポルトランドセメントに均一に混合した高炉セメントを好適に使用しうる。 Moreover, in st1, it is preferable to contain the solidifying agent for adjusting the intensity | strength of the construction material obtained in a raw material. As the solidifying agent, a calcium compound such as cement, gypsum, lime, etc., such as a material that exhibits solidification ability and coagulation ability by hydration reaction or the like, is adjusted alone or in combination, and the amount of addition is also adjusted appropriately. Cement is preferably used from the viewpoint of the granulating property described later, as well as the insolubilizing effect of harmful substances. Cement also has the advantage of being inexpensive. As the cement, blast furnace cement obtained by uniformly mixing blast furnace slag with Portland cement can be suitably used.
st1の混合処理は、水の存在下で実施する。水の添加率は、フッ素の不溶化反応及び建設材料の適度な固化反応の促進、混合性、後述の造粒性に加えて乾燥性(乾燥時間の短縮、エネルギー抑制)の面から、全体の水分含有率が20〜40質量%になるよう調整するのが好ましい。なお、原料やその他の添加材料が予め水を含んでいる場合には、その含まれている水を含めて、全体の水分含有率が20〜40質量%、更に好ましくは、造粒性と造粒物の多孔性の面から25〜35質量%、特に28〜32質量%になるよう調整するのが好ましい。焼却灰、硫酸アルミニウム、セメント、水等の混合には、公知の各種ミキサーを使用することができる。 The mixing treatment of st1 is performed in the presence of water. The water addition rate is based on the insolubility reaction of fluorine and the appropriate solidification reaction of construction materials, mixing properties, granulation properties as described below, and dryness (shortening drying time, energy suppression), in terms of total moisture content. It is preferable to adjust the content to be 20 to 40% by mass. In addition, when the raw material and other additive materials contain water in advance, the total moisture content including the contained water is 20 to 40% by mass, and more preferably, the granulating property and the It is preferable to adjust so that it may become 25-35 mass% from the porous surface of a granule, especially 28-32 mass%. Various known mixers can be used for mixing incineration ash, aluminum sulfate, cement, water and the like.
本実施形態では、焼却灰、硫酸アルミニウム、セメント、水等の混合処理の後、st2の造粒処理を行うことにより造粒物とする。 In this embodiment, a granulated product is obtained by performing the granulation process of st2 after mixing the incinerated ash, aluminum sulfate, cement, water and the like.
混合物の造粒方法としては、逆流式、転動方式、撹拌方式、押出し方式、破砕方式など公知の方式の造粒機を適宜使用することができる。好ましくは、混合と造粒の両方の機能を備え、効率的に混合と造粒を行うとともに、造粒物の多孔性、塊の柔軟な固さの調整を容易に行うことができるという点から、逆流式ミキサーが好ましく使用される。 As a granulation method of the mixture, a granulator of a known method such as a reverse flow method, a rolling method, a stirring method, an extrusion method, or a crushing method can be appropriately used. Preferably, from the point of having both functions of mixing and granulation, performing mixing and granulation efficiently, and easily adjusting the porosity of the granulated product and the softness of the lump. A reverse flow mixer is preferably used.
逆流式で造粒を行う場合、粒子径は、造粒時間で調整することができる。造粒時間が短い場合は、造粒が進まず粒子径が小さくなり、造粒時間が長い場合は、造粒が進み、粒子径が大きくなる。但し、粒子径は、一定の大きさ以上には成長しない。これは、粒子径が大きくなるほど、造粒時に粒子に加わる力が、粒子全体の一部分に集中するため、粒子が破壊されやすくなるためと考えられる。造粒時間は、好ましくは1〜30分、より好ましくは3分〜20分、更に好ましくは5分〜15分である。 When granulation is performed in a reverse flow manner, the particle diameter can be adjusted by the granulation time. When the granulation time is short, granulation does not proceed and the particle size is reduced, and when the granulation time is long, granulation proceeds and the particle size is increased. However, the particle size does not grow beyond a certain size. This is presumably because the larger the particle diameter, the more the force applied to the particles during granulation concentrates on a part of the whole particles, so that the particles are easily broken. The granulation time is preferably 1 to 30 minutes, more preferably 3 minutes to 20 minutes, and even more preferably 5 minutes to 15 minutes.
造粒処理は、st3の乾燥後に行うこともできるが、乾燥前に行うことが好ましい。造粒後、乾燥工程を経てアルカリ土類金属化合物を添加した場合に、JISA1102に規定する骨材のふるい分け試験に準拠し、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない配合物の質量割合が全体の60質量%以上となるようにする。そのために、造粒物の粒子径(以下、粒子において測定位置により粒子径が異なる場合、「粒子径」とは「粒子長径」をいうものとする)は、106μm以上8mm以下のものが、全体の80質量%以上となるよう、造粒時間を調整するのが好ましい。これは、後工程である乾燥工程において、乾燥時に粒子が破壊されて粒子径が小さくなること、およびアルカリ土類金属化合物は粒子径が0.1mm程度のため、アルカリ土類金属化合物を添加した後に得られる建設材料は、造粒物よりも全体的に粒子径が低下するためである。 The granulation treatment can be performed after drying of st3, but is preferably performed before drying. After the granulation, when an alkaline earth metal compound is added through a drying process, it passes through a sieve with a nominal opening of 8 mm specified in JISZ8801-1 according to the aggregate screening test specified in JIS A1102, The mass ratio of the composition that does not pass through the 106 μm sieve is 60% by mass or more of the total. Therefore, the particle diameter of the granulated product (hereinafter, when the particle diameter varies depending on the measurement position in the particle, the “particle diameter” means “particle long diameter”) is 106 μm or more and 8 mm or less. It is preferable to adjust the granulation time to be 80% by mass or more. This is because in the subsequent drying step, particles are destroyed during drying and the particle size is reduced, and since the alkaline earth metal compound has a particle size of about 0.1 mm, an alkaline earth metal compound was added. This is because the construction material obtained later has a particle diameter that is lower than that of the granulated product.
造粒後の粒子径を調整する理由として以下の2つが挙げられる。1つ目は、造粒によって造粒物の比表面積を所定の範囲内に調整することで、エトリンガイト結晶構造中取り込まれたフッ素が、二酸化炭素により破壊されるのを防止する程度に、二酸化炭素と接する比表面積を調整するためである。 There are the following two reasons for adjusting the particle diameter after granulation. First, by adjusting the specific surface area of the granulated product within a predetermined range by granulation, the carbon incorporated in the ettringite crystal structure is prevented from being destroyed by carbon dioxide. It is for adjusting the specific surface area which touches.
2つ目は、後述のアルカリ土類金属化合物を、造粒物の表面に適度に付着させるためである。つまり、106μm未満の粒子径を有する造粒物が多くなると、単位質量あたりの表面積が大きくなり、アルカリ土類金属化合物が造粒物表面の一部にしか付着できなくなる。また、8mmを超える粒子径を有する造粒物が多くなると、大きな造粒物においてアルカリ土類金属化合物が、造粒物の表面積に対して過剰となる場合があり、フッ素を不溶出化するのに必要な量のアルカリ土類金属化合物が均等に各造粒物表面に付着しにくくなる。いずれも、建設材料と泥土を混合した処理土からのフッ素溶出を防止することが難しくなるため、好ましくない。 The second reason is to allow a later-described alkaline earth metal compound to adhere appropriately to the surface of the granulated product. That is, when the granulated product having a particle diameter of less than 106 μm increases, the surface area per unit mass increases and the alkaline earth metal compound can adhere only to a part of the granulated product surface. Moreover, when the granulated product having a particle diameter exceeding 8 mm increases, the alkaline earth metal compound may be excessive with respect to the surface area of the granulated product in a large granulated product, and the fluorine is not eluted. Therefore, it becomes difficult for the alkaline earth metal compound of the amount necessary to adhere to the surface of each granule evenly. Any of them is not preferable because it is difficult to prevent elution of fluorine from the treated soil in which the construction material and the mud are mixed.
以上より、アルカリ土類金属化合物を添加する前の焼却灰造粒物について、全体の80質量%以上を、粒子径106μm以上8mm以下に調整することが好ましく、これにより、アルカリ土類金属化合物を添加した後の建設材料について、全体の60質量%以上を、粒子径106μm以上8mm以下に調整できる。建設材料の粒子径をこの範囲とすることで、建設材料と泥土を混合後の処理土からのフッ素の溶出を、効果的に抑制することができる。 From the above, it is preferable to adjust 80% by mass or more of the incinerated ash granulated product before adding the alkaline earth metal compound to a particle size of 106 μm or more and 8 mm or less. About 60 mass% or more of the whole construction material after the addition can be adjusted to a particle diameter of 106 μm or more and 8 mm or less. By setting the particle diameter of the construction material within this range, elution of fluorine from the treated soil after mixing the construction material and mud can be effectively suppressed.
本実施形態では、更なるフッ素不溶出化の向上、および、粉塵の発生を抑えてハンドリングを向上させるために、乾燥前に造粒物の篩い分けを行っても良い。篩い分け方法としては、振動式、回転式など公知の方式の装置を利用することができる。 In this embodiment, in order to further improve fluorine non-elution and to suppress the generation of dust and improve handling, the granulated product may be sieved before drying. As a sieving method, a known system such as a vibration type or a rotary type can be used.
上記造粒により得られる造粒物の乾燥前の平均粒子径は、乾燥性の面からも、0.1〜8mmとするのが好ましく、0.2〜2mmがより好ましい。0.1mm未満では乾燥性は良好ではあるが微粒子化しやすいためフッ素が溶出しやすくなり、他方では使用時に粉塵が発生する。8mmを超えると均一な乾燥処理を行うことが困難となる場合がある。 The average particle diameter before drying of the granulated product obtained by the granulation is preferably 0.1 to 8 mm, more preferably 0.2 to 2 mm from the viewpoint of drying. If it is less than 0.1 mm, the drying property is good, but it is easy to make fine particles, so that fluorine is easily eluted. On the other hand, dust is generated during use. If it exceeds 8 mm, it may be difficult to perform a uniform drying treatment.
前述の造粒物を篩い分けして得られた粒子径が0.1mm未満の造粒物は、造粒処理を行う前の原料に添加しても良い。このような造粒物は、造粒処理における造粒の種的な塊として造粒物の生成を容易にする効果があり、生産効率を向上させることができる。前述の造粒物を篩い分けして得られた粒子径が8mm以上の造粒物は、破砕機で破砕することにより所望の粒子径の造粒物としても良い。破砕機としては、公知の各種方式のものを使用することができるが、本実施形態におけるような全体の水分含有率が20〜40質量%の軟質材料の場合は、縦軸方式の破砕機を用いるのが、生産効率向上や不要な微細造粒物を生じさせにくい点で好ましい。なお、破砕及び篩い分けの工程は、後述する養生後に行ってもよいが、安定した品質を効率的に得るには、造粒後であって養生前に行うことが好ましい。前述の造粒物に配合した、焼却灰、硫酸バンド、セメント、および水の反応を促進するためには、造粒後に養生期間を設けることが好ましい。養生時間は、4時間以上、7日未満が好ましく、12時間から2日間がより好ましく、更に18時間〜36時間が最も好ましい。7日以上の養生では、造粒物が固化する場合があり、4時間未満では、有害物質の固定が不十分であり溶出が生じる可能性があり、又、造粒物の水分分布が安定していない場合が多く、次工程の乾燥時に造粒物の塊が壊れるという問題が生じうる。 The granulated product having a particle diameter of less than 0.1 mm obtained by sieving the above-mentioned granulated product may be added to the raw material before the granulation treatment. Such a granulated product has an effect of facilitating the generation of the granulated product as a seed mass of granulation in the granulation process, and can improve the production efficiency. A granulated product having a particle size of 8 mm or more obtained by sieving the above-mentioned granulated product may be granulated with a desired particle size by crushing with a crusher. As the crusher, those of various known types can be used, but in the case of a soft material having a total water content of 20 to 40% by mass as in this embodiment, a crusher of the vertical axis type is used. It is preferable to use it because it is difficult to improve production efficiency and generate unnecessary fine granulated products. In addition, although the process of crushing and sieving may be performed after curing as described later, it is preferable to perform after granulation and before curing in order to obtain stable quality efficiently. In order to promote the reaction of the incinerated ash, sulfuric acid band, cement, and water blended in the above granulated product, it is preferable to provide a curing period after granulation. The curing time is preferably 4 hours or longer and less than 7 days, more preferably 12 hours to 2 days, and most preferably 18 hours to 36 hours. In curing for 7 days or more, the granulated material may solidify. In less than 4 hours, the harmful substances may not be sufficiently fixed and elution may occur, and the moisture distribution of the granulated material is stabilized. In many cases, there is a problem that the lump of the granulated product is broken during drying in the next step.
造粒後、好ましくは養生を行い、その後にst3の乾燥処理を施す。乾燥方法としては、キルン式、コンベアベルト搬送式、流動層式など公知の方式を採用することができ、流動層式では縦型、横型の何れをも使用することができる。これらのうち、乾燥時に機械的な外力により造粒物が微細化せず、また熱効率が良好な方法が好ましい。ここで、キルン式とは、回転するドラムの一端から造粒物を連続して投入し、ドラム内をバーナーで直接加熱し、乾燥した造粒物をドラムの他端から連続して取り出す乾燥方式をいう。また、コンベアベルト搬送式とは、加熱したドームの一端から他端に向けてコンベアベルトにより造粒物を搬送して乾燥を行う方式をいう。更に、流動層式とは、多数の熱風吹き出し孔を底面に有する流動層に造粒物を連続投入し、流動層の底面から吹き出した熱風により乾燥の進行に伴って造粒物を上方又は側方へ移動させ、最終的に取り出し口から乾燥した造粒物を連続して取り出す方式である。流動層方式には、上述のように縦型と横型とがあるが、本発明の場合には、落下による破壊が少ない横型が好ましく、乾燥装置内部に被乾燥物に外力が加えられる撹拌送り出し機構などを有していない方式がより好ましい。また、内部に堰を設けて流動層を複数に区画し、上流側の区画に投入された造粒物が、底面から吹き出した熱風により乾燥が進むに伴って上方へ移動し、更に下流側の区画に移動するように設計したものが、乾燥効率の面から、より好ましい。 After granulation, curing is preferably performed, followed by drying treatment of st3. As a drying method, a known method such as a kiln method, a conveyor belt conveyance method, or a fluidized bed method can be adopted. In the fluidized bed method, either a vertical type or a horizontal type can be used. Among these, a method in which the granulated product is not miniaturized by a mechanical external force during drying and thermal efficiency is preferable. Here, the kiln type is a drying method in which the granulated material is continuously charged from one end of the rotating drum, the inside of the drum is directly heated by a burner, and the dried granulated material is continuously taken out from the other end of the drum. Say. Moreover, a conveyor belt conveyance type means the system which conveys granulated material with a conveyor belt toward the other end from the heated dome, and performs drying. Furthermore, the fluidized bed type means that the granulated material is continuously charged into a fluidized bed having a large number of hot air blowing holes on the bottom surface, and the granulated material is moved upward or side as the drying proceeds with the hot air blown from the bottom surface of the fluidized bed. This is a system in which the dried granulated product is continuously taken out from the take-out port. In the fluidized bed system, there are a vertical type and a horizontal type as described above, but in the case of the present invention, a horizontal type that is less susceptible to breakage due to dropping is preferable, and an agitation delivery mechanism that applies an external force to an object to be dried inside the drying apparatus. A method that does not have the above is more preferable. In addition, weirs are provided inside to divide the fluidized bed into a plurality of sections, and the granulated material thrown into the upstream section moves upward as the drying proceeds with hot air blown from the bottom, and further downstream Those designed to move to the compartment are more preferable from the viewpoint of drying efficiency.
図2は、上述の堰を設けた横型流動層式乾燥装置の具体的な構成を示す図である。この横型流動層式乾燥装置12は、通気板1と、通気板1上を複数の区画に仕切る複数の2とを備え、通気板1の上流側のコンベヤ7からは造粒物10が供給される。通気板1の下方には、外気を取り入れるファン3と、ファン3からの空気を蒸気により加熱するヒータ4とが設けられている。ヒータ4から供給される熱風は、通気板1を通過して造粒物10と接触し、これにより造粒物10の乾燥が行われる。造粒物10と接触した後の空気は、ファン5及びサイレンサ6を介して外部に排出される。通気板1上で加熱された造粒物10は、水分を失って次第に軽くなり、堰2を越えて次の区画に移動する。次の区画で造粒物10は更に加熱され、最終的に下流側のコンベヤ8上に排出される。乾燥処理された造粒物の水分含有率は、セメントの固化反応が過度に進行しないように、3.0質量%以下とするのが好ましい。
FIG. 2 is a diagram showing a specific configuration of a horizontal fluidized bed drying apparatus provided with the above-mentioned weirs. The horizontal fluidized
また、後工程で添加するアルカリ土類金属化合物を、造粒物に効果的に付着させるためには、造粒物を乾燥した後の水分含有率を3.0質量%以下、好ましくは0.5〜3.0質量%、更に好ましくは1.0〜2.5質量%とする。これらの水分含有率では、効果的にアルカリ土類金属化合物が造粒物の表面に付着するため、遊離のフッ素を不溶出化する効果が高い。つまり、建設材料が泥土と混合して、建設材料由来のアルカリ物質の水酸化物イオンが発生し、アルミニウムに対して配位し、泥土中のフッ素が遊離しても、水酸化物イオンが発生した建設材料の表面にアルカリ土類金属化合物が存在すると、遊離したフッ素がすぐにアルカリ土類金属化合物と反応するため、効果的にフッ素の不溶出化が図れる。 Further, in order to effectively attach the alkaline earth metal compound added in the post-process to the granulated product, the water content after drying the granulated product is 3.0 mass% or less, preferably 0.8%. It is 5-3.0 mass%, More preferably, you may be 1.0-2.5 mass%. At these moisture contents, since the alkaline earth metal compound effectively adheres to the surface of the granulated product, the effect of non-eluting free fluorine is high. In other words, when the construction material is mixed with mud, hydroxide ions of alkaline substances derived from the construction material are generated, coordinated to aluminum, and even if fluorine in the mud is liberated, hydroxide ions are generated. When the alkaline earth metal compound is present on the surface of the construction material, the released fluorine immediately reacts with the alkaline earth metal compound, so that the fluorine can be effectively eliminated.
水分含有率が0.5質量%未満では、水分含有率が低いために建設材料表面にアルカリ土類金属化合物が吸着せず、水分含有率が3質量%を超えると、水分含有率が高すぎてアルカリ土類金属化合物が建設材料表面に均一に付着しにくい。いずれもフッ素不溶出化効果にムラが発生しやすく、処理土からのフッ素の溶出の防止が十分ではない場合がある。 If the moisture content is less than 0.5% by mass, the alkaline earth metal compound is not adsorbed on the surface of the construction material because the moisture content is low. If the moisture content exceeds 3% by mass, the moisture content is too high. Alkaline earth metal compounds are difficult to adhere uniformly to the surface of construction materials. In any case, unevenness in the fluorine non-eluting effect tends to occur, and there are cases where prevention of fluorine elution from the treated soil is not sufficient.
乾燥処理を経た造粒物に、アルカリ土類金属化合物を添加し(st4)、建設材料を調製する。添加工程は、例えば、乾燥処理を経て排出された造粒物に、サイロに貯蔵したアルカリ土類金属化合物を定量フィーダーで一定量添加することによる。 An alkaline earth metal compound is added to the granulated material after the drying treatment (st4) to prepare a construction material. The adding step is, for example, by adding a certain amount of the alkaline earth metal compound stored in the silo to the granulated product discharged through the drying treatment with a quantitative feeder.
本発明で用いられるアルカリ土類金属化合物は、好ましくは、カルシウム化合物及び/又はマグネシウム化合物であり、例えば酸化カルシウム、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、またはこれらの組み合わせである。より好ましくは酸化マグネシウム、水酸化マグネシウム、またはこれらの組み合わせ、更に好ましくは酸化マグネシウムが用いられる。フッ素と化合物を形成した場合の不溶出化効果が高く、保管・ハンドリングにおける発熱反応リスクが低いからである。 The alkaline earth metal compound used in the present invention is preferably a calcium compound and / or a magnesium compound, such as calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, or a combination thereof. More preferably, magnesium oxide, magnesium hydroxide, or a combination thereof, more preferably magnesium oxide is used. This is because when a compound is formed with fluorine, the effect of non-eluting is high and the risk of exothermic reaction during storage and handling is low.
アルカリ土類金属化合物は、乾燥処理後の焼却灰造粒物100質量部に対し、3〜25質量部添加することが好ましい。3質量部未満であると、泥土と混合した際に溶出するフッ素の抑制効果が十分ではなく、25質量部を超えると効果に大きな違いが無いため、経済性が悪化するので好ましくない。 The alkaline earth metal compound is preferably added in an amount of 3 to 25 parts by mass with respect to 100 parts by mass of the incinerated ash granulated product after the drying treatment. If it is less than 3 parts by mass, the effect of suppressing fluorine eluted when mixed with mud is not sufficient, and if it exceeds 25 parts by mass, there is no significant difference in the effect, so the economic efficiency deteriorates, which is not preferable.
前記アルカリ土類金属化合物を添加後、外気からの水分吸収により、建設材料の性能が低下する可能性があるため、水分変動が少ない包装容器にて保管することが好ましい。 After the alkaline earth metal compound is added, the performance of the construction material may be deteriorated due to moisture absorption from the outside air. Therefore, the alkaline earth metal compound is preferably stored in a packaging container with little moisture fluctuation.
このようにして得られた建設材料は、JISA1102に規定する骨材のふるい分け試験に準拠し、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない配合物の質量割合が全体の60質量%以上であるように調製されている。 The construction material thus obtained conforms to the aggregate screening test specified in JIS A1102, passes through a sieve with a nominal opening of 8 mm specified in JIS Z8801-1, and does not pass through a sieve with a nominal opening of 106 μm. It is prepared so that the mass ratio of a thing may be 60 mass% or more of the whole.
60質量%未満では、エトリンガイト結晶構造中取り込まれたフッ素が、二酸化炭素により破壊されるのを防止する程度に、二酸化炭素と接する比表面積を調整できていないこと、および、アルカリ土類金属化合物を、造粒物の表面に適度に付着できていないため、得られた建設材料は、泥土と混合後の処理土からのフッ素の溶出を、効果的に抑制できなくなる。特に、建設材料と泥土を混合後の処理土の、平成15年環境省告示第18号に基づく溶出試験方法によって測定したフッ素の溶出量が0.8mg/Lを超過させないためには、建設材料の粒子径を上記範囲とし、フッ素の不溶出化を効果的に行う必要がある。また、小粒子径の粒子が多いほど、使用時に粉塵が発生しやすくなり、使用に耐えない。 If it is less than 60% by mass, the specific surface area in contact with carbon dioxide cannot be adjusted to such an extent that fluorine taken in the ettringite crystal structure is prevented from being destroyed by carbon dioxide, and an alkaline earth metal compound is added. Since the surface of the granulated material is not adequately adhered, the obtained construction material cannot effectively suppress the elution of fluorine from the treated soil after mixing with the mud soil. In particular, in order to prevent the amount of fluorine elution measured by the dissolution test method based on the Ministry of the Environment Notification No. 18 of 2003 from the treated soil after mixing the construction material and mud, the construction material must not exceed 0.8 mg / L. Therefore, it is necessary to make the fluorine non-eluting effectively. In addition, the more particles having a small particle diameter, the more easily dust is generated during use, and the use is not durable.
本発明の建設材料によれば、乾燥処理した後の造粒物に、アルカリ土類金属化合物を添加することで、アルカリ土類金属化合物が焼却灰中のフッ素と反応消費されず、建設材料と泥土を混合後に得られる処理土からのフッ素の不溶出化に特に優れる。このため、泥土由来のフッ素とアルカリ土類金属化合物が選択的に反応し、フッ素の溶出が防止でき、処理土からのフッ素溶出を土壌環境基準以下に抑制することができる。処理土からのフッ素の不溶出化を図るには、単に造粒物とアルカリ土類金属化合物を混合するのみでは効果がなく、造粒、乾燥後にアルカリ土類金属化合物を添加することが必要であり、また、添加時の造粒物の粒子径を所定の範囲とすることが好ましい。 According to the construction material of the present invention, by adding the alkaline earth metal compound to the granulated product after the drying treatment, the alkaline earth metal compound is not consumed by reaction with fluorine in the incineration ash, and the construction material Especially excellent for non-elution of fluorine from treated soil obtained after mixing mud. For this reason, the fluorine derived from mud and the alkaline earth metal compound react selectively, so that the elution of fluorine can be prevented, and the elution of fluorine from the treated soil can be suppressed below the soil environmental standard. In order to achieve non-elution of fluorine from the treated soil, simply mixing the granulated material and alkaline earth metal compound is not effective, and it is necessary to add the alkaline earth metal compound after granulation and drying. In addition, the particle diameter of the granulated product at the time of addition is preferably within a predetermined range.
本発明に係る建設材料は、土壌改良材、融雪材、草地改良材、埋め戻し材、盛土等、種々の用途に利用することができる。 The construction material according to the present invention can be used for various applications such as soil improvement material, snow melting material, grassland improvement material, backfill material, embankment and the like.
以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1〜25、比較例1〜7)
実施例1〜25、比較例1〜7として、焼却灰、硫酸アルミニウム、セメント、および水を混合し、造粒して造粒物を得た。造粒物を篩い分けし、乾燥後、添加剤として、表2に記載のアルカリ土類金属化合物を配合し、または配合せず、建設材料を製造した。
(実施例1の建設材料の調製)
建設材料の原料として、製紙スラッジ焼却灰、硫酸アルミニウム、高炉セメント、および水を下記に示す割合で配合したものを用いた。硫酸アルミニウムとセメントは、焼却灰中の有害物質を不溶化し、造粒して得られる建設材料の強度を調整するために使用した。混合には、逆流式ミキサー(日本アイリッヒ製作所製)を用いた。この逆流式ミキサーを使用して、10分間、混合、造粒を行った。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to a following example.
(Examples 1-25, Comparative Examples 1-7)
As Examples 1 to 25 and Comparative Examples 1 to 7, incinerated ash, aluminum sulfate, cement, and water were mixed and granulated to obtain a granulated product. The granulated product was sieved and dried, and then the construction material was manufactured with or without the alkaline earth metal compound shown in Table 2 as an additive.
(Preparation of construction material of Example 1)
As a raw material for the construction material, paper sludge incinerated ash, aluminum sulfate, blast furnace cement, and water were blended in the proportions shown below. Aluminum sulfate and cement were used to insolubilize harmful substances in the incineration ash and adjust the strength of the construction material obtained by granulation. A reverse flow mixer (manufactured by Nihon Eirich Seisakusho) was used for mixing. Using this backflow mixer, mixing and granulation were performed for 10 minutes.
〈原料配合〉
製紙スラッジ焼却灰 1000kg
硫酸バンド 200kg
高炉セメント 100kg
水 250kg
次に、得られた造粒物の篩い分けを行った。軟質の造粒物を微細化しないように篩い分けるため、回転式の篩装置を用いた。篩装置の篩径を3mmφに設定した。この篩い分けにより分離された大きい粒子径のものは、破砕機により破砕して再度篩い分けを行った。破砕機は、縦軸方式のものを用いた。造粒物の平均粒子径は0.5mmであった。
<Raw material formulation>
Papermaking sludge incineration ash 1000kg
Sulfuric acid band 200kg
Blast furnace cement 100kg
250 kg of water
Next, the obtained granulated material was sieved. A rotary sieving apparatus was used to screen out the soft granulated product so as not to make it fine. The sieve diameter of the sieve device was set to 3 mmφ. The large particle size separated by this sieving was crushed by a crusher and sieved again. The crusher used was a vertical axis. The average particle diameter of the granulated product was 0.5 mm.
次に、篩い分け後の造粒物の養生を行った。この養生は、水の存在下で、焼却灰と硫酸アルミニウム、セメントとの反応を促進させるために行った。養生の条件は、温度23℃、湿度50%で24時間とした。 Next, the granulated product after sieving was cured. This curing was carried out in the presence of water to promote the reaction between the incinerated ash, aluminum sulfate and cement. The curing conditions were 24 hours at a temperature of 23 ° C. and a humidity of 50%.
更に、養生後の造粒物を、図2に示すような堰を設けた横型流動層式乾燥装置を使用して乾燥した。乾燥条件は、150℃の熱風を用い、乾燥装置内部の平均滞留時間を1時間とした。以上の工程により、乾燥した造粒物を得た。得られた造粒物について、JISA1102に規定する骨材のふるい分け試験に準拠し、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない量を測定した。その結果は表2のとおりである。 Furthermore, the granulated product after curing was dried using a horizontal fluidized bed dryer provided with a weir as shown in FIG. As drying conditions, hot air of 150 ° C. was used, and the average residence time inside the drying apparatus was 1 hour. The dried granulated material was obtained by the above process. The obtained granulated material was measured in accordance with an aggregate screening test specified in JIS A1102, passing through a sieve having a nominal aperture of 8 mm specified in JIS Z8801-1, and measuring an amount not passing through a sieve having a nominal aperture of 106 μm. . The results are shown in Table 2.
乾燥した造粒物に、表2に記載のとおり、アルカリ土類金属化合物を添加し、建設材料を得た。表2に記載の添加量は、焼却灰造粒物の乾燥質量100質量部に対する質量部で表記する。得られた建設材料について、JISA1102に規定する骨材のふるい分け試験に準拠し、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない量を測定した。その結果は表2のとおりである。 As shown in Table 2, an alkaline earth metal compound was added to the dried granulated material to obtain a construction material. The addition amount described in Table 2 is expressed in parts by mass with respect to 100 parts by mass of dry mass of the incinerated ash granulated product. The obtained construction material was measured in accordance with an aggregate sieving test specified in JIS A1102, passing through a sieve having a nominal opening of 8 mm specified in JIS Z8801-1 and not passing through a sieve having a nominal opening of 106 μm. The results are shown in Table 2.
(実施例2〜5の建設材料の調製)
表2のとおりアルカリ土類金属化合物の添加量を変更した以外は、実施例1と同様に製造した。
(Preparation of construction materials of Examples 2-5)
It was manufactured in the same manner as in Example 1 except that the addition amount of the alkaline earth metal compound was changed as shown in Table 2.
(実施例6〜20の建設材料の調製)
表2のとおりアルカリ土類金属化合物の種類と添加量を変更した以外は、実施例1と同様に製造した。
(Preparation of construction materials of Examples 6 to 20)
It manufactured like Example 1 except having changed the kind and addition amount of the alkaline-earth metal compound as shown in Table 2.
(実施例21〜24の建設材料の調製)
焼却灰造粒物を乾燥する時間を調整し、表2のとおり水分含有率を調整し、表2のとおりアルカリ土類金属化合物の種類と添加量を変更した以外は、実施例1と同様に製造した。
(Preparation of construction materials of Examples 21 to 24)
The time for drying the incinerated ash granulation was adjusted, the moisture content was adjusted as shown in Table 2, and the type and amount of the alkaline earth metal compound were changed as shown in Table 2. Manufactured.
(実施例25の建設材料の調製)
表2のとおりアルカリ土類金属化合物の種類と添加量を変更し、アルカリ土類金属化合物を造粒物製造工程における原料混合時(st1)でも添加した以外は、実施例1と同様に製造した。
(Preparation of construction material of Example 25)
Manufactured in the same manner as in Example 1 except that the type and amount of the alkaline earth metal compound were changed as shown in Table 2 and the alkaline earth metal compound was added even when mixing the raw materials in the granulated product production process (st1). .
(比較例1〜3の建設材料の調製)
アルカリ土類金属化合物を添加しなかった以外は、実施例1と同様に製造した。
(Preparation of construction materials of Comparative Examples 1 to 3)
Production was carried out in the same manner as in Example 1 except that the alkaline earth metal compound was not added.
(比較例4および5の建設材料の調製)
表2のとおりアルカリ土類金属化合物の種類と添加量を変更し、アルカリ土類金属化合物を造粒物製造工程における原料混合時(st1)に添加し、造粒物を乾燥した後(st4)にはアルカリ土類金属化合物を添加しなかった以外は、実施例1と同様に製造した。
(Preparation of construction materials for Comparative Examples 4 and 5)
After changing the kind and addition amount of the alkaline earth metal compound as shown in Table 2 and adding the alkaline earth metal compound to the raw material mixing (st1) in the granulated product production process, and drying the granulated product (st4) Was prepared in the same manner as in Example 1 except that no alkaline earth metal compound was added.
(比較例6および7の建設材料の調製)
造粒後の篩い分け処理に用いた篩装置の篩径を1mmφに設定し、表2のとおりアルカリ土類金属化合物の種類と添加量を変更した以外は、実施例1と同様に製造した。
(効果確認試験)
各実施例および各比較例の建設材料について効果確認試験を行った。効果確認試験は、各実施例および各比較例の建設材料と泥土(泥土A、B、またはC)とを質量比10:100で混合し、混合後の土壌(処理土)のフッ素溶出量、pHおよび耐地力を測定することにより行った。効果確認試験に用いた泥土は、一般環境の泥土を採取し、フッ素含有量、pHの異なる3種類の泥土(泥土A、B、C)を選定した。各泥土のフッ素含有量、フッ素溶出量、溶出液のpHは表1に記載の通りである。
(Preparation of construction materials for Comparative Examples 6 and 7)
Manufacture was carried out in the same manner as in Example 1 except that the sieve diameter of the sieving apparatus used for the sieving treatment after granulation was set to 1 mmφ, and the kind and addition amount of the alkaline earth metal compound were changed as shown in Table 2.
(Effectiveness confirmation test)
The effect confirmation test was done about the construction material of each Example and each comparative example. In the effect confirmation test, the construction material of each example and each comparative example and mud (mud A, B, or C) are mixed at a mass ratio of 10: 100, and the amount of fluorine eluted from the soil after being mixed (treated soil), This was done by measuring the pH and earth resistance. As mud used for the effect confirmation test, mud of general environment was collected, and three kinds of mud (mud A, B, C) having different fluorine contents and pH were selected. Table 1 shows the fluorine content, fluorine elution amount, and pH of the eluate of each mud.
フッ素溶出量は、平成15年環境省告示第18号に基づく溶出試験方法によって測定し、pHは、環境省告示第46号に基づく試験方法によって測定した。測定値を表2に示す。耐地力試験として、処理土を足で踏みつけ、以下の評価基準に基づいて評価した。 The fluorine elution amount was measured by the dissolution test method based on the Ministry of the Environment Notification No. 18 in 2003, and the pH was measured by the test method based on the Ministry of the Environment Notification No. 46. The measured values are shown in Table 2. As a ground strength test, the treated soil was stepped on with a foot and evaluated based on the following evaluation criteria.
○:踏みつけても処理土が変形せず、耐地力に優れる。 ○: Treated soil is not deformed even if it is stepped on, and has excellent ground strength.
△:踏みつけると処理土が若干変形し、耐地力が劣る
×:踏みつけると処理土が容易に変形し、耐地力が大いに劣る。
Δ: Soil is slightly deformed and the ground strength is poor when stepped on. ×: The soil is easily deformed and the ground strength is very poor when stepped on.
酸化カルシウム、水酸化カルシウム、酸化マグネシウム、または水酸化マグネシウムを添加して調製した建設材料は、硫酸カルシウム、または硫酸マグネシウムを添加して調製した建設材料と比較して、フッ素溶出抑制効果が高い。特に水酸化カルシウムおよび水酸化マグネシウムに比べて酸化カルシウムおよび酸化マグネシウムの方が、また酸化カルシウムに比べて酸化マグネシウムの方が、添加によるフッ素溶出抑制効果が優れている。またpHが比較的高い泥土との混合では、酸化カルシウムを添加した建設材料を用いた場合に高pHとなってしまうので、処理土の利用が制限される。したがって、かかる点からも酸化マグネシウムの添加が優れている。リン酸化合物は、フッ素溶出抑制効果を有するが、薬品コストが高くなるので好適には用いられない。造粒後の水分含有率を、0.5質量%未満、あるいは、3.0質量%を超過すると、水分含有率が0.5質量%〜3.0質量%の場合と比べて、フッ素溶出抑制効果が低下した。また、焼却灰混合時(st1)にアルカリ土類金属化合物を添加すると、造粒物が硬く締まったために、泥土から水を吸収できず、処理土が軟弱となったため、耐地力が低下した。また、乾燥後(st4)にアルカリ土類金属化合物を添加しない場合は、フッ素溶出抑制効果が低下した。建設材料の粒子径が106μm以上8mm以下の量が全体の60質量%未満の建設材料は、60%以上の建設材料と比べ、処理土のフッ素溶出が多く、フッ素溶出抑制効果が低下した。
A construction material prepared by adding calcium oxide, calcium hydroxide, magnesium oxide, or magnesium hydroxide has a higher fluorine elution suppressing effect than a construction material prepared by adding calcium sulfate or magnesium sulfate. In particular, calcium oxide and magnesium oxide are superior to calcium hydroxide and magnesium hydroxide, and magnesium oxide is superior to calcium oxide in suppressing fluorine elution. In addition, mixing with mud having a relatively high pH results in a high pH when a construction material to which calcium oxide is added is used, so that the use of treated soil is limited. Therefore, addition of magnesium oxide is excellent also from this point. Phosphoric acid compounds have an effect of suppressing fluorine elution, but are not suitably used because the chemical cost increases. When the water content after granulation is less than 0.5% by mass or exceeding 3.0% by mass, the elution of fluorine is compared with the case where the water content is 0.5% by mass to 3.0% by mass. The inhibitory effect decreased. Moreover, when an alkaline earth metal compound was added at the time of incineration ash mixing (st1), since the granulated material was tightly tightened, water could not be absorbed from the mud, and the treated soil became soft, so the ground strength was reduced. Further, when no alkaline earth metal compound was added after drying (st4), the effect of suppressing fluorine elution was lowered. The construction material in which the particle diameter of the construction material is 106 μm or more and 8 mm or less is less than 60% by mass of the construction material has more fluorine elution from the treated soil than the construction material of 60% or more, and the fluorine elution suppression effect is reduced.
本発明の建設材料により泥土を処理すると、処理土のフッ素の溶出を抑制できるので、本発明は建築資材の分野で利用可能である。本発明の建設材料は、例えば、土壌改良材、融雪材、草地改良材、埋め戻し材、盛土として利用可能である。 When mud is treated with the construction material of the present invention, the elution of fluorine in the treated soil can be suppressed, so that the present invention can be used in the field of building materials. The construction material of the present invention can be used as, for example, a soil improvement material, a snow melting material, a grassland improvement material, a backfill material, and embankment.
1 通気板
2 堰
3,5 ファン
4 ヒータ
6 サイレンサ
7,8 コンベヤ
10 造粒物
12 横型流動層式乾燥装置
DESCRIPTION OF
Claims (6)
前記焼却灰造粒物は、前記焼却灰に、少なくとも水の存在下で前記硫酸アルミニウムと前記セメントとを混合処理し造粒物を得る工程(a)と、前記造粒物を乾燥処理する工程(b)とを経て得られるものであり、
JISA1102に規定する骨材のふるい分け試験に準拠すると、JISZ8801−1に規定する公称目開き8mmのふるいを通過し、公称目開き106μmのふるいを通過しない配合物の質量割合が全体の60質量%以上である、ことを特徴とする建設材料。 A construction material composed of incinerated ash granulated material mainly composed of incinerated ash, aluminum sulfate and cement, and an alkaline earth metal compound,
The incinerated ash granulated product is a step (a) of obtaining a granulated product by mixing the incinerated ash with the aluminum sulfate and the cement in the presence of water, and a step of drying the granulated product. Obtained through (b),
According to the aggregate screening test specified in JIS A1102, the mass ratio of the composition that passes through a sieve with a nominal opening of 8 mm specified in JIS Z8801-1 and does not pass through a sieve with a nominal opening of 106 μm is 60% by mass or more. A construction material characterized by that.
前記焼却灰を、少なくとも水の存在下で前記硫酸アルミニウムと前記セメントを混合処理し、造粒物を得る工程(a)と、前記造粒物を乾燥処理する工程(b)とを経て、前記焼却灰造粒物を製造する工程、および
前記焼却灰造粒物と前記アルカリ土類金属化合物とを混合する工程、をこの順で含む、ことを特徴とする建設材料の製造方法。
A method for producing a construction material comprising a mixture of incinerated ash granulated material mainly composed of incinerated ash, aluminum sulfate and cement, and an alkaline earth metal compound,
The incinerated ash is subjected to a process of mixing the aluminum sulfate and the cement in the presence of at least water to obtain a granulated product, and a step of drying the granulated product (b), The manufacturing method of the construction material characterized by including the process of manufacturing incinerated ash granulated material, and the process of mixing the said incinerated ash granulated material and the said alkaline-earth metal compound in this order.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007179800A JP4372810B2 (en) | 2007-07-09 | 2007-07-09 | Construction material and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007179800A JP4372810B2 (en) | 2007-07-09 | 2007-07-09 | Construction material and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009013742A JP2009013742A (en) | 2009-01-22 |
JP4372810B2 true JP4372810B2 (en) | 2009-11-25 |
Family
ID=40354963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007179800A Expired - Fee Related JP4372810B2 (en) | 2007-07-09 | 2007-07-09 | Construction material and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4372810B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106436677B (en) * | 2016-09-29 | 2019-02-22 | 江苏工程职业技术学院 | A kind of energy-saving Change and fill groundsill construction method |
-
2007
- 2007-07-09 JP JP2007179800A patent/JP4372810B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009013742A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6936087B2 (en) | Soil conditioning agglomerates containing calcium | |
CN101357840B (en) | Baking-free type refuse burning flyash haydite and manufacturing method thereof | |
US5997599A (en) | Soil conditioning agglomerates containing cement kiln dust | |
US5743934A (en) | Soil conditioning agglomerates containing cement kiln dust | |
WO2013002250A1 (en) | Phosphate fertilizer, and method for producing phosphate fertilizer | |
JP2007306844A (en) | Method for producing greening material using waste material, and greening material | |
US4410350A (en) | Production of pellets and pellet-containing fertilizer composition | |
US6325836B1 (en) | Soil conditioning agglomerates containing calcium | |
JP2007308322A (en) | Method of manufacturing fertilizer using waste, and fertilizer | |
JP5506076B2 (en) | Soil improving material and method for producing the same | |
JP4372810B2 (en) | Construction material and manufacturing method thereof | |
JP4789410B2 (en) | Waste stabilization treatment solidified material and processing equipment | |
US20110239904A1 (en) | Manufactured aggregate material and method | |
JP2010173912A (en) | Manufacturing method for hydrothermally solidified material of paper sludge incineration ash | |
JP3840371B2 (en) | Steelmaking slag and sand-washed sludge treatment method | |
JP6022226B2 (en) | Method for producing silicate phosphate fertilizer | |
JP4789411B2 (en) | Waste stabilization treatment and treatment equipment | |
JP2009270059A (en) | Burned ash granulated material and method for producing it | |
JP3086200B2 (en) | Solidification and stabilization of molten fly ash | |
JP2007225166A (en) | Manufacturing method for construction and civil engineering material | |
JP2005138071A (en) | Method and apparatus for stabilizing waste | |
KR101170908B1 (en) | Method and powder solidifying agent for sewage sludge | |
JPH05202350A (en) | Water content-regulating material | |
JP2005138072A (en) | Method and apparatus for stabilizing waste | |
JP2004131327A (en) | Material formed into zeolite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090615 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20090615 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20090713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090902 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4372810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120911 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130911 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |