JP4371746B2 - Hydrogen generation method and apparatus - Google Patents

Hydrogen generation method and apparatus Download PDF

Info

Publication number
JP4371746B2
JP4371746B2 JP2003325461A JP2003325461A JP4371746B2 JP 4371746 B2 JP4371746 B2 JP 4371746B2 JP 2003325461 A JP2003325461 A JP 2003325461A JP 2003325461 A JP2003325461 A JP 2003325461A JP 4371746 B2 JP4371746 B2 JP 4371746B2
Authority
JP
Japan
Prior art keywords
water
hydrogen
hydride
permeable material
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003325461A
Other languages
Japanese (ja)
Other versions
JP2005089253A (en
Inventor
佳孝 若尾
博司 辻上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP2003325461A priority Critical patent/JP4371746B2/en
Publication of JP2005089253A publication Critical patent/JP2005089253A/en
Application granted granted Critical
Publication of JP4371746B2 publication Critical patent/JP4371746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は水素発生方法及びその装置に関するものであり、詳しくは水素化物を水の存在下で加水分解して水素を発生させる水素発生方法とその装置に関するものである。   The present invention relates to a hydrogen generation method and apparatus, and more particularly to a hydrogen generation method and apparatus for hydrolyzing a hydride in the presence of water to generate hydrogen.

水素は、化学工業や石油精製等に利用されている重要な化学原料としての他にクリーンエネルギー源として重要な位置を占めると考えられており、貯蔵した水素を燃料とする燃料電池の開発が各方面で進められている。水素を容易に得るための水素源としては、圧縮して容器に貯蔵する方法や水素吸蔵合金を利用する方法が提案されているが、手軽に扱える様にするには、いずれも様々な克服すべき課題が多く残っている。   Hydrogen is considered to occupy an important position as a clean energy source in addition to an important chemical raw material used in the chemical industry and oil refining. It is proceeding in the direction. As a hydrogen source for easily obtaining hydrogen, a method of compressing and storing it in a container and a method of using a hydrogen storage alloy have been proposed. Many challenges remain.

そこで水素化ナトリウム等のアルカリ金属水素化物やアルカリ土類金属の水素化物を加水分解させて水素を発生させる方法が近年注目されている。しかし、これらの水素化物、例えば水素化ナトリウムは、水と接触すると激しく反応して水素を発生するという性質があり、そのため水素化ナトリウムを樹脂皮膜でコートし、この皮膜を切断することによって水素の発生を制御しようとする方法もあるが、水素発生量を十分制御する事は難しく、安全面からも問題が残る。   Therefore, a method for generating hydrogen by hydrolyzing an alkali metal hydride such as sodium hydride or an alkali earth metal hydride has recently attracted attention. However, these hydrides, such as sodium hydride, have the property that when they come into contact with water, they react violently to generate hydrogen, and therefore, by coating sodium hydride with a resin film and cutting this film, Although there is a method to control the generation, it is difficult to sufficiently control the amount of hydrogen generation, and a problem remains in terms of safety.

又、水素化ホウ素ナトリウム等の錯金属水素化物を加水分解させて水素を発生させる方法もある。この方法は、加温した水を用い、また酸性水溶液や触媒の存在下で水素の発生を促進させるようにするものであるが、これらも前述の場合と同様に水素発生量の制御や安全面に問題が残る。   There is also a method of generating hydrogen by hydrolyzing a complex metal hydride such as sodium borohydride. This method uses heated water and promotes the generation of hydrogen in the presence of an acidic aqueous solution or catalyst. These also control the amount of hydrogen generation and improve safety in the same way as described above. The problem remains.

斯かる背景の下で新たな方法として、2種類以上の水素化物を混合させた水素発生原料を加熱する事により短時間で水素の発生を行うとする方法(例えば、特許文献1参照。)や、錯金属水素化物に、金属酸化物,半金属酸化物或いは炭素質材料と貴金属とからなる触媒の存在下で加水分解する方法(例えば、特許文献2,3参照。)や、加水分解反応性に乏しいアルカリ土類金属水素化物の場合に、酸性水溶液下で加水分解反応を促進させる方法(例えば、特許文献4参照。)や、錯金属水素化物に金属酸化物や炭素質材料からなる触媒の存在下で、実質水が存在しない状況において比較的低温である100〜170℃の温度に加熱して熱分解させる方法(例えば、特許文献5参照。)等が、水素発生量を向上させる方法として提案されている。この他に金属水素錯化合物から水素を発生させるものとして発生量の制御性を改善し、かつ停止応答性を良くすることができる方法(例えば、特許文献6,7参照。)も提案されている。   Under such a background, as a new method, a method of generating hydrogen in a short time by heating a hydrogen generating raw material in which two or more hydrides are mixed (see, for example, Patent Document 1) or the like. A method of hydrolyzing a complex metal hydride in the presence of a catalyst comprising a metal oxide, a metalloid oxide or a carbonaceous material and a noble metal (see, for example, Patent Documents 2 and 3), and hydrolytic reactivity. In the case of alkaline earth metal hydrides that are poor in acid, a method for promoting a hydrolysis reaction in an acidic aqueous solution (see, for example, Patent Document 4), or a catalyst comprising a metal oxide or a carbonaceous material in a complex metal hydride. In the presence of no substantial water in the presence, a method of heating to a relatively low temperature of 100 to 170 ° C. for thermal decomposition (see, for example, Patent Document 5) is a method for improving the amount of hydrogen generation. Proposed That. In addition to this, as a method of generating hydrogen from a metal hydride complex compound, a method (for example, see Patent Documents 6 and 7) that can improve the controllability of the generation amount and improve the stop response is proposed. .

特開2001−253702号公報JP 2001-253702 A 特開2001−199701号公報JP 2001-199701 A 特開2001−342001号公報JP 2001-342001 A 特開2002−80201号公報JP 2002-80201 A 特開2002−137901号公報JP 2002-137901 A 特開2003−146604号公報JP 2003-146604 A 特開2003−146605号公報JP 2003-146605 A

しかし乍ら、前述した従来技術の方法では、水素を短時間に発生させることができるものの、その発生量を負荷に対応して確実、容易に制御する事は極めて困難であり、且つ、反応途中で水素発生を応答性良く迅速、簡単に停止させる事は事実上不可能であるという問題がある。   However, although the conventional method described above can generate hydrogen in a short time, it is extremely difficult to reliably and easily control the amount of generation corresponding to the load, and during the reaction. Therefore, there is a problem that it is practically impossible to stop hydrogen generation quickly and easily with good response.

このような問題点に着目した結果、本出願人は、水素の発生量を容易に制御する事ができ、しかも、必要に応じて水素の発生を任意に停止する事の出来る新規な水素発生方法及び該方法の実施に好適な装置を提供するべく、先に特願2002−224190号に基づき先出願として提案した。この先出願は、水素化物を加水分解して水素を発生するに当り、該水素化物は、液体の水のみならず、空気中の湿気、即ち水蒸気にも反応するとの知見に基づき、水素化物に水を直接作用させるのではなく、撥水性水蒸気透過材を通して緩やかに供給される水分子と反応させる様に構成する事によって上記課題を解決するものである点を基本的な構成事項とするものである。   As a result of paying attention to such problems, the present applicant can easily control the amount of hydrogen generation, and can also arbitrarily stop the generation of hydrogen as needed. In order to provide a device suitable for the implementation of the method, it was previously proposed as a prior application based on Japanese Patent Application No. 2002-224190. This prior application is based on the knowledge that when a hydride is hydrolyzed to generate hydrogen, the hydride reacts not only with liquid water but also with moisture in the air, that is, with water vapor. The basic constitutional point is that the above problem is solved by reacting with water molecules that are gently supplied through the water-repellent water vapor permeable material. .

しかして本発明は、上記先出願に係る発明の更なる改良を図らせることにより水素発生量の制御性をより高めるとともに、応答性及び安定性を一層向上し、しかも反応途中での水素発生の停止を応答性良く迅速、簡単にすることを可能とし、特に可搬タイプの小型・中型機器向けの燃料電池用水素カートリッジとして十分適応し得る新規にしてしかも実用性に富む水素発生方法および該方法の実施に好適ならしめる水素発生装置の提供を目的とするものである。   Therefore, the present invention further improves the controllability of the amount of hydrogen generated by further improving the invention according to the above-mentioned prior application, further improves the responsiveness and stability, and further prevents the generation of hydrogen during the reaction. A novel and practical method for generating hydrogen that makes it possible to stop quickly and easily with good responsiveness, and is particularly suitable as a hydrogen cartridge for a fuel cell for portable small and medium-sized equipment. An object of the present invention is to provide a hydrogen generator that is suitable for the implementation of the above.

上記の目的を達成するべく、本発明は、密閉可能な本体容器1内で、水素化物7を加水分解させて水素を発生させる水素発生方法であって、前記水素化物7の層と水分Wを含浸させた吸水材8とを、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜で形成されている水分透過材6によって隔離して、吸水材8から出て前記水分透過材6を透過してくる水分子と前記水素化物7とを反応させて水素を発生させてなり、該反応に際し前記本体容器1の内圧変化に応じて前記水分透過材6と吸水材8を内圧上昇時には離脱させ、内圧低下時には接触させることにより、前記水分透過材6を透過する水分子の量を制御し、これによって前記水素化物7と水分子との反応を制御するようにしてなる構成の水素発生方法を特徴とするものである。   In order to achieve the above object, the present invention provides a hydrogen generation method for generating hydrogen by hydrolyzing a hydride 7 in a sealable main body container 1, wherein the hydride 7 layer and moisture W are combined. The impregnated water-absorbing material 8 is isolated by a water-permeable material 6 formed of a water-permeable film having a large number of fine pores through which a very small amount of moisture and water vapor can permeate. The water molecules that permeate the hydride 7 react with each other to generate hydrogen, and when the internal pressure of the water permeable material 6 and the water absorbing material 8 is increased according to a change in the internal pressure of the main body container 1 during the reaction. The amount of water molecules that permeate the moisture permeable material 6 is controlled by being detached and brought into contact when the internal pressure is reduced, thereby generating hydrogen in a configuration that controls the reaction between the hydride 7 and water molecules. It features a method That.

また本発明は、密閉可能な本体容器1内で、水素化物7を加水分解させて水素を発生させる水素発生方法において、前記水素化物7の層と水分Wを含浸させた吸水材8とを、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜で形成されている水分透過材6によって隔離するとともに、該水分透過材6と吸水材8との間に不透水性膜9を平面内での移動可能に介在させて、該不透水性膜9を移動操作してこの不透水性膜9が介在しないことで前記水分透過材6と前記吸水材8が部分的に直接接触してなる接触個所を定面積状態と逓増面積状態の何れか一方の状態にて変位させつつ形成できるようにすることにより、吸水材8から出て前記接触個所を通じ水分透過材6を透過してくる水分子と前記水素化物7とを反応させて水素を発生させてなり、該反応に際し前記本体容器1の内圧変化に応じて前記不透水性膜9を内圧上昇時には移動操作させることなく、内圧低下時には移動操作させることにより、前記水分透過材6を透過する水分子の量を制御し、これによって前記水素化物7と水分子との反応を制御するようにしてなる構成の水素発生方法をその特徴とするものである。     The present invention also provides a hydrogen generation method for generating hydrogen by hydrolyzing the hydride 7 in the sealable main body container 1, wherein the layer of the hydride 7 and the water absorbing material 8 impregnated with water W are used. It is isolated by a moisture permeable material 6 formed of a moisture permeable membrane having a large number of fine pores through which a very small amount of moisture and water vapor can permeate, and a water-impermeable membrane 9 is planarized between the moisture permeable material 6 and the water absorbing material 8. The water permeable material 6 and the water absorbing material 8 are partly in direct contact with each other because the water impermeable film 9 is moved so that the water impermeable film 9 is not interposed. The water that passes through the moisture permeable material 6 through the contact point through the contact point is formed by allowing the contact point to be formed while being displaced in either a constant area state or an increasing area state. Hydrogen reacts with molecules and the hydride 7 In the reaction, the impermeable membrane 9 is not moved when the internal pressure is increased according to the change in the internal pressure of the main body container 1, and is moved when the internal pressure is decreased, so that the moisture permeable material 6 is permeated. A feature of the present invention is a hydrogen generation method having a configuration in which the amount of water molecules to be controlled is controlled to thereby control the reaction between the hydride 7 and water molecules.

本発明はまた、水素化物7を加水分解して水素を発生させる水素発生装置として三つの態様を提供するものであり、第1の装置は、水素導出口4を有する密閉可能な本体容器1と、本体容器1内に介設されて該器内を調圧部2と前記水素導出口4が備わる密閉可能な水素発生部3とに区画してなるダイヤフラム5と、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部3内に介設して該部内をダイヤフラム5が備わる水側室と水素導出口4が備わる水素側室とに区画してなる水分透過材6と、該水分透過材6に接して前記水素側室内に配設される水素化物7の層と、ダイヤフラム5に連結して水分透過材6に接離し得る移動可能に前記水側室内に配設されてなり、水分Wを含浸して保有する吸水材8とを含み、吸水材8から出て水分透過材6を透過してくる水分子と前記水素化物7とを反応させて水素を発生させるようになすとともに、該反応に際し前記水素発生部3の内圧変化に応じて水分透過材6に対し接離方向に変位動するダイヤフラム5の作動に基づき、吸水材8を水分透過材6に対し内圧上昇時には離脱させ、内圧低下時には接触させることにより、前記水分透過材6を透過する水分子の量を制御し、これによって水素発生量を制御するように構成したものである。     The present invention also provides three embodiments as a hydrogen generator for generating hydrogen by hydrolyzing the hydride 7, and the first apparatus includes a main container 1 having a hydrogen outlet 4 and a sealable main body container 1. A diaphragm 5 that is interposed in the main body container 1 and divides the inside of the vessel into a sealable hydrogen generating section 3 having a pressure adjusting section 2 and the hydrogen outlet 4; Moisture permeation formed from a moisture permeable membrane having a large number of fine pores to be obtained and divided into a hydrogen side chamber provided with a diaphragm 5 and a hydrogen side chamber provided with a hydrogen outlet 4 interposed in the hydrogen generating portion 3. A material 6, a layer of hydride 7 disposed in the hydrogen-side chamber in contact with the moisture-permeable material 6, and a movable body connected to the diaphragm 5 that can contact and separate from the moisture-permeable material 6. Water-absorbing material that is provided and impregnated with moisture W The hydride 7 reacts with water molecules that exit from the water absorbing material 8 and permeate the moisture permeable material 6 to generate hydrogen, and the internal pressure of the hydrogen generating unit 3 during the reaction Based on the operation of the diaphragm 5 that moves in the direction of contact with and away from the moisture permeable material 6 in response to the change, the water absorbing material 8 is separated from the moisture permeable material 6 when the internal pressure is increased, and is contacted when the internal pressure is reduced. The amount of water molecules that permeate the permeable material 6 is controlled, and thereby the amount of hydrogen generation is controlled.

次に、本発明に係る第2の水素発生装置においては、水素導出口4を有する密閉可能な本体容器1と、本体容器1内に介設されて該器内を調圧部2と前記水素導出口4が備わる密閉可能な水素発生部3とに区画してなるダイヤフラム5と、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部3内に介設されて該部内をダイヤフラム5が備わる水側室と水素導出口4が備わる水素側室とに区画してなる水分透過材6と、該水分透過材6に接して前記水素側室内に配設される円盤形状の水素化物7の層と、該水素化物7の層と等径の円盤形状を成して、前記水分透過材6を挟み水素化物7の層に対し同軸に、かつ中心軸回りの回転動可能に前記水側室内に配設されてなり、水分Wを含浸して保有する吸水材8と、吸水材8における前記水分透過材6に相対する側の表面に貼付けられた不透水性の薄膜からなり、中心から円周に至る扇形の切欠き10が設けられてなる切欠円形状の不透水性膜9と、前記吸水材8に連繋して設けられ、前記ダイヤフラム5に連動して前記吸水材8をその中心軸回りに回転動させる回転駆動手段11とを含み、前記吸水材8から出て該吸水材8と前記水分透過材6の直接接触個所に相当する前記切欠き10を通じ水分透過材6を透過してくる水分子と前記水素化物7とを反応させて水素を発生させるようになすとともに、該反応に際し前記本体容器1の内圧変化に応じて変位動する前記ダイヤフラム5に連動する回転駆動手段11の作動に基づき、内圧上昇時には回転駆動手段11を不作動として前記切欠き10を変位させず、内圧低下時には回転駆動手段11を作動させて前記切欠き10を定面積状態下で変位させることにより、前記水分透過材6を透過する水分子の量を制御し、これによって前記水素化物7と水分子との反応を制御するように構成したものである。     Next, in the second hydrogen generator according to the present invention, a sealable main body container 1 having a hydrogen outlet 4, and a pressure adjusting unit 2 and the hydrogen are interposed in the main body container 1. It is formed from a diaphragm 5 that is partitioned into a sealable hydrogen generator 3 having a lead-out port 4 and a water permeable membrane having a large number of fine holes through which a trace amount of moisture and water vapor can pass, and is interposed in the hydrogen generator 3. A water permeable material 6 that is divided into a water side chamber provided with a diaphragm 5 and a hydrogen side chamber provided with a hydrogen outlet 4 and is disposed in the hydrogen side chamber in contact with the water permeable material 6. A disk-shaped hydride 7 layer and a disk shape having the same diameter as that of the hydride 7 layer are formed. The moisture permeable material 6 is sandwiched between the hydride 7 layer and the same axis and rotated about the central axis. It is movably disposed in the water-side chamber and absorbs and retains moisture W. A notched circular shape comprising a material 8 and a water-impermeable thin film attached to the surface of the water-absorbing material 8 facing the moisture permeable material 6 and provided with a fan-shaped notch 10 extending from the center to the circumference. A water impermeable film 9 and a rotation driving means 11 that is connected to the water absorbing material 8 and rotates the water absorbing material 8 about its central axis in conjunction with the diaphragm 5. Hydrogen is generated by reacting the hydride 7 with the water molecule that has passed through the notch 10 corresponding to the direct contact portion between the water absorbing material 8 and the moisture permeable material 6 and the hydride 7. Based on the operation of the rotation drive means 11 interlocked with the diaphragm 5 that moves in response to the change in the internal pressure of the main body container 1 during the reaction, the rotation drive means 11 is deactivated when the internal pressure rises. Missing 10 When the internal pressure is lowered without being displaced, the rotational driving means 11 is operated to displace the notch 10 under a constant area state, thereby controlling the amount of water molecules that permeate the moisture permeable material 6, thereby the hydrogen. It is configured to control the reaction between the compound 7 and water molecules.

次いで、本発明に係る第3の水素発生装置においては、水素導出口4を有する密閉可能な本体容器1と、本体容器1内に介設されて該器内を調圧部2と前記水素導出口4が備わる密閉可能な水素発生部3とに区画してなるダイヤフラム5と、数個以下の水分子の会合になる微細水分及び水蒸気は透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部3内に介設されて該部内をダイヤフラム6が備わる水側室と水素導出口4が備わる水素側室とに区画してなる水分透過材6と、該水分透過材6に接して前記水素側室内に配設される方形盤形状の水素化物7の層と、該水素化物7の層と同形の方形盤形状を成し、前記水分透過材6を挟み水素化物7の層に合同的に前記水側室内に配設されてなり、水分Wを含浸して保有する吸水材8と、前記水素化物7の層と前記水分透過材6の間に方形の一辺に平行な一方向への引き抜き移動可能に介在させた不透水性のシート薄膜からなる不透水性膜9と、前記吸水材8の一側部に近設した巻取ロール13により前記ダイヤフラム5に連動して不透水性膜9を巻取って引き抜かせる巻取手段12とを含み、前記吸水材8から出て前記水素化物7の層と前記水分透過材6の直接接触個所に相当する不透水性膜不介在個所を通じ水分透過材6を透過してくる水分子と前記水素化物7とを反応させて水素を発生させるようになすとともに、該反応に際し前記本体容器1の内圧変化に応じて変位する前記ダイヤフラム5に連動する前記巻取手段12の作動に基づき、前記不透水性膜9を内圧上昇時には巻取らせず、内圧低下時には巻取らせて前記不介在個所を逓増面積状態下にて変位させることにより、前記水分透過材6を透過する水分子の量を制御し、これによって前記水素化物7と水分子との反応を制御するようにしてなる構成としたことを特徴とする。     Next, in the third hydrogen generating apparatus according to the present invention, the sealable main body container 1 having the hydrogen outlet 4 and the pressure regulating section 2 and the hydrogen guide are disposed inside the main body container 1. It is formed from a diaphragm 5 that is partitioned into a sealable hydrogen generator 3 having an outlet 4, and a moisture permeable membrane that has a large number of fine pores through which fine moisture and water vapor can permeate several water molecules or less. A moisture permeable material 6 interposed in the hydrogen generating section 3 and partitioned into a water side chamber provided with a diaphragm 6 and a hydrogen side chamber provided with a hydrogen outlet 4, and in contact with the moisture permeable material 6. A rectangular hydride 7 layer disposed in the hydrogen side chamber has a rectangular disk shape that is the same shape as the hydride 7 layer, and is joined to the hydride 7 layer with the moisture permeable material 6 interposed therebetween. Is disposed in the water side chamber, and absorbs and retains moisture W. A water-impermeable film 9 comprising a material 8 and a water-impermeable sheet thin film interposed between the layer of hydride 7 and the water-permeable material 6 so as to be movable in one direction parallel to one side of the square. A winding means 12 that winds up the water-impermeable film 9 in conjunction with the diaphragm 5 by a winding roll 13 provided close to one side of the water-absorbing material 8 and pulls it out. Then, the hydride 7 reacts with water molecules permeating the moisture permeable material 6 through the impermeable membrane non-intervening portion corresponding to the direct contact portion between the hydride 7 layer and the moisture permeable material 6. The impermeable membrane 9 is wound when the internal pressure is increased based on the operation of the winding means 12 interlocked with the diaphragm 5 that is displaced according to the change in the internal pressure of the main body container 1 during the reaction. Taken off when the internal pressure drops The amount of water molecules that permeate the moisture permeable material 6 is controlled by displacing the non-intervening portions under increasing area, thereby controlling the reaction between the hydride 7 and the water molecules. It is characterized by having the configuration as described above.

上記の第2・第3の水素発生装置の態様としては、回転駆動手段11が、ゼンマイタイマ、振子を備えるバネ力−回転力変換機構であり、ダイヤフラム5が、内圧上昇時にその動きを止め、内圧低下時にその動きを許容するように前記振子に関連して設けられる構成としたものが挙げられる。     As an aspect of the second and third hydrogen generators described above, the rotation drive means 11 is a spring force-rotation force conversion mechanism including a spring timer and a pendulum, and the diaphragm 5 stops its movement when the internal pressure increases, A configuration provided in association with the pendulum so as to allow the movement when the internal pressure is reduced is mentioned.

上記本発明に係る水素発生装置の態様として、前記水素側室内において前記水素化物7の層に隣接して緩衝材14が設けられてなるものがあり、この緩衝材14としては、弾性を有しかつ無数の連通空隙部を備えて、前記水素化物7の膨張分を吸収しつつこれを保持するとともに、発生水素の通過を許容するものであることが好ましい。     As an aspect of the hydrogen generator according to the present invention, there is one in which a buffer material 14 is provided adjacent to the layer of the hydride 7 in the hydrogen side chamber, and the buffer material 14 has elasticity. In addition, it is preferable that an infinite number of communicating voids are provided so as to absorb the expanded portion of the hydride 7 while holding it and to allow the generated hydrogen to pass therethrough.

以上述べてなる本発明に係る水素発生装置に関して、前記水素化物7を短冊状、三角、四角、ハニカム状等の多角形に区画成形したものが挙げられる。     Regarding the hydrogen generator according to the present invention described above, there may be mentioned one in which the hydride 7 is compartmentally molded into a polygonal shape such as a strip shape, a triangle shape, a square shape or a honeycomb shape.

本発明の水素発生方法によれば、従来法の如く水素化物と水とを直接接触させて反応させるのではなく水分透過材を透過した水分子と水素化物とを反応させるものであるから、その反応は穏やかなものとなり、従って、その制御も、透過する水分の量を調整することにより、容易に行う事が可能となる。このことは、水素化物を用いた水素発生技術の実用化を大きく前進させ、同時に係る水素発生技術を用いた小型燃料電池の実用化をも促進させ、クリーンなエネルギの普及に大きく貢献する事が期待される。   According to the hydrogen generation method of the present invention, hydride and water are not directly contacted and reacted as in the conventional method, but water molecules permeated through the moisture permeable material and hydride are reacted. The reaction is mild and therefore can be controlled easily by adjusting the amount of moisture that permeates. This greatly advances the practical application of hydrogen generation technology using hydrides, and at the same time promotes the practical application of small fuel cells using such hydrogen generation technology, and contributes greatly to the spread of clean energy. Be expected.

発生水素量の制御も、前記水分透過材と吸水材との接触の有無或いは接触面積又は接触個所の変位の一つを調整する事により容易に行う事が可能であり、しかも、従来の水と水素化物との接触による水素発生法では不可能とされていた反応途中での水素発生の停止も、水と水分透過材との接触を絶つことによって確実に行えるので、必要なときに必要な量の水素を発生させることが可能となる。   The amount of generated hydrogen can also be easily controlled by adjusting the presence / absence of contact between the water-permeable material and the water-absorbing material or the contact area or one of the displacements of the contact point. Stoppage of hydrogen generation during the reaction, which was impossible in the hydrogen generation method by contact with hydride, can be reliably performed by disconnecting the water from the moisture permeable material. It is possible to generate hydrogen.

又、本体容器の内圧を100kPa以下の低圧下で安定保持できるので、容器の耐圧を大幅に下げることが可能でプラスチックなどの軽量・安価な材料を用いて小型化できる。従って、モバイル機器等の小型燃料電池用の水素発生装置として用いる場合に、該水素発生装置をモバイル機器等に装入できる程度に小型カートリッジ式にしておくことにより、容易に交換が可能であるし、予備部品として携帯にも至極便利である。   In addition, since the internal pressure of the main body container can be stably held under a low pressure of 100 kPa or less, the pressure resistance of the container can be greatly reduced, and the size can be reduced by using a light and inexpensive material such as plastic. Therefore, when used as a hydrogen generator for a small fuel cell such as a mobile device, the hydrogen generator can be easily replaced by making it a small cartridge type that can be inserted into a mobile device or the like. It is extremely convenient to carry as a spare part.

さらに、反応に必要最低限とされる水をスポンジ等の吸水材に予め吸水保持させておく方式であるので、吸水保持量も少なくて済むし姿勢が特定されない天地自在の装置として適するだけでなく、輸送中にも水と水分透過材との接触が生じないように相互を離しておけるので、吸水材と本体容器とを予めモジュール化しておき、使用済の水素発生装置の前記モジュールのみを交換することによって水素発生装置の再生が容易に行われ、省資源化にも貢献する事ことが期待される。   In addition, since the water required for the reaction is preliminarily absorbed and held in a water absorbent material such as a sponge, it is not only suitable as a top-and-bottom device that requires only a small amount of water absorption and whose posture is not specified. Since the water and moisture permeable material can be kept away from each other during transportation, the water absorbing material and the main body container are modularized in advance, and only the module of the used hydrogen generator is replaced. By doing so, it is expected that the hydrogen generator will be easily regenerated and contribute to resource saving.

具体的構成についても、水素化物に沿わせて前記水素側室内に、弾性及び通気性を有する緩衝材を配置することにより、反応時に生じる水素化物の膨潤を該緩衝材によって吸収することができるので、反応時における水素化物の移動が防止され、水素発生反応を安定して行わせることが可能となる。   With regard to a specific configuration, by arranging a buffer material having elasticity and air permeability along the hydride in the hydrogen side chamber, swelling of the hydride generated during the reaction can be absorbed by the buffer material. The movement of the hydride during the reaction is prevented, and the hydrogen generation reaction can be performed stably.

また、本発明に係る水素発生装置に関して、水素化物7を隔壁31により短冊状、三角、四角、ハニカム状等の多角形に区画成形した場合には、横方向への水分の滲みによる水素化物への過剰な反応を防ぐことができる。   Further, in the hydrogen generator according to the present invention, when the hydride 7 is partitioned and formed into polygonal shapes such as strips, triangles, squares, and honeycombs by the partition walls 31, the hydride is caused by moisture bleeding in the lateral direction. Can prevent excessive reaction.

以下に本発明に係る水素発生方法及びその装置について、図面に示す各実施形態に基づいて詳細に説明する。図1は、本発明の第1の実施の形態に係る水素発生装置の正面示概念図で、(イ)は内圧上昇時、(ロ)は内圧低下時をそれぞれ示す。図示の水素発生装置において、1は円柱形の本体容器であり、中間部に結合部を備えていて、この本体容器1はプラスチック製、例えばナイロン66製で水素カートリッジ形容器として利用できる単一乾電池程度の大きさに形成している。本体容器1内の前記結合部には、ダイヤフラム5がその周縁部を容器筒壁に定着して仕切部材として介設されていて、本体容器1内を調圧部2と水素導出口4が備わる密閉可能な水素発生部3との2部に区画している。   Hereinafter, a hydrogen generation method and apparatus according to the present invention will be described in detail based on each embodiment shown in the drawings. FIG. 1 is a conceptual diagram of a front view of a hydrogen generator according to a first embodiment of the present invention, in which (a) shows an increase in internal pressure and (b) shows a decrease in internal pressure. In the illustrated hydrogen generating apparatus, reference numeral 1 denotes a cylindrical main body container, which is provided with a coupling portion at an intermediate portion. The main body container 1 is made of plastic, for example, nylon 66 and can be used as a hydrogen cartridge type container. It is formed to a size of about. A diaphragm 5 is fixed to the container cylinder wall with a diaphragm 5 interposed between the coupling portions in the main body container 1 as a partition member, and a pressure adjusting section 2 and a hydrogen outlet 4 are provided in the main body container 1. It is divided into two parts with the hydrogen generating part 3 which can be sealed.

ダイヤフラム5は、図1(イ)、(ロ)に作動状態が示されるが、水素発生部3の内圧上昇に伴って水素発生部3容積を増大するべくダイヤフラム膜部が調圧部2側に凸出し、内圧低下に伴って逆に水素発生部3容積を減少するべくダイヤフラム膜部が該発生部3側に凹入するように設けられる。なお、図1において符号15は、本体容器1の調圧部2側端壁に貫設した空気孔であり、また、符号19は、本体容器1の水素発生部3側端壁に設けられた前記水素導出口4に嵌着したワンタッチ型のコネクタである。   The operation state of the diaphragm 5 is shown in FIGS. 1A and 1B. The diaphragm membrane portion is moved to the pressure regulating portion 2 side in order to increase the volume of the hydrogen generating portion 3 as the internal pressure of the hydrogen generating portion 3 increases. On the contrary, the diaphragm membrane part is provided so as to be recessed into the generation part 3 side in order to reduce the volume of the hydrogen generation part 3 with the protrusion and the decrease in internal pressure. In FIG. 1, reference numeral 15 denotes an air hole penetrating the end wall on the pressure regulating unit 2 side of the main body container 1, and reference numeral 19 is provided on the end wall on the hydrogen generating unit 3 side of the main body container 1. It is a one-touch type connector fitted to the hydrogen outlet 4.

上記水素発生部3の筒軸方向の略中間位置には、水分透過膜の薄膜体から形成される水分透過材6が、その周縁部を容器筒壁に定着して仕切部材として介設されていて、水素発生部3をダイヤフラム5が備わる水側室と水素導出口4が備わる水素側室との2室に区画している。水分透過材6は、微量水分及び水蒸気に限って透過することができる微細孔を多数有する多孔膜であって、例えば耐熱性のあるPTFE(ポリテトラフルオロエチレン)多孔薄膜が使用されるが、この種の多孔薄膜としては後述する各種の透過膜の中から所望のものが適宜選定される。   A water permeable material 6 formed of a thin film body of a water permeable membrane is interposed at a substantially intermediate position in the cylinder axis direction of the hydrogen generating unit 3 as a partition member with its peripheral edge fixed to the container cylinder wall. Thus, the hydrogen generation unit 3 is divided into two chambers, a water side chamber provided with a diaphragm 5 and a hydrogen side chamber provided with a hydrogen outlet 4. The moisture permeable material 6 is a porous film having a large number of fine pores that can permeate only a small amount of moisture and water vapor. For example, a heat-resistant PTFE (polytetrafluoroethylene) porous thin film is used. As a kind of porous thin film, a desired one is appropriately selected from various permeable membranes described later.

水分透過材6が介設されてなる水素発生部3において、前記水素側室には、水素化物7の層と緩衝材14とが配設され、一方、前記水側室には、水分(W)を含浸して保有する吸水材8が配設される。水素化物7の層は、例えば、水素化カルシウム(CaH2)等の水素化物の粒子状原料を円盤状に固めたものが用いられ、これを水素側室内において水分透過材6に接して定置させる。また、緩衝材14は、例えば、セラミックウールにより円盤状に形成したものを前記水素化物7に接して並設させる。一方、吸水材8は、水分(W;水又は酸、アルコールの水溶液等)の充分量を含浸して保有できるスポンジなどが用いられて円盤状に形成したものを水側室内に配設して、ダイヤフラム5に一体的に連結して水分透過材6に接触・離間し得るように水素発生部3筒軸方向の移動可能に設けられる。なお、緩衝材14としては、軸方向に膨張・収縮し得る弾性を有しかつ無数の連通空隙部を備えた部材であって、水素化物7の加水分解作用に基づく膨張分を吸収しつつこれを位置ずれしないように保持するとともに、発生水素の通過を何等妨げないようなものであれば適当な材質のものが適用される。また、図1において符号16は、ダイヤフラム5の設定圧力を調節するための抑えバネであり、符号18はダイヤフラム5と吸水材8とを機械的に連結するための連接棒であり、符号17は、バネ調整つまみである。   In the hydrogen generating unit 3 having the moisture permeable material 6 interposed, the hydrogen side chamber is provided with a layer of hydride 7 and a buffer material 14, while the water side chamber contains moisture (W). A water absorbing material 8 that is impregnated and held is disposed. The layer of the hydride 7 is, for example, a disk-shaped solidified hydride material such as calcium hydride (CaH2), which is placed in contact with the moisture permeable material 6 in the hydrogen side chamber. Further, the buffer material 14 is formed in a disk shape with ceramic wool, for example, in contact with the hydride 7. On the other hand, the water-absorbing material 8 is formed in a disc-like shape using a sponge or the like that can be held by impregnating a sufficient amount of water (W; water, acid, alcohol aqueous solution, etc.) in the water-side chamber. The hydrogen generator 3 is provided so as to be movable in the direction of the cylinder axis so as to be integrally connected to the diaphragm 5 and to be able to contact and separate from the moisture permeable material 6. The buffer material 14 is a member having elasticity that can expand and contract in the axial direction and having an infinite number of communicating voids, while absorbing the expansion due to the hydrolysis action of the hydride 7. As long as it is held so as not to be misaligned and does not obstruct the passage of the generated hydrogen, an appropriate material is applied. Further, in FIG. 1, reference numeral 16 is a restraining spring for adjusting the set pressure of the diaphragm 5, reference numeral 18 is a connecting rod for mechanically connecting the diaphragm 5 and the water absorbing material 8, and reference numeral 17 is The spring adjustment knob.

次に、上記第1の実施の形態に係る水素発生装置の作動の態様について説明する。未反応状態の水素化物7の層と、必要な水素発生量に見合った量の水分(W)を含浸して保有する吸水材8が収蔵されてなるカートリッジ型の水素発生装置は、吸水材8から出された微細水分及び水蒸気が水分透過材6を透過して水素側室に入り、水素化物7の層に至って該水素化物7と反応して水素を発生する。この場合、水分透過材6を介することによって急激な反応を抑え、水素を長時間に亘り徐々に発生させることが可能であり、ダイヤフラム5の設定圧力以上に内圧が上昇すると、図1(イ)に示すようにダイヤフラム5の凸出に連動して吸水材8が水分透過材6から離間した位置に移動するので、反応が止まり、水素発生は停止する。   Next, an operation mode of the hydrogen generator according to the first embodiment will be described. A cartridge-type hydrogen generator in which a layer of unreacted hydride 7 and a water-absorbing material 8 impregnated with water (W) in an amount corresponding to the required amount of hydrogen generation is stored is a water-absorbing material 8. Fine moisture and water vapor discharged from the gas permeate the moisture permeable material 6 and enter the hydrogen side chamber, reach the layer of hydride 7 and react with the hydride 7 to generate hydrogen. In this case, it is possible to suppress a rapid reaction through the moisture permeable material 6 and to gradually generate hydrogen over a long period of time. When the internal pressure rises above the set pressure of the diaphragm 5, FIG. As shown in FIG. 4, the water absorbing material 8 moves to a position away from the moisture permeable material 6 in conjunction with the protrusion of the diaphragm 5, so that the reaction stops and the hydrogen generation stops.

具体的には、負荷を接続した際の態様について、図示しない連絡管によって水素導出口4に連結した燃料電池の水素使用量により変化するカートリッジ本体容器1の内圧変動に伴い、吸水材8がダイヤフラム5と連動して凹出・凸入の移動を行い、消費が多いときは内圧が例えば60kPa以下に下がって吸水材8が水分透過材6に着き、消費が少ないときは内圧が例えば60kPa以上に上がって吸水材8が水分透過材6から離れ、これにより、水素の発生量を自動的に制御し、カートリッジ本体容器1の内圧を一定の範囲内に維持しながら所要量の水素を安定的に発生させることができる。勿論、水素発生運転中において消費が止まった時には、内圧上昇に伴って吸水材8が水分透過材6から素早く離れることにより、水素発生を迅速に停止させることができる。   Specifically, with respect to the mode when the load is connected, the water absorbing material 8 is changed to a diaphragm as the internal pressure of the cartridge main body container 1 changes depending on the amount of hydrogen used in the fuel cell connected to the hydrogen outlet 4 by a communication pipe (not shown). When the consumption is high, the internal pressure is reduced to 60 kPa or less and the water absorbing material 8 reaches the moisture permeable material 6. When the consumption is low, the internal pressure is increased to 60 kPa or more. The water absorbing material 8 is moved away from the water permeable material 6, thereby automatically controlling the amount of hydrogen generated, and stably maintaining the required amount of hydrogen while maintaining the internal pressure of the cartridge body container 1 within a certain range. Can be generated. Of course, when the consumption stops during the hydrogen generation operation, the water absorption material 8 quickly leaves the moisture permeable material 6 as the internal pressure rises, so that the hydrogen generation can be stopped quickly.

ところで、従来のボンベ式やメタハイ式の水素カートリッジなどに比べて、本発明に係る水素発生装置は容器の耐圧を大幅に下げられることから、容器材料に合成樹脂などの軽量・安価な材料を使用することができるとともに、供給ライン上に減圧弁の如き補機を設ける必要がなくなるため、燃料電池システム全体の簡易化,小型化に大きく寄与し得るものである。   By the way, compared to conventional cylinder type or meta-high type hydrogen cartridges, etc., the hydrogen generator according to the present invention can greatly reduce the pressure resistance of the container, so the container material is a lightweight and inexpensive material such as synthetic resin. In addition, since it is not necessary to provide an auxiliary machine such as a pressure reducing valve on the supply line, it can greatly contribute to simplification and miniaturization of the entire fuel cell system.

なお、上述の水素発生装置において水分透過材6の透湿度が不十分で、必要時間に亘って水素の消費量に十分対応するだけの水分(W)を透過させることができない場合は、反応させる水分に1wt%程度の界面活性剤を溶解するか、水分透過材自体に界面活性剤を塗布して親水化することで膜の水分透過速度を向上させることができる。   In addition, in the above-mentioned hydrogen generator, the moisture permeability of the moisture permeable material 6 is insufficient, and when the moisture (W) sufficient to correspond to the consumption of hydrogen cannot be permeated over the necessary time, the reaction is performed. The water permeation rate of the membrane can be improved by dissolving about 1 wt% of the surfactant in the moisture, or applying the surfactant to the moisture permeable material itself to make it hydrophilic.

このことから、元来、水分透過材には撥水性は必要なく、単に孔径の十分小さい膜を用いれば良いことになるが、反応時の温度(短時間最高で200℃弱)と反応後の強アルカリ性に耐えうる適度な微細孔を持つ膜としては、例えば、親水化処理した10μ厚さのPTFE膜などが挙げられる。   From this, the water permeable material originally does not require water repellency, and it is sufficient to simply use a membrane having a sufficiently small pore diameter. However, the temperature during the reaction (up to a little less than 200 ° C. for a short time) and the post-reaction An example of a membrane having moderately fine pores that can withstand strong alkalinity is a 10 μ-thick PTFE membrane subjected to a hydrophilic treatment.

ここで、本発明で使用する水素化物7について説明する。この水素化物7としては、水素化アルミニウムリチウム(LiAlH4),水素化硼素リチウム(LiBH4), 水素化アルミニウムナトリウム(NaAlH4), 水素化硼素ナトリウム(NaBH4), 水素化アルミニウムカリウム(KAlH4), 水素化硼素カリウム(KBH4),水素化硼素マグネシウム(Mg(BH4)2),水素化硼素カルシウム(Ca(BH4)2),水素化硼素バリウム(Ba(BH4)2), 水素化硼素ストロンチウム(Sr(BH4)2),水素化硼素鉄(Fe(BH4)2), 水素化リチウム(LiH),水素化ナトリウム(NaH),水素化カリウム(KH), 水素化バリウム(BaH2), 水素化マグネシウム(MgH2), 水素化カルシウム(CaH2), 水素化ストロンチウム(SrH2),水素化アルミニウム(AlH3)からなる群から選択された1種以上を、粉末状,粒子状,顆粒状,ペレット状,板状,ハニカム状に適宜成形したものが挙げられるが、表面積を増大させて反応性を高める目的からして粉末状,粒子状又は顆粒状のものが好ましい。   Here, the hydride 7 used in the present invention will be described. The hydride 7 includes lithium aluminum hydride (LiAlH4), lithium borohydride (LiBH4), sodium aluminum hydride (NaAlH4), sodium borohydride (NaBH4), potassium aluminum hydride (KAlH4), boron hydride. Potassium (KBH4), Magnesium borohydride (Mg (BH4) 2), Calcium borohydride (Ca (BH4) 2), Barium borohydride (Ba (BH4) 2), Strontium borohydride (Sr (BH4) 2) Iron borohydride (Fe (BH4) 2), lithium hydride (LiH), sodium hydride (NaH), potassium hydride (KH), barium hydride (BaH2), magnesium hydride (MgH2), 1 selected from the group consisting of calcium hydride (CaH2), strontium hydride (SrH2), and aluminum hydride (AlH3) Examples of the above are powders, particles, granules, pellets, plates, and honeycombs, which are suitably formed. For the purpose of increasing the surface area and increasing the reactivity, powders, particles, or granules Is preferred.

また、本発明で使用する水分透過材6について説明する。この水分透過材6としては、ポリテトラフルオロエチレン樹脂、ポリエチレン樹脂,ポリプロピレン樹脂,ポリスチレン樹脂,ポリカーボネート樹脂,ポリアミド樹脂,ポリエステル樹脂,フッ素樹脂,シリコン樹脂,アセタール樹脂,アクリル樹脂,メラミン樹脂の群から選択された1種以上の合成樹脂又は紙から形成され、微量水分及び水蒸気が透過し得る連通する微細孔を有するものが挙げられる。   The moisture permeable material 6 used in the present invention will be described. The moisture permeable material 6 is selected from the group of polytetrafluoroethylene resin, polyethylene resin, polypropylene resin, polystyrene resin, polycarbonate resin, polyamide resin, polyester resin, fluorine resin, silicon resin, acetal resin, acrylic resin, and melamine resin. Examples thereof include those formed from one or more kinds of synthetic resins or paper, and having continuous micropores through which a minute amount of moisture and water vapor can permeate.

次に、本発明の第1の実施の形態に係る水素発生装置の実施例1について図2を併せ参照して説明する。この装置として、プロトタイプのカートリッジ[容器材質;プラスチック、サイズ;40ml(単一乾電池程度)、重量;50g、水素発生量;2リットル/35分、水素化物(CaH2)装填量;1.8g、水分透過材膜径;20mm]を試作して負荷テスト(水素発生運転)を行い、その際における内部圧力A、ガス出口温度B、発電出力C、外部側面温度Dの各稼動経時特性につき実測した。その結果は、図2に示される通りである。この結果から明らかなように、装填したCaH2の反応率100%で出力3.5Wを35分間通じて安定発電できた。また、内圧100kPa以下で推移(FCの耐圧は100kPa)した。ガス温度もFCに影響を与えない程度で推移した。一方、プラスチック製の容器本体は発熱による変形が全くなく、また、断熱材(ポリエチレンフォーム)で防熱被覆した容器本体の外部表面温度は60℃以下で触れても熱くない程度を維持できた。このように、本発明の第1の実施の形態に係る水素発生装置は、PDA等の小型機器向けの小出力の水素カートリッジとして実用が可能な装置である。 Next, Example 1 of the hydrogen generator according to the first embodiment of the present invention will be described with reference to FIG. This apparatus includes a prototype cartridge [container material: plastic, size: 40 ml (about a single dry cell), weight: 50 g, hydrogen generation amount: 2 liters / 35 minutes, hydride (CaH 2 ) loading amount: 1.8 g, Moisture permeable material membrane diameter: 20 mm] was prototyped and subjected to a load test (hydrogen generation operation), and the operating time characteristics of internal pressure A, gas outlet temperature B, power generation output C, and external side surface temperature D at that time were measured. . The result is as shown in FIG. As is apparent from this result, stable power generation was possible with an output of 3.5 W for 35 minutes at a reaction rate of 100% of the charged CaH 2 . Further, the internal pressure changed at 100 kPa or less (FC withstand pressure of 100 kPa). The gas temperature also remained at a level that did not affect FC. On the other hand, the plastic container main body was not deformed by heat generation, and the external surface temperature of the container main body coated with a heat insulating material (polyethylene foam) was kept at 60 ° C. or less so that it was not heated even when touched. As described above, the hydrogen generator according to the first embodiment of the present invention is an apparatus that can be practically used as a low-power hydrogen cartridge for small devices such as PDAs.

図3には、本発明の第2の実施の形態に係る水素発生装置の上ケーシングを離脱した状態の平面図が示され、図4には、図3におけるA−A線に沿う矢視方向の断面図が(イ)に、同じくB−B線に沿う矢視方向の断面図が(ロ)にそれぞれ示される。また、図5には、図3におけるC−C線に沿う矢視方向の断面図が示される。図示の水素発生装置において、図1に示す装置に類似し、対応する部材に関しては、同一の参照符号を付している。本体容器1は、2直角コーナーと4鈍角コーナーを持つ六角形の同形の上ケーシング20、下ケーシング21を上下に気密に合着してなる密閉可能な六角形平盤に形成される。   FIG. 3 shows a plan view of a state where the upper casing of the hydrogen generator according to the second embodiment of the present invention is detached, and FIG. 4 shows the direction of the arrow along the line AA in FIG. A cross-sectional view in the direction of the arrow along the line BB is shown in (b). FIG. 5 shows a cross-sectional view in the direction of the arrow along the line CC in FIG. In the illustrated hydrogen generation apparatus, the apparatus is similar to the apparatus shown in FIG. 1, and corresponding members are denoted by the same reference numerals. The main body container 1 is formed in a hexagonal flat plate that can be hermetically sealed by vertically and vertically joining a hexagonal upper casing 20 and a lower casing 21 having 2 perpendicular corners and 4 obtuse corners.

本体容器1は、器内の直角コーナー寄り部に横置きに取付けられたダイヤフラム5によって、容器内部が一部分空間を占める調圧部2と大部分空間を占める密閉可能な水素発生部3に区画される。この水素発生部3は、鈍角コーナー側に横置きに取付けた水分透過材6により、ダイヤフラム5が備わる密閉した水側室(下方側室)と水素導出口4が備わる密閉した水素側室(上方側室)との2室に区画している。   The main body container 1 is divided into a pressure-regulating part 2 that occupies a part of the space and a sealable hydrogen generator 3 that occupies a large part of space by a diaphragm 5 that is horizontally installed near a right-angled corner in the container. The The hydrogen generation unit 3 includes a water-permeable material 6 installed horizontally on the obtuse corner side, a sealed water-side chamber (lower chamber) provided with a diaphragm 5, and a sealed hydrogen-side chamber (upper side chamber) provided with a hydrogen outlet 4. It is divided into two rooms.

水分透過材6が介設されてなる水素発生部3において、前記水素側室には、水素化物7の層と緩衝材14がそれぞれ配設され、一方、前記水側室には、水分(W)を含浸して保有する吸水材8と不透水性膜9と回転駆動手段11がそれぞれ配設される。水素化物7の層は、水素化物の粒子状原料を円盤形状に固めたものからなり、これを水分透過材6上に接せさせて横置きに取付ける。緩衝材14は同じく円盤状に形成したものを水素化物7の層の直上部に横置きに取付ける。   In the hydrogen generation unit 3 having the moisture permeable material 6 interposed, the hydrogen side chamber is provided with a layer of a hydride 7 and a buffer material 14 respectively, while the water side chamber contains moisture (W). The water-absorbing material 8, impervious film 9 and rotation driving means 11 which are impregnated and held are respectively disposed. The layer of the hydride 7 is formed by solidifying a hydride particulate raw material into a disk shape, which is in contact with the moisture permeable material 6 and mounted horizontally. The cushioning material 14, which is also formed in a disk shape, is mounted horizontally on the hydride 7 layer.

吸水材8は、水素化物7の層と等径の円盤形状に形成して、水側室における水分透過材6の下方に中心縦軸の周りの水平回転可能に設けた回転台22に搭載して設けられていて、この吸水材8は上記回転台22の回転駆動により上表面を水分透過材6に軽接しながら水素化物7の層に同軸にかつ前記中心縦軸の周りに水平回転運動が成されるようになっている。一方、不透水性膜9は不透水性の膜例えばアルミニウムシートからなり、吸水材8の前記水分透過材6に相対する上表面に一体的に貼付けて表面膜を形成している。この不透水性膜9は、図3に示されるように、中心から円周部に至る扇形(例えば、中心角20度)の切欠き10を切設して有しており、一定面積を持つこの切欠き10の個所においてのみ吸水材表面部を露呈させて、吸水材8自体を水分透過材6に直接接触させ得るように機能している。   The water-absorbing material 8 is formed in a disk shape having the same diameter as the layer of the hydride 7 and is mounted on a turntable 22 provided below the moisture-permeable material 6 in the water side chamber so as to be horizontally rotatable around the central longitudinal axis. The water-absorbing material 8 is horizontally driven around the central longitudinal axis coaxially with the layer of the hydride 7 while lightly contacting the moisture-permeable material 6 with the upper surface by the rotational drive of the rotary table 22. It has come to be. On the other hand, the water-impermeable film 9 is made of a water-impermeable film such as an aluminum sheet, and is integrally attached to the upper surface of the water-absorbing material 8 facing the water-permeable material 6 to form a surface film. As shown in FIG. 3, the water-impermeable film 9 has a fan-shaped notch 10 (for example, a central angle of 20 degrees) extending from the center to the circumference, and has a certain area. It functions so that the surface of the water absorbing material can be exposed only at the notch 10 and the water absorbing material 8 itself can be brought into direct contact with the moisture permeable material 6.

回転駆動手段11は、回転台22に隣合わせて発・停止操作側をダイヤフラム5に、回転出力側を回転台22と同軸の一体に設けられるプーリ23にそれぞれ連繋させて配設される。この回転駆動手段11はバネ力−回転力変換機構からなり、ゼンマイタイマ24、プーリ兼ゼンマイ巻つまみ25、振子26、振子止めフック27を構成要素部材に備える長時間開放型の「がんぎ式ゼンマイ」が好適な装置の一例として用いられる。即ち、発・停止操作側となる振子止めフック27の支承部を連結棒29によって前記ダイヤフラム5の膜中心部に軸結合させて、ダイヤフラム5の凸出・凹入動作が連結棒29により振子止めフック27に直接伝わり、振子26の動きを停止・発進させるように設けられる一方、回転出力側となるプーリ兼ゼンマイ巻つまみ25と前記プーリ23に亘らせてベルト30を張架して、プーリ兼ゼンマイ巻つまみ25の回転動力がギアベルト30を介してプーリ23に回転運動として伝わるように設けられる。なお、図4(ロ)において符号28は連結棒29に取付けて本体容器1外から操作できるようにした振子止めつまみである。   The rotation driving means 11 is disposed adjacent to the turntable 22 in such a manner that the start / stop operation side is connected to the diaphragm 5 and the rotation output side is connected to a pulley 23 provided coaxially with the turntable 22. This rotation drive means 11 is composed of a spring force-rotation force conversion mechanism, and includes a spring timer 24, a pulley / spring winding knob 25, a pendulum 26, and a pendulum stop hook 27 as constituent elements, which are open for a long time. “Spring spring” is used as an example of a suitable apparatus. That is, the support portion of the pendulum stop hook 27 on the start / stop operation side is axially coupled to the center of the membrane of the diaphragm 5 by the connecting rod 29, and the protruding / recessing operation of the diaphragm 5 is stopped by the connecting rod 29. A belt 30 is stretched between the pulley 23 and the mainspring winding knob 25 on the rotational output side and the pulley 23 while being provided directly to the hook 27 to stop and start the movement of the pendulum 26. It is provided so that the rotational power of the mainspring winding knob 25 is transmitted to the pulley 23 via the gear belt 30 as a rotational motion. In FIG. 4B, reference numeral 28 denotes a pendulum stopper knob which is attached to the connecting rod 29 and can be operated from outside the main body container 1.

次に、上記第2の実施の形態に係る水素発生装置の作動の態様について説明する。未反応状態の水素化物7の層と、必要な水素発生量に見合った量の水分(W)を含浸して保有する吸水材8が収蔵されてなるカートリッジ型の水素発生装置は、吸水材8から出された微細水分及び水蒸気が不透水性膜9の切欠き10の個所を通じ水分透過材6を透過して水素側室に入り、水素化物7の層に至って該水素化物7と反応して水素を発生する。この場合、吸水材8中の水分は毛細管現象や染渡りなどの作用によって切欠き10の個所に円滑に流動し、また、水分透過材6を介してなることによって急激な反応を抑えることにより、水素を徐々に発生させることが可能である。そして、ダイヤフラム5の設定圧力以上に内圧が上昇するまではダイヤフラム5の凹入に連動して振子26が振子運動を持続することから、吸水材8及び不透水性膜9の切欠き10は一体に回転して加水分解反応が続けられる。ダイヤフラム5の設定圧力以上に内圧が上昇してくると、ダイヤフラム5の凸出に連動して振子止めフック27が振子26の動きを停止させるように作動するので、吸水材8及び不透水性膜9の切欠き10は停止により変位しなくなり、反応が止まり水素発生は停止する。   Next, the mode of operation of the hydrogen generator according to the second embodiment will be described. A cartridge-type hydrogen generator in which a layer of unreacted hydride 7 and a water-absorbing material 8 impregnated and retained with an amount of water (W) corresponding to a required amount of hydrogen generation is stored is a water-absorbing material 8. Fine water and water vapor discharged from the water penetrates the water permeable material 6 through the notch 10 of the impermeable membrane 9 and enters the hydrogen side chamber, reaches the layer of hydride 7 and reacts with the hydride 7 to form hydrogen. Is generated. In this case, the water in the water absorbing material 8 flows smoothly to the notch 10 due to the action of capillary action or dyeing, etc., and by suppressing the rapid reaction by being through the water permeable material 6, Hydrogen can be generated gradually. Since the pendulum 26 continues the pendulum motion in conjunction with the recess of the diaphragm 5 until the internal pressure rises above the set pressure of the diaphragm 5, the water absorbing material 8 and the notch 10 of the water-impermeable film 9 are integrated. To continue the hydrolysis reaction. When the internal pressure rises above the set pressure of the diaphragm 5, the pendulum stop hook 27 operates so as to stop the movement of the pendulum 26 in conjunction with the protrusion of the diaphragm 5, so that the water absorbing material 8 and the water-impermeable film The notch 10 of 9 is not displaced by the stop, the reaction stops and the hydrogen generation stops.

具体的には、負荷を接続した際の態様について、図示しない連絡管によって水素導出口4に連結した燃料電池の水素使用量により変化するカートリッジ本体容器1の内圧変動に伴い、ダイヤフラム5が凹出・凸入の移動を行い、消費が多いときは内圧が例えば60kPa以下に下がってダイヤフラム5に連動する振子止めフック27が外れて振子26を動かせて吸水材8及び不透水性膜9の切欠き10が回転して水素発生が持続するようになり、一方消費が少ないときは内圧が例えば60kPa以上に上がってダイヤフラム5に連動する振子止めフック27が振子26の動きを止めて水素発生の反応は止まり、これにより、水素の発生量を自動的に制御し、カートリッジ本体容器1の内圧を一定の範囲内に維持しながら所要量の水素を安定的に発生させることができる。勿論、水素発生運転中において消費が止まった時には、内圧上昇に伴って水素発生を迅速に停止させることができる。   Specifically, with respect to the mode when the load is connected, the diaphragm 5 protrudes as the internal pressure of the cartridge main body container 1 changes depending on the amount of hydrogen used in the fuel cell connected to the hydrogen outlet 4 by a communication pipe (not shown). When the protrusion is moved and the consumption is large, the internal pressure drops to, for example, 60 kPa or less, the pendulum stopper hook 27 interlocked with the diaphragm 5 is released and the pendulum 26 can be moved to cut out the water absorbing material 8 and the impermeable membrane 9 10 rotates and hydrogen generation continues. On the other hand, when the consumption is low, the internal pressure rises to, for example, 60 kPa or more, and the pendulum locking hook 27 interlocked with the diaphragm 5 stops the movement of the pendulum 26. Thus, the amount of hydrogen generated is automatically controlled, and the required amount of hydrogen is stably generated while maintaining the internal pressure of the cartridge body container 1 within a certain range. Rukoto can. Of course, when the consumption stops during the hydrogen generation operation, the hydrogen generation can be quickly stopped as the internal pressure increases.

この実施形態の水素発生装置において、水素化物7の層及び吸水材8の径を大きくすることで大出力対応の、また、回転速度を緩やかにすることで長時間対応の水素発生装置とすることができる。一方、円盤状に形成した水素化物7の層において、予めハニカム状を成す多数の仕切を形成した円盤受容体に粒子状の水素化物を充填して所要の水素化物7を形成したものを用いることも好適な態様であって、この例の場合は、吸水材8の回転が停止した状態のときに、水素化物7の層内で切欠き10の個所から入り込んだ水分が横方向に染渡って拡がるために反応が進行してしまうような事態を確実に回避することが可能であり、的確なオン−オフ制御に繋がる上で好ましいことである。なお、回転駆動手段11として上記のバネ力−回転力変換機構に変えてステップモータなどの小型モータを使用することも勿論可能であるが、この場合は、モータ駆動のための補助電池を考慮する必要がある。   In the hydrogen generator of this embodiment, a hydrogen generator capable of supporting a large output by enlarging the diameter of the hydride layer 7 and the water absorbing material 8, and a long-term compatible hydrogen generator by slowing the rotation speed. Can do. On the other hand, in the layer of hydride 7 formed in a disk shape, a hydride 7 in which the required hydride 7 is formed by filling a particulate hydride into a disk receptor in which a large number of partitions having a honeycomb shape are formed in advance is used. In the case of this example, when the rotation of the water-absorbing material 8 is stopped, the moisture that has entered from the location of the notch 10 in the layer of the hydride 7 spreads in the lateral direction. It is possible to surely avoid a situation in which the reaction proceeds due to spreading, which is preferable in terms of leading to accurate on-off control. Of course, it is possible to use a small motor such as a step motor instead of the above-described spring force-rotational force conversion mechanism as the rotation driving means 11, but in this case, an auxiliary battery for driving the motor is considered. There is a need.

次に、本発明の第2の実施の形態に係る水素発生装置の実施例2について図6を併せ参照して説明する。この装置として、基本的には図3乃至図5に示されるものと同じ構造になる[水素発生量;2.5リットル/45分、水素化物(CaH2)装填量;2.0g、水分透過材膜径;40mm]の容量の装置を試作して負荷テスト(水素発生運転)を行い、その際における内部圧力A、発電出力C、の各稼動経時特性につき実測した。その結果は、図6に示される通りである。この結果から明らかなように、装填したCaH2の反応率100%で出力3.5Wを45分間通じて安定発電できた。また、内圧60kPa付近を維持(FCの耐圧は100kPa)した。そして、反応の後半においても圧力変動幅には変化がなかった。このように、本発明の第2の実施の形態に係る水素発生装置は、ノートパソコン等の中型機器向けの平板タイプで中出力の水素カートリッジとして実用が可能な装置である。 Next, Example 2 of the hydrogen generator according to the second embodiment of the present invention will be described with reference to FIG. This apparatus basically has the same structure as that shown in FIGS. 3 to 5 [hydrogen generation amount: 2.5 liters / 45 minutes, hydride (CaH 2 ) loading amount: 2.0 g, moisture permeation An apparatus with a material film diameter of 40 mm] was prototyped and subjected to a load test (hydrogen generation operation). The operating time characteristics of the internal pressure A and the power generation output C at that time were measured. The result is as shown in FIG. As is apparent from this result, stable power generation was possible with an output of 3.5 W for 45 minutes at a reaction rate of 100% of the charged CaH 2 . The internal pressure was maintained around 60 kPa (FC withstand pressure of 100 kPa). In the second half of the reaction, the pressure fluctuation range did not change. As described above, the hydrogen generator according to the second embodiment of the present invention is a flat-plate type medium output hydrogen cartridge that can be used for medium-sized devices such as notebook computers.

図7には、本発明の第3の実施の形態に係る水素発生装置における主要部の構造が、(イ)に水素発生稼動直前の状態で、(ロ)に水素発生稼動中間時の状態で、それぞれ斜面示概念図により示される。図8には、図7図示の水素発生装置における吸水材7の変形例を示す斜面図が、また、図9には、図7図示の水素発生装置における構成要素部材の積層態様を分離示する説明図がそれぞれ示される。図7は、水素発生装置における水素発生部3の基本的構造を模式的に示したものであって、本装置についての本体容器、調圧部、ダイヤフラム、駆動手段としてのバネ力−回転力変換機構の各構成要素に関しては、図3乃至図5に図示してなる第2の実施の形態の水素発生装置に備わるものと本質的に変わらないのでここでは図示を省略している。   FIG. 7 shows the structure of the main part of the hydrogen generator according to the third embodiment of the present invention in (a) in the state immediately before the hydrogen generation operation, and (b) in the state in the middle of the hydrogen generation operation. Each is shown by a conceptual diagram of a slope. FIG. 8 is a perspective view showing a modified example of the water absorbing material 7 in the hydrogen generator shown in FIG. 7, and FIG. 9 is a separate view showing the stacking mode of the component members in the hydrogen generator shown in FIG. An explanatory diagram is shown respectively. FIG. 7 schematically shows the basic structure of the hydrogen generator 3 in the hydrogen generator, and the main body container, the pressure regulator, the diaphragm, and the spring force-rotational force conversion as the drive means for this device. Since the components of the mechanism are essentially the same as those provided in the hydrogen generator according to the second embodiment shown in FIGS. 3 to 5, illustration is omitted here.

図7乃至図9に示した第3の実施の形態に係る水素発生装置は、大出力長時間対応の装置として好適なものであり、吸水材8を可動とする代わりに水分透過材6と水素化物7の層の間に介在させた不透水性膜9を可動と成して、水素発生部3の内圧変動に対応させて引き抜かせるようにしたのと、装置全体の形状を方形(例えば長方形)盤に形成したことを構造上の特徴としている。   The hydrogen generator according to the third embodiment shown in FIG. 7 to FIG. 9 is suitable as a device corresponding to a large output for a long time, and instead of making the water absorbing material 8 movable, the water permeable material 6 and the hydrogen The impermeable membrane 9 interposed between the layers of the chemical compound 7 is made movable and can be pulled out in accordance with the fluctuation of the internal pressure of the hydrogen generator 3, and the overall shape of the apparatus is rectangular (for example, rectangular). ) It is a structural feature that it is formed on the board.

図7を参照して、方形盤例えば長方形盤に形成した容器本体内に設けられる水素発生部3は、長方形の水分透過膜からなる水分透過材6により、ダイヤフラムが備わる密閉した水側室(下方側室)と水素導出口が備わる密閉した水素側室(上方側室)との2室に区画している。水素側室内には、方形盤形状の水素化物7の層が水分透過材6に接してその直上部に配設される。さらに、その直上部に同じ方形盤形状の緩衝材14が重ねて配設される。一方、水側室内には、水素化物7の層と同形の方形盤形状を成している水分Wを含浸して保有する吸水材8が水分透過材6を挟み水素化物7の層に合同的に配設される。   Referring to FIG. 7, a hydrogen generating unit 3 provided in a container body formed in a rectangular board, for example, a rectangular board, is closed by a water permeable material 6 made of a rectangular water permeable film, and a sealed water side chamber (lower side chamber provided with a diaphragm). ) And a sealed hydrogen side chamber (upper side chamber) provided with a hydrogen outlet. In the hydrogen side chamber, a layer of a rectangular hydride 7 is disposed in contact with the moisture permeable material 6 and immediately above it. Further, a cushioning material 14 having the same rectangular disk shape is disposed so as to be directly above. On the other hand, in the water side chamber, a water absorbing material 8 impregnated with water W having a rectangular disk shape that is the same shape as the hydride 7 layer sandwiches the moisture permeable material 6 and is congruent to the hydride 7 layer. It is arranged.

また水素側室内においては、水素化物7の層と前記水分透過材6の間には、不透水性のシート薄膜からなる不透水性膜9が長方形の長辺に平行な一方向への引き抜き移動可能に介在される。このように長方形に形成してなる積層構造体(図9参照)に対して巻取ロール13が近設されていて、この巻取ロール13は、ダイヤフラム側の端辺部に近接させかつ該回転軸を前記端辺に平行させて設けられ、不透水性膜9の端縁部を巻取ロール13に巻付かせている。この巻取ロール13の回転軸とダイヤフラムに関連して水側室に配設してなる巻取手段12としてのバネ力−回転力変換機構(前掲のがんぎ式ゼンマイ)とを連繋させて、前記不透水性膜9を巻取ロール13により前記ダイヤフラム5の作動に連動して巻取って引き抜き得るようになっている。   Further, in the hydrogen side chamber, an impermeable film 9 made of an impermeable sheet thin film is drawn and moved in one direction parallel to the long side of the rectangle between the hydride 7 layer and the moisture permeable material 6. Intervened possible. A winding roll 13 is provided close to the laminated structure (see FIG. 9) formed in a rectangular shape, and this winding roll 13 is brought close to the end portion on the diaphragm side and rotated. The shaft is provided parallel to the end side, and the edge of the water-impermeable film 9 is wound around the winding roll 13. By connecting the rotating shaft of the winding roll 13 and the spring force-rotational force conversion mechanism (the aforementioned spring spring) as the winding means 12 disposed in the water side chamber in relation to the diaphragm, The water-impermeable film 9 can be wound up and pulled out by a winding roll 13 in conjunction with the operation of the diaphragm 5.

次に、上記第3の実施の形態に係る水素発生装置の作動の態様について説明する。未反応状態の水素化物7の層と、必要な水素発生量に見合った量の水分(W)を含浸して保有する吸水材8が収蔵されてなる水素発生稼動直前の状態(図7(イ)参照)の水素発生装置は、不透水性膜9が反応部全面を塞いだ状態で介在しているので水素発生は停止している。図示しない連絡管によって水素導出口に連結した燃料電池の水素使用量に伴い変化する水素発生部3の内圧変動に応じて、ダイヤフラム5が凹出・凸入の移動を行い、消費が多いときは内圧が下がってダイヤフラム5に連動する巻取手段12が駆動して巻取ロール13による不透水性膜9の巻取りが始まる。   Next, an operation mode of the hydrogen generator according to the third embodiment will be described. The state immediately before the hydrogen generation operation in which the layer of unreacted hydride 7 and the water absorbing material 8 impregnated with the amount of moisture (W) corresponding to the required amount of hydrogen generation are stored (FIG. ))), The hydrogen generation is stopped because the water-impermeable membrane 9 is interposed in a state of covering the entire reaction part. When the diaphragm 5 moves in a concave or convex manner in response to fluctuations in the internal pressure of the hydrogen generator 3 that changes with the amount of hydrogen used in the fuel cell connected to the hydrogen outlet through a connecting pipe (not shown). The winding means 12 interlocked with the diaphragm 5 is driven when the internal pressure decreases, and winding of the water-impermeable film 9 by the winding roll 13 starts.

巻取り開始に伴って、前記吸水材8から出て水素化物7の層と前記水分透過材6の直接接触個所に相当する不透水性膜不介在個所を通じ水分透過材6を透過してくる水分子と前記水素化物7とが反応して水素発生が始まる。燃料電池の水素使用量変化による前記反応に伴って、水素発生部3内の圧力変化に応じ変位する前記ダイヤフラム5に連動する前記巻取手段12の作動に基づき、不透水性膜9を内圧上昇時には巻取らせず、内圧低下時には巻取らせて前記不介在個所を逓増面積状態下にて変位(図7(ロ)参照)させてなるストップ−回転の制御が自動的に行われ、これによって前記水分透過材6を透過する水分子の量が制御される。 With the start of winding, the water that comes out of the water absorbing material 8 and permeates the moisture permeable material 6 through the impermeable membrane-free portion corresponding to the direct contact portion between the layer of the hydride 7 and the moisture permeable material 6. Molecules react with the hydride 7 to initiate hydrogen generation. With the reaction due to the change in the amount of hydrogen used in the fuel cell, the internal pressure of the water-impermeable membrane 9 is increased on the basis of the operation of the winding means 12 linked to the diaphragm 5 that is displaced according to the pressure change in the hydrogen generator 3. Sometimes it is not wound, but when the internal pressure is reduced, it is wound and the non-intervening part is displaced under increasing area conditions (see FIG. 7 (b)). The amount of water molecules that pass through the moisture permeable material 6 is controlled.

本実施形態に係る水素発生装置では方形のカートリッジとして実現できるので、角の隅々まで水素化物を詰められることから水素化物の配置が無駄なく効率的に行えて、スペースを取らなく、しかも出力を安定して出し得る水素発生装置を提供でき、ノートパソコン等の中型機器向けの平板タイプで中出力の水素カートリッジとして実用に即した装置である。なお、水素化物7の層と緩衝材14の少なくとも水素化物7の層においては、図7に図示するように不透水性膜9の巻取り方向に交差する好ましくは直交差する隔壁31を適当な間隔を存して設けることは好適な手段である。すなわち、水素化物7を隔壁31により短冊状、三角、四角、ハニカム状等の多角形に区画成形した場合には、水分(W)が横方向へ染渡ることにより水素化物の層内に拡がる現象を未然に防いで水素発生を安定的に定量制御できる利点がある。   Since the hydrogen generator according to the present embodiment can be realized as a rectangular cartridge, the hydride can be filled to every corner, so that the arrangement of the hydride can be performed efficiently without waste, without taking up space, and the output. It is possible to provide a hydrogen generator that can be output stably, and it is a flat-plate type medium output hydrogen cartridge for medium-sized equipment such as notebook personal computers. Incidentally, in the layer of hydride 7 and at least the layer of hydride 7 of the buffer material 14, as shown in FIG. It is a preferable means to provide an interval. That is, when the hydride 7 is section-molded into a polygonal shape such as a strip, a triangle, a square, or a honeycomb by the partition wall 31, the moisture (W) spreads in the hydride layer in the lateral direction. This has the advantage that hydrogen generation can be stably controlled quantitatively.


また、本実施形態に係る水素発生装置において、図8に例示するように吸水材8に対して適宜のピッチの升目状に配置した隔壁32を設けて含有水分の領域を小分けする構造とすることは好ましい態様であって、これによって大型化した際により安定した天地自在化が期せられる効果がある。
.
Moreover, in the hydrogen generator according to the present embodiment, as shown in FIG. 8, the water content is divided into small areas by providing partition walls 32 arranged in a grid shape with an appropriate pitch with respect to the water absorbing material 8. Is a preferred embodiment, and has the effect of allowing more stable freezing when the size is increased.

本発明の第1の実施の形態に係る水素発生装置の正面示概念図で、(イ)は内圧上昇時、(ロ)は内圧低下時をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a front view of a hydrogen generator according to a first embodiment of the present invention, where (A) indicates when the internal pressure is increased and (B) indicates when the internal pressure is decreased. 本発明に係る水素発生装置の実施例1における水素発生稼動状況の経時線図である。It is a time-course diagram of the hydrogen generation operation condition in Example 1 of the hydrogen generator which concerns on this invention. 本発明の第2の実施の形態に係る水素発生装置の平面図である。It is a top view of the hydrogen generator which concerns on the 2nd Embodiment of this invention. (イ)は図3におけるA−A線に沿う矢視方向の断面図、(ロ)は同じくB−B線に沿う矢視方向の断面図である。(A) is sectional drawing of the arrow direction which follows the AA line in FIG. 3, (b) is sectional drawing of the arrow direction which similarly follows the BB line. 図3におけるC−C線に沿う矢視方向の断面図である。It is sectional drawing of the arrow direction which follows the CC line in FIG. 本発明に係る水素発生装置の実施例2における水素発生稼動状況の経時線図である。It is a time-course diagram of the hydrogen generation operating condition in Example 2 of the hydrogen generator concerning the present invention. 本発明の第3の実施の形態に係る水素発生装置における主要部の構造の斜面示概念図で、(イ)は水素発生稼動直前時、(ロ)は水素発生稼動中間時をそれぞれ示す。FIG. 5 is a conceptual diagram showing a slope of the structure of the main part of a hydrogen generator according to a third embodiment of the present invention, where (a) shows the time immediately before the hydrogen generation operation and (b) shows the intermediate time of the hydrogen generation operation. 図7図示の水素発生装置における吸水材8の変形例を示す斜面図である。It is a perspective view which shows the modification of the water absorbing material 8 in the hydrogen generator shown in FIG. 図7図示の水素発生装置における構成要素部材の積層態様を分離示する説明図である。It is explanatory drawing which shows separately the lamination | stacking aspect of the component member in the hydrogen generator shown in FIG.

符号の説明Explanation of symbols

1…本体容器 2…調圧部 3…水素発生部
4…水素導入口 5…ダイヤフラム 6…水分透過材
7…水素化物 8…吸水材 9…不透明水性膜
10…切欠き 11…回転駆動手段 12…巻取手段
13…巻取ロール 14…緩衝材 31…隔壁
W…水分
DESCRIPTION OF SYMBOLS 1 ... Main body container 2 ... Pressure regulation part 3 ... Hydrogen generating part 4 ... Hydrogen introduction port 5 ... Diaphragm 6 ... Water permeation material 7 ... Hydride 8 ... Water absorption material 9 ... Opaque aqueous film 10 ... Notch 11 ... Rotation drive means 12 ... take-up means 13 ... take-up roll 14 ... buffer material 31 ... partition wall W ... moisture

Claims (8)

密閉可能な本体容器(1)内で、水素化物(7)を加水分解させて水素を発生させる水素発生方法において、前記水素化物(7)の層と水分(W)を含浸させた吸水材(8)とを、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜で形成されている水分透過材(6)によって隔離して、吸水材(8)から出て前記水分透過材(6)を透過してくる水分子と前記水素化物(7)とを反応させて水素を発生させてなり、該反応に際し前記本体容器(1)の内圧変化に応じて前記水分透過材(6)と吸水材(8)を内圧上昇時には離脱させ、内圧低下時には接触させることにより、前記水分透過材(6)を透過する水分子の量を制御し、これによって前記水素化物(7)と水分子との反応を制御するようにしてなることを特徴とする水素発生方法。 In the hydrogen generation method of generating hydrogen by hydrolyzing the hydride (7) in a sealable main body container (1), a water absorbing material impregnated with the hydride (7) layer and moisture (W) ( 8) is isolated by a moisture permeable material (6) formed of a moisture permeable membrane having a large number of fine pores through which a minute amount of moisture and water vapor can permeate. 6) reacts water molecules permeating with the hydride (7) to generate hydrogen, and the moisture permeable material (6) according to the internal pressure change of the main body container (1) during the reaction. And the water absorbing material (8) are separated when the internal pressure is increased, and are contacted when the internal pressure is decreased, thereby controlling the amount of water molecules that permeate the moisture permeable material (6), thereby controlling the hydride (7) and the water molecules. Characterized by controlling the reaction with Hydrogen generation method. 密閉可能な本体容器(1)内で、水素化物(7)を加水分解させて水素を発生させる水素発生方法において、前記水素化物(7)の層と水分(W)を含浸させた吸水材(8)とを、微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜で形成されている水分透過材(6)によって隔離するとともに、該水分透過材(6)と吸水材(8)との間に不透水性膜(9)を平面内での移動可能に介在させて、該不透水性膜(9)を移動操作してこの不透水性膜(9)が介在しないことで前記水分透過材(6)と前記吸水材(8)が部分的に直接接触してなる接触個所を定面積状態と逓増面積状態の何れか一方の状態にて変位させつつ形成できるようにすることにより、吸水材(8)から出て前記接触個所を通じ水分透過材(6)を透過してくる水分子と前記水素化物(7)とを反応させて水素を発生させてなり、該反応に際し前記本体容器(1)の内圧変化に応じて前記不透水性膜(9)を内圧上昇時には移動操作させることなく、内圧低下時には移動操作させることにより、前記水分透過材(6)を透過する水分子の量を制御し、これによって前記水素化物(7)と水分子との反応を制御するようにしてなることを特徴とする水素発生方法。 In the hydrogen generation method of generating hydrogen by hydrolyzing the hydride (7) in a sealable main body container (1), a water absorbing material impregnated with the hydride (7) layer and moisture (W) ( 8) is isolated by a moisture permeable material (6) formed of a moisture permeable membrane having a large number of fine pores through which a minute amount of moisture and water vapor can permeate, and the moisture permeable material (6) and the water absorbing material (8). The water-impermeable membrane (9) is interposed between the water-impermeable membrane (9) so as to be movable in a plane, and the water-impermeable membrane (9) is not moved by moving the water-impermeable membrane (9). By allowing the moisture permeable material (6) and the water absorbing material (8) to be formed while being displaced in either one of the constant area state and the increasing area state, by contacting the water absorbing material (8) partly directly. , Get out of the water absorbing material (8) and pass through the moisture permeable material (6) through the contact point The water hydride (7) reacts with the hydride (7) to generate hydrogen, and the impermeable membrane (9) moves when the internal pressure rises in response to changes in the internal pressure of the main body container (1). The amount of water molecules that permeate the moisture permeable material (6) is controlled by operating when the internal pressure is reduced without operating, thereby controlling the reaction between the hydride (7) and water molecules. A hydrogen generation method characterized by comprising: 水素化物(7)を加水分解して水素を発生させる水素発生装置において、
水素導出口(4)を有する密閉可能な本体容器(1)と、
本体容器(1)内に介設されて該器内を調圧部(2)と前記水素導出口(4)が備わる密閉可能な水素発生部(3)とに区画してなるダイヤフラム(5)と、
微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部(3)内に介設して該部内をダイヤフラム(5)が備わる水側室と水素導出口(4)が備わる水素側室とに区画してなる水分透過材(6)と、
水分透過材(6)に接して前記水素側室内に配設される水素化物(7)の層と、
ダイヤフラム(5)に連結して水分透過材(6)に接離し得る移動可能に前記水側室内に配設されてなり、水分(W)を含浸して保有する吸水材(8)とを含み、
吸水材(8)から出て水分透過材(6)を透過してくる水分子と前記水素化物(7)とを反応させて水素を発生させるようになすとともに、該反応に際し前記水素発生部(3)の内圧変化に応じて水分透過材(6)に対し接離方向に変位動するダイヤフラム(5)の作動に基づき、吸水材(8)を水分透過材(6)に対し内圧上昇時には離脱させ、内圧低下時には接触させることにより、前記水分透過材(6)を透過する水分子の量を制御し、これによって水素発生量を制御するように構成してなることを特徴とする水素発生装置。
In the hydrogen generator for hydrolyzing the hydride (7) to generate hydrogen,
A sealable body container (1) having a hydrogen outlet (4);
A diaphragm (5), which is provided in the main body container (1) and divides the inside of the vessel into a pressure regulating part (2) and a sealable hydrogen generating part (3) provided with the hydrogen outlet (4). When,
A water-side chamber and a hydrogen outlet (4) which are formed from a water-permeable membrane having a large number of fine pores through which a very small amount of moisture and water vapor can permeate and which are interposed in the hydrogen generating part (3) and provided with a diaphragm (5) in the part. A water permeable material (6) partitioned into a hydrogen side chamber provided with
A layer of hydride (7) disposed in the hydrogen side chamber in contact with the moisture permeable material (6);
A water-absorbing material (8) that is connected to the diaphragm (5) and movably disposed in the water-side chamber so as to be able to contact and separate from the water-permeable material (6) and impregnated with moisture (W). ,
The water molecules that exit from the water absorbing material (8) and permeate the moisture permeable material (6) react with the hydride (7) to generate hydrogen, and the hydrogen generating part ( based 3) in response to pressure changes in the relative moisture transmission member (6) for the operation of the diaphragm (5) to be displaced moving the contact and separation direction, leaving the water-absorbing material (8) when internal pressure rises to the water transmitting material (6) The amount of water molecules that permeate the moisture permeable material (6) is controlled by contacting when the internal pressure is reduced, and the hydrogen generation amount is thereby controlled. .
水素化物(7)を加水分解して水素を発生させる水素発生装置において、
水素導出口(4)を有する密閉可能な本体容器(1)と、
本体容器(1)内に介設されて該器内を調圧部(2)と前記水素導出口(4)が備わる密閉可能な水素発生部(3)とに区画してなるダイヤフラム(5)と、
微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部(3)内に介設されて該部内をダイヤフラム(5)が備わる水側室と水素導出口(4)が備わる水素側室とに区画してなる水分透過材(6)と、
該水分透過材(6)に接して前記水素側室内に配設される円盤形状の水素化物(7)の層と、
該水素化物(7)の層と等径の円盤形状を成して、前記水分透過材(6)を挟み水素化物(7)の層に対し同軸に、かつ中心軸回りの回転動可能に前記水側室内に配設されてなり、水分(W)を含浸して保有する吸水材(8)と、
該吸水材(8)における前記水分透過材(6)に相対する側の表面に貼付けられた不透水性の薄膜からなり、中心から円周に至る扇形の切欠き(10)が設けられてなる切欠円形状の不透水性膜(9)と、
前記吸水材(8)に連繋して設けられ、前記ダイヤフラム(5)に連動して前記吸水材(8)をその中心軸回りに回転動させる回転駆動手段(11)とを含み、
前記吸水材(8)から出て該吸水材と前記水分透過材(6)の直接接触個所に相当する前記切欠き(10)を通じ水分透過材(6)を透過してくる水分子と前記水素化物(7)とを反応させて水素を発生させるようになすとともに、該反応に際し前記本体容器(1)の内圧変化に応じて変位動する前記ダイヤフラム(5)に連動する回転駆動手段(11)の作動に基づき、内圧上昇時には回転駆動手段(11)を不作動として前記切欠き(10)を変位させず、内圧低下時には回転駆動手段(11)を作動させて前記切欠き(10)を定面積状態下で変位させることにより、前記水分透過材(6)を透過する水分子の量を制御し、これによって前記水素化物(7)と水分子との反応を制御するようにしてなることを特徴とする水素発生装置。
In the hydrogen generator for hydrolyzing the hydride (7) to generate hydrogen,
A sealable body container (1) having a hydrogen outlet (4);
A diaphragm (5), which is provided in the main body container (1) and divides the inside of the vessel into a pressure regulating part (2) and a sealable hydrogen generating part (3) provided with the hydrogen outlet (4). When,
A water-side chamber and a hydrogen outlet (4) which are formed from a water-permeable membrane having a large number of fine pores through which a minute amount of moisture and water vapor can permeate and which are interposed in the hydrogen generator (3) and have a diaphragm (5) in the portion. A water permeable material (6) partitioned into a hydrogen side chamber provided with
A layer of disc-shaped hydride (7) disposed in the hydrogen side chamber in contact with the moisture permeable material (6);
The hydride (7) layer is formed in a disc shape having the same diameter, the moisture permeable material (6) is sandwiched between the hydride (7) layer and coaxially with the hydride (7) layer so as to be rotatable about the central axis. A water-absorbing material (8) disposed in the water-side chamber and impregnated with moisture (W);
The water-absorbing material (8) is formed of an impermeable thin film attached to the surface of the water-absorbing material (6) facing the water-permeable material (6), and is provided with a fan-shaped notch (10) extending from the center to the circumference. A notched circularly impermeable membrane (9);
Rotation drive means (11) provided in connection with the water absorbing material (8) and rotating the water absorbing material (8) about its central axis in conjunction with the diaphragm (5);
Water molecules and hydrogen that come out of the water-absorbing material (8) and permeate the water-permeable material (6) through the notch (10) corresponding to the direct contact portion between the water-absorbing material and the water-permeable material (6) Rotation drive means (11) interlocking with the diaphragm (5) that moves in response to a change in the internal pressure of the main body container (1) during the reaction. When the internal pressure rises, the rotation drive means (11) is inactivated and the notch (10) is not displaced. When the internal pressure is reduced, the rotation drive means (11) is activated to determine the notch (10). Displacement under the area state controls the amount of water molecules that permeate the moisture permeable material (6), thereby controlling the reaction between the hydride (7) and water molecules. Characteristic hydrogen generator.
水素化物(7)を加水分解して水素を発生させる水素発生装置において、
水素導出口(4)を有する密閉可能な本体容器(1)と、
本体容器(1)内に介設されて該器内を調圧部(2)と前記水素導出口(4)が備わる密閉可能な水素発生部(3)とに区画してなるダイヤフラム(5)と、
微量水分及び水蒸気が透過し得る微細孔を多数有する水分透過膜から形成され、前記水素発生部(3)内に介設されて該部内をダイヤフラム(5)が備わる水側室と水素導出口(4)が備わる水素側室とに区画してなる水分透過材(6)と、
該水分透過材(6)に接して前記水素側室内に配設される方形盤形状の水素化物(7)の層と、
該水素化物(7)の層と同形の方形盤形状を成し、前記水分透過材(6)を挟み水素化物(7)の層に合同的に前記水側室内に配設されてなり、水分(W)を含浸して保有する吸水材(8)と、
前記水素化物(7)の層と前記水分透過材(6)の間に方形の一辺に平行な一方向への引き抜き移動可能に介在させた不透水性のシート薄膜からなる不透水性膜(9)と、
前記吸水材(8)の一側部に近設した巻取ロール(13)により前記ダイヤフラム(5)に連動して不透水性膜(9)を巻取って引き抜かせる巻取手段(12)とを含み、
前記吸水材(8)から出て前記水素化物(7)の層と前記水分透過材(6)の直接接触個所に相当する不透水性膜不介在個所を通じ水分透過材(6)を透過してくる水分子と前記水素化物(7)とを反応させて水素を発生させるようになすとともに、該反応に際し前記本体容器(1)の内圧変化に応じて変位する前記ダイヤフラム(5)に連動する前記巻取手段(12)の作動に基づき、前記不透水性膜(9)を内圧上昇時には巻取らせず、内圧低下時には巻取らせて前記不介在個所を逓増面積状態下にて変位させることにより、前記水分透過材(6)を透過する水分子の量を制御し、これによって前記水素化物(7)と水分子との反応を制御するようにしてなることを特徴とする水素発生装置。
In the hydrogen generator for hydrolyzing the hydride (7) to generate hydrogen,
A sealable body container (1) having a hydrogen outlet (4);
A diaphragm (5), which is provided in the main body container (1) and divides the inside of the vessel into a pressure regulating part (2) and a sealable hydrogen generating part (3) provided with the hydrogen outlet (4). When,
A water-side chamber and a hydrogen outlet (4) which are formed from a water-permeable membrane having a large number of fine pores through which a minute amount of moisture and water vapor can permeate and which are interposed in the hydrogen generator (3) and have a diaphragm (5) in the portion. A water permeable material (6) partitioned into a hydrogen side chamber provided with
A layer of a rectangular hydride (7) disposed in the hydrogen side chamber in contact with the moisture permeable material (6);
The hydride (7) layer has the same rectangular shape as that of the hydride layer (7), and the moisture permeable material (6) is sandwiched between the hydride layer (7) and disposed in the water side chamber. A water absorbing material (8) impregnated and retained (W);
An impermeable membrane (9) comprising an impermeable sheet thin film interposed between the hydride layer (7) and the moisture permeable material (6) so as to be movable in one direction parallel to one side of the square. )When,
Winding means (12) for winding up and pulling out the water-impermeable membrane (9) in conjunction with the diaphragm (5) by a winding roll (13) provided close to one side of the water-absorbing material (8); Including
The water-permeable material (6) permeates through the water-impermeable membrane non-intervening part corresponding to the direct contact part of the hydride (7) layer and the water-permeable material (6) from the water-absorbing material (8). The water molecule and the hydride (7) react with each other to generate hydrogen, and the reaction with the diaphragm (5) is changed according to the change in the internal pressure of the main body container (1) during the reaction. Based on the operation of the winding means (12), the impermeable membrane (9) is not wound when the internal pressure is increased, but is wound when the internal pressure is decreased, and the non-intervening portion is displaced under the increasing area state. The hydrogen generator is characterized in that the amount of water molecules that permeate the moisture permeable material (6) is controlled, thereby controlling the reaction between the hydride (7) and water molecules.
回転駆動手段(11)が、ゼンマイタイマ、振子を備えるバネ力−回転力変換機構であり、ダイヤフラム(5)が、内圧上昇時にその動きを止め、内圧低下時にその動きを許容するように前記振子に関連して設けられる請求項4又は5に記載の水素発生装置。 The rotation drive means (11) is a spring force-rotation force conversion mechanism provided with a spring timer and a pendulum, and the diaphragm (5) stops its movement when the internal pressure rises and allows the movement when the internal pressure falls. The hydrogen generator of Claim 4 or 5 provided in relation to. 前記水素側室内において前記水素化物(7)の層に隣接して緩衝材(14)が設けられてなり、この緩衝材(14)は弾性を有しかつ無数の連通空隙部を備えて、前記水素化物(7)の膨張分を吸収しつつこれを保持するとともに、発生水素の通過を許容するものである請求項4、5又は6に記載の水素発生装置。 In the hydrogen side chamber, a buffer material (14) is provided adjacent to the layer of the hydride (7), and the buffer material (14) has elasticity and has an infinite number of communicating voids, The hydrogen generator according to claim 4, 5 or 6, which absorbs the expansion of the hydride (7) and holds it while allowing passage of the generated hydrogen. 前記水素化物(7)を、隔壁(31)により短冊状、又は多角形に区画形成したものである請求項4乃至7のいずれか1項に記載の水素発生装置。 The hydrogen generator according to any one of claims 4 to 7, wherein the hydride (7) is formed into a strip shape or a polygonal shape by partition walls (31).
JP2003325461A 2003-09-18 2003-09-18 Hydrogen generation method and apparatus Expired - Lifetime JP4371746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325461A JP4371746B2 (en) 2003-09-18 2003-09-18 Hydrogen generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325461A JP4371746B2 (en) 2003-09-18 2003-09-18 Hydrogen generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2005089253A JP2005089253A (en) 2005-04-07
JP4371746B2 true JP4371746B2 (en) 2009-11-25

Family

ID=34455893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325461A Expired - Lifetime JP4371746B2 (en) 2003-09-18 2003-09-18 Hydrogen generation method and apparatus

Country Status (1)

Country Link
JP (1) JP4371746B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006135896A2 (en) * 2005-06-13 2006-12-21 Societe Bic Hydrogen generating fuel cell cartridges
JP4844921B2 (en) * 2006-01-12 2011-12-28 セイコーインスツル株式会社 Hydrogen generation facility and fuel cell system
US20090004512A1 (en) * 2006-03-01 2009-01-01 Aquafairy Corporation Liquid Constant-Rate Emitting Apparatus and Method of Liquid Constant-Rate Emmision
CA2645163A1 (en) * 2006-03-15 2007-09-27 Societe Bic Fuel compositions for fuel cells and gas generators utilizing same
US20110142754A1 (en) * 2009-12-10 2011-06-16 Jie-Ren Ku One-off and adjustment method of hydrogen releasing from chemical hydride
US9005572B2 (en) 2009-12-10 2015-04-14 Honeywell International Inc. Hydrogen generator
TWI384679B (en) * 2009-12-14 2013-02-01 Ind Tech Res Inst Power supply device
EP2442393B1 (en) * 2010-10-13 2016-09-21 Honeywell International Inc. Hydrogen generator
CA2911234C (en) * 2012-05-04 2020-07-14 Encite Llc Self-regulating gas generator and method
SE541403C2 (en) * 2017-11-20 2019-09-17 Myfc Ab Locking mechanism for a fuel cell based charger

Also Published As

Publication number Publication date
JP2005089253A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
KR101330058B1 (en) Hydrogen generating fuel cell cartridges
CN100396596C (en) Hydrogen generator
CA2597221C (en) Hydrogen generating fuel cell cartridges
US6645651B2 (en) Fuel generator with diffusion ampoules for fuel cells
US6544400B2 (en) Portable chemical hydrogen hydride system
JP4371746B2 (en) Hydrogen generation method and apparatus
JP5611797B2 (en) Hydrogen gas generation process, equipment, and power generation process
US9722268B2 (en) Gas generator with starter mechanism and catalyst shield
CN101199068A (en) Integrated fuel and fuel cell device
JP6239593B2 (en) Automatic control gas generator and gas generation method
JP5218945B2 (en) Fuel cell and manufacturing method thereof
MX2007015840A (en) Hydrogen generating fuel cell cartridges.
JP4199966B2 (en) Hydrogen generating method and hydrogen generating apparatus
CN1958438B (en) Device and method for producing hydrogen
MX2007010172A (en) Hydrogen generating fuel cell cartridges

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term