JP4372534B2 - Joint strength estimation method, deformation state estimation method, and joint condition determination method - Google Patents

Joint strength estimation method, deformation state estimation method, and joint condition determination method Download PDF

Info

Publication number
JP4372534B2
JP4372534B2 JP2003427960A JP2003427960A JP4372534B2 JP 4372534 B2 JP4372534 B2 JP 4372534B2 JP 2003427960 A JP2003427960 A JP 2003427960A JP 2003427960 A JP2003427960 A JP 2003427960A JP 4372534 B2 JP4372534 B2 JP 4372534B2
Authority
JP
Japan
Prior art keywords
joining
strength
joint
calculated
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427960A
Other languages
Japanese (ja)
Other versions
JP2005186083A (en
Inventor
康雅 中島
秀基 平松
康二 道場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003427960A priority Critical patent/JP4372534B2/en
Publication of JP2005186083A publication Critical patent/JP2005186083A/en
Application granted granted Critical
Publication of JP4372534B2 publication Critical patent/JP4372534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、摩擦撹拌接合された接合物の接合強度を推定する接合強度推定方法、変形状態を推定する変形状態推定方法および要求される接合品質を満足する接合条件を決定する接合条件決定方法に関する。   The present invention relates to a joining strength estimation method for estimating the joint strength of a joint subjected to friction stir welding, a deformation state estimation method for estimating a deformation state, and a joining condition determination method for determining a joining condition that satisfies a required joining quality. .

複数の被接合部材を接合する技術として、摩擦撹拌接合方法が提案されている(たとえば特許文献1参照)。摩擦撹拌接合は、被接合部材を重ね合わせた被接合物に、回転する接合ツールを押付けて没入させる。接合ツールは、摩擦熱によって各被接合部材を非溶融の状態で部分的に流動化し、流動化した部材を撹拌して各被接合部材を接合する。   As a technique for joining a plurality of members to be joined, a friction stir welding method has been proposed (see, for example, Patent Document 1). In the friction stir welding, a rotating welding tool is pressed against a workpiece on which the members to be joined are overlapped to be immersed. The joining tool partially fluidizes each member to be joined by frictional heat in an unmelted state, and stirs the fluidized member to join each member to be joined.

特開2000−310995号公報JP 2000-310995 A

摩擦撹拌接合はそのメカニズムが十分に解明されていない。したがって従来では、摩擦撹拌接合された接合物の接合強度を求めるためには、実際に強度試験を行う必要があった。従来では、異なる接合条件で接合された接合物について強度試験をそれぞれ行って、目標とする接合強度を得ることができる接合条件を試行錯誤的に決定していた。接合条件は、たとえば接合ツールの回転数、接合ツールの加圧力、接合時間、押込み量および接合ツールの形状などである。   The mechanism of friction stir welding has not been fully elucidated. Therefore, in the past, in order to obtain the joint strength of a joint that has been friction stir welded, it was necessary to actually perform a strength test. Conventionally, a strength test is performed on each of the joints joined under different joining conditions, and the joining conditions capable of obtaining a target joining strength are determined by trial and error. The joining conditions include, for example, the number of rotations of the joining tool, the pressure of the joining tool, the joining time, the amount of pushing, and the shape of the joining tool.

この場合には、目標とする強度を得るために接合条件を変えて強度試験を繰り返す必要があり、短時間に接合条件を決定することができなかった。また接合条件を変更する毎に接合物となるべき試験片が必要であり、接合条件決定に費やす費用が大きかった。   In this case, in order to obtain the target strength, it was necessary to repeat the strength test while changing the joining conditions, and the joining conditions could not be determined in a short time. In addition, every time the joining conditions are changed, a test piece to be a joint is necessary, and the cost for determining the joining conditions is large.

仮に必要な強度を得ることができる接合条件が決定したとしても、被接合部材の材質、板厚が異なる場合には、再び試行錯誤的に最適な接合条件を決定する必要がある。このように従来では、接合強度を強度試験でしか求めることができず、時間および費用の面から効率が悪かった。   Even if the joining conditions capable of obtaining the required strength are determined, if the materials and plate thicknesses of the members to be joined are different, it is necessary to determine the optimum joining conditions again by trial and error. As described above, conventionally, the bonding strength can be obtained only by the strength test, and the efficiency is poor in terms of time and cost.

したがって本発明の目的は、摩擦撹拌接合において強度試験を行うことなく接合物の接合強度を推定し得る接合物の接合強度推定方法および接合条件決定方法を提供することである。   Accordingly, an object of the present invention is to provide a joint strength estimation method and a joint condition determination method for a joint that can estimate the joint strength of the joint without performing a strength test in friction stir welding.

本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度を推定する接合強度推定方法であって、
予め定められる接合条件に従って、摩擦撹拌によって被接合物が変形する部分、没入方向に延びる接合ツールの軸線を含む平面における変形後の断面形状、被接合物の物性値、厚み寸法、接合ツールの形状、加圧力、回転数、接合時間および没入量を入力して数値解析によって算出する形状算出工程と、
形状算出工程で算出される変形後の断面形状に基づいて、接合物の接合強度を算出する強度算出工程とを含むことを特徴とする接合物の接合強度推定方法である。
In the present invention, when a rotating welding tool is immersed along a immersing direction in an object to be bonded in which two members to be bonded are arranged in a predetermined immersing direction, and the two members to be bonded are friction stir bonded, 2 A joint strength estimation method for estimating the joint strength of a joint formed by joining two members to be joined,
In accordance with a predetermined be joining conditions, the portions thus the object to be bonded to the friction stir is deformed, the sectional shape after deformation in a plane containing the axis of the welding tool extending immersion direction, physical properties of the object to be bonded, thickness, bonding A shape calculation step for calculating the shape, pressing force, rotation speed, joining time, and immersion amount of the tool and calculating by numerical analysis,
And a strength calculation step of calculating a joint strength of the joint based on the cross-sectional shape after deformation calculated in the shape calculation step.

接合ツールの回転数、接合ツールの加圧力、接合時間、押込み量および接合ツールの形状などの接合条件が異なっても、接合後の接合物の変形後の接合状態がほぼ同じであれば
、ほぼ同じ接合強度となる。本発明では、数値解析によって被接合物の変形後の断面形状を算出し、算出した被接合物の変形後の接合状態に基づいて、接合物の接合強度を算出する。これによって実際に摩擦撹拌接合することなく、接合物の接合強度を求めることができる。
Even if the welding conditions such as the number of rotations of the welding tool, the pressure of the welding tool, the welding time, the push-in amount, and the shape of the welding tool are different, Same joint strength. In this invention, the cross-sectional shape after deformation | transformation of a to-be-joined object is calculated by numerical analysis, and the joining strength of a to-be-joined object is computed based on the joining state after the deformation | transformation of the to-be-joined thing calculated. Accordingly, the bonding strength of the bonded article can be obtained without actually performing friction stir welding.

また本発明は、形状算出工程は、前記変形後の断面形状を、摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さと
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さとによって表して出し
強度算出工程は、算出した接合長さと接合高さとに基づいて、接合物の接合強度を算出することを特徴とする。
The present invention, the shape calculation process, the cross-sectional shape after the deformation, the junction length corresponding to the outer diameter of the fluidized region object to be joined by frictional heat during the friction stir is partially fluidized Sato,
Extending perpendicular to the immersion direction to the hook point which is the most upstream point in the immersion direction of the boundary line extending between the two members to be joined, and the portion of the boundary line not affected by the immersion of the welding tool out calculated expressed by the bonding height corresponding to immersion direction dimension between the reference point away from each direction,
The strength calculating step is characterized in that the bonding strength of the bonded object is calculated based on the calculated bonding length and bonding height.

強度試験における接合物の破断形態は、接合長さが短い場合に生じる破断形態と、接合高さが長い場合に生じる破断形態とに分けられる。このことについて、発明者らは、実験によって確証を得た。そして接合強度は、接合長さと接合高さとに密接に関係している。本発明では、接合強度に関連する接合長さと接合高さとを数値解析によって算出し、その接合長さと接合高さとに基づいて、接合強度を求めることによって、接合強度を精度良く推定することができる。たとえば接合強度は、はく離強度およびせん断強度などがある。   The fracture form of the joint in the strength test is divided into a fracture form that occurs when the joint length is short and a fracture form that occurs when the joint height is long. The inventors have confirmed this by experiments. The bonding strength is closely related to the bonding length and the bonding height. In the present invention, the joint strength and the joint height related to the joint strength are calculated by numerical analysis, and the joint strength can be accurately estimated by obtaining the joint strength based on the joint length and the joint height. . For example, the bonding strength includes peeling strength and shear strength.

また本発明は、形状算出工程は、接合ツールを被接合物に没入させた場合であって、回転を行わない場合被接合物の断面形状を、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の断面形状からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする。
Further, the present invention provides a tool indentation analysis stage in which the shape calculation step is performed when the welding tool is immersed in the workpiece and the cross-sectional shape of the workpiece is calculated by numerical analysis when rotation is not performed. ,
Rotation analysis stage for calculating the strain distribution of the workpiece when the welding tool is further rotated from the cross-sectional shape of the workpiece calculated by the tool indentation analysis stage by numerical analysis,
And a fluidization region calculation step of calculating a fluidization region in which the workpiece is partially fluidized based on the strain distribution of the workpiece calculated by the rotation analysis step.

摩擦撹拌接合を厳密にモデル化しようとすると、接合ツールの高速回転を考慮する必要がある。しかしながら計算量が膨大になることなどから、このような厳密なモデルによる数値解析が困難である。本発明では、接合ツールを回転させずに被接合物に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツールを回転させた場合を数値解析する。このようにして流動化領域を算出することで、計算を単純化して被接合物の変形後の断面形状を算出することができる。 When trying to model friction stir welding strictly, it is necessary to consider the high speed rotation of the welding tool. However, since the amount of calculation becomes enormous, numerical analysis using such a strict model is difficult. In the present invention, numerical analysis is performed when the welding tool is immersed in the workpiece without rotating, and then numerical analysis is performed when the welding tool is rotated using the numerical analysis data when the welding tool is immersed. . By calculating the fluidization region in this way, the calculation can be simplified and the cross-sectional shape after deformation of the workpiece can be calculated.

また本発明は、ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の断面形状と温度分布とを、数値解析によって算出することを特徴とする。 According to the present invention, in the tool indentation analysis stage, the welding tool is pressed in the immersion direction with a pressurizing force according to a predetermined joining condition, and the heat input according to the joining condition is applied to the object to be joined. The cross-sectional shape and temperature distribution of the joined product are calculated by numerical analysis.

本発明に従えば、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合による摩擦熱を考慮した被接合物の変形後の断面形状を算出することができる。これによって現実に摩擦撹拌接合された場合の接合物の変形後の断面形状に近似した断面形状を算出することができる。たとえば2つの被接合部材がアルミ合金である場合、摩擦熱による温度上昇によって変形に関する強度が大きく変化する。このような場合に、本発明のように摩擦熱による被接合物の強度変化を考慮することによって、被接合物の変形後の断面形状を精度良く算出することができる。 According to the present invention, the cross-sectional shape after deformation of the workpiece can be calculated in consideration of the frictional heat generated by friction stir welding by giving the workpiece a heat input amount according to the joining conditions. This makes it possible to calculate a cross- sectional shape that approximates the cross-sectional shape after deformation of the bonded product when the friction stir welding is actually performed. For example, when two members to be joined are made of an aluminum alloy, the strength related to deformation greatly changes due to a temperature rise due to frictional heat. In such a case, the cross-sectional shape after deformation of the workpiece can be accurately calculated by considering the strength change of the workpiece due to frictional heat as in the present invention.

また本発明は、回転解析段階は、ツール押込み解析段階によって算出される被接合物の断面形状と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする。 Further, according to the present invention, in the rotation analysis stage, the contact portion of the workpiece to be contacted with the welding tool is forcibly rotated based on the cross-sectional shape of the workpiece and the temperature distribution calculated by the tool indentation analysis stage. The strain distribution of the workpiece is calculated by numerical analysis.

また摩擦撹拌接合を厳密にモデル化しようとすると、流動化領域における動的再結晶現象および流動化領域のうち接合ツール側の大きな塑性流動などを考慮する必要がある。しかしながら摩擦撹拌接合における具体的なメカニズムが解明されていないことから、このような厳密なモデルによる数値解析が困難である。本発明では、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合の摩擦熱を考慮して数値解析することができる。これによって具体的なメカニズムが解明されていなくても、現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができる。   In order to model the friction stir welding strictly, it is necessary to consider the dynamic recrystallization phenomenon in the fluidization region and the large plastic flow on the welding tool side in the fluidization region. However, since a specific mechanism in friction stir welding has not been elucidated, it is difficult to perform numerical analysis using such a strict model. In the present invention, numerical analysis can be performed in consideration of the frictional heat of friction stir welding by giving an amount of heat input according to the bonding conditions to the workpiece. Even if the specific mechanism is not clarified by this, the fluidization region approximated to the fluidization region when the friction stir welding is actually performed can be calculated.

また本発明は、形状算出工程は、流動化領域算出段階によって算出される流動化領域に基づいて、流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
ツール押込み解析段階によって算出される断面形状に基づいて、2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
強度算出工程は、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度を算出することを特徴とする。
Further, in the present invention, the shape calculation step includes a joining length calculation step of calculating a joining length corresponding to the outer diameter dimension of the fluidization region based on the fluidization region calculated by the fluidization region calculation step;
Based on the cross-sectional shape calculated by the tool indentation analysis stage, the hook point that is the most upstream point in the immersion direction among the boundary lines extending between the two members to be joined , and the influence of the immersion of the joining tool among the boundary lines A joining height calculation step for calculating a joining height corresponding to a dimension in the immersive direction between the reference point separated in the extending direction perpendicular to the immersive direction , up to a portion not subjected to
The strength calculation step is characterized by calculating the joint strength of the joint based on the joint length calculation result and the joint height calculation result.

強度試験における接合物の破断形態は、接合長さが短い場合に生じる破断形態と、接合高さが長い場合に生じる破断形態とがある。したがって接合強度は、接合長さと接合高さとに密接に関係している。本発明では、流動化領域算出段階によって算出される流動化領域に基づいて、接合強度に関連する接合長さと接合高さとを数値解析によって算出する。その接合長さと接合高さとに基づいて、接合強度を求めることによって、接合強度を精度良く推定することができる。   There are two types of fractures in the strength test: a fracture mode that occurs when the junction length is short, and a fracture mode that occurs when the junction height is long. Therefore, the bonding strength is closely related to the bonding length and the bonding height. In the present invention, based on the fluidization region calculated in the fluidization region calculation step, the joint length and the joint height related to the joint strength are calculated by numerical analysis. By determining the bonding strength based on the bonding length and the bonding height, the bonding strength can be accurately estimated.

また本発明は、形状算出工程は、ツール押込み解析段階によって算出される被接合物の断面形状と、流動化領域算出段階によって算出される被接合物の流動化領域とに基づいて、接合ツールと流動化領域と没入方向上流側の被接合部材とを有する押圧構成体を、予め定められる接合条件に従って、没入方向下流側の被接合部材に押付けた場合の被接合物の断面形状を数値解析によって算出する被接合部材押込み段階をさらに有し、
接合高さ算出段階は、被接合部材押込み段階によって算出される被接合物の断面形状に基づいて接合高さを算出することを特徴とする。
Further, according to the present invention, the shape calculation step is based on the cross-sectional shape of the workpiece calculated by the tool indentation analysis stage and the fluidization region of the workpiece calculated by the fluidization region calculation step. Numerical analysis of the cross-sectional shape of the object to be joined when the pressing structure having the fluidized region and the member to be welded upstream in the immersion direction is pressed against the member to be welded downstream in the immersion direction according to predetermined joining conditions. The method further includes a step of pushing the member to be joined to calculate,
The joining height calculation step is characterized in that the joining height is calculated based on the cross-sectional shape of the article to be joined, which is calculated in the joined member pushing step.

本発明に従えば、押圧構成体を没入方向下流側の被接合部材に押付けた状態を数値解析する。押圧構成体が没入方向下流側の被接合部材を押付けることによって、没入方向下流側の被接合部材は、流動化領域の近傍でかつ半径方向外方で、部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、次のような作用を奏する。つまりフック点を容易にかつ精度良く算出することができ、接合高さを精度良く求めることができる。   According to the present invention, the state in which the pressing structure is pressed against the member to be joined on the downstream side in the immersion direction is numerically analyzed. When the pressing structure presses the member to be welded downstream in the immersion direction, the member to be welded downstream in the immersion direction is partially raised in the vicinity of the fluidization region and radially outward and partially upstream in the immersion direction. To do. By calculating the hook point based on this uplift phenomenon, the following effects can be obtained. That is, the hook point can be calculated easily and with high accuracy, and the joining height can be obtained with high accuracy.

また本発明は、形状算出工程によって算出される被接合物の変形後の断面形状に基づいて、没入方向上流側の被接合部材の厚み寸法と、没入方向下流側の被接合部材の厚み寸法とを算出する板厚算出工程をさらに含むことを特徴とする。 Further, the present invention is based on the cross-sectional shape after deformation of the article to be joined calculated by the shape calculating step, and the thickness dimension of the joined member on the upstream side in the immersion direction and the thickness dimension of the joined member on the downstream side in the immersion direction. The method further includes a plate thickness calculating step of calculating.

本発明に従えば、板厚算出工程によって各被接合部材の板厚を算出することで、実際に板厚を測定することなく、各被接合部材の板厚を推定することができる。   According to the present invention, the plate thickness of each member to be joined can be estimated without actually measuring the plate thickness by calculating the plate thickness of each member to be joined by the plate thickness calculating step.

また本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の変形後の断面形状を推定する変形状態推定方法であって、
接合ツールを被接合物に没入させた場合であって、回転を行わない場合の、被接合物が変形する部分、没入方向に延びる接合ツールの軸線を含む平面における断面形状を、被接合物の物性値、厚み寸法、接合ツールの形状、加圧力、回転数、接合時間および没入量を入力して、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の前記断面形状に基づいてさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする接合物の変形状態推定方法である。
Further, in the present invention, in the case where two members to be bonded are aligned in a predetermined immersion direction, a rotating welding tool is immersed along the immersion direction, and when these two members to be bonded are subjected to friction stir welding, A deformation state estimation method for estimating a cross-sectional shape after deformation of a joint formed by joining two members to be joined,
The cross-sectional shape in the plane including the axis of the welding tool extending in the immersion direction of the portion where the workpiece is deformed when the welding tool is immersed in the workpiece and not rotating is determined . Enter the physical property value, thickness dimension, welding tool shape, pressure, number of rotations, welding time and immersion amount, and calculate the tool indentation analysis stage by numerical analysis,
Rotation analysis stage for calculating the strain distribution of the workpiece when the welding tool is further rotated based on the cross-sectional shape of the workpiece calculated by the tool indentation analysis stage, by numerical analysis,
Deformation of a joint comprising a fluidization region calculation step for calculating a fluidization region in which the workpiece is partially fluidized based on the strain distribution of the workpiece calculated by the rotation analysis step. It is a state estimation method.

本発明に従えば、摩擦撹拌接合を厳密にモデル化しようとすると、接合ツールの高速回転を考慮する必要がある。しかしながら計算量が膨大になることなどから、このような厳密なモデルによる数値解析が困難である。本発明では、接合ツールを回転させずに被接合物に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツールを回転させた場合を数値解析する。このようにして流動化領域を算出することで、計算を単純化して被接合物の変形後の接合状態を算出することができる。たとえば被接合物の変形後の接合状態は、上述した接合長さおよび接合高さを含む。   According to the present invention, when trying to model friction stir welding strictly, it is necessary to consider the high speed rotation of the welding tool. However, since the amount of calculation becomes enormous, numerical analysis using such a strict model is difficult. In the present invention, numerical analysis is performed when the welding tool is immersed in the workpiece without rotating, and then numerical analysis is performed when the welding tool is rotated using the numerical analysis data when the welding tool is immersed. . By calculating the fluidization region in this way, the calculation can be simplified and the bonded state after deformation of the workpiece can be calculated. For example, the bonded state after the deformation of the object to be bonded includes the above-described bonding length and bonding height.

また本発明は、ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の断面形状と温度分布とを、数値解析によって算出し、
回転解析段階は、ツール押込み解析段階によって算出される被接合物の断面形状と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする。
According to the present invention, in the tool indentation analysis stage, the welding tool is pressed in the immersion direction with a pressurizing force according to a predetermined joining condition, and the heat input according to the joining condition is applied to the object to be joined. Calculate the cross-sectional shape and temperature distribution of the joint by numerical analysis,
The rotation analysis stage is based on the cross-sectional shape and temperature distribution of the workpiece to be calculated in the tool indentation analysis stage, and the distortion of the workpiece when the contact part of the workpiece with the welding tool is forcibly rotated. The distribution is calculated by numerical analysis.

本発明に従えば、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合による摩擦熱を考慮した被接合物の変形後の断面形状を算出することができる。これによって現実に摩擦撹拌接合された場合の接合物の変形後の接合状態に近似した断面形状を算出することができる。たとえば2つの被接合部材がアルミ合金である場合、摩擦熱による温度上昇によって変形に関する強度が大きく変化する。このような場合に、本発明のように摩擦熱による被接合物の強度変化を考慮することによって、被接合物の変形後の接合状態を精度良く算出することができる。 According to the present invention, the cross-sectional shape after deformation of the workpiece can be calculated in consideration of the frictional heat generated by friction stir welding by giving the workpiece a heat input amount according to the joining conditions. As a result, it is possible to calculate a cross-sectional shape that approximates the bonded state after deformation of the bonded product when the friction stir welding is actually performed. For example, when two members to be joined are made of an aluminum alloy, the strength related to deformation greatly changes due to a temperature rise due to frictional heat. In such a case, the joined state after deformation of the article to be joined can be accurately calculated by considering the strength change of the article to be joined due to frictional heat as in the present invention.

また摩擦撹拌接合を厳密にモデル化しようとすると、流動化領域における動的再結晶現象および流動化領域のうち接合ツール側の大きな塑性流動などを考慮する必要がある。しかしながら摩擦撹拌接合における具体的なメカニズムが解明されていないことから、このような厳密なモデルによる数値解析が困難である。本発明では、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合の摩擦熱を考慮して数値解析することができる。これによって具体的なメカニズムが解明されていなくても、現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができる。   In order to model the friction stir welding strictly, it is necessary to consider the dynamic recrystallization phenomenon in the fluidization region and the large plastic flow on the welding tool side in the fluidization region. However, since a specific mechanism in friction stir welding has not been elucidated, it is difficult to perform numerical analysis using such a strict model. In the present invention, numerical analysis can be performed in consideration of the frictional heat of friction stir welding by giving an amount of heat input according to the bonding conditions to the workpiece. Even if the specific mechanism is not clarified by this, the fluidization region approximated to the fluidization region when the friction stir welding is actually performed can be calculated.

また本発明は、2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度が予め定める範囲に収まる接合条件を決定する接合条件決定方法であって、
摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを、予め定める接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを、予め定める接合条件毎に数値解析によって算出する接合高さ算出段階と、
予め定める接合条件毎に算出される、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度をそれぞれ算出する強度算出段階と、
強度算出段階によって算出される算出結果に基づいて、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階とを含むことを特徴とする接合条件決定方法である。
Further, in the present invention, in the case where two members to be bonded are aligned in a predetermined immersion direction, a rotating welding tool is immersed along the immersion direction, and when these two members to be bonded are subjected to friction stir welding, A joining condition determining method for determining a joining condition in which a joining strength of a joined article formed by joining two members to be joined is within a predetermined range,
A joining length calculation step for calculating a joining length corresponding to the outer diameter of the fluidized region where the workpiece is partially fluidized by frictional heat at the time of friction stirring, by numerical analysis for each predetermined joining condition; ,
Extending perpendicular to the immersion direction to the hook point which is the most upstream point in the immersion direction of the boundary line extending between the two members to be joined, and the portion of the boundary line not affected by the immersion of the welding tool A joint height calculating step for calculating a joint height corresponding to a dimension in the immersive direction between the reference points separated in the direction by numerical analysis for each predetermined joint condition;
A strength calculation stage for calculating the joint strength of each joint based on the joint length calculation result and the joint height calculation result calculated for each predetermined joining condition;
A joining condition determining method comprising: a joining condition extracting step of extracting a joining condition having a joining strength that falls within a predetermined joining strength range based on a calculation result calculated by the strength calculating step.

本発明に従えば、予め定める接合強度範囲に収まる接合条件を決定することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。   According to the present invention, it is possible to determine bonding conditions that fall within a predetermined bonding strength range. As a result, it is possible to select optimum construction conditions after ensuring the required bonding strength, and to improve convenience.

本発明によれば、数値解析によって被接合物の変形後の断面形状を算出し、変形後の接合状態に基づいて接合強度を算出する。算出した被接合物の変形後の接合状態から、接合後の接合物の接合強度を求めることによって、接合物に強度試験を行う必要がない。また数値解析によって変形後の断面形状を求めることによって、接合物の変形後の接合状態を実験によって測定する必要がない。すなわち実際に摩擦撹拌接合することなく接合物の接合強度を求めることができる。したがって接合条件を変更した場合の接合強度も容易に求めることができるので、目標とする接合強度となる接合条件を容易に求めることができ、接合条件の設定に費やす時間および費用を低減することができる。 According to the present invention, the cross-sectional shape after deformation of the workpiece is calculated by numerical analysis, and the bonding strength is calculated based on the bonded state after deformation. By calculating the bonding strength of the bonded article after bonding from the calculated bonded state of the bonded article, it is not necessary to perform a strength test on the bonded article. Further, by obtaining the cross-sectional shape after deformation by numerical analysis, it is not necessary to experimentally measure the joint state after deformation of the joint. That is, it is possible to determine the joint strength of the joint without actually performing friction stir welding. Therefore, since the joining strength when the joining conditions are changed can be easily obtained, the joining conditions that achieve the target joining strength can be easily obtained, and the time and cost spent for setting the joining conditions can be reduced. it can.

また本発明によれば、接合長さと接合高さとを算出し、算出した接合長さと接合高さとに基づいて接合強度を決定する。これによって接合強度を精度良く推定することができる。   According to the present invention, the joining length and the joining height are calculated, and the joining strength is determined based on the computed joining length and the joining height. As a result, the bonding strength can be accurately estimated.

また本発明によれば、回転する接合ツールを被接合物に押込んだ場合の被接合物の変形後の断面形状を算出するために、ツール押込み解析段階と回転解析段階とに分けて数値解析を行う。このようにして流動化領域を算出することによって、接合ツールの高速回転を数値解析する必要がなく、計算を単純化して被接合物の変形後の断面形状を算出することができる。また計算を単純化することで、短時間で流動化領域の算出を行うことができる。 Further, according to the present invention, in order to calculate the cross-sectional shape after deformation of the object to be joined when the rotating welding tool is pushed into the object to be joined, the numerical analysis is divided into the tool indentation analysis stage and the rotation analysis stage. I do. By calculating the fluidization region in this manner, it is not necessary to perform numerical analysis of the high-speed rotation of the welding tool, and the cross-sectional shape after deformation of the workpiece can be calculated by simplifying the calculation. Further, by simplifying the calculation, the fluidization region can be calculated in a short time.

また本発明によれば、摩擦熱に対応する入熱量を被接合物に与えることによって、摩擦熱を考慮した被接合物の変形後の接合状態を求めることができ、現実に摩擦撹拌接合された場合の変形後の断面形状に近似した断面形状を算出することができる。これによって算出した断面形状を現実の変形後の断面形状に近づけることができ、さらに精度良く変形形状を算出することができる。 Further, according to the present invention, by giving a heat input corresponding to the frictional heat to the object to be bonded, it is possible to obtain a bonded state after the deformation of the object to be bonded in consideration of the frictional heat. The cross-sectional shape approximated to the cross- sectional shape after deformation in the case can be calculated. Thus, the calculated cross-sectional shape can be brought close to the actual cross-sectional shape after deformation, and the deformed shape can be calculated with higher accuracy.

また本発明によれば、摩擦熱に対応する温度分布を考慮した変形後の断面形状に基づいて、流動化領域を算出する。これによって現実に摩擦撹拌接合された場合の流動化領域に近似した流動化領域を算出することができ、さらに精度良く流動化領域を算出することができる。 Further, according to the present invention, the fluidization region is calculated based on the deformed cross-sectional shape considering the temperature distribution corresponding to the frictional heat. As a result, it is possible to calculate a fluidization region that approximates the fluidization region when the friction stir welding is actually performed, and it is possible to calculate the fluidization region with higher accuracy.

また本発明によれば、流動化領域算出段階によって算出される流動化領域に基づいて、接合長さと接合高さとを算出する。これによって接合長さと接合高さとをさらに精度良く算出することができ、ひいては接合強度をさらに精度良く算出することができる。   According to the invention, the joining length and the joining height are calculated based on the fluidizing region calculated in the fluidizing region calculating step. Accordingly, the joining length and the joining height can be calculated with higher accuracy, and as a result, the joining strength can be calculated with higher accuracy.

また本発明によれば、押圧構成体を没入方向下流側の被接合部材に押付けることによって、没入方向下流側の被接合部材が部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、フック点を容易にかつ精度良く算出することができる。これによって接合強度をさらに精度良く算出することができる。   Further, according to the present invention, the pressed member is pressed against the member to be welded downstream in the immersion direction, so that the member to be welded downstream in the immersion direction partially rises upstream in the immersion direction. By calculating the hook point based on this uplift phenomenon, the hook point can be easily and accurately calculated. As a result, the bonding strength can be calculated with higher accuracy.

また本発明によれば、板厚算出工程によって各被接合部材の板厚を算出することができ
る。また各被接合部材の板厚は、接合物の外観からは測定することができず、試験によって求めることは困難である。本発明では、試験を行うことなく各被接合物の板厚を推定することができる。これによって接合品質の目安の1つである各被接合部材の板厚を求めることができ、接合強度推定に用いることができるとともに、利便性を向上することができる。
また本発明によれば、接合ツールを回転させずに被接合物に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツールを回転させた場合を数値解析する。このようにして流動化領域を算出することで、計算を単純化して被接合物の変形後の接合状態を算出することができる。たとえば被接合物の変形後の接合状態は、上述した接合長さおよび接合高さを含む。
また本発明によれば、接合条件に従った入熱量を被接合物に与えることによって、摩擦撹拌接合による摩擦熱を考慮した被接合物の変形後の断面形状を算出することができる。これによって現実に摩擦撹拌接合された場合の接合物の変形後の接合状態に近似した断面形状を算出することができる。たとえば2つの被接合部材がアルミ合金である場合、摩擦熱による温度上昇によって変形に関する強度が大きく変化する。このような場合に、本発明のように摩擦熱による被接合物の強度変化を考慮することによって、被接合物の変形後の接合状態を精度良く算出することができる。
Moreover, according to this invention, the plate | board thickness of each to-be-joined member can be calculated by a plate | board thickness calculation process. Moreover, the plate | board thickness of each to-be-joined member cannot be measured from the external appearance of a joining thing, and it is difficult to obtain | require it by a test. In the present invention, the plate thickness of each workpiece can be estimated without performing a test. As a result, the thickness of each member to be joined, which is one measure of the joining quality, can be obtained and used for estimation of joining strength, and convenience can be improved.
Further, according to the present invention, the numerical analysis is performed when the welding tool is immersed in the workpiece without rotating, and then the welding tool is rotated using the numerical analysis data when the welding tool is immersed. Numerical analysis. By calculating the fluidization region in this way, the calculation can be simplified and the bonded state after deformation of the workpiece can be calculated. For example, the bonded state after the deformation of the object to be bonded includes the above-described bonding length and bonding height.
Further, according to the present invention, the cross-sectional shape after deformation of the workpiece can be calculated in consideration of the frictional heat generated by friction stir welding by giving the workpiece the amount of heat input according to the joining conditions. As a result, it is possible to calculate a cross-sectional shape that approximates the bonded state after deformation of the bonded product when the friction stir welding is actually performed. For example, when two members to be joined are made of an aluminum alloy, the strength related to deformation greatly changes due to a temperature rise due to frictional heat. In such a case, the joined state after deformation of the article to be joined can be accurately calculated by considering the strength change of the article to be joined due to frictional heat as in the present invention.

また本発明によれば、予め定める接合強度範囲に収まる接合条件を決定することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。   Further, according to the present invention, it is possible to determine a joining condition that falls within a predetermined joining strength range. As a result, it is possible to select optimum construction conditions after ensuring the required bonding strength, and to improve convenience.

図1は、本発明の実施の一形態である接合強度推定方法の推定手順を示すフローチャートである。本発明の接合強度推定方法は、摩擦撹拌接合を実際に行うことなく、摩擦撹拌接合された接合物の接合強度を推定する方法である。大略的には、接合条件取得工程s1で、摩擦撹拌接合に関する接合条件を取得する。次に形状算出工程s2で接合時の被接合物の変形状態を数値解析によって算出する。次に強度算出工程s3で、摩擦撹拌接合によって接合されるであろう接合物の接合強度を算出する。   FIG. 1 is a flowchart showing an estimation procedure of a bonding strength estimation method according to an embodiment of the present invention. The joint strength estimation method of the present invention is a method for estimating the joint strength of a joint that has been friction stir welded without actually performing friction stir welding. In general, a joining condition relating to friction stir welding is obtained in the joining condition obtaining step s1. Next, the deformation state of the objects to be joined at the time of joining is calculated by numerical analysis in the shape calculating step s2. Next, in the strength calculation step s3, the joint strength of the joint that will be joined by friction stir welding is calculated.

図2は、摩擦撹拌接合の接合手順を示す断面図であり、図2(1)〜図2(4)の順で進む。摩擦撹拌接合(Friction Stir Welding:略称FSW)は、予め定める基準方向Aに並ぶ2つの被接合部材1,2を接合する。接合前の2つの被接合部材1,2は、被接合物3を構成する。摩擦撹拌接合方法は、後述する摩擦撹拌接合装置10を用いて、被接合部材1,2を局所的に接合するスポット接合に用いられる。   FIG. 2 is a cross-sectional view showing a joining procedure of friction stir welding, and proceeds in the order of FIG. 2 (1) to FIG. 2 (4). Friction Stir Welding (abbreviated as FSW) joins two members 1 and 2 arranged in a predetermined reference direction A. The two members to be bonded 1 and 2 before bonding constitute the object to be bonded 3. The friction stir welding method is used for spot joining in which the members to be joined 1 and 2 are locally joined using a friction stir welding apparatus 10 described later.

摩擦撹拌接合は、円筒状の接合ツール4を用いて行われる。接合ツール4は、略円柱状に形成される本体部5と、本体部5から軸線方向一方に突出し、略円柱状に形成されるピン部6とを有する。本体部5は、軸線方向一方A1側端面となるショルダ面7を有する。ショルダ面7は、接合ツール4の軸線L1に対して略垂直に形成される。ピン部6は、ショルダ面7から垂直に突出する。本体部5とピン部6とは、同軸に形成され、ピン部6の外形は、本体部5の外形よりも小さく形成される。   Friction stir welding is performed using a cylindrical welding tool 4. The joining tool 4 has a main body portion 5 formed in a substantially cylindrical shape, and a pin portion 6 that protrudes from the main body portion 5 in one axial direction and is formed in a substantially cylindrical shape. The main body 5 has a shoulder surface 7 which is an end surface on the one A1 side in the axial direction. The shoulder surface 7 is formed substantially perpendicular to the axis L <b> 1 of the welding tool 4. The pin portion 6 projects vertically from the shoulder surface 7. The main body portion 5 and the pin portion 6 are formed coaxially, and the outer shape of the pin portion 6 is smaller than the outer shape of the main body portion 5.

回転しながら接合ツール4が被接合物3に没入することによって、被接合物3は、接合ツール4との摩擦熱によって部分的に流動化し、流動化した領域が撹拌される。被接合物3のうち流動化した各被接合部材1,2が互いに混ぜ合わされる。この後、流動化した部分が固まることによって、各被接合部材1,2が接合される。被接合部材1,2は、たとえばアルミ合金から成る。   When the welding tool 4 is immersed in the workpiece 3 while rotating, the workpiece 3 is partially fluidized by frictional heat with the welding tool 4 and the fluidized region is agitated. The fluidized members 1 and 2 that are fluidized in the object 3 are mixed together. Thereafter, the joined members 1 and 2 are joined by solidifying the fluidized portion. The members 1 and 2 are made of, for example, an aluminum alloy.

たとえば接合ツール4は、ピン部6の直径が5mmに設定され、本体部5の直径が10mmに設定され、ピン部6が本体部5から突出する突出量が3mmに設定される。また接合ツール4は、面とりがなされている。   For example, as for the joining tool 4, the diameter of the pin part 6 is set to 5 mm, the diameter of the main-body part 5 is set to 10 mm, and the protrusion amount which the pin part 6 protrudes from the main-body part 5 is set to 3 mm. Further, the joining tool 4 is chamfered.

図3は、摩擦撹拌接合装置10を示す斜視図である。摩擦撹拌接合装置10(以下単に接合装置10と称する)は、ツール保持部11と、回転駆動手段12と、変位駆動手段13と、受け台14と、基台15と、制御手段16とを含んで構成される。接合装置10は、予め定める基準軸線L1が設定される。ツール保持部11は、接合ツール4を着脱可能に保持する。装着されたツール保持部11は、その軸線が、接合装置10の基準軸線L1と同軸に配置される。回転駆動手段12は、ツール保持部11を基準軸線L1まわりに回転駆動する。変位駆動手段13は、ツール保持部11を基準軸線L1に沿って延びる基準方向A1,A2に変位駆動する。   FIG. 3 is a perspective view showing the friction stir welding apparatus 10. The friction stir welding apparatus 10 (hereinafter simply referred to as a joining apparatus 10) includes a tool holding portion 11, a rotation driving means 12, a displacement driving means 13, a receiving base 14, a base 15, and a control means 16. Consists of. The joining apparatus 10 is set with a predetermined reference axis L1. The tool holding part 11 hold | maintains the joining tool 4 so that attachment or detachment is possible. The attached tool holder 11 is arranged such that its axis is coaxial with the reference axis L <b> 1 of the joining device 10. The rotation driving unit 12 drives the tool holding unit 11 to rotate around the reference axis L1. The displacement driving unit 13 drives the tool holding unit 11 in the reference directions A1 and A2 extending along the reference axis L1.

受け台14は、ツール保持部11に対して基準方向Aに対向する位置に設けられて、接合ツール4と反対側から被接合物3を支持する。基台15は、ロボットアーム17の先端部に連結され、ツール保持部11、各駆動手段12,13および受け台14を直接または間接的に支持する。また基台15は、いわゆるCガンであって、略C字状に形成される。受け台14は、C字状に形成される基台15の周方向一端部15aに設けられる。またツール保持部11は、C字状に形成される基台15の周方向他端部15bに設けられる。制御手段16は、回転駆動手段12および変位駆動手段13を制御する。制御手段16は、マイクロコンピュータなどによって実現され、回転駆動手段12および変位駆動手段13は、サーボモータによって実現される。   The cradle 14 is provided at a position facing the tool holding portion 11 in the reference direction A, and supports the workpiece 3 from the side opposite to the welding tool 4. The base 15 is connected to the distal end portion of the robot arm 17 and directly or indirectly supports the tool holding unit 11, the driving units 12 and 13, and the cradle 14. The base 15 is a so-called C gun and is formed in a substantially C shape. The cradle 14 is provided at one end 15a in the circumferential direction of the base 15 formed in a C shape. Moreover, the tool holding | maintenance part 11 is provided in the circumferential direction other end part 15b of the base 15 formed in C shape. The control unit 16 controls the rotation driving unit 12 and the displacement driving unit 13. The control means 16 is realized by a microcomputer or the like, and the rotation driving means 12 and the displacement driving means 13 are realized by servo motors.

摩擦撹拌接合方法は、図2に示す手順に従って行なわれる。まず、作業者などが、接合ツール4をツール保持部11に装着する。また被接合物3を予め定める保持位置に保持する。このような接合準備が完了すると、制御手段16が接合動作を開始する。   The friction stir welding method is performed according to the procedure shown in FIG. First, an operator or the like attaches the welding tool 4 to the tool holding unit 11. Further, the workpiece 3 is held at a predetermined holding position. When such preparation for joining is completed, the control means 16 starts the joining operation.

制御手段16は、ロボットアーム17によって基台15を予め定める接合待機位置に変位移動させる。接合待機位置に基台15が配置されると、接合ツール4は、被接合物3に設定される目標接合位置に対して基準方向Aに間隔を開けて配置される。また受け台14は、接合ツール4と反対側から被接合物3に当接する。また被接合部材1,2が並ぶ方向と接合装置10の基準方向とが一致する。   The control means 16 displaces and moves the base 15 to the predetermined joining standby position by the robot arm 17. When the base 15 is placed at the joining standby position, the joining tool 4 is placed at an interval in the reference direction A with respect to the target joining position set on the workpiece 3. The cradle 14 comes into contact with the workpiece 3 from the side opposite to the welding tool 4. Further, the direction in which the members 1 and 2 are lined up coincides with the reference direction of the bonding apparatus 10.

次に制御手段16は、回転駆動手段12を制御し、ツール保持部11を基準軸線L1まわりに回転させる。また制御手段16は、変位駆動手段13を制御し、ツール保持部11を基準方向一方A1に移動させる。これによって図2(1)に示すように、接合ツール4は、回転しながら被接合物3に向かい、図2(2)に示すように、被接合物3に没入する。   Next, the control unit 16 controls the rotation driving unit 12 to rotate the tool holding unit 11 around the reference axis L1. Further, the control means 16 controls the displacement driving means 13 to move the tool holding portion 11 in one reference direction A1. As a result, as shown in FIG. 2 (1), the welding tool 4 moves toward the workpiece 3 while rotating, and enters the workpiece 3 as shown in FIG. 2 (2).

接合ツール4は、被接合物3に没入した後、図2(3)に示すように回転しながら被接合物3と摺動することで、摩擦熱を被接合物3に与える。この摩擦熱によって被接合物3には、部分的に流動化する流動化領域8が形成される。流動化領域8は、2つの被接合部材1,2を互いに混ぜ合わせる。このようにして被接合物3は、いわゆる固相撹拌される。   The welding tool 4 is immersed in the workpiece 3 and then slides against the workpiece 3 while rotating as shown in FIG. Due to this frictional heat, a fluidized region 8 that partially fluidizes is formed in the workpiece 3. The fluidizing region 8 mixes the two members 1 and 2 to each other. In this way, the workpiece 3 is so-called solid phase agitation.

接合ツール4が被接合物3に当接してから予め定める撹拌時間が経過すると、制御手段16は、変位駆動手段13を制御し、ツール保持部11を基準方向他方A2に移動させる。これによって図2(4)に示すように、接合ツール4が被接合物3から離反する。また制御手段16は、回転駆動手段12を制御してツール保持部11の回転を停止し、制御手段16は、接合動作を終了する。   When a predetermined stirring time elapses after the welding tool 4 comes into contact with the workpiece 3, the control unit 16 controls the displacement driving unit 13 to move the tool holding unit 11 in the other reference direction A <b> 2. Thereby, as shown in FIG. 2 (4), the welding tool 4 is separated from the workpiece 3. Further, the control means 16 controls the rotation driving means 12 to stop the rotation of the tool holding unit 11, and the control means 16 ends the joining operation.

接合ツール4が被接合物3から離脱すると、被接合物3の温度低下にともなって流動化領域8が固まる。これによって2つの被接合部材1,2が接合された接合物が構成される。なお、本発明において、接合前の2つの被接合部材1,2を合わせて被接合物3と称し、接合後の2つの被接合部材1,2を合わせて接合物と称する。   When the welding tool 4 is detached from the workpiece 3, the fluidized region 8 is hardened as the temperature of the workpiece 3 decreases. As a result, a joined product in which the two members 1 and 2 are joined is formed. In the present invention, the two members to be bonded 1 and 2 before joining are collectively referred to as an object 3 to be bonded, and the two members to be bonded 1 and 2 after bonding are collectively referred to as a bonded object.

図4は、本発明の接合強度推定方法を実行する演算装置20を示すブロック図である。本発明の接合強度推定方法は、演算装置20によって行われる。演算装置20は、入力手段21と、出力手段22と、演算手段23と、記憶手段24とを含む。入力手段21は、作業者などから摩擦撹拌接合に関する接合条件および演算開始命令が入力される。出力手段22は、演算手段23によって算出された接合強度を出力する。また記憶手段24は、演算手段23が実行するための演算プログラムおよび演算時に算出されるデータを一時的に記憶する。演算手段23は、記憶手段24に記憶される演算プログラムを読み出し、その演算プログラムを実行することによって接合強度推定方法の各手順を順次行う。   FIG. 4 is a block diagram showing an arithmetic unit 20 that executes the bonding strength estimation method of the present invention. The joint strength estimation method of the present invention is performed by the arithmetic unit 20. The computing device 20 includes an input means 21, an output means 22, a computing means 23, and a storage means 24. The input means 21 receives a welding condition and calculation start command regarding friction stir welding from an operator or the like. The output unit 22 outputs the bonding strength calculated by the calculation unit 23. The storage unit 24 temporarily stores a calculation program to be executed by the calculation unit 23 and data calculated at the time of calculation. The calculation means 23 reads the calculation program memorize | stored in the memory | storage means 24, and performs each procedure of a joining strength estimation method one by one by executing the calculation program.

このような演算装置20は、コンピュータによって実現される。たとえば入力手段21は、キーボードおよびポインティングデバイスなどで実現される。また出力手段22は、ディスプレイなどの表示装置で実現される。また記憶手段24は、RAM(Random
Access Memory)およびROM(Read Only memory)などの記憶回路によって実現され、演算手段23は、マイクロコンピュータなどによって実現される演算回路、たとえばCPU(Central Processing Unit)によって実現される。
Such an arithmetic unit 20 is realized by a computer. For example, the input means 21 is realized by a keyboard and a pointing device. The output means 22 is realized by a display device such as a display. The storage means 24 is a RAM (Random
The arithmetic means 23 is realized by an arithmetic circuit realized by a microcomputer or the like, for example, a CPU (Central Processing Unit).

接合強度算出手順の概略を説明すると、図1に示すように、作業者が入力手段21を操作することによって、入力手段21から接合強度の算出指令が与えられると、演算手段23は接合強度推定動作を開始し、接合条件取得工程s1に進む。接合条件得工程s1では、演算手段23は、摩擦撹拌接合に関する接合条件を入力手段21から取得する。たとえば、表1に接合条件例を表わす。 The outline of the procedure for calculating the bonding strength will be described. As shown in FIG. 1, when the operator operates the input means 21 to give a calculation command for the bonding strength, the calculation means 23 estimates the bonding strength. The operation is started and the process proceeds to the joining condition acquisition step s1. In the joining condition obtaining step s <b> 1, the calculation unit 23 acquires a joining condition related to friction stir welding from the input unit 21. For example, Table 1 shows examples of joining conditions.

Figure 0004372534
Figure 0004372534

表1に示すように、与えられる接合条件は、接合すべき各被接合部材の材質に応じた物性値と、各被接合部材の厚み方向寸法と、摩擦撹拌条件とを含む。   As shown in Table 1, the given joining conditions include physical property values corresponding to the materials of the members to be joined, the thickness direction dimensions of the members to be joined, and friction stirring conditions.

摩擦撹拌条件は、接合ツールの形状と、接合ツールによって被接合物を加圧する加圧力と、接合ツールの回転数と、接合ツールの没入時間となる接合時間と、接合ツールの没入量とを含む。   The friction stir conditions include the shape of the welding tool, the pressing force that pressurizes the object to be joined by the welding tool, the number of rotations of the welding tool, the bonding time that is the immersion time of the welding tool, and the amount of immersion of the welding tool. .

被接合部材の材質に応じた物性値は、縦弾性係数と、ポワソン比と、降伏応力と、応力ひずみ関係と、摩擦係数と、密度と、熱膨張係数と、比熱と、熱伝導率とを含む。応力ひずみ関係は、予め定める真応力を与えた場合に被接合部材が変形する塑性真ひずみ量を示す。なお、本実施の形態では、各被接合部材として、日本工業規格(JIS)に規定されるA6N01−T5が用いられる。   The physical property values according to the material of the member to be joined include longitudinal elastic modulus, Poisson's ratio, yield stress, stress strain relationship, friction coefficient, density, thermal expansion coefficient, specific heat, and thermal conductivity. Including. The stress-strain relationship indicates the amount of plastic true strain that deforms the bonded member when a predetermined true stress is applied. In the present embodiment, A6N01-T5 defined in Japanese Industrial Standard (JIS) is used as each member to be joined.

本実施の形態では、各被接合部材の物性値のうち、温度依存性を有する物性値については、温度毎の特性値が与えられる。したがって、縦弾性係数と、降伏応力と、応力−ひずみ関係とにおける温度毎の特性を表2〜表4にそれぞれ示す。   In the present embodiment, among the physical property values of each member to be joined, the property value for each temperature is given for the physical property value having temperature dependency. Therefore, the characteristics for each temperature in the longitudinal elastic modulus, the yield stress, and the stress-strain relationship are shown in Tables 2 to 4, respectively.

Figure 0004372534
Figure 0004372534

Figure 0004372534
Figure 0004372534

Figure 0004372534
Figure 0004372534

表1〜表4に示す接合条件を演算手段23が取得すると、形状算出工程s2に進む。
形状算出工程s2では、演算手段23は、接合条件取得工程s1で取得した接合条件に基づいて、被接合物3の変形状態を数値解析によって算出し、強度算出工程s3に進む。強度算出工程s3では、演算手段23は、形状算出工程s2で算出された被接合物3の変形状態に基づいて、接合物の接合強度を算出し、終了工程s4に進む。終了工程では、演算手段23は、算出した接合強度を出力手段22によって出力させ、接合強度算出動作を終了する。数値解析は、有限要素法(Finite Element Method)を用いて行われる。
When the calculation means 23 acquires the joining conditions shown in Tables 1 to 4, the process proceeds to the shape calculation step s2.
In the shape calculation step s2, the calculation means 23 calculates the deformation state of the workpiece 3 by numerical analysis based on the joining condition acquired in the joining condition acquisition step s1, and proceeds to the strength calculation step s3. In the strength calculation step s3, the computing unit 23 calculates the joint strength of the joined object based on the deformation state of the article 3 to be joined calculated in the shape calculating step s2, and proceeds to the end step s4. In the end step, the calculation means 23 causes the output means 22 to output the calculated joining strength, and the joining strength calculating operation is finished. Numerical analysis is performed using a finite element method.

与えられる接合条件が異なった場合には、被接合物3の変形状態が変化する。ただし接合条件が異なっても被接合物3の変形後の接合状態が同じ場合には、ほぼ同じ接合強度となることが実験によって明らかとなっている。したがって上述したように、数値解析によって被接合物3の変形状態を算出し、その変形後の接合状態に基づくことによって接合条件にかかわらず、接合後の接合物の接合強度を算出することができる。   When the given joining conditions are different, the deformation state of the article to be joined 3 changes. However, even if the joining conditions are different, it has been clarified by experiments that when the joined state after deformation of the article to be joined 3 is the same, the joining strength is almost the same. Therefore, as described above, the deformation state of the article to be bonded 3 is calculated by numerical analysis, and based on the bonding state after the deformation, the bonding strength of the bonded object after bonding can be calculated regardless of the bonding conditions. .

図5は、被接合物3を拡大して示す断面図である。なお、本発明では、接合ツール4が被接合物3に没入する方向を没入方向Bとし、没入方向Bに垂直な方向を延在方向Cとする。また接合ツール4が没入したときに、接合ツール4の軸線L1が被接合物3を通過するであろう軸線を中心軸線L1と称し、接合される位置を接合位置30と称する。また没入方向上流側の被接合部材1を第1被接合部材1と称し、没入方向下流側の被接合部材2を第2被接合部材2と称する。   FIG. 5 is an enlarged cross-sectional view of the workpiece 3. In the present invention, the direction in which the welding tool 4 is immersed in the workpiece 3 is defined as an immersion direction B, and the direction perpendicular to the immersion direction B is defined as an extending direction C. Further, when the welding tool 4 is immersed, the axis line L1 of the welding tool 4 that will pass through the workpiece 3 is referred to as the central axis line L1, and the position to be bonded is referred to as the bonding position 30. Further, the member 1 to be joined on the upstream side in the immersion direction is referred to as a first member 1 and the member 2 to be joined on the downstream side in the immersion direction is referred to as a second member 2.

被接合物3は、回転する接合ツール4が没入することによって、接合ツール4に隣接する部分に流動化領域8が形成される。この流動化領域8は、中心軸線L1を中心とするリング形状に形成される。また第1被接合部材1と第2被接合部材2との境界線31のうち、流動化領域8の近傍の境界線31aは、流動化領域8の外周面32に沿って没入方向上流側に隆起する。   The fluidized region 8 is formed in a portion adjacent to the welding tool 4 when the rotating welding tool 4 is immersed in the workpiece 3. The fluidizing region 8 is formed in a ring shape centered on the central axis L1. Of the boundary lines 31 between the first bonded member 1 and the second bonded member 2, the boundary line 31 a in the vicinity of the fluidizing region 8 is located upstream in the immersion direction along the outer peripheral surface 32 of the fluidizing region 8. Raise.

また接合位置30から延在方向Cに十分に離反した離反位置33における各被接合部材1,2の板厚は、接合ツール4の没入による影響を受けず、接合前と同じ板厚となる。本発明では、各被接合部材1,2が接合ツール4の没入による影響を受けない部分の境界線31のうち1点を基準点P1と称する。言換えると、基準点P1は、境界線31のうち接合ツール4が没入する接合位置に対して延在方向Cに離反した位置の点である。また流動化領域8の近傍の境界線31aであって、没入方向最上流の点をフック点P2と称する。   Further, the plate thickness of each of the members 1 and 2 at the separation position 33 sufficiently separated from the joining position 30 in the extending direction C is not affected by the immersion of the joining tool 4 and is the same as that before joining. In the present invention, one point among the boundary lines 31 where the members 1 and 2 are not affected by the immersion of the welding tool 4 is referred to as a reference point P1. In other words, the reference point P1 is a point at a position away from the joining direction in the extending direction C with respect to the joining position where the joining tool 4 is immersed in the boundary line 31. Further, the point on the boundary line 31a in the vicinity of the fluidization region 8 and the most upstream in the immersion direction is referred to as a hook point P2.

本発明の実施の一形態では、被接合物3の変形状態を示す指標として、接合長さDと接合高さHとを算出する。接合長さDは、摩擦撹拌時の摩擦熱によって被接合物3が部分的に流動化する流動化領域8の外径寸法に対応する。接合長さDは、図5に示すように基準点P1を含み中心軸線L1に沿って延びる仮想平面によって被接合物3を切断した場合に、第1被接合部材1と第2被接合部材2との境界線31のうち、フック点P2よりも没入方向下流側に存在し、基準軸線L1の延在方向Cの両側でかつ基準軸線L1に最も近い2つの点n1,n2の間の延在方向寸法である。   In one embodiment of the present invention, the joining length D and the joining height H are calculated as indices indicating the deformation state of the article 3 to be joined. The joining length D corresponds to the outer diameter of the fluidized region 8 where the workpiece 3 is partially fluidized by frictional heat during friction stirring. As shown in FIG. 5, when the workpiece 3 is cut by a virtual plane that includes the reference point P1 and extends along the central axis L1, as shown in FIG. Of the boundary line 31 between the two points n1 and n2 that are located downstream of the hook point P2 in the immersion direction and that are on both sides of the reference axis L1 in the extending direction C and closest to the reference axis L1. Directional dimension.

言換えると、前記仮想平面によって被接合物3を切断した場合に、基準軸線L1に対して延在方向一方に十分離反した位置から境界線31に沿って進んで、フック点P2に到達前に基準軸線L1に最も近づく点n1と、基準軸線L1に対して延在方向他方に十分離反した位置から境界線31に沿って進んで、フック点P2に到達前に基準軸線L1に最も近づく点n2との間の延在方向寸法が、接合長さDとなる。また接合高さHは、前述した基準点P1とフック点P2との間の没入方向寸法である。   In other words, when the workpiece 3 is cut by the virtual plane, it proceeds along the boundary line 31 from a position far from the reference axis L1 in the extending direction one side, and before reaching the hook point P2. A point n1 that is closest to the reference axis L1 and a point n2 that is closest to the reference axis L1 before reaching the hook point P2 after traveling along the boundary line 31 from a position that is far from the reference axis L1 in the other extending direction. The dimension in the extending direction therebetween is the joint length D. The joining height H is a dimension in the immersion direction between the reference point P1 and the hook point P2 described above.

図6は、実験によるはく離強度と変形後の接合状態との関係を示すグラフである。なお、図6について縦軸は、はく離強度を表わす。また横軸は、接合面積とフックリガメントとを示す。接合面積は、横軸に沿って右側に向かうにつれて大きくなる。またフックリガメントは、横軸に沿って右側に向かうにつれて小さくなる。   FIG. 6 is a graph showing the relationship between the peel strength and the bonded state after deformation according to experiments. In FIG. 6, the vertical axis represents the peel strength. The horizontal axis indicates the bonding area and hook ligament. The bonding area increases as it goes to the right along the horizontal axis. Further, the hook ligament becomes smaller along the horizontal axis toward the right side.

接合面積は、接合長さDに基づいて求められる。具体的には、接合面積Aは、接合長さをD、ピン部6の半径をrとすると、(D/2)・π−r・πで表わされる。この式において、乗算を算術記号「・」で表記している。フックリガメントは、接合高さHに基づいて求められる。具体的にはフックリガメントは、フック点P2における第1被接合部材の板厚Tuを表わす。フックリガメントは、接合高さをH、接合前の第1被接合部材1の板厚をT1とすると、T1−Hで表わされる。 The bonding area is determined based on the bonding length D. Specifically, the junction area A is represented by (D / 2) 2 · π−r 2 · π where D is the junction length and r is the radius of the pin portion 6. In this equation, multiplication is represented by an arithmetic symbol “·”. The hook ligament is obtained based on the joining height H. Specifically, the hook ligament represents the thickness Tu of the first member to be joined at the hook point P2. The hook ligament is represented by T1-H, where H is the joining height and T1 is the thickness of the first joined member 1 before joining.

はく離強度は、各被接合部材1,2に相互に離反する方向であって中心軸線L1に平行な方向に力を与えた場合に、各被接合部材1,2が離反するまでに耐えうる力である。図6に示すように、はく離強度と接合面積とは、対応関係にある。接合面積、すなわち接合長さDが大きいほど、はく離強度が大きくなる。実験結果に基づいて、接合面積に対応するはく離強度を示すプロット点32をグラフ上にプロットした場合、そのプロット点32は、グラフ上で予め定められる第1近似線30に沿って並ぶ。   The peel strength is a force that can be withstood until the members 1 and 2 are separated from each other when the members 1 and 2 are separated from each other and in a direction parallel to the central axis L1. It is. As shown in FIG. 6, the peel strength and the bonding area are in a correspondence relationship. The larger the bonding area, that is, the bonding length D, the greater the peel strength. Based on the experimental results, when plot points 32 indicating the peel strength corresponding to the bonding area are plotted on the graph, the plot points 32 are arranged along a first approximate line 30 that is predetermined on the graph.

同様に、フックリガメントとはく離強度とは、対応関係にある。フックリガメントが大きいほど、すなわち接合高さが小さいほど、はく離強度が大きくなる。実験結果に基づいて、フックリガメントに対応するはく離強度を示すプロット点33をグラフ上にプロットした場合、そのプロット点33は、グラフ上で予め定められる第2近似線31に沿って並ぶ。   Similarly, hook ligament and peel strength are in a corresponding relationship. The larger the hook ligament, that is, the smaller the joint height, the greater the peel strength. When plot points 33 indicating the peel strength corresponding to the hook ligament are plotted on the graph based on the experimental results, the plot points 33 are arranged along a second approximate line 31 that is predetermined on the graph.

このような関係は、ツール4の回転数、加圧力および接合時間などにかかわらず、一定の傾向を示す。したがって接合強度の1つであるはく離強度は、接合条件にかかわらず接合後の接合物の変形後の接合状態、具体的には接合長さDと接合高さHとによって決定される。   Such a relationship shows a certain tendency regardless of the number of rotations of the tool 4, the applied pressure, the joining time, and the like. Therefore, the peel strength, which is one of the joining strengths, is determined by the joining state after deformation of the joined article after joining, specifically, the joining length D and the joining height H, regardless of joining conditions.

図7は、はく離強度試験における接合物の破断形態を示す断面図である。被接合物3に与える熱量が大きくなるにつれて、接合面積が大きくなり、かつフックリガメントが小さくなる。すなわち傾向として接合面積とフックリガメントとでは、反比例の関係となる。   FIG. 7 is a cross-sectional view showing a fractured form of the bonded article in the peel strength test. As the amount of heat applied to the workpiece 3 increases, the bonding area increases and the hook ligament decreases. That is, as a tendency, the bonding area and the hook ligament have an inversely proportional relationship.

フックリガメントが小さい場合(図6において符号34で表記する)には、図7(1)に示す破断形態を示す。この場合、接合高さHが大きいので、フック点Pから第1被接合部材1の没入方向上流側の表面36に向かって亀裂が延びて、第1被接合部材1が、流動化領域8および第2接合物材2から分離する。このときのはく離強度を第1はく離強度とすると、第1はく離強度は、実験的に求めることができる。たとえば、第1はく離強度Pは、α・(F・D・π)と近似することができる。前式において、αは、接合条件に応じて決定される第1係数を示し、たとえば135となる。またFはフックリガメントを示し、Dは接合長さを示し、πは円周率を示す。なお、この近似式は、一例であって他の近似式を用いてもよい。 When the hook ligament is small (indicated by reference numeral 34 in FIG. 6), the fracture form shown in FIG. In this case, since the joining height H is large, the crack extends from the hook point P toward the surface 36 on the upstream side in the immersion direction of the first joined member 1, so that the first joined member 1 becomes the fluidized region 8 and Separated from the second bonded material 2. If the peel strength at this time is defined as the first peel strength, the first peel strength can be obtained experimentally. For example, the first peel strength P 1 can be approximated as α 1 · (F · D · π). In the above equation, α 1 indicates a first coefficient determined according to the joining condition, and is, for example, 135. F represents a hook ligament, D represents a joining length, and π represents a circumference. Note that this approximate expression is an example, and another approximate expression may be used.

また接合面積が小さい場合(図6において符号35で表記する)には、図7(2)に示す破断形態を示す。この場合、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1および流動化領域8が、第2被接合部材2から分離する。このときのはく離強度を第2はく離強度とすると、第2はく離強度も、実験的に求めることができる。たとえば第2はく離強度Pは、α・Aと近似することができる。前式において、αは、接合条件に応じて決定される第2係数を示し、たとえば216となる。またAは、接合面積を示す。なお、この近似式は、一例であって他の近似式を用いてもよい。 When the joining area is small (denoted by reference numeral 35 in FIG. 6), the fracture form shown in FIG. 7 (2) is shown. In this case, a crack extends from the hook point P toward the central axis L <b> 1, and the first member 1 and the fluidized region 8 are separated from the second member 2. If the peel strength at this time is the second peel strength, the second peel strength can also be obtained experimentally. For example, the second peel strength P 2 can be approximated as α 2 · A. In the previous equation, α 2 indicates a second coefficient determined according to the joining condition, and is 216, for example. A represents the bonding area. Note that this approximate expression is an example, and another approximate expression may be used.

はく離強度試験における破断形態は、図7(1)および図7(2)のいずれかに示す破断形態となる。はく離強度を大きくするには、接合面積を大きくするとともにフックリガメントを大きくすることが好ましいが、両方の関係が反比例関係になるので、両方を達成することができない。したがって、はく離強度が最大となる接合面積およびフックリガメントは、両方の折り合いを考えて決定される。具体的には、はく離強度が最大となる接合面積およびフックリガメントは、図6に示す第1近似曲線30と第2近似曲線31との交点P3で表わされる接合面積およびフックリガメントとなる。   The breaking form in the peel strength test is the breaking form shown in either FIG. 7 (1) or FIG. 7 (2). In order to increase the peel strength, it is preferable to increase the joint area and the hook ligament. However, since both relations are inversely related, both cannot be achieved. Therefore, the joint area and the hook ligament where the peel strength is maximized are determined in consideration of the combination of both. Specifically, the joint area and hook ligament where the peel strength is maximized are the joint area and hook ligament represented by the intersection P3 between the first approximate curve 30 and the second approximate curve 31 shown in FIG.

また、接合長さDと接合高さHとが与えられた場合には、実際の被接合物のはく離強度Pは、Min(P,P)によって表わされる。すなわち、算出される第1はく離強度Pと、第2はく離強度Pとのうち、小さいほうが、実際の被接合物のはく離強度となる。 Further, when the joining length D and the joining height H are given, the actual peel strength P of the object to be joined is represented by Min (P 1 , P 2 ). That is, the first peel strength P 1 is calculated, of the second peeling strength P 2, smaller becomes the peel strength of the actual object to be bonded.

図8は、実験によるせん断強度と変形後の接合状態との関係を示すグラフである。なお、図8について縦軸は、せん断強度を表わす。また横軸は、接合面積とフックリガメントとを示す。接合面積は、横軸に沿って右側に向かうにつれて大きくなり、フックリガメントは、横軸に沿って右側に向かうにつれて小さくなる。接合面積およびフックリガメントの定義は、前述と同様である。せん断強度は、各被接合部材1,2に相互に離反する方向であって中心軸線L1に垂直な方向に力を与えた場合に、各被接合部材1,2が離反するまでに耐えうる力である。   FIG. 8 is a graph showing the relationship between the experimental shear strength and the bonded state after deformation. In FIG. 8, the vertical axis represents the shear strength. The horizontal axis indicates the bonding area and hook ligament. The bonding area increases as it goes to the right along the horizontal axis, and the hook ligament decreases as it goes to the right along the horizontal axis. The definition of the bonding area and the hook ligament is the same as described above. The shear strength is a force that can be withstood until the members 1 and 2 are separated from each other when the force is applied to the members 1 and 2 in a direction away from each other and perpendicular to the central axis L1. It is.

図8に示すように、接合面積とせん断強度とは、対応関係にある。接合面積、すなわち接合長さDが大きいほど、せん断強度が大きくなる。実験結果に基づいて、接合面積に対応するせん断強度を示すプロット点39をグラフ上にプロットした場合、そのプロット点39は、グラフ上で予め定められる第3近似線37に沿って並ぶ。   As shown in FIG. 8, the bonding area and the shear strength are in a correspondence relationship. The greater the joining area, that is, the joining length D, the greater the shear strength. When plot points 39 indicating the shear strength corresponding to the joint area are plotted on the graph based on the experimental results, the plot points 39 are arranged along a third approximate line 37 that is predetermined on the graph.

同様に、フックリガメントとせん断強度とは、対応関係にある。フックリガメントが大きいほど、すなわち接合高さが小さいほど、せん断強度が大きくなる。ただしフックリガメントが予め定める境界値を越えた後は、せん断強度はほぼ一定の値となる。実験結果に基づいて、フックリガメントに対応するせん断強度を示すプロット点40をグラフ上にプロットした場合、そのプロット点40は、グラフ上で予め定められる第4近似線38に沿って並ぶ。   Similarly, hook ligament and shear strength are in a corresponding relationship. The greater the hook ligament, that is, the smaller the joint height, the greater the shear strength. However, after the hook ligament exceeds a predetermined boundary value, the shear strength becomes a substantially constant value. When plot points 40 indicating the shear strength corresponding to the hook ligament are plotted on the graph based on the experimental results, the plot points 40 are arranged along a fourth approximate line 38 that is predetermined on the graph.

このような関係は、ツール4の回転数、加圧力および接合時間などにかかわらず、一定の傾向を示す。したがって接合強度の1つであるせん断強度は、接合条件にかかわらず接合後の接合物の変形後の接合状態、具体的には接合長さDと接合高さHによって決定される。   Such a relationship shows a certain tendency regardless of the number of rotations of the tool 4, the applied pressure, the joining time, and the like. Therefore, the shear strength, which is one of the joining strengths, is determined by the joining state after deformation of the joined article after joining, specifically, the joining length D and the joining height H, regardless of joining conditions.

図9は、せん断強度試験における接合物の破断形態を示す断面図である。被接合物3に与える熱量が大きくなるにつれて、接合面積が大きくなり、かつフックリガメントが小さくなる。すなわち傾向として接合面積とフックリガメントとには、反比例の関係となる。   FIG. 9 is a cross-sectional view showing a fractured form of the bonded product in the shear strength test. As the amount of heat applied to the workpiece 3 increases, the bonding area increases and the hook ligament decreases. That is, as a tendency, the joint area and the hook ligament have an inversely proportional relationship.

フックリガメントが小さい場合(図9において符号34で表記する)には、図9(1)に示す破断形態を示す。この場合、せん断方向両側で破断状態が異なる。せん断方向一方側41では、フック点Pから第1被接合部材1の没入方向上流側の表面36に向かって亀裂が延びて、第1被接合部材1が、流動化領域8および第2接合物材2から分離する。せん断方向他方側42では、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1と流動化領域8が、第2被接合部材2から分離する。このときのせん断強度を第1せん断強度とすると、第1せん断強度は、実験的に求めることができる。たとえば、第1せん断強度Sは、β・F+γと近似することができる。前式において、βおよびγは、接合条件に応じて決定される第3係数および第4係数をそれぞれ示す。たとえばβは1576となり、γは3296となる。またFはフックリガメントを示す。なお、この近似式は、一例であって他の近似式を用いてもよい。 When the hook ligament is small (indicated by reference numeral 34 in FIG. 9), the fracture form shown in FIG. 9 (1) is shown. In this case, the fracture state differs on both sides in the shear direction. On one side 41 in the shear direction, a crack extends from the hook point P toward the upstream surface 36 in the immersion direction of the first member 1 to be joined, so that the first member 1 is joined to the fluidized region 8 and the second joint. Separate from material 2. On the other side 42 in the shear direction, a crack extends from the hook point P toward the central axis L <b> 1, and the first member 1 and the fluidized region 8 are separated from the second member 2. If the shear strength at this time is the first shear strength, the first shear strength can be obtained experimentally. For example, the first shear strength S 1 can be approximated to β 1 · F + γ. In the previous equation, β 1 and γ indicate a third coefficient and a fourth coefficient determined according to the joining condition, respectively. For example, β 1 is 1576 and γ is 3296. F indicates a hook ligament. Note that this approximate expression is an example, and another approximate expression may be used.

また接合面積が小さい場合(図9において符号35で表記する)には、図9(2)に示す破断形態を示す。この場合、フック点Pから中心軸線L1に向かって亀裂が延びて、第1被接合部材1と流動化領域8が、第2被接合部材2から分離する。このときのせん断強度を第2せん断強度とすると、第2せん断強度も、実験的に求めることができる。たとえば第2せん断強度Sは、β・Aと近似することができる。前式において、βは、接合条件に応じて決定される第5係数を示し、たとえば177となる。なお、この近似式は、一例であって他の近似式を用いてもよい。 When the joining area is small (denoted by reference numeral 35 in FIG. 9), the fracture form shown in FIG. 9 (2) is shown. In this case, a crack extends from the hook point P toward the central axis L <b> 1, and the first member 1 and the fluidized region 8 are separated from the second member 2. If the shear strength at this time is the second shear strength, the second shear strength can also be obtained experimentally. For example, the second shear strength S 2 can be approximated to β 2 · A. In the previous equation, β 2 represents a fifth coefficient determined according to the joining condition, and is, for example, 177. Note that this approximate expression is an example, and another approximate expression may be used.

せん断強度試験における破断形態は、図9(1)および図9(2)のいずれかに示す破断形態となる。せん断強度を大きくするには、接合面積を大きくするとともにフックリガメントを大きくすることが好ましいが、両方の関係が反比例関係になるので、両方を達成することができない。したがってせん断強度が最大となる接合面積およびフックリガメントは、両方の折り合いを考えて決定される。具体的には、せん断強度が最大となる接合面積およびフックリガメントは、図8に示す第3近似曲線37と第4近似曲線38との交点P4で表わされる接合面積およびフックリガメントとなる。   The fracture mode in the shear strength test is the fracture mode shown in either FIG. 9 (1) or FIG. 9 (2). In order to increase the shear strength, it is preferable to increase the joint area and the hook ligament. However, since both relations are inversely related, both cannot be achieved. Therefore, the joint area and the hook ligament where the shear strength is maximized are determined in consideration of the combination of both. Specifically, the joint area and hook ligament where the shear strength is maximized are the joint area and hook ligament represented by the intersection P4 of the third approximate curve 37 and the fourth approximate curve 38 shown in FIG.

また、接合長さDと接合高さHとが与えられた場合には、以下の式に基づいてせん断強度を求めることができる。実際の被接合物のせん断強度Sは、Min(S,S)によって表わされる。すなわち、算出される第1せん断強度Sと、第2せん断強度Sとのうち、小さいほうが、実際の被接合物のせん断強度となる。 Further, when the joining length D and the joining height H are given, the shear strength can be obtained based on the following formula. The actual shear strength S of the article to be joined is represented by Min (S 1 , S 2 ). That is, the smaller one of the calculated first shear strength S 1 and second shear strength S 2 is the actual shear strength of the article to be joined.

形状算出工程s1では、接合長さDと接合高さHとを数値解析によって、算出する。そして算出した接合長さDと接合高さHに基づくことによって、接合後の接合物の接合強度を求めることができる。形状算出手段s1は、具体的には、ツール押込み解析段階a1と、押込み解析結果取得段階a2と、ツール回転解析段階a3と、回転解析結果取得段階a4と、流動化領域算出段階a5と、接合長さ算出段階a6と、被接合部材押込み段階a7と、接合高さ算出段階a8とを含む。   In the shape calculation step s1, the joining length D and the joining height H are calculated by numerical analysis. Based on the calculated joining length D and joining height H, the joining strength of the joined product after joining can be obtained. Specifically, the shape calculating means s1 includes a tool indentation analysis stage a1, an indentation analysis result acquisition stage a2, a tool rotation analysis stage a3, a rotation analysis result acquisition stage a4, a fluidization region calculation stage a5, It includes a length calculation step a6, a joined member pushing step a7, and a joining height calculation step a8.

なお数値解析を行う摩擦撹拌接合モデルは、中心軸線L1に関する軸対称モデルによって行われる。形状算出工程s2は、演算手段23が入力手段21に与えられる接合条件に基づいて、演算プログラムを実行することによって実現することができる。   Note that the friction stir welding model for performing numerical analysis is performed by an axisymmetric model with respect to the central axis L1. The shape calculating step s2 can be realized by executing a calculation program based on the joining condition given to the input unit 21 by the calculation unit 23.

図10は、ツール押込み解析段階a1におけるシミュレーション結果を示す図である。ツール押込み解析は、図10(1)〜図10(6)の順で行われる。ツール押込み解析段階a1は、接合条件取得工程s1によって与えられる接合条件に基づいて、接合ツール4を回転させずに被接合物3に押込んだ場合の変形状態を数値解析によって算出する。   FIG. 10 is a diagram illustrating a simulation result in the tool indentation analysis stage a1. Tool indentation analysis is performed in the order of FIGS. 10 (1) to 10 (6). In the tool indentation analysis stage a1, based on the joining conditions given in the joining condition acquisition step s1, the deformation state when the joining tool 4 is pushed into the workpiece 3 without rotating is calculated by numerical analysis.

数値解析にあたって、接合ツール4、各被接合部材1,2および受け台14を含む軸対称モデルを用いる。また接合ツール4および受け台14を剛体とし、各被接合部材1,2の強度は、接合条件に従って与えられる材質に基づいて決定する。また接合ツール4が被接合物3を押圧する加圧力は、接合条件に従って与えられる。   In the numerical analysis, an axially symmetric model including the joining tool 4, the members 1 and 2 to be joined, and the cradle 14 is used. Further, the joining tool 4 and the cradle 14 are rigid bodies, and the strength of each of the members 1 and 2 to be joined is determined based on the material given according to the joining conditions. Further, the pressing force with which the welding tool 4 presses the workpiece 3 is given according to the bonding conditions.

なお、本発明の実施の一形態では、接合ツール4を被接合物3に押付けるとともに、接合条件に従った入熱量を、接合ツール4に接触する被接合物3の接触部分3aに与える。接触部分3aに与えられる単位時間あたりの入熱量qは、以下の式によって表わされる。   In the embodiment of the present invention, the welding tool 4 is pressed against the workpiece 3 and the amount of heat input according to the welding conditions is given to the contact portion 3 a of the workpiece 3 that contacts the welding tool 4. The amount of heat input q per unit time given to the contact portion 3a is expressed by the following equation.

Figure 0004372534
Figure 0004372534

ここで、πは円周率であり、μは摩擦係数であり、Pは接合ツール4と被接合物3との接触界面に与えられる圧力(N/mm)であり、Nは接合ツール4の1秒間当たりの回転数(rev/sec)であり、Rは中心軸線L1から接触界面までの半径である。このような入熱量が被接合物の押込みの時間変化に応じて順次与えられる。なお、各被接合部材1,2は、その材質に応じた温度による強度変化に基づいて、その強度が変更するように設定される。たとえば被接合部材1,2がアルミ合金の場合、アルミ合金の強度−温度特性に応じて、常温の部分に比べて高温となる部分については、常温の部分よりも強度が低く設定される。 Here, π is a circumferential ratio, μ is a friction coefficient, P is a pressure (N / mm 2 ) applied to the contact interface between the welding tool 4 and the workpiece 3, and N is the welding tool 4. The number of revolutions per second (rev / sec), and R is the radius from the central axis L1 to the contact interface. Such an amount of heat input is sequentially given according to the time change of the indentation of the workpiece. In addition, each to-be-joined member 1 and 2 is set so that the intensity | strength may change based on the intensity | strength change by the temperature according to the material. For example, when the members 1 and 2 are made of an aluminum alloy, the strength is set to be lower than that of the room temperature portion in the portion that is hotter than the room temperature portion according to the strength-temperature characteristics of the aluminum alloy.

図10には、各被接合部材1,2の温度分布をグレー表示で示す。図11は、各被接合部材1,2の時間経過による温度変化を示すグラフである。図11には、第1被接合部材1の没入方向上流側の表面の温度変化を実線43で示す。また第2被接合部材2の内部の温度変化を破線44で示す。また第2被接合部材2の没入方向下流側の表面の温度変化を一点鎖線45で示す。   In FIG. 10, the temperature distribution of each member 1 and 2 is shown in gray. FIG. 11 is a graph showing the temperature change of each member 1 and 2 over time. In FIG. 11, the solid line 43 indicates the temperature change on the upstream surface of the first member 1 to be joined in the immersion direction. A change in temperature inside the second member 2 is indicated by a broken line 44. Further, a change in temperature of the surface of the second joined member 2 on the downstream side in the immersion direction is indicated by a one-dot chain line 45.

各被接合部材1,2は、時間経過とともに温度が上昇する。また各被接合部材1,2は、接合ツール4に近づくにつれて温度が高くなる。図10(1)〜図10(6)に示すように数値計算を順次繰り返し、接合ツール4が予め定める没入量に達した場合の被接合物3の変形状態および温度分布を求めると、押込み解析結果取得段階a2に進む。押込み解析結果取得段階a2では、ツール押込み解析段階a1で算出された被接合物3の変形状態および温度分布を示すデータを抽出する。   The temperatures of the members 1 and 2 increase with time. Further, the temperatures of the members 1 and 2 are increased as they approach the welding tool 4. As shown in FIGS. 10 (1) to 10 (6), numerical calculation is sequentially repeated, and when the deformation state and temperature distribution of the workpiece 3 when the welding tool 4 reaches a predetermined immersion amount are obtained, indentation analysis is performed. The process proceeds to the result acquisition stage a2. In the indentation analysis result acquisition stage a2, data indicating the deformation state and temperature distribution of the workpiece 3 calculated in the tool indentation analysis stage a1 is extracted.

次にツール回転解析段階a3を行う。ツール回転解析段階a3は、押込み解析結果取得段階a2によって取得された被接合物3の変形状態および温度分布を利用して、中心軸線L1まわりの被接合物3のひずみ分布を求める。   Next, a tool rotation analysis stage a3 is performed. In the tool rotation analysis stage a3, the strain distribution of the article 3 around the central axis L1 is obtained by using the deformation state and temperature distribution of the article 3 acquired in the indentation analysis result acquisition stage a2.

図12は、ツール回転解析段階a3におけるシミュレーション結果を示す図である。具体的には、軸対称モデルにおいて、接合ツール4と接触する被接合物3の接触部分を中心軸線L1まわりに回転させる応力を与えた場合の、被接合物3のひずみ分布を算出する。図13には、第1被接合部材1のうちひずむ領域51をグレー表示で示す。   FIG. 12 is a diagram illustrating a simulation result in the tool rotation analysis stage a3. Specifically, in the axially symmetric model, the strain distribution of the workpiece 3 is calculated when a stress is applied to rotate the contact portion of the workpiece 3 that contacts the welding tool 4 around the central axis L1. In FIG. 13, the distorted area | region 51 among the 1st to-be-joined members 1 is shown by gray display.

図13は、第1被接合部材1のうち、ピン部6からの任意の距離にある部分の中心軸線L1まわりに回転する塑性ひずみを示す図である。図13(1)と図13(2)とは、接合条件が異なる場合を数値解析した場合を示す。なお図13には、接触部分を360度角変位させた場合を実線46で示す。また180度角変位させた場合を破線47で示し、90度角変位させた場合を一点鎖線48で示す。図13に示すように、ひずみ量は、接合ツール4から延在方向Cに遠ざかるにつれて小さくなり、接合ツール4から延在方向Cに十分に遠ざかると接合ツール4の回転によるひずみがなくなる。   FIG. 13 is a diagram illustrating plastic strain that rotates around the central axis L <b> 1 of a portion at an arbitrary distance from the pin portion 6 in the first bonded member 1. FIG. 13 (1) and FIG. 13 (2) show a case where numerical analysis is performed when the joining conditions are different. In FIG. 13, a solid line 46 indicates a case where the contact portion is displaced by 360 degrees. A case where the angle is displaced by 180 degrees is indicated by a broken line 47, and a case where the angle is displaced by 90 degrees is indicated by a dashed line 48. As shown in FIG. 13, the amount of strain decreases as the distance from the welding tool 4 in the extending direction C decreases, and when the distance from the welding tool 4 sufficiently extends in the extending direction C, distortion due to the rotation of the welding tool 4 disappears.

図14は、中心軸線L1まわりのひずみがゼロとなるひずみ臨界領域50の幅と、接触部分を強制回転する角度を示すグラフである。ひずみ臨界領域50の幅は、せん断ひずみが発生している領域の臨界面の外周径である。図14におけるプロット点の形状が同じものは、同じ接合条件であることを示す。図14に示すように、数値解析では、中心軸線L1まわりのひずみがなくなる延在方向Cの位置は、接触部分を強制回転する角度が90度であっても360度であっても変化しない。したがって接合ツール4を360度以上回転させても、ひずみ臨界領域50が大きく変化することがない。したがって、中心軸線L1まわりのひずみがなくなる延在方向Cの位置は、回転角度によらずほぼ一定であり、計算量の短縮化のために、接触部分を回転する角度は90度で十分である。   FIG. 14 is a graph showing the width of the strain critical region 50 where the strain around the central axis L1 becomes zero and the angle at which the contact portion is forcibly rotated. The width of the strain critical region 50 is the outer peripheral diameter of the critical surface in the region where the shear strain is generated. Those having the same shape of the plot points in FIG. 14 indicate the same joining conditions. As shown in FIG. 14, in the numerical analysis, the position in the extending direction C where the strain around the central axis L1 is eliminated does not change regardless of whether the angle for forcibly rotating the contact portion is 90 degrees or 360 degrees. Therefore, even if the welding tool 4 is rotated 360 degrees or more, the strain critical region 50 does not change greatly. Therefore, the position in the extending direction C in which the distortion around the central axis L1 is eliminated is almost constant regardless of the rotation angle, and 90 degrees is sufficient for rotating the contact portion in order to reduce the calculation amount. .

図15は、流動化領域を実験によって流動化領域8の最大幅を求めた場合と、実験における接合条件と同じ接合条件でひずみ臨界領域50の幅を算出した場合とを示す図である。流動化領域8の最大幅は、流動化領域8の最大外周径を意味する。図15に示すように、数値計算によって求められるひずみ臨界領域50の幅は、同じ接合条件で実験を行った実際の流動化領域8の最大幅とほぼ同一であり、1対1に対応する。したがってこのような数値解析を行い、ひずみ臨界領域50の幅を算出することによって、実際の流動化領域8の最大幅を推定することができる。   FIG. 15 is a diagram showing a case where the maximum width of the fluidized region 8 is obtained by experiment for the fluidized region and a case where the width of the strain critical region 50 is calculated under the same joining condition as the joining condition in the experiment. The maximum width of the fluidization region 8 means the maximum outer diameter of the fluidization region 8. As shown in FIG. 15, the width of the strain critical region 50 obtained by numerical calculation is almost the same as the maximum width of the actual fluidized region 8 that was tested under the same joining conditions, and corresponds to one to one. Therefore, by performing such numerical analysis and calculating the width of the strain critical region 50, the actual maximum width of the fluidized region 8 can be estimated.

図16は、実験値による流動化領域8の最大幅と、実験値による接合長さDとを示す図である。実験値による流動化領域8の最大幅と、実験値による接合長さDとはほぼ同一であり、1対1に対応する。したがって数値解析を行って算出したひずみ臨界領域50の幅に基づいて、接合長さDを推定することができる。   FIG. 16 is a diagram showing the maximum width of the fluidized region 8 based on experimental values and the joining length D based on experimental values. The maximum width of the fluidized region 8 based on the experimental value and the joining length D based on the experimental value are almost the same and correspond one-to-one. Therefore, the joining length D can be estimated based on the width of the strain critical region 50 calculated by numerical analysis.

強度推定手順では、ツール回転解析段階a3で、被接合物3のせん断塑性ひずみ分布を算出し、回転解析結果取得段階a4で、ツール回転解析段階a3で算出したせん断塑性ひずみ分布を示すデータを抽出する。次に流動化領域算出段階a5で、回転解析結果取得段階a4で抽出したひずみ分布を示すデータに基づいて、ひずみ臨界領域50の幅を求め、そのひずみ臨界領域50の幅を流動化領域の最大幅として算出する。算出される流動化領域の幅は、算出されるひずみ臨界領域50の幅をそのまま用いてもよい。また算出されるひずみ臨界領域50の幅に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。   In the strength estimation procedure, the shear plastic strain distribution of the workpiece 3 is calculated in the tool rotation analysis stage a3, and data indicating the shear plastic strain distribution calculated in the tool rotation analysis stage a3 is extracted in the rotation analysis result acquisition stage a4. To do. Next, in the fluidization region calculation step a5, the width of the strain critical region 50 is obtained based on the data indicating the strain distribution extracted in the rotation analysis result acquisition step a4, and the width of the strain critical region 50 is set to the maximum of the fluidization region. Calculate as large. As the calculated width of the fluidized region, the calculated width of the strain critical region 50 may be used as it is. Alternatively, the calculated width of the strain critical region 50 may be obtained by adding / subtracting / dividing a coefficient based on the correspondence obtained by experiments.

次に接合長さ算出段階a6で、流動化領域算出段階a5で算出した流動化領域8の最大幅に基づいて、接合長さDを算出する。算出される接合長さDは、算出される流動化領域8の最大幅をそのまま用いてもよい。また算出される流動化領域8の最大幅に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。このようにして接合長さ算出段階a6で、与えられる接合条件に応じた接合長さDを算出することができる。   Next, in the joining length calculation step a6, the joining length D is calculated based on the maximum width of the fluidization region 8 calculated in the fluidization region calculation step a5. As the calculated joining length D, the calculated maximum width of the fluidized region 8 may be used as it is. Alternatively, the calculated maximum width of the fluidized region 8 may be obtained by adding / subtracting / dividing a coefficient based on the correspondence obtained by experiments. In this way, the joining length D corresponding to the given joining condition can be calculated in the joining length calculation step a6.

図17は、被接合物押込み解析段階a7におけるシミュレーション結果を示す図である。流動化領域算出段階a5が終了すると、接合長さ算出段階a6とは独立して、被接合部材押込み段階a7を行う。被接合物押込み段階a7では、押込み解析結果取得段階a2が取得した変形状態および温度分布と、流動化領域算出段階a5で算出した流動化領域とを利用して、第2被接合部材2の変形状態を求める。   FIG. 17 is a diagram illustrating a simulation result in the indentation indentation analysis stage a7. When the fluidization region calculation step a5 is completed, the bonded member pushing step a7 is performed independently of the joining length calculation step a6. In the to-be-joined object pushing step a7, the deformation of the second member to be joined 2 is deformed using the deformation state and temperature distribution acquired in the indentation analysis result acquisition step a2 and the fluidization region calculated in the fluidization region calculation step a5. Find the state.

被接合部材押込み段階a7では、接合ツール4と流動化領域8と第1被接合部材1とによって構成される押圧構成体を設定し、押圧構成体によって第2被接合部材2を没入方向下流側に押圧した場合の変形状態を数値解析する。このとき、接合ツール4にのみに、初期に設定した加圧力を与える。図17に示すように、押圧構成体を第2被接合部材2に押込むと、流動化領域8の近傍でかつ半径方向外方で、第2被接合部材2が没入方向上流側に隆起し、実際の被接合物3に形成されるフック点P2が形成される。次に、被接合押込み段階a7が完了すると、接合高さ算出段階a8を行う。接合高さ算出段階a8は、被接合押込み段階a7によって算出された第2被接合部材の変形状態に基づいて、フック点P2と基準点P1との間の没入方向寸法を求め、接合高さHとして算出する。   In the joined member pushing step a7, a pressing structure constituted by the joining tool 4, the fluidized region 8 and the first joined member 1 is set, and the second joined member 2 is moved downstream in the immersion direction by the pressing structure. Numerical analysis of the deformation state when pressed. At this time, an initially set pressure is applied only to the welding tool 4. As shown in FIG. 17, when the pressing structure is pushed into the second bonded member 2, the second bonded member 2 protrudes upstream in the immersion direction in the vicinity of the fluidizing region 8 and radially outward. The hook point P2 formed in the actual article 3 is formed. Next, when the joined push-in step a7 is completed, a joining height calculating step a8 is performed. In the joining height calculation step a8, the immersion direction dimension between the hook point P2 and the reference point P1 is obtained based on the deformation state of the second joined member calculated in the joined push-in step a7, and the joining height H Calculate as

図18は、実験による接合高さと、接合高さ算出段階a8によって求められる接合高さHとを示すグラフである。図18に示すように、数値計算によって求められる接合高さHは、同じ接合条件で実験を行った実際の接合高さHとほぼ同一であり、1対1に対応する。したがってこのような数値解析を行い、接合高さHを算出することによって、実際の接合高さを推定することができる。算出される接合高さHは、被接合物押込み解析a7によって求められるフック点P2と基準点P1との没入方向寸法をそのまま用いてもよい。また算出されるフック点P2と基準点P1と没入方向寸法に、実験によって求められる対応関係に基づく係数を加減乗除して求めてもよい。   FIG. 18 is a graph showing the joint height obtained by experiment and the joint height H obtained by the joint height calculation step a8. As shown in FIG. 18, the joint height H obtained by numerical calculation is substantially the same as the actual joint height H that is an experiment conducted under the same joint conditions, and corresponds to one to one. Therefore, by performing such numerical analysis and calculating the joint height H, the actual joint height can be estimated. As the calculated joining height H, the dimension in the immersion direction between the hook point P2 and the reference point P1 obtained by the indentation object push-in analysis a7 may be used as it is. Further, the calculated hook point P2, the reference point P1, and the dimension in the immersion direction may be obtained by adding, subtracting, and dividing by a coefficient based on the correspondence obtained by experiments.

図19は、強度算出工程s3を具体的に示すフローチャートである。強度算出工程s3は、たとえば有限要素法による破壊シミュレーションによって求める。強度算出工程s3では、前述した形状算出工程s2によって算出された接合長さDと接合高さHとに基づいて、破壊シミュレーションを行う。この破壊シミュレーションにおいて、接合物に与えられる力の形態が設定され、この力の形態に応じた接合物の破壊形態の数値解析を行う。そして解析結果に基づいて、接合物の強度を求める。   FIG. 19 is a flowchart specifically showing the intensity calculating step s3. The strength calculation step s3 is obtained, for example, by a fracture simulation by a finite element method. In the strength calculating step s3, a fracture simulation is performed based on the joining length D and the joining height H calculated in the shape calculating step s2. In this fracture simulation, the form of force applied to the joint is set, and a numerical analysis of the fracture form of the joint according to this form of force is performed. Based on the analysis result, the strength of the bonded product is obtained.

具体的には、強度算出工程s3では、まず、破壊クライテリア設定段階b1で、接合物の破壊抵抗値が作業者によって設定される。この破壊抵抗値は、作業者によって入力される。次に破壊形態数値解析工程b2で、形状算出工程s2によって算出された接合長さDと接合高さHとを含む変形後の接合状態とに基づいて、接合物に力が付与されたときの状態を数値解析する。力の形態を演算する数値解析としてたとえば応力解析またはき裂進展解析が行われる。   Specifically, in the strength calculation step s3, first, in the destruction criteria setting stage b1, the destruction resistance value of the joint is set by the operator. This destruction resistance value is input by the operator. Next, in the fracture mode numerical analysis step b2, when a force is applied to the joint based on the joint state after deformation including the joint length D and the joint height H calculated by the shape calculation step s2. Analyze the state numerically. For example, stress analysis or crack growth analysis is performed as a numerical analysis for calculating a force form.

次に、強度算出段階b3で、破壊形態数値解析段階b2によって算出された力の状態と、破壊クライテリア設定段階b1で設定された接合物の破壊抵抗値とに基づいて、接合物の接合強度を算出する。すなわち、接合物に付与される力が、接合物の破壊抵抗値と等しくなった時点を破壊点とし、そのときの接合物に付与された力を接合強度とする。算出される強度として、静的延性強度および疲労強度などを算出することができる。このようにして接合強度b3が算出されると、終了工程s4に進み、出力手段によって推定した接合強度を表示して、接合強度の推定動作を終了する。強度算出工程s3は、演算手段23が、接合長さDおよび接合高さHに基づいて、演算プログラムを実行することによって実現することができる。   Next, in the strength calculation stage b3, based on the state of force calculated in the fracture mode numerical analysis stage b2 and the fracture resistance value of the joint set in the fracture criteria setting stage b1, the joint strength of the joint is determined. calculate. That is, the point of time when the force applied to the joint becomes equal to the fracture resistance value of the joint is defined as the breaking point, and the force applied to the joint at that time is defined as the joint strength. As the calculated strength, static ductile strength, fatigue strength, and the like can be calculated. When the joint strength b3 is calculated in this way, the process proceeds to an end step s4, the joint strength estimated by the output means is displayed, and the joint strength estimation operation is finished. The strength calculation step s3 can be realized by the calculation means 23 executing a calculation program based on the joining length D and the joining height H.

図20は、他の推定手順を示すフローチャートである。図19に示すフローチャートでは、有限要素法によって破壊シミュレーションを行ったが、破壊シミュレーションを行わずに、接合長さDと接合高さHとに関連する接合強度近似式に基づいて接合強度を求めてもよい。すなわち、形状算出工程s2によって接合長さDおよび接合高さHを求めると、強度算出工程s3に進む。   FIG. 20 is a flowchart showing another estimation procedure. In the flowchart shown in FIG. 19, the fracture simulation is performed by the finite element method. However, without performing the fracture simulation, the joint strength is obtained based on the joint strength approximate expression related to the joint length D and the joint height H. Also good. That is, when the joining length D and the joining height H are obtained by the shape calculating step s2, the process proceeds to the strength calculating step s3.

強度算出工程s3では、図6または図8のグラフに示す近似式に基づいて、はく離強度またはせん断強度を算出する。そして終了工程s4で算出した接合強度を出力手段によって表示してもよい。演算手段23は、接合長さDおよび接合高さHと、接合強度との対応関係をデータベースまたは近似線などによって予め取得している。これによって強度算出工程s3で、演算手段23が、算出された接合長さDおよび接合高さHに基づいて、前記データベースまたは近似線を参照することによって、接合強度を簡単に求めることができる。このようにして接合強度を算出することによって、強度算出にかかわる数値解析を行う必要がなく、接合強度をより短時間で算出することができる。   In the strength calculating step s3, the peel strength or shear strength is calculated based on the approximate expression shown in the graph of FIG. 6 or FIG. Then, the bonding strength calculated in the end step s4 may be displayed by the output means. The calculation means 23 acquires in advance a correspondence relationship between the joining length D and the joining height H and the joining strength using a database or an approximate line. Accordingly, in the strength calculation step s3, the calculation means 23 can easily obtain the bonding strength by referring to the database or the approximate line based on the calculated bonding length D and bonding height H. By calculating the joint strength in this manner, it is not necessary to perform numerical analysis related to the strength calculation, and the joint strength can be calculated in a shorter time.

図21は、同じ接合条件での、実験結果と解析結果とのはく離強度を示すグラフであり、図22は、同じ接合条件での、実験結果と解析結果とのせん断強度を示すグラフである。上述した推定方法によって、はく離強度およびせん断強度を推測すると、図21および図22に示すように実験結果とほぼ等しい強度を求めることができる。   FIG. 21 is a graph showing the peel strength between the experimental result and the analysis result under the same joining condition, and FIG. 22 is a graph showing the shear strength between the experimental result and the analysis result under the same joining condition. When the peeling strength and the shear strength are estimated by the estimation method described above, a strength substantially equal to the experimental result can be obtained as shown in FIGS.

以上のように本発明の実施の一形態に従えば、数値解析によって被接合物3の変形状態を算出し、その変形状態に基づいて接合物の接合強度を算出する。これによって実際に摩擦撹拌接合して強度試験によって接合強度を求める必要がないので、短時間でかつ容易に接合強度を推定することができる。したがって接合条件を変更した場合の接合強度も容易に求めることができるので、要求される接合強度範囲を満足する接合強度となる接合条件を容易に求めることができ、接合条件の設定に費やす時間および費用を低減することができる。なお、数値解析によって接合強度を直接算出することは困難であるが、本発明のように数値解析によって接合物の変形状態を算出することは、比較的容易であり、かつ精度良く算出することができる。   As described above, according to the embodiment of the present invention, the deformation state of the article 3 is calculated by numerical analysis, and the bonding strength of the object is calculated based on the deformation state. As a result, it is not necessary to actually perform friction stir welding and obtain a bonding strength by a strength test, so that the bonding strength can be easily estimated in a short time. Therefore, since the joining strength when the joining conditions are changed can be easily obtained, the joining conditions that achieve the joining strength satisfying the required joining strength range can be easily obtained, and the time spent for setting the joining conditions and Cost can be reduced. Although it is difficult to directly calculate the joint strength by numerical analysis, it is relatively easy and accurate to calculate the deformation state of the joint by numerical analysis as in the present invention. it can.

また接合強度は、接合長さと接合高さとに密接に関係しており、接合長さが小さい場合と、接合高さが長い場合とで破断形態が異なる。本実施の形態では、変形後の接合状態を表わす指標として、接合長さと接合高さとを算出し、その接合長さと接合高さに基づいて、接合強度を算出する。これによっていずれの破断形態にも対応することができ、より精度良く接合強度を算出することができる。   Further, the bonding strength is closely related to the bonding length and the bonding height, and the fracture form differs depending on whether the bonding length is small or the bonding height is long. In the present embodiment, the joint length and the joint height are calculated as indices representing the joint state after deformation, and the joint strength is calculated based on the joint length and the joint height. As a result, any fracture mode can be handled, and the bonding strength can be calculated with higher accuracy.

また接合ツール4を回転させずに被接合物3に没入させた場合を数値解析し、その後で、没入させた場合の数値解析データを用いて、接合ツール4を回転させた場合を数値解析する。これによって摩擦撹拌接合を厳密にモデル化しなくても、流動化領域を良好に推定することができ、数値解析を単純化することができる。さらにツール押込み解析段階において、摩擦熱を考慮した入熱量を与えることによって、現実に摩擦撹拌接合された場合の接合物の変形状態に近似した変形状態を算出することができる。これによって変形状態をさらに精度良く算出することができる。   Further, numerical analysis is performed when the welding tool 4 is immersed in the workpiece 3 without rotating, and then numerical analysis is performed when the welding tool 4 is rotated using numerical analysis data when the welding tool 4 is immersed. . As a result, the fluidized region can be estimated well without numerically modeling the friction stir welding, and the numerical analysis can be simplified. Furthermore, in the tool indentation analysis stage, a deformation state that approximates the deformation state of the joint when the friction stir welding is actually performed can be calculated by giving an amount of heat input that takes frictional heat into consideration. As a result, the deformation state can be calculated with higher accuracy.

また押圧構成体を没入方向下流側の被接合部材に押付けることによって、没入方向下流側の被接合部材が部分的に没入方向上流側に隆起する。この隆起現象に基づいてフック点を算出することによって、フック点を容易にかつ精度良く算出することができる。これによって接合強度をさらに精度良く算出することができる。   Further, by pressing the pressing structure against the member to be joined on the downstream side in the immersion direction, the member to be joined on the downstream side in the immersion direction is partially raised on the upstream side in the immersion direction. By calculating the hook point based on this uplift phenomenon, the hook point can be easily and accurately calculated. As a result, the bonding strength can be calculated with higher accuracy.

さらに本発明の実施の一形態では、数値解析を軸対称モデルによって実現することによって、2次元的に解析することができ、数値解析を単純化することができる。さらに回転解析段階a3において、ツール4と接触する被接合物3の接触する部分を回転する角度は、90度以下で十分である。このように回転する角度を小さくしても、ひずみ臨界領域50が大きく変化することがなく、計算時間を短縮することができる。   Furthermore, in one embodiment of the present invention, the numerical analysis can be performed two-dimensionally by realizing the numerical analysis with an axisymmetric model, and the numerical analysis can be simplified. Further, in the rotation analysis stage a3, an angle of 90 degrees or less is sufficient for rotating the contact portion of the workpiece 3 that is in contact with the tool 4. Even if the rotation angle is reduced in this way, the strain critical region 50 does not change greatly, and the calculation time can be shortened.

また本発明の実施の一形態では、接合強度を出力したが、その他に被接合物3の変形状態を出力してもよい。たとえば形状算出工程s2によって算出される被接合物3の変形状態に基づいて、第1被接合部材1の厚み寸法と第2被接合部材2の厚み寸法とを算出する板厚算出工程をさらに含んでもよい。   Moreover, in one Embodiment of this invention, although joining strength was output, you may output the deformation | transformation state of the to-be-joined object 3 to others. For example, it further includes a plate thickness calculating step for calculating the thickness dimension of the first bonded member 1 and the thickness dimension of the second bonded member 2 based on the deformation state of the workpiece 3 calculated by the shape calculating step s2. But you can.

図23は、実験による接合位置の総板厚が同じ2つの接合物を示す断面図である。図23(1)は、第1被接合部材1の板厚H1が大きく、第2被接合部材2の板厚H2が小さい第1の接合物を示す。図23(2)は、第1被接合部材1の板厚H1が小さく、第2被接合部材2の板厚H2が大きい第2の接合物を示す。表5は、図23に示す各接合物の寸法とせん断強度を示す。   FIG. 23 is a cross-sectional view showing two joints having the same total thickness at a joining position by an experiment. FIG. 23 (1) shows a first bonded product in which the plate thickness H1 of the first member 1 is large and the plate thickness H2 of the second member 2 is small. FIG. 23 (2) shows a second bonded product in which the plate thickness H1 of the first member 1 is small and the plate thickness H2 of the second member 2 is large. Table 5 shows the dimensions and shear strength of each joint shown in FIG.

Figure 0004372534
Figure 0004372534

表5に示すように、総板厚H3は同じでも接合強度が異なる場合がある。具体的には、第1被接合部材1の板厚H1が小さくかつ、第2被接合部材2の板厚H2が大きい接合物のほうが、接合強度が大きくなる。すなわち接合後に外部から計測可能な総板厚を測定するよりも、数値解析によって第1被接合部材1と第2被接合部材2との板厚を個別に測定するほうが、接合強度の管理上有効である場合がある。本発明では、板厚算出工程によって、各被接合物の板厚H1,H2,H3を算出可能であるので利便性を向上することができる。   As shown in Table 5, the joint strength may be different even if the total thickness H3 is the same. Specifically, the bonding strength is higher in the bonded product in which the plate thickness H1 of the first member to be bonded 1 is small and the plate thickness H2 of the second member to be bonded 2 is large. That is, rather than measuring the total plate thickness that can be measured from the outside after bonding, it is more effective in managing the bonding strength to measure the plate thicknesses of the first member 1 and the second member 2 individually by numerical analysis. It may be. According to the present invention, the plate thicknesses H1, H2, and H3 of the objects to be joined can be calculated by the plate thickness calculation step, so that convenience can be improved.

また第1および第2の被接合物3は、接合長さDがほぼ同一である。また第2の被接合物3は、第1の被接合物3に比べて、接合高さが小さいので、図6のグラフに示す関係を満たす。板厚算出工程によって、各被接合部材1,2の板厚を算出し、その算出した板厚H1,H2と、接合長さDと、接合高さHとに基づくことによって、接合強度をさらに正確に推定することができる。   The first and second workpieces 3 have substantially the same joining length D. Moreover, since the 2nd to-be-joined object 3 has small joining height compared with the 1st to-be-joined object 3, the relationship shown to the graph of FIG. 6 is satisfy | filled. The plate thickness calculation step calculates the plate thickness of each of the members 1 and 2 to be joined, and based on the calculated plate thicknesses H1 and H2, the joint length D, and the joint height H, the joint strength is further increased. It can be estimated accurately.

また本実施の形態では、ツール回転解析段階a3、回転解析結果取得段階a4および流動化領域算出段階a5を順に行って、流動化領域8を算出したが他の方法を用いて、流動化領域8を算出してもよい。   In this embodiment, the tool rotation analysis stage a3, the rotation analysis result acquisition stage a4, and the fluidization area calculation stage a5 are sequentially performed to calculate the fluidization area 8. However, the fluidization area 8 is calculated using another method. May be calculated.

図24は、被接合物3に与えられる入熱パラメータと、流動化領域8の最大幅との関係を示すグラフである。被接合物3に与える熱量は、被接合物3の接触部に与えられる単位時間当たりの入熱量をqとすると、入熱パラメータQ/Uは、次式によって表わされる。
Q/U=q・t/U
FIG. 24 is a graph showing the relationship between the heat input parameter given to the workpiece 3 and the maximum width of the fluidized region 8. The amount of heat given to the object to be bonded 3 is represented by the following equation, where q is the amount of heat input per unit time given to the contact portion of the object to be bonded 3.
Q / U = q · t / U

ここで、qは接合ツール4に接触する被接合物3の接触部分3aに与えられる単位時間あたりの入熱量(W)であり、tは接合時間(sec)であり、Uは被接合物3の総板厚(mm)である。 Here, q is the amount of heat input (W) per unit time given to the contact portion 3a of the workpiece 3 that contacts the welding tool 4, t is the bonding time (sec), and U is the workpiece 3 The total plate thickness (mm).

図24に示すように、流動化領域の最大幅と入熱パラメータとは、1対1との関係があり、グラフ上に示す1つの近似曲線によって対応づけることができる。したがって接合条件から算出される入熱パラメータに基づいて、流動化領域8の最大幅を求めてもよく、その流動化領域8の最大幅から接合長さを求めてもよい。この場合には、接合高さHは、ツール押込み解析段階a1によって算出される変形状態において、第1被接合部材1と接合ツール4とによって押圧構成体を設定して、接合高さを求める。このようにして流動化領域8の最大幅を簡易的に求めることによって、数値解析をさらに単純化することができ、接合強度の算出にかかる時間を短縮することができる。   As shown in FIG. 24, the maximum width of the fluidized region and the heat input parameter have a one-to-one relationship, and can be associated by one approximate curve shown on the graph. Therefore, the maximum width of the fluidization region 8 may be obtained based on the heat input parameter calculated from the joining conditions, and the joining length may be obtained from the maximum width of the fluidization region 8. In this case, the bonding height H is determined by setting the pressing structure with the first member 1 and the bonding tool 4 in the deformed state calculated by the tool indentation analysis stage a1. By simply obtaining the maximum width of the fluidized region 8 in this way, the numerical analysis can be further simplified, and the time taken to calculate the bonding strength can be shortened.

上述した本発明の実施の一形態は、本発明の例示に過ぎず他の方法によっても実現することができる。たとえば本発明では、変形後の接合状態を示す指標として、接合長さDと接合高さHとを算出したが、他の変形状態を算出してもよい。たとえば接合位置における各被接合部材1,2の没入方向寸法である板厚のみを算出してもよい。各被接合部材1,2の板厚は、第1被接合部材1の板厚H1が小さいほど、また第2被接合部材2の板厚H3が大きいほど接合高さHが小さくなることが実験的に確認されているので、各被接合部材1,2の板厚H1,H2を算出することによって、接合強度を推定してもよい。   The above-described embodiment of the present invention is merely an example of the present invention and can be realized by other methods. For example, in the present invention, the joint length D and the joint height H are calculated as indices indicating the joint state after deformation, but other deformation states may be calculated. For example, only the plate thickness that is the dimension in the immersion direction of each of the members 1 and 2 to be joined at the joining position may be calculated. As for the plate thickness of each of the members 1 and 2, the experiment is performed such that the smaller the plate thickness H1 of the first member 1 and the larger the plate thickness H3 of the second member 2 are, the smaller the joint height H is. Therefore, the joining strength may be estimated by calculating the plate thicknesses H1 and H2 of the members 1 and 2 to be joined.

また各被接合部材1,2の材質は、アルミ合金以外であってもよく、またそれぞれ異なる材質の材料であってもよい。また被接合物3を構成する被接合部材の枚数も2枚以上であってもよい。   The material of each of the members 1 and 2 may be other than an aluminum alloy, or may be a different material. Also, the number of members to be bonded constituting the workpiece 3 may be two or more.

図25は、本発明の強度推定方法を用いた接合条件算出手順を示すフローチャートである。接合条件算出手順は、たとえば上述した演算手段23によって行われる。ステップc0において、入力手段21に接合条件算出の指示が与えられると、ステップc1に進み、演算手段23は、接合条件の推定動作を開始する。   FIG. 25 is a flowchart showing a joining condition calculation procedure using the strength estimation method of the present invention. The joining condition calculation procedure is performed by, for example, the arithmetic unit 23 described above. In step c0, when an instruction for calculating the joining condition is given to the input means 21, the operation proceeds to step c1, and the computing means 23 starts an operation for estimating the joining condition.

ステップc1では、接合条件のうち制約される条件と、目標とする目標接合強度、接合条件の優先順位などを取得し、ステップc2に進む。ステップc2では、制約される条件を満足する接合条件を設定しステップc3に進む。ステップc3では、設定される接合条件に応じた接合強度を算出する。この接合強度算出手順については、上述した接合強度の推定方法が用いられる。   In step c1, the constrained conditions among the bonding conditions, the target bonding strength to be targeted, the priority of the bonding conditions, etc. are acquired, and the process proceeds to step c2. In step c2, a joining condition that satisfies the constrained condition is set, and the process proceeds to step c3. In step c3, the bonding strength corresponding to the set bonding condition is calculated. For the bonding strength calculation procedure, the above-described method for estimating the bonding strength is used.

すなわちステップc3の工程は、接合長さを接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、接合高さを接合条件毎に数値解析によって算出する接合高さ算出段階と、予め定める接合条件毎に算出される接合強度をそれぞれ算出する強度算出段階を含む。そして設定した接合条件における接合条件が算出されると、ステップc4に進む。   That is, the process of step c3 includes a joining length calculation stage for calculating the joining length by numerical analysis for each joining condition, a joining height calculating stage for calculating the joining height by numerical analysis for each joining condition, and a predetermined step. A strength calculation step of calculating the bonding strength calculated for each bonding condition is included. When the joining condition in the set joining condition is calculated, the process proceeds to step c4.

ステップc4では、ステップc3で算出した接合強度が目標強度以上であるか否かを判定する。また目標接合強度以上である場合には、ステップc5に進み、そうでない場合には、ステップc10に進む。ステップc5では、接合条件とその接合強度とを対応づけて記憶し、ステップc6に進む。ステップc6では、制約される条件のうち接合条件を変更可能である場合には、ステップc7に進む。ステップc7では、接合条件を変更してステップc3に戻る。   In step c4, it is determined whether or not the bonding strength calculated in step c3 is equal to or higher than the target strength. If it is equal to or higher than the target bonding strength, the process proceeds to step c5, and if not, the process proceeds to step c10. In step c5, the joining conditions and the joining strength are stored in association with each other, and the process proceeds to step c6. In step c6, when the joining condition can be changed among the restricted conditions, the process proceeds to step c7. In step c7, the joining condition is changed and the process returns to step c3.

ステップc6において、制約条件を満たしたうえで、すべての接合条件について接合強度を求めた場合には、ステップc8に進む。ステップc8では、予め定める優先順位にしたがってステップc5で記憶した接合条件から最適の接合条件を抽出して、最適な接合条件を決定し、ステップc9に進む。ステップc8の工程は、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階を含む。ステップc9では、最適な接合条件を出力手段によって出力させ、接合条件の決定動作を終了する。   In step c6, when the constraint conditions are satisfied and the bonding strength is obtained for all the bonding conditions, the process proceeds to step c8. In step c8, the optimum joining condition is extracted from the joining conditions stored in step c5 in accordance with a predetermined priority order, the optimum joining condition is determined, and the process proceeds to step c9. The process of step c8 includes a joining condition extraction stage for extracting joining conditions that provide joining strength that falls within a predetermined joining strength range. In step c9, the optimum joining condition is output by the output means, and the joining condition determining operation is terminated.

またステップc10において、制約される条件のうち接合条件を変更可能である場合には、ステップc3に戻る。ステップc10において、接合条件を変更可能でない場合には、ステップc11に進む。ステップc11では、目標とする強度を変更し、ステップc1に戻る。   In step c10, if the joining condition can be changed among the restricted conditions, the process returns to step c3. In step c10, if the joining condition cannot be changed, the process proceeds to step c11. In step c11, the target intensity is changed, and the process returns to step c1.

このようにして目標接続強度以上となる接合条件を抽出することができる。これによって要求される接合強度を確保したうえで、最適な施工条件を選択することができ、利便性を向上することができる。したがって従来のように試行錯誤的に最適な接合条件を決定する必要がなく、時間および費用の面で効率化することができる。これによってたとえば被接合部材の材料や寸法が変更される場合であっても、目標接合強度で接合可能な接合条件を迅速に決定することができる。   In this way, it is possible to extract a joining condition that is equal to or higher than the target connection strength. As a result, it is possible to select optimum construction conditions after ensuring the required bonding strength, and to improve convenience. Therefore, it is not necessary to determine an optimum joining condition by trial and error as in the prior art, and the efficiency can be improved in terms of time and cost. Thus, for example, even when the material and dimensions of the members to be joined are changed, the joining conditions capable of joining with the target joining strength can be quickly determined.

本発明の実施の一形態である接合強度推定方法の推定手順を示すフローチャートである。It is a flowchart which shows the estimation procedure of the joining strength estimation method which is one Embodiment of this invention. 摩擦撹拌接合の接合手順を示す断面図である。It is sectional drawing which shows the joining procedure of friction stir welding. 摩擦撹拌接合装置10を示す斜視図である。1 is a perspective view showing a friction stir welding apparatus 10. 本発明の接合強度推定方法を実行する演算装置20を示すブロック図である。It is a block diagram which shows the arithmetic unit 20 which performs the joining strength estimation method of this invention. 被接合物3を拡大して示す断面図である。It is sectional drawing which expands and shows the to-be-joined object 3. FIG. 実験によるはく離強度と変形後の接合状態との関係を示すグラフである。It is a graph which shows the relationship between the peeling strength by experiment, and the joining state after a deformation | transformation. はく離強度試験における接合物の破断形態を示す断面図である。It is sectional drawing which shows the fracture | rupture form of the joined article in a peeling strength test. 実験によるせん断強度と変形後の接合状態との関係を示すグラフである。It is a graph which shows the relationship between the shear strength by experiment, and the joining state after a deformation | transformation. せん断強度試験における接合物の破断形態を示す断面図である。It is sectional drawing which shows the fracture | rupture form of the joined material in a shear strength test. ツール押込み解析段階a1におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in the tool indentation analysis step a1. 各被接合部材1,2の時間経過による温度変化を示すグラフである。It is a graph which shows the temperature change by the time passage of each to-be-joined member 1,2. ツール回転解析段階a3におけるシミュレーション結果を示す図である。It is a figure which shows the simulation result in the tool rotation analysis stage a3. 第1被接合部材1のうち、ピン部6からの任意の距離にある部分の中心軸線L1まわりに回転する塑性ひずみを示す図であるIt is a figure which shows the plastic strain which rotates around the central axis line L1 of the part in the arbitrary distance from the pin part 6 among the 1st to-be-joined members 1. 中心軸線L1まわりのひずみがゼロとなるひずみ臨界領域50の幅と、接触部分を強制回転する角度を示すグラフである。It is a graph which shows the width | variety of the strain critical area | region 50 from which the distortion | strain around the center axis line L1 becomes zero, and the angle which forcibly rotates a contact part. 流動化領域を実験によって流動化領域8の最大幅を求めた場合と、実験における接合条件と同じ接合条件でひずみ臨界領域50の幅を算出した場合とを示す図である。It is a figure which shows the case where the maximum width | variety of the fluidization area | region 8 is calculated | required by experiment for a fluidization area | region, and the case where the width | variety of the strain critical area | region 50 is calculated on the same joining conditions as the joining conditions in experiment. 実験値による流動化領域8の最大幅と、実験値による接合長さDとを示す図である。It is a figure which shows the maximum width of the fluidization area | region 8 by an experimental value, and joining length D by an experimental value. 被接合物押込み解析段階a7におけるシミュレーション結果を示す図であるIt is a figure which shows the simulation result in the to-be-joined object indentation analysis step a7. 実験による接合高さと、接合高さ算出段階a8によって求められる接合高さとを示すグラフである。It is a graph which shows the joining height by experiment, and the joining height calculated | required by the joining height calculation step a8. 強度算出工程s3を具体的に示すフローチャートである。It is a flowchart which shows the intensity | strength calculation process s3 concretely. 他の推定手順を示すフローチャートである。It is a flowchart which shows another estimation procedure.

同じ接合条件での、実験結果と解析結果とのはく離強度を示すグラフである。It is a graph which shows the peeling strength of an experimental result and an analysis result on the same joining conditions. 同じ接合条件での、実験結果と解析結果とのせん断強度を示すグラフである。It is a graph which shows the shear strength of an experimental result and an analysis result on the same joining conditions. 実験による接合位置の総板厚が同じ2つの接合物を示す断面図である。It is sectional drawing which shows two joined objects with the same total plate | board thickness of the joining position by experiment. 被接合物3に与えられる入熱パラメータと、流動化領域の最大幅との関係を示すグラフである。It is a graph which shows the relationship between the heat input parameter given to the to-be-joined object 3, and the maximum width of a fluidization area | region. 本発明の強度推定方法を用いた接合条件算出手順を示すフローチャートである。It is a flowchart which shows the joining condition calculation procedure using the intensity | strength estimation method of this invention.

符号の説明Explanation of symbols

1 第1被接合部材
2 第2被接合部材
3 被接合物
4 接合ツール
s1 接合条件取得工程
s2 形状算出工程
s3 強度算出工程
a1 ツール押込み解析段階
a2 押込み解析結果取得段階
a3 ツール回転解析段階
a4 回転解析結果取得段階
a5 流動化領域算出段階
a6 接合長さ算出段階
a7 被接合部材押込み解析段階
a8 接合高さ算出段階
DESCRIPTION OF SYMBOLS 1 1st to-be-joined member 2 2nd to-be-joined member 3 To-be-joined object 4 Joining tool s1 Joining condition acquisition process s2 Shape calculation process s3 Strength calculation process a1 Tool indentation analysis stage a2 Indentation analysis result acquisition stage a3 Tool rotation analysis stage a4 Rotation Analysis result acquisition stage a5 Fluidization region calculation stage a6 Joining length calculation stage a7 Joined member indentation analysis stage a8 Joining height calculation stage

Claims (11)

2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度を推定する接合強度推定方法であって、
予め定められる接合条件に従って、摩擦撹拌によって被接合物が変形する部分、没入方向に延びる接合ツールの軸線を含む平面における変形後の断面形状、被接合物の物性値、厚み寸法、接合ツールの形状、加圧力、回転数、接合時間および没入量を入力して数値解析によって算出する形状算出工程と、
形状算出工程で算出される変形後の断面形状に基づいて、接合物の接合強度を算出する強度算出工程とを含むことを特徴とする接合物の接合強度推定方法。
In the case where a rotating joining tool is immersed in an immersion direction into an object to be bonded in which two members to be bonded are arranged in a predetermined immersion direction, and these two members to be bonded are friction stir bonded, two members to be bonded Is a bonding strength estimation method for estimating the bonding strength of a bonded product,
In accordance with a predetermined be joining conditions, the portions thus the object to be bonded to the friction stir is deformed, the sectional shape after deformation in a plane containing the axis of the welding tool extending immersion direction, physical properties of the object to be bonded, thickness, bonding A shape calculation step for calculating the shape, pressing force, rotation speed, joining time, and immersion amount of the tool and calculating by numerical analysis,
A strength calculation step of calculating a joint strength of the joint based on the cross-sectional shape after deformation calculated in the shape calculation step.
形状算出工程は、前記変形後の断面形状を、摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さと
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さとによって表して出し
強度算出工程は、算出した接合長さと接合高さとに基づいて、接合物の接合強度を算出することを特徴とする請求項1記載の接合物の接合強度推定方法。
Shape calculating step, the cross-sectional shape after the deformation, the junction length corresponding to the outer diameter of the fluidized region object to be joined by frictional heat during the friction stir is partially fluidized Sato,
Extending perpendicular to the immersion direction to the hook point which is the most upstream point in the immersion direction of the boundary line extending between the two members to be joined, and the portion of the boundary line not affected by the immersion of the welding tool out calculated expressed by the bonding height corresponding to immersion direction dimension between the reference point away from each direction,
The method for estimating the joint strength of a joint according to claim 1, wherein the strength calculation step calculates the joint strength of the joint based on the calculated joint length and joint height.
形状算出工程は、接合ツールを被接合物に没入させた場合であって、回転を行わない場合の、被接合物の断面形状を、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の断面形状からさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする請求項1記載の接合物の接合強度推定方法。
The shape calculation step is a tool indentation analysis stage that calculates the cross-sectional shape of the object to be joined by numerical analysis when the joining tool is immersed in the object to be joined and is not rotated .
Rotation analysis stage for calculating the strain distribution of the workpiece when the welding tool is further rotated from the cross-sectional shape of the workpiece calculated by the tool indentation analysis stage by numerical analysis,
2. A fluidization region calculation step of calculating a fluidization region in which the workpiece is partially fluidized based on the strain distribution of the workpiece calculated by the rotation analysis step. Of joining strength estimation for joints.
ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の断面形状と温度分布とを、数値解析によって算出することを特徴とする請求項3記載の接合物の接合強度推定方法。 The tool indentation analysis step is a cross-sectional shape of the object to be joined when the welding tool is pressed in the immersion direction with a pressure according to a predetermined joining condition and the heat input according to the joining condition is given to the object to be joined. The joint strength estimation method according to claim 3, wherein the temperature distribution and the temperature distribution are calculated by numerical analysis. 回転解析段階は、ツール押込み解析段階によって算出される被接合物の断面形状と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする請求項4記載の接合物の接合強度推定方法。 The rotation analysis stage is based on the cross-sectional shape and temperature distribution of the workpiece to be calculated in the tool indentation analysis stage, and the distortion of the workpiece when the contact part of the workpiece with the welding tool is forcibly rotated. The joint strength estimation method according to claim 4, wherein the distribution is calculated by numerical analysis. 形状算出工程は、流動化領域算出段階によって算出される流動化領域に基づいて、流動化領域の外径寸法に対応する接合長さを算出する接合長さ算出段階と、
ツール押込み解析段階によって算出される断面形状に基づいて、2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを算出する接合高さ算出段階とを有し、
強度算出工程は、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度を算出することを特徴とする請求項3〜5のいずれか1項に記載の接合物の接合強度推定方法。
The shape calculation step includes a joining length calculation step of calculating a joining length corresponding to the outer diameter dimension of the fluidization region based on the fluidization region calculated by the fluidization region calculation step;
Based on the cross-sectional shape calculated by the tool indentation analysis stage, the hook point that is the most upstream point in the immersion direction among the boundary lines extending between the two members to be joined , and the influence of the immersion of the joining tool among the boundary lines A joining height calculation step for calculating a joining height corresponding to a dimension in the immersive direction between the reference point separated in the extending direction perpendicular to the immersive direction , up to a portion not subjected to
The strength calculation step calculates the joint strength of the joint based on the joint length calculation result and the joint height calculation result, The joint according to any one of claims 3 to 5, Bond strength estimation method.
形状算出工程は、ツール押込み解析段階によって算出される被接合物の断面形状と、流動化領域算出段階によって算出される被接合物の流動化領域とに基づいて、接合ツールと流動化領域と没入方向上流側の被接合部材とを有する押圧構成体を、予め定められる接合条件に従って、没入方向下流側の被接合部材に押付けた場合の被接合物の断面形状を数値解析によって算出する被接合部材押込み段階をさらに有し、
接合高さ算出段階は、被接合部材押込み段階によって算出される被接合物の断面形状に基づいて接合高さを算出することを特徴とする請求項3〜6のいずれか1項に記載の接合物の接合強度推定方法。
The shape calculation step is based on the cross-sectional shape of the workpiece calculated in the tool indentation analysis stage and the fluidization area of the workpiece calculated in the fluidization area calculation stage. The member to be joined that calculates the cross-sectional shape of the object to be joined when the pressing structure having the member to be joined on the upstream side in the direction is pressed against the member to be joined on the downstream side in the immersion direction according to predetermined joining conditions. And further comprising an indentation stage
The joining height calculating step calculates the joining height based on the cross-sectional shape of the object to be joined, which is calculated by the member-to-be-joined member pushing step, The joining according to any one of claims 3 to 6, A method for estimating the bonding strength of objects.
形状算出工程によって算出される被接合物の変形後の断面形状に基づいて、没入方向上流側の被接合部材の厚み寸法と、没入方向下流側の被接合部材の厚み寸法とを算出する板厚算出工程をさらに含むことを特徴とする請求項1〜7のいずれか1項に記載の接合物の接合強度推定方法。 Thickness for calculating the thickness dimension of the bonded member upstream of the immersion direction and the thickness dimension of the bonded member downstream of the immersion direction based on the cross-sectional shape after deformation of the workpiece calculated by the shape calculation step The method for estimating the bonding strength of a bonded article according to any one of claims 1 to 7, further comprising a calculating step. 2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の変形後の断面形状を推定する変形状態推定方法であって、
接合ツールを被接合物に没入させた場合であって、回転を行わない場合の、被接合物が変形する部分、没入方向に延びる接合ツールの軸線を含む平面における断面形状を、被接合物の物性値、厚み寸法、接合ツールの形状、加圧力、回転数、接合時間および没入量を入力して、数値解析によって算出するツール押込み解析段階と、
ツール押込み解析段階によって算出される被接合物の前記断面形状に基づいてさらに接合ツールを回転させた場合の被接合物のひずみ分布を、数値解析によって算出する回転解析段階と、
回転解析段階によって算出される被接合物のひずみ分布に基づいて、被接合物が部分的に流動化する流動化領域を算出する流動化領域算出段階とを有することを特徴とする接合物の変形状態推定方法。
In the case where a rotating joining tool is immersed in an immersion direction into an object to be bonded in which two members to be bonded are arranged in a predetermined immersion direction, and these two members to be bonded are friction stir bonded, two members to be bonded A deformation state estimation method for estimating a cross-sectional shape after deformation of a joined product formed by joining,
The cross-sectional shape in the plane including the axis of the welding tool extending in the immersion direction of the portion where the workpiece is deformed when the welding tool is immersed in the workpiece and not rotating is determined . Enter the physical property value, thickness dimension, welding tool shape, pressure, number of rotations, welding time and immersion amount, and calculate the tool indentation analysis stage by numerical analysis,
Rotation analysis stage for calculating the strain distribution of the workpiece when the welding tool is further rotated based on the cross-sectional shape of the workpiece calculated by the tool indentation analysis stage, by numerical analysis,
Deformation of a joint comprising a fluidization region calculation step for calculating a fluidization region in which the workpiece is partially fluidized based on the strain distribution of the workpiece calculated by the rotation analysis step. State estimation method.
ツール押込み解析段階は、予め定められる接合条件に従った加圧力で接合ツールを没入方向に押付けるとともに、前記接合条件に従った入熱量を被接合物に与えた場合の被接合物の断面形状と温度分布とを、数値解析によって算出し、
回転解析段階は、ツール押込み解析段階によって算出される被接合物の断面形状と温度分布とに基づいて、被接合物のうち接合ツールとの接触部分を強制回転させた場合の被接合物のひずみ分布を、数値解析によって算出することを特徴とする請求項9記載の接合物の変形状態推定方法。
The tool indentation analysis step is a cross-sectional shape of the object to be joined when the welding tool is pressed in the immersion direction with a pressure according to a predetermined joining condition and the heat input according to the joining condition is given to the object to be joined. And temperature distribution by numerical analysis,
The rotation analysis stage is based on the cross-sectional shape and temperature distribution of the workpiece to be calculated in the tool indentation analysis stage, and the distortion of the workpiece when the contact part of the workpiece with the welding tool is forcibly rotated. 10. The deformation state estimation method for a bonded article according to claim 9, wherein the distribution is calculated by numerical analysis.
2つの被接合部材が予め定める没入方向に並んで成る被接合物に、回転する接合ツールを没入方向に沿って没入させ、これら2つの被接合部材を摩擦撹拌接合する場合、2つの被接合部材が接合されて成る接合物の接合強度が予め定める範囲に収まる接合条件を決定する接合条件決定方法であって、
摩擦撹拌時の摩擦熱によって被接合物が部分的に流動化する流動化領域の外径寸法に対応する接合長さを、予め定める接合条件毎にそれぞれ数値解析によって算出する接合長さ算出段階と、
2つの被接合部材の間を延びる境界線のうち没入方向最上流の点となるフック点と、前記境界線のうち接合ツールの没入によって影響を受けない部分にまで、没入方向に垂直な延在方向に離反した基準点との間の没入方向寸法に対応する接合高さを、予め定める接合条件毎に数値解析によって算出する接合高さ算出段階と、
予め定める接合条件毎に算出される、接合長さ算出結果と接合高さ算出結果とに基づいて、接合物の接合強度をそれぞれ算出する強度算出段階と、
強度算出段階によって算出される算出結果に基づいて、予め定める接合強度範囲に収まる接合強度となる接合条件を抽出する接合条件抽出段階とを含むことを特徴とする接合条件決定方法。
In the case where a rotating joining tool is immersed in an immersion direction into an object to be bonded in which two members to be bonded are arranged in a predetermined immersion direction, and these two members to be bonded are friction stir bonded, two members to be bonded A bonding condition determination method for determining a bonding condition in which the bonding strength of a bonded product formed by bonding is within a predetermined range,
A joining length calculation step for calculating a joining length corresponding to the outer diameter of the fluidized region where the workpiece is partially fluidized by frictional heat at the time of friction stirring, by numerical analysis for each predetermined joining condition; ,
Extending perpendicular to the immersion direction to the hook point which is the most upstream point in the immersion direction of the boundary line extending between the two members to be joined, and the portion of the boundary line not affected by the immersion of the welding tool A joint height calculating step for calculating a joint height corresponding to a dimension in the immersive direction between the reference points separated in the direction by numerical analysis for each predetermined joint condition;
A strength calculation stage for calculating the joint strength of each joint based on the joint length calculation result and the joint height calculation result calculated for each predetermined joining condition;
A joining condition determining method, comprising: a joining condition extracting step of extracting a joining condition having a joining strength that falls within a predetermined joining strength range based on a calculation result calculated by the strength calculating step.
JP2003427960A 2003-12-24 2003-12-24 Joint strength estimation method, deformation state estimation method, and joint condition determination method Expired - Fee Related JP4372534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427960A JP4372534B2 (en) 2003-12-24 2003-12-24 Joint strength estimation method, deformation state estimation method, and joint condition determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427960A JP4372534B2 (en) 2003-12-24 2003-12-24 Joint strength estimation method, deformation state estimation method, and joint condition determination method

Publications (2)

Publication Number Publication Date
JP2005186083A JP2005186083A (en) 2005-07-14
JP4372534B2 true JP4372534B2 (en) 2009-11-25

Family

ID=34787086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427960A Expired - Fee Related JP4372534B2 (en) 2003-12-24 2003-12-24 Joint strength estimation method, deformation state estimation method, and joint condition determination method

Country Status (1)

Country Link
JP (1) JP4372534B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212984A (en) * 2007-03-05 2008-09-18 Mazda Motor Corp Method and structure of friction spot joining
EP2342040B1 (en) * 2008-11-03 2015-05-20 Instituto De Soldadura E Qualidade System and process for automatic determination of welding parameters for automated friction stir welding
EP3150322A1 (en) * 2015-10-02 2017-04-05 VAT Holding AG Closure element for a vacuum sealing with a friction stir welding connection
JP6574691B2 (en) * 2015-12-02 2019-09-11 スズキ株式会社 Dissimilar metal joined body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005186083A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
Dialami et al. Enhanced friction model for Friction Stir Welding (FSW) analysis: Simulation and experimental validation
Zhang et al. Thermo-mechanical simulation using microstructure-based modeling of friction stir spot welded AA 6061-T6
Chao et al. Heat transfer in friction stir welding—experimental and numerical studies
Li et al. Numerical Simulation of Friction Welding Processes Based on ABAQUS Environment.
Mandal et al. Experimental and numerical investigation of the plunge stage in friction stir welding
Huang et al. Fatigue behavior and life prediction of self-piercing riveted joint
Tran et al. Fatigue behavior of aluminum 5754-O and 6111-T4 spot friction welds in lap-shear specimens
Geng et al. Numerical and experimental investigation on friction welding of austenite stainless steel and middle carbon steel
D’Urso Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: Experimental and FEM analysis
Mishra et al. Fundamentals of the friction stir process
JP2008107322A (en) Fracture strain calculation method for spot welded zone, and standard fracture strain calculation method
Wang et al. Energy-input-based finite-element process modeling of inertia welding
Jweeg et al. Theoretical and experimental investigation of transient temperature distribution in friction stir welding of AA 7020-T53
Kim et al. Development of analytical strength estimator for self-piercing rivet joints through observation of finite element simulations
D’Urso et al. FEM model for the thermo-mechanical characterization of friction stir spot welded joints
JP7054199B2 (en) Residual stress distribution measurement method, calculation method and program
JP4372534B2 (en) Joint strength estimation method, deformation state estimation method, and joint condition determination method
Saha et al. Thermomechanical analysis of induction assisted friction stir welding of Inconel 718 alloy: A finite element approach
Kulkarni et al. Microstructure-based modeling of friction stir welded joint of dissimilar metals using crystal plasticity
Bhardwaj et al. Exit-hole-free friction stir spot welding of aluminum alloy sheets using a consumable pin
Wang et al. Effect of different friction coefficient models on numerical simulation of inertia friction welding of 2219 Al alloy to 304 stainless steel
Thoppul et al. Mechanical characterization of spot friction stir welded joints in aluminum alloys by combined experimental/numerical approaches: part I: micromechanical studies
Assidi et al. Accurate 3D friction stir welding simulation tool based on friction model calibration
Das et al. Prediction of surface profile in friction stir welding using coupled eulerian and lagrangian method
Yang et al. A finite element analysis of a tapered flat sheet tensile specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees