JP4371721B2 - Method for producing non-aqueous electrolyte secondary battery - Google Patents

Method for producing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4371721B2
JP4371721B2 JP2003192100A JP2003192100A JP4371721B2 JP 4371721 B2 JP4371721 B2 JP 4371721B2 JP 2003192100 A JP2003192100 A JP 2003192100A JP 2003192100 A JP2003192100 A JP 2003192100A JP 4371721 B2 JP4371721 B2 JP 4371721B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
exterior member
secondary battery
electrolyte secondary
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003192100A
Other languages
Japanese (ja)
Other versions
JP2005026145A (en
Inventor
元太 大道
恵介 成海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003192100A priority Critical patent/JP4371721B2/en
Publication of JP2005026145A publication Critical patent/JP2005026145A/en
Application granted granted Critical
Publication of JP4371721B2 publication Critical patent/JP4371721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池の製造方法およびその方法により製造した非水電解液二次電池に関する。
【0002】
【従来の技術】
携帯電話やパーソナルコンピュータなど電子機器の進歩に伴い、これら機器に使用される電池は、小型化、軽量化、大容量化、高性能化、コストダウンが絶えず求められてきた。このため、電池においては、正極活物質や負極活物質など電極材料をよりエネルギー密度の高いものに変えたり、セパレータをより薄くしたり、金属製の外装缶の厚さを薄くしたり、外装缶の材質を鉄からアルミニウムに代えたりするなどの改善が図られてきた。
【0003】
しかしながら、これらの改善により逆に初充電時のガスの発生量が増えたり、電池内部の自由空間が減少することによって、内圧が上昇したり、電極が撚れたり、また外装缶が低弾性材に代わったため変形し易くなったりする。このため、初充電時に電池が膨らみ所望の厚さを維持できないという問題が生じた。
【0004】
このようなことから特許文献1には、電池ケース内に電解液注入口より電解液を定量注入した後この電解液注入口を仮封口して初充電を行なう初充電工程と、この初充電工程後に、前記仮封口した電解液注入口を上向きの状態で開放して前記初充電により電池ケース内に発生したガスを外部に排出する内圧除去する工程と、この内圧除去工程後に、前記電解液注入口を本封口する本封口工程とを有するリチウム二次電池の製造方法が開示されている。
【0005】
【特許文献1】
特開平11−329505号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に開示された方法では初充電で発生したガスが極板間から充分に抜けきらないという課題がある。この残留ガスは、充放電時等においてリチウム二次電池の膨れや電池特性の低下の原因になる。
【0007】
本発明は、残留ガスを非水電解液に十分に吸収させることにより充放電時等においても金属製の有底矩形状外装缶を有する外装部材を設定寸法に維持すると同時に、優れた初期特性および長期特性を有する非水電解液二次電池の製造方法および非水電解液二次電池を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係る非水電解液二次電池の製造方法は、正極、負極およびセパレータで構成された電極群と非水電解液とを金属製の有底矩形筒状外装缶を有する外装部材内に収納した非水電解液二次電池の製造方法であって、
前記電極群および前記非水電解液が収納され、外部に開放された前記外装部材を3.6〜3.9Vの電圧条件で予備充電して発生したガスをその開放部から排出する工程と、
前記外装部材を封口した後、20〜40℃の雰囲気中に1日〜7日の間貯蔵する工程と、
貯蔵後の封口した外装部材をゲージ圧で0.1〜15MPaにてガス加圧し、さらに本充電する工程と
を含むことを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明を係る非水電解液二次電池の製造方法を詳細に説明する。
【0011】
(第1工程)
正極と負極をセパレータを介して例えば渦巻き状に捲回し、渦巻電極体(電極群)を作製する。角型の非水電解液二次電池に適用する場合には、渦巻き状に捲回した後、室温で加圧成形し、扁平状の渦巻電極体(電極群)を作製する。つづいて、前記渦巻き状電極体を金属製の有底矩形筒状外装缶を有する外装部材に収納し、さらに非水電解液を前記外装部材に収容する。
【0012】
前記正極、負極、セパレータおよび非水電解液について以下に説明する。
【0013】
1)正極
この正極は、集電体と、集電体の片面もしくは両面に担持され、活物質を含む正極層とを含む。
【0014】
前記正極層は、正極活物質、結着剤および導電剤を含む。
【0015】
前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウム含有コバルト酸化物(例えば、LiCoO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)を用いると、高電圧が得られるために好ましい。なお、正極活物質としては1種類の酸化物または2種類以上の酸化物を混合して使用してもよい。
【0016】
前記導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。
【0017】
前記結着剤は、活物質を集電体に保持させ、かつ活物質同士をつなぐ機能を有する。前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリエーテルサルフォン、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0018】
前記正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜20重量%、結着剤2〜7重量%の範囲にすることが好ましい。
【0019】
前記集電体としては、例えば多孔質構造の導電性基板、無孔の導電性基板を用いることができる。これら導電性基板は、例えばアルミニウム、ステンレス、またはニッケルから作られる。
【0020】
前記正極は、例えば正極活物質に導電剤および結着剤を適当な溶媒に分散させてスラリーを調製し、このスラリーを集電体に塗布、乾燥して薄板状にすることにより作製される。
【0021】
2)負極
この負極は、集電体とこの集電体の片面もしくは両面に担持される負極層とを含む。
【0022】
前記負極層は、リチウムイオンを吸蔵・放出する炭素質物及び結着剤を含む。
【0023】
前記炭素質物としては、例えば黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料、熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体など(特に、メソフェーズピッチ系炭素繊維が容量や充放電サイクル特性が高くなり好ましい)に500〜3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料等を挙げることができる。中でも、(002)面の面間隔d002が0.34nm以下である黒鉛結晶を有する黒鉛質材料が好ましい。このような黒鉛質材料を炭素質物として含む負極を備えた非水電解液二次電池は、電池容量および大電流放電特性を大幅に向上することができる。前記黒鉛質材料の面間隔d002は、0.337nm以下であることが更に好ましい。
【0024】
前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。
【0025】
前記炭素質物および前記結着剤の配合割合は、炭素質物90〜98重量%、結着剤2〜20重量%の範囲にすることが好ましい。
【0026】
前記集電体としては、例えば多孔質構造の導電性基板、無孔の導電性基板を用いることができる。これら導電性基板は、例えば銅、ステンレス、またはニッケルから作られる。
【0027】
前記負極は、例えばリチウムイオンを吸蔵・放出する炭素質物と結着剤とを溶媒と共に混合してスラリーを調製し、このスラリーを集電体に塗布し、乾燥した後、所望の圧力で1回のプレスもしくは2〜5回多段階のプレスすることにより作製される。
【0028】
3)セパレータ
このセパレータは、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータの材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができ、1種類または2種類以上を用いることができる。
【0029】
4)非水電解液
この非水電解液は、電解質を非水溶媒で溶解した組成を有する。
【0030】
前記電解質としては、例えば過塩素酸リチウム(LiClO4)、四フッ化硼酸リチウム(LiBF4)、六フッ化燐酸リチウム(LiPF6)、六フッ化砒素酸リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、LiN(CF3SO2)2、リチウムビス[5−フルオロ−2オラト−1−ベンゼン−スルホナト(2−)]ボレート等を用いることができる。
【0031】
前記非水溶媒としては、例えばγ−ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ビニレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、1,3−ジオキソラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル等を用いることができ、2種類以上混合して使用してもよい。前記非水溶媒に界面活性剤、例えばトリオクチルフォスフェート(TOP)を添加することが好ましい。このような界面活性剤の添加により非水電解液のセパレータに対する濡れ性を改善することが可能になる。
【0032】
前記非水溶媒中の前記電解質の濃度は、0.5モル/L以上にすることが好ましい。
【0033】
前記外装部材は、例えばアルミニウムまたはアルミニウム合金のような金属からなる有底矩形筒状外装缶と、この外装缶の開口部に例えばレーザシーム溶接により接合され、電解液の注液孔を有する同アルミニウムまたはアルミニウム合金製の蓋体とから構成される。前記外装缶は、弾性率0.65〜0.75GPa、厚さ0.1〜0.3mmのアルミニウムまたはアルミニウム合金から作られることが好ましい。
【0034】
前記非水電解液を前記外装缶および蓋体からなる外装部材に収容するには、非水電解液を前記蓋体の注液孔から例えば真空注液法により注液することによりなされる。この非水電解液の注液操作は、2回に分けて行なうことが好ましい。具体的には、1回目では非水電解液の定格量の70〜85%に相当する量で注液し、2回目では後述する予備充電後に残りの量で注液する。このような2回の注液操作により後述する予備充電時に発生するガスを例えば注液孔を通して外部に放出する際にガスの排出と共に非水電解液が注液孔から溢れ出すのを回避することが可能になる。
【0035】
(第2工程)
電極群および非水電解液が収納され、外部に開放された金属製の外装部材を予備充電して発生したガスをその開放部から排出する。
【0036】
ここで、『外部に開放された』とは、例えば外装部材が金属製の有底矩形筒状外装缶および注液孔を有する蓋体とから構成される場合、その注液孔を封止せずに開放させた形態を意味する。
【0037】
前記予備充電は、例えば3.6〜3.9Vの電圧条件で行なうことが好ましい。この予備充電は、前記範囲の電位で例えば0.5Cのレートで2時間でなされる。予備充電電位を3.6V未満にすると、本充電において水素ガス等のガスが発生して外装部材(特に外装缶)の膨れが生じる虞がある。予備充電電位が3.9Vを超えると、予備充電における水素ガス等のガスの発生速度が速くなり、予備充電において外装部材(特に外装缶)の膨れが生じる虞がある。
【0038】
(第3工程)
前記外装部材を封口した後、貯蔵する。貯蔵後の封口した外装部材をガス加圧する。この後、本充電を行なって非水電解液二次電池を製造する。
【0039】
ここで、『外装部材の封口』とは、例えば外装部材が金属製の有底矩形筒状外装缶および注液孔を有する蓋体とから構成される場合、例えば金属製の矩形、円形の板からなる封止蓋を注液孔を含む蓋体に溶接等により接合して前記注液孔を封止させた形態を意味する。
【0040】
前記貯蔵は、20〜40℃の雰囲気中に1日〜7日の間で放置することが好ましい。
【0041】
前記ガスによる加圧は、例えば電極群および非水電解液が収納された密封状態の外装部材を耐圧容器にセットし、その耐圧容器内に高圧力のガスを供給する方法により実施できる。
【0042】
前記ガスとしては、例えば空気、窒素ガス、炭酸ガスまたは不活性ガスを用いることができ、これらガスは乾燥されていることが好ましい。なお、乾燥したガスを用いることによって、水分が外装部材内に浸透して電解液中の電解質、例えば六弗化燐酸リチウムと反応してフッ酸を生じることに伴う電池性能の低下を防止することが可能になる。ガスとして炭酸ガス、窒素ガス、不活性ガスを用いることによって、酸素が外装部材内部に浸透し、電解液、正極、負極、セパレータ、集電体などを酸化するのを防いで、電池性能の低下を防止することが可能になる。
【0043】
前記ガスによる加圧力は、ゲージ圧で0.1〜15MPaにすることが好ましい。前記ガスによる加圧力がゲージ圧で0.1MPa未満にすると前記予備充電時に発生したガス(水素等)を外装部材の開放部(例えば注液孔)を通して外部に排出した後の残留したガスを非水電解液に速やかに溶解させることが困難になる虞がある。一方、前記ガスによる加圧力がゲージ圧で15MPaを超えると、圧力容器の耐圧を高めるためにその容器壁部の肉厚を厚くする必要が生じたり、操作性が劣るようになったりする虞がある。
【0044】
前記『本充電』とは、前記予備充電より高電圧で、正負極間での充電反応が十分になされる電圧で充電することを意味する。具体的には、前記本充電は4.2Vにて、例えば0.2Cのレートで6時間なされる。
【0045】
本発明を係る方法で製造された非水電解液二次電池(例えば角形非水電解液二次電池)は、例えば図1に示す構造を有する。
【0046】
角型の外装部材1は、例えばアルミニウムまたはアルミニウム合金からなる有底矩形筒状をなす外装缶2と、この外装缶2の開口部に例えばレーザ溶接により気密に接合され、注液孔3を有するアルミニウムまたはアルミニウム合金からなる蓋体4とから構成されている。前記外装缶2は、例えば正極端子を兼ね、底面に下部側絶縁紙5が配置されている。
【0047】
電極群である電極体6は、前記外装部材1の外装缶2内に収納されている。この電極体6は、例えば負極7とセパレータ8と正極9とを前記正極9が最外周に位置するように渦巻状に捲回した後、扁平状にプレス成形することにより作製される。
【0048】
非水電解液は、前記蓋体4の注液孔3を通して前記外装缶2内に注液されている。注液後は、例えばアルミニウム製またはアルミニウム合金製の円板からなる封止蓋10が超音波溶接等により接合され、前記外装部材1を密封している。この封止蓋は、矩形板であってもよい。
【0049】
中心付近にリード取出穴を有する例えば合成樹脂からなるスペーサ11は、前記外装缶2内の前記電極体6上に配置されている。前記蓋体4の中心付近には、負極端子の取出し穴12が開口されている。負極端子13は、前記蓋体4の穴12および前記スペーサ11の穴を貫通し、前記蓋体4の穴12の箇所でガラス製または樹脂製の絶縁材14を介してハーメティクシールされている。前記負極端子13の下端面には、リード15が接続され、かつこのリード15の他端は前記電極体6の負極7に接続されている。
【0050】
上部側絶縁紙16は、前記蓋体4の外表面全体に被覆されている。外装チューブ17は、前記外装缶2の側面から下面および上面の絶縁紙5、16の周辺まで延出するように配置され、前記下部側絶縁紙5を前記外装缶2の底面に、前記上部側絶縁紙16を前記蓋体4の外表面にそれぞれ固定している。
【0051】
以上説明した本発明によれば、正極、負極、セパレータで構成された電極群および非水電解液を収納され、外部に開放された金属製の有底矩形筒状外装缶を有する外装部材を予備充電して発生したガスをその開放部から排出し、この外装部材を封口し、貯蔵した後、封口された外装部材をガス加圧し、さらに本充電することによって、初充電時のガス発生および正負極の活物質の膨張による金属製の外装部材、特に外装缶の膨れを抑制でき、正極および負極の離間を防ぐことができるため、初充電終了後に設定寸法を有し、かつ初期および長期に高い放電容量を維持し得る非水電解液二次電池を製造することができる。
【0052】
すなわち、予備充電時には電解液と正負極との間で起きる充電反応により水素、メタン、エチレン、一酸化炭素等の分解ガスが発生し、外装部材の内圧が高くなり、その外装部材を構成する金属製の有底矩形筒状外装缶の側面を押し広げ、外装缶の側面が膨れてその厚さ(特に中央部の厚さ)が増加する。これに伴って、前記外装缶内面とこの外装缶に収納された電極群との間に隙間が生じて電極群の正負極間が離間される。また、電極群の正負極間に前記分解ガスが滞留する。このような状態で本充電すると、本充電に伴う正負極の活物質の膨張により電極が撚れたり、外装部材の仕上がり厚さがより厚くなったりする。非水電解液二次電池では、局所的な過負荷状態での充電が行なわれるため、リチウムイオンが電析して薄い金属リチウム層が形成される。その結果、電池が厚くなったり、充放電能力が低下したりする。
【0053】
このようなことから、本発明は予備充電時に前記外装部材を外部に開放した状態にすることにより前記発生したガスをその開放部から排出することができる。その結果、外装部材を構成する金属製の有底矩形筒状外装缶の側面の膨れを防止できる。ただし、このような手法を講じても発生したガスが充分に抜けきらずに前記外装部材内、特に電極群の正負極間等に残留し、この残留ガスが本充電時に外装部材の膨れや電池特性の低下の原因になる。
【0054】
そこで、本発明は前記予備充電後、本充電の前に前記外装部材を封口して密封し、貯蔵した後、高圧力のガスで加圧する。このような密封状態での外装部材の貯蔵、その後に続くガス加圧によって、前記外装部材内、特に電極群の正負極間等に残留した水素のようなガスを外装部材内の非水電解液に溶解させる(ヘンリーの法則)と共に、前記外装部材を介してその中の電極群を押圧して膨れのない予備充電前の形状に戻すことができる。その結果、前記外装部材の内面が電極群から離間したり、正負極板間が離間したりするのを防止できる。つまり、前記外装部材(特に外装缶)の内面を電極群外面に密着でき、かつ極板同士を密着できる。また、正負極板間を縮小できるため、前記金属リチウムの電析発生を防止できる。したがって、本充電において正負極の活物質の膨張が起こっても、電極が撚れたり、電池の仕上がり厚さがより厚くなったり、極板間に金属リチウムが電析したりするのを防止できるため、初充電終了後に設定寸法を有し、かつ初期および長期に高い放電容量を維持し得る非水電解液二次電池を製造することができる。
【0055】
また、前記貯蔵とガス加圧との組み合せによって、ガス加圧力を低減しても前記外装部材内、特に電極群の正負極間等に残留した水素のようなガスを外装部材内の非水電解液に効果的に溶解させることができる。その結果、ガス加圧を簡易で肉厚の薄い耐圧容器のような加圧設備で充放電特性に優れ、設定寸法を有する非水電解液二次電池を製造することができる。
【0056】
すなわち、ガス加圧のみの操作で前記電極群の正負極間等に残留したガスを非水電解液に溶解させると、相当高いガス加圧力を前記外装部材に付与することが必要になる。このため、大掛かりで、複雑な加圧設備の使用を余儀なくされ、非水電解液二次電池の生産性の低下、高コスト化を生じる。
【0057】
前述した本発明のように電極群および非水電解液が収納された密封状態の外装部材をガス加圧に先立って貯蔵することによって、予備充電反応後における電極群の正負極間の状態を安定化させて、前記正負極間等に残留したガスを非水電解液に溶解させて、この後に続くガス加圧によるガスの溶解操作を担わせることができる。その結果、前記外装部材に対するガス加圧操作において、低い加圧条件、つまり簡易で肉厚の薄い耐圧容器のような加圧設備で前記外装部材内の電極群の正負極間等に残留した水素のようなガスを外装部材内の非水電解液に効果的に溶解させることができる。
【0058】
【実施例】
以下、本発明の実施例を詳細に説明する。
【0059】
(実施例1)
<正極の作製>
まず、リチウムコバルト酸化物(LiCoO2)粉末90重量%に、アセチレンブラック5重量%と、ポリフッ化ビニリデン(PVdF)5重量%のジメチルフォルムアミド(DMF)溶液とを加えて混合し、スラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布した後、乾燥し、プレスすることにより、正極層が集電体の両面に担持された構造の正極を作製した。なお、正極層の厚さは、片面当り60μmであった。
【0060】
<負極の作製>
炭素質材料としての3000℃で熱処理したメソフェーズピッチ系炭素繊維[粉末X線回折により求められる(002)面の面間隔(d002)が0.336nm]の粉末95重量%と、ポリフッ化ビニリデン(PVdF)5重量%のジメチルフォルムアミド(DMF)溶液とを混合し、スラリーを調製した。このスラリーを厚さ12μmの銅箔からなる集電体の両面に塗布し、乾燥し、プレスすることにより、負極層が集電体に担持された構造の負極を作製した。なお、負極層の厚さは、片面当り55μmであった。
【0061】
なお、炭素質物の(002)面の面間隔d002は、粉末X線回折スペクトルから半値幅中点法によりそれぞれ求めた。この際、ローレンツ散乱等の散乱補正は、行わなかった。
【0062】
<セパレータ>
厚さ20μm、気孔率50%、透気度300秒/100cm3のポリエチレン製微多孔膜からなるセパレータを用意した。
【0063】
<非水電解液の調製>
エチレンカーボネート(EC)/メチルエチルカーボネート(MEC)/六フッ化リン酸リチウム(LiPF )=34.9/53.1/12(重量比)の混合液にビニレンカーボネート(VC)を0.5重量%加えた非水電解液を調製した。
【0064】
<電極群の作製>
前記正極の集電体に厚さ100μmの帯状アルミニウム箔からなる正極リードを超音波溶接し、前記負極の集電体に厚さ100μmの帯状ニッケル箔からなる負極リードを超音波溶接した後、前記正極および前記負極をその間に前記セパレータを介して渦巻き状に捲回した後、偏平状に成形し、さらに油圧式プレスで加熱圧縮し、成形して偏平状電極体(電極群)を作製した。
【0065】
<二次電池の組立て、製造>
前記電極体を肉厚が0.25mmのアルミニウム製の有底矩形筒状外装缶に挿入し、この外装缶の上端開口部に注液孔を有するアルミニウム製の蓋体をレーザシーム溶接して前記電極体を外装部材内に密封した。つづいて、前記電極群が収納された外装部材を85℃で12時間の真空乾燥を施すことにより前記電極群および外装部材に含まれる水分を除去した。ひきつづき、前記組成の非水電解液を前記蓋体の注液孔を通して前記外装部材内の電極群に定格量の85%に相当する量を注液した。前記注液孔を開放した状態で室温大気圧の乾燥窒素中にて、0.5C(310mA)で2時間予備充電を行い、発生ガスを前記注液孔を通して排出した。その後、前記組成の非水電解液を前記蓋体の注液孔を通して前記外装部材内の電極群に再度、注液して非水電解液を定格量収容した。
【0066】
次いで、予備充電の終了後に前記注液孔を含む蓋体にアルミニウム円板からなる封止蓋を溶接により接合して前記外装部材を密封した。つづいて、この密封状態の外装部材を20℃の雰囲気中に24時間放置(貯蔵)した後、耐圧容器に入れて、室温にて圧縮された乾燥空気を送り込み、前記外装部材に0.9MPa(ゲージ圧)で12時間加圧した。これにより、予備充電で発生し、排出されずに残留したガスを非水電解液に溶け込ますと同時に、外装缶と電極群の間、および電極群の正負極間に生じた微小な隙間を押し潰した。
【0067】
最後に、20℃、0.2C(124mA)、4.2Vの条件で10時間本充電を行うことにより定格外寸法が厚さ4.4mm、幅30mm、高さ48mmで、容量が620mAh(0.2C)の角形非水電解液二次電池を製造した。
【0068】
(実施例2)
予備充電後の放置(貯蔵)条件を20℃の雰囲気下で168時間とした以外は、実施例1と同様な方法にて同型の角型非水電解液二次電池を製造した。
【0069】
(実施例3)
予備充電後の放置(貯蔵)条件を40℃の雰囲気下で168時間とした以外、実施例1と同様な方法にて同型の角型非水電解液二次電池を製造した。
【0070】
(比較例1)
予備充電後に貯蔵、ガス加圧を行わないで本充電した以外、実施例1と同様な方法にて同型の角型非水電解液二次電池を製造した。
【0071】
(電池性能試験)
得られた実施例1〜3および比較例1の角型非水電解液二次電池について、以下に説明する試験により特性評価を行なった。それらの結果を下記表1に示す。
【0072】
1)充電時の厚さ試験
各二次電池について20℃で620mA、4.2V、3時間充電した後の電池の厚さを求めた。
【0073】
2)0.2C容量試験
各二次電池について20℃で620mA、4.2V、3時間充電し、10分間の休止後、124mA、3.0Vカットオフでの放電容量を求めた。
【0074】
3)高温貯蔵後における電池の厚さおよび容量回復率の試験
各二次電池について20℃で620mA、4.2V、3時間充電し、10分間の休止後、620mA、3.0Vカットオフでの放電容量(基準容量)を測定した。再度、20℃で620mA、4.2V、3時間充電を行なった。この充電状態の電池厚さを測定した後、85℃の恒温槽に24時間放置した。放置後の電池厚さを測定し、放置前の電池厚さとの差分から電池膨れ量を求めた。
【0075】
さらに、放電、充電、放電(放電条件;620mA、3.0Vカットオフ、充電条件;620mA、4.2V、3時間)を繰り返し、最終の放電の容量を測定し、得られた放電容量を前記基準容量で除したときの値(百分率;維持率)から容量回復率を求めた。
【0076】
4)500サイクル後における電池の厚さおよび容量維持率の試験
各二次電池について20℃で1.0C/1.0Cの条件で充放電(充電条件;620mA,4.2V,3時間、放電条件;620mA、3.0Vカットオフ)を500サイクル繰り返した後の電池厚さおよび放電容量維持率(初期放電容量に対する維持率)を求めた。
【0077】
【表1】

Figure 0004371721
【0078】
前記表1から明らかなように実施例1〜3の非水電解液二次電池は、充電時の電池厚さが比較例1の非水電解液二次電池に比べて薄くなっていることがわかる。
【0079】
実施例1〜3の非水電解液二次電池は、0.2C容量が比較例1の非水電解液二次電池と大きな差はないが、やはり大きくなっていることがわかる。
【0080】
また、放置(貯蔵)条件を20℃にした実施例1、2の非水電解液二次電池は、高温貯蔵時の電池厚さ変化量(膨れ量)が放置およびガス加圧を施さない比較例1の非水電解液二次電池に比べて小さいことがわかる。なお、放置(貯蔵)条件を40℃にした実施例3の非水電解液二次電池は実施例1,2の非水電解液二次電池に比べその膨れ量が大きくなっているが、比較例1の非水電解液二次電池よりは小さく効果があることがわかる。
【0081】
高温貯蔵時の容量回復率は、比較例1の非水電解液二次電池より実施例1〜3の非水電解液二次電池の方がいずれも大きい。
【0082】
このように実施例1〜3の非水電解液二次電池は、初期特性が比較例1の非水電解液二次電池に比べていずれも向上していることがわかる。
【0083】
充放電を500サイクル実施した後の膨れ量は、実施例1〜3の非水電解液二次電池の方が比較例1の非水電解液二次電池に比べて小さく、電池厚さを薄くできることが分かる。500サイクル後の容量維持率については実施例1〜3の非水電解液二次電池と比較例1の非水電解液二次電池との間で大きな差はないが、定格を満足するものであった。
【0084】
【発明の効果】
以上詳述したように、本発明によれば初期および長期にわたる充放電においても膨れを防止して設定寸法を有し、かつ初期および長期にわたる充放電時において大きな放電容量を維持することが可能な非水電解液二次電池の製造方法、並び非水電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】 本発明の方法で製造される角型非水電解液二次電池を示す部分切欠斜視図。
【符号の説明】
1…外装部材、2…金属製の有底矩形筒状外装缶、3…注液孔、4…蓋体、6…電極体(電極群)、7…負極、8…セパレータ、9…正極、10…封止蓋、13…負極端子。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery produced by the method.
[0002]
[Prior art]
With the advancement of electronic devices such as mobile phones and personal computers, batteries used in these devices have been constantly required to be smaller, lighter, larger in capacity, higher in performance, and lower in cost. For this reason, in the battery, the electrode material such as the positive electrode active material or the negative electrode active material is changed to a material having higher energy density, the separator is made thinner, the thickness of the metal outer can is reduced, the outer can Improvements such as changing the material of iron from iron to aluminum have been attempted.
[0003]
However, due to these improvements, the amount of gas generated during the initial charge increases, the free space inside the battery decreases, the internal pressure increases, the electrodes are twisted, and the outer can is made of a low elastic material. It becomes easy to deform because it replaced. For this reason, the battery swelled at the time of first charge, and the problem that a desired thickness could not be maintained occurred.
[0004]
For this reason, Patent Document 1 discloses an initial charging process in which an electrolytic solution is quantitatively injected into the battery case from an electrolytic solution injection port, and then the electrolytic solution injection port is temporarily sealed to perform initial charging, and this initial charging step. Thereafter, the step of opening the temporarily sealed electrolyte injection port in an upward state and removing the gas generated in the battery case by the initial charging to the outside and removing the internal pressure after the internal pressure removal step A method of manufacturing a lithium secondary battery having a main sealing step of main sealing an inlet is disclosed.
[0005]
[Patent Document 1]
JP 11-329505 A
[0006]
[Problems to be solved by the invention]
However, the method disclosed in Patent Document 1 has a problem that the gas generated by the initial charge cannot be sufficiently removed from between the electrode plates. This residual gas causes swelling of the lithium secondary battery and deterioration of battery characteristics during charging and discharging.
[0007]
The present invention maintains the exterior member having a metal bottomed rectangular exterior can at a set size even during charging and discharging by sufficiently absorbing the residual gas into the non-aqueous electrolyte, and at the same time has excellent initial characteristics and It is an object of the present invention to provide a method for producing a non-aqueous electrolyte secondary battery having long-term characteristics and a non-aqueous electrolyte secondary battery.
[0008]
[Means for Solving the Problems]
  A method for producing a non-aqueous electrolyte secondary battery according to the present invention includes an electrode group composed of a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte solution in an exterior member having a metal bottomed rectangular cylindrical outer can. A method of manufacturing a stored nonaqueous electrolyte secondary battery,
  The exterior member in which the electrode group and the non-aqueous electrolyte are accommodated and opened to the outside3.6 to 3.9V voltage conditionDischarging the gas generated by precharging from the open part;
  After sealing the exterior member,1 to 7 days in an atmosphere of 20 to 40 ° CStoring, and
  Sealed exterior member after storageAt a gauge pressure of 0.1 to 15 MPaGas pressurization and further charging
It is characterized by including.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for producing a nonaqueous electrolyte secondary battery according to the present invention will be described in detail.
[0011]
(First step)
The positive electrode and the negative electrode are wound, for example, in a spiral shape via a separator to produce a spiral electrode body (electrode group). When applied to a prismatic non-aqueous electrolyte secondary battery, it is wound in a spiral shape and then pressure-molded at room temperature to produce a flat spiral electrode body (electrode group). Subsequently, the spiral electrode body is accommodated in an exterior member having a metal bottomed rectangular tubular exterior can, and further a nonaqueous electrolyte is accommodated in the exterior member.
[0012]
The positive electrode, negative electrode, separator and non-aqueous electrolyte will be described below.
[0013]
1) Positive electrode
The positive electrode includes a current collector and a positive electrode layer that is supported on one or both sides of the current collector and includes an active material.
[0014]
The positive electrode layer includes a positive electrode active material, a binder, and a conductive agent.
[0015]
Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, lithium-containing iron oxide, and lithium. Examples thereof include vanadium oxide and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, lithium-containing cobalt oxide (for example, LiCoO2), Lithium-containing nickel cobalt oxide (eg, LiNi0.8Co0.2O2), Lithium manganese composite oxide (for example, LiMn2OFourLiMnO2) Is preferable because a high voltage can be obtained. Note that one type of oxide or a mixture of two or more types of oxides may be used as the positive electrode active material.
[0016]
Examples of the conductive agent include acetylene black, carbon black, and graphite.
[0017]
The binder has a function of holding the active material on the current collector and connecting the active materials to each other. Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethersulfone, ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR). be able to.
[0018]
The mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
[0019]
As the current collector, for example, a porous conductive substrate or a non-porous conductive substrate can be used. These conductive substrates are made of, for example, aluminum, stainless steel, or nickel.
[0020]
The positive electrode is produced by, for example, preparing a slurry by dispersing a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the slurry to a current collector, and drying to form a thin plate.
[0021]
2) Negative electrode
The negative electrode includes a current collector and a negative electrode layer supported on one side or both sides of the current collector.
[0022]
The negative electrode layer includes a carbonaceous material that occludes / releases lithium ions and a binder.
[0023]
Examples of the carbonaceous materials include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous materials, and resin fired bodies, thermosetting resins, isotropic pitches, and mesophase pitch systems. Graphite material or carbon obtained by heat-treating carbon, mesophase pitch-based carbon fiber, mesophase microsphere, etc. (especially mesophase pitch-based carbon fiber is preferable because of its high capacity and charge / discharge cycle characteristics) at 500 to 3000 ° C. A quality material etc. can be mentioned. Among these, the (002) plane spacing d002Is preferably a graphite material having a graphite crystal of 0.34 nm or less. A non-aqueous electrolyte secondary battery equipped with a negative electrode containing such a graphite material as a carbonaceous material can greatly improve battery capacity and large current discharge characteristics. Interplanar spacing d of the graphite material002Is more preferably 0.337 nm or less.
[0024]
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. Can be used.
[0025]
The blending ratio of the carbonaceous material and the binder is preferably in the range of 90 to 98% by weight of the carbonaceous material and 2 to 20% by weight of the binder.
[0026]
As the current collector, for example, a porous conductive substrate or a non-porous conductive substrate can be used. These conductive substrates are made of, for example, copper, stainless steel, or nickel.
[0027]
The negative electrode is prepared, for example, by mixing a carbonaceous material that occludes / releases lithium ions and a binder together with a solvent to prepare a slurry. The slurry is applied to a current collector, dried, and once at a desired pressure. Or by multi-stage pressing 2-5 times.
[0028]
3) Separator
As this separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and the like, and one kind or two or more kinds can be used.
[0029]
4) Non-aqueous electrolyte
This nonaqueous electrolytic solution has a composition in which an electrolyte is dissolved in a nonaqueous solvent.
[0030]
Examples of the electrolyte include lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium trifluoromethanesulfonate (LiCF3SO3). LiN (CF3SO2) 2, lithium bis [5-fluoro-2-olato-1-benzene-sulfonato (2-)] borate and the like can be used.
[0031]
Examples of the non-aqueous solvent include γ-butyrolactone, ethylene carbonate, propylene carbonate, diethyl carbonate, methyl ethyl carbonate, vinylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,3-dioxolane. , Methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetic acid ester, propionic acid ester, etc. may be used, and two or more kinds may be mixed and used. It is preferable to add a surfactant such as trioctyl phosphate (TOP) to the non-aqueous solvent. By adding such a surfactant, it becomes possible to improve the wettability of the non-aqueous electrolyte with respect to the separator.
[0032]
The concentration of the electrolyte in the non-aqueous solvent is preferably 0.5 mol / L or more.
[0033]
The exterior member is, for example, a bottomed rectangular tubular exterior can made of a metal such as aluminum or an aluminum alloy, and the aluminum having an electrolyte injection hole joined to the opening of the exterior can by, for example, laser seam welding. It is comprised from the cover body made from aluminum alloy. The outer can is preferably made of aluminum or an aluminum alloy having an elastic modulus of 0.65 to 0.75 GPa and a thickness of 0.1 to 0.3 mm.
[0034]
In order to accommodate the non-aqueous electrolyte in the exterior member composed of the exterior can and the lid, the non-aqueous electrolyte is injected from the liquid injection hole of the lid by, for example, a vacuum injection method. It is preferable to perform this non-aqueous electrolyte injection operation in two steps. Specifically, in the first time, the liquid is injected in an amount corresponding to 70 to 85% of the rated amount of the nonaqueous electrolytic solution, and in the second time, the remaining amount is injected after preliminary charging described later. Avoiding the non-aqueous electrolyte from overflowing from the injection hole when the gas generated during the preliminary charging described later by such two injection operations is discharged to the outside through the injection hole, for example. Is possible.
[0035]
(Second step)
The electrode group and the non-aqueous electrolyte are accommodated, and the gas generated by precharging the metal exterior member opened to the outside is discharged from the open portion.
[0036]
Here, “opened to the outside” means that, for example, when the exterior member is composed of a metal bottomed rectangular cylindrical outer can and a lid body having a liquid injection hole, the liquid injection hole is not sealed. It means the form opened to
[0037]
The preliminary charging is preferably performed under a voltage condition of 3.6 to 3.9 V, for example. This preliminary charging is performed at a rate of 0.5 C, for example, at a potential in the above range for 2 hours. If the precharge potential is less than 3.6 V, gas such as hydrogen gas is generated in the main charge, and the exterior member (particularly the exterior can) may swell. When the precharge potential exceeds 3.9 V, the generation rate of gas such as hydrogen gas in the precharge increases, and there is a possibility that the exterior member (particularly the exterior can) may swell during the precharge.
[0038]
(Third step)
After the exterior member is sealed, it is stored. Gas pressure is applied to the sealed exterior member after storage. Then, this charge is performed and a nonaqueous electrolyte secondary battery is manufactured.
[0039]
Here, “sealing of the exterior member” means, for example, when the exterior member is composed of a metal bottomed rectangular cylindrical exterior can and a lid having a liquid injection hole, for example, a metal rectangular or circular plate The sealing lid which consists of this is joined to the cover body containing a liquid injection hole by welding etc., and the said liquid injection hole is sealed.
[0040]
The storage is preferably left in an atmosphere of 20 to 40 ° C. for 1 to 7 days.
[0041]
The pressurization with the gas can be performed, for example, by a method of setting a sealed exterior member containing an electrode group and a non-aqueous electrolyte in a pressure vessel and supplying a high pressure gas into the pressure vessel.
[0042]
As the gas, for example, air, nitrogen gas, carbon dioxide gas or inert gas can be used, and these gases are preferably dried. In addition, by using a dry gas, moisture permeates into the exterior member and prevents degradation of battery performance due to reaction with an electrolyte in the electrolyte, for example, lithium hexafluorophosphate to generate hydrofluoric acid. Is possible. By using carbon dioxide gas, nitrogen gas, or inert gas as gas, oxygen penetrates into the exterior member and prevents the electrolyte, positive electrode, negative electrode, separator, current collector, etc. from being oxidized, resulting in decreased battery performance Can be prevented.
[0043]
The pressure applied by the gas is preferably 0.1 to 15 MPa as a gauge pressure. When the pressure applied by the gas is less than 0.1 MPa in gauge pressure, the gas (hydrogen, etc.) generated during the preliminary charging is discharged to the outside through the open part (for example, a liquid injection hole) of the exterior member, and the residual gas is not removed. There is a possibility that it is difficult to quickly dissolve in the water electrolyte. On the other hand, when the pressure applied by the gas exceeds 15 MPa in gauge pressure, it is necessary to increase the wall thickness of the container in order to increase the pressure resistance of the pressure container, or the operability may be deteriorated. is there.
[0044]
The “main charging” means charging at a voltage higher than the preliminary charging and a voltage at which a charging reaction between the positive and negative electrodes is sufficiently performed. Specifically, the main charging is performed at 4.2 V, for example, at a rate of 0.2 C for 6 hours.
[0045]
A non-aqueous electrolyte secondary battery (for example, a square non-aqueous electrolyte secondary battery) manufactured by the method according to the present invention has a structure shown in FIG.
[0046]
The square-shaped exterior member 1 has a bottomed rectangular tube shape made of, for example, aluminum or an aluminum alloy, and is hermetically joined to the opening of the exterior can 2 by, for example, laser welding, and has a liquid injection hole 3. It is comprised from the cover body 4 which consists of aluminum or aluminum alloy. The outer can 2 also serves as a positive electrode terminal, for example, and a lower insulating paper 5 is disposed on the bottom surface.
[0047]
An electrode body 6 that is an electrode group is housed in an outer can 2 of the outer member 1. The electrode body 6 is produced, for example, by winding the negative electrode 7, the separator 8, and the positive electrode 9 in a spiral shape so that the positive electrode 9 is located on the outermost periphery, and then press-molding it into a flat shape.
[0048]
The non-aqueous electrolyte is injected into the outer can 2 through the injection hole 3 of the lid 4. After the injection, a sealing lid 10 made of, for example, an aluminum or aluminum alloy disk is joined by ultrasonic welding or the like to seal the exterior member 1. This sealing lid may be a rectangular plate.
[0049]
A spacer 11 made of, for example, synthetic resin having a lead extraction hole in the vicinity of the center is disposed on the electrode body 6 in the outer can 2. In the vicinity of the center of the lid 4, a lead-out hole 12 for the negative electrode terminal is opened. The negative electrode terminal 13 passes through the hole 12 of the lid body 4 and the hole of the spacer 11 and is hermetically sealed at the location of the hole 12 of the lid body 4 via an insulating material 14 made of glass or resin. Yes. A lead 15 is connected to the lower end surface of the negative electrode terminal 13, and the other end of the lead 15 is connected to the negative electrode 7 of the electrode body 6.
[0050]
The upper insulating paper 16 is covered on the entire outer surface of the lid 4. The outer tube 17 is disposed so as to extend from the side surface of the outer can 2 to the periphery of the lower and upper insulating papers 5 and 16, and the lower insulating paper 5 is placed on the bottom surface of the outer can 2 and the upper side Insulating paper 16 is fixed to the outer surface of the lid 4.
[0051]
According to the present invention described above, an exterior member having a bottomed rectangular cylindrical outer can made of metal and containing an electrode group composed of a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte and opened to the outside is reserved. The gas generated by charging is discharged from the open part, and the exterior member is sealed and stored, and then the sealed exterior member is pressurized with gas and further charged, thereby generating and correcting the gas during the initial charge. The metal exterior member due to the expansion of the negative electrode active material, particularly the expansion of the outer can, can be suppressed, and the separation between the positive electrode and the negative electrode can be prevented. A nonaqueous electrolyte secondary battery capable of maintaining the discharge capacity can be manufactured.
[0052]
That is, during the pre-charging, the charging reaction that occurs between the electrolyte and the positive and negative electrodes generates decomposition gas such as hydrogen, methane, ethylene, carbon monoxide, and the internal pressure of the exterior member increases, and the metal constituting the exterior member The side surface of the manufactured bottomed rectangular cylindrical outer can is spread and the side surface of the outer can expands to increase its thickness (particularly the thickness of the central portion). Accordingly, a gap is generated between the inner surface of the outer can and the electrode group housed in the outer can, and the positive and negative electrodes of the electrode group are separated from each other. Further, the decomposition gas stays between the positive and negative electrodes of the electrode group. When the main charging is performed in such a state, the electrodes are twisted due to the expansion of the active material of the positive and negative electrodes accompanying the main charging, and the finished thickness of the exterior member becomes thicker. In a non-aqueous electrolyte secondary battery, charging is performed in a local overload state, so that lithium ions are electrodeposited to form a thin metallic lithium layer. As a result, the battery becomes thick or the charge / discharge capacity decreases.
[0053]
For this reason, in the present invention, the generated gas can be discharged from the open portion by opening the exterior member to the outside during preliminary charging. As a result, it is possible to prevent swelling of the side surface of the metal bottomed rectangular cylindrical outer can constituting the outer member. However, even if such a method is taken, the generated gas does not fully escape and remains in the exterior member, particularly between the positive and negative electrodes of the electrode group. Cause a drop in
[0054]
Therefore, in the present invention, after the preliminary charging, before the main charging, the exterior member is sealed and sealed, stored, and then pressurized with a high-pressure gas. By storing the exterior member in such a sealed state, and subsequent gas pressurization, a gas such as hydrogen remaining in the exterior member, particularly between the positive and negative electrodes of the electrode group, is removed from the non-aqueous electrolyte solution in the exterior member. (Henry's law) and the electrode group in the outer member can be pressed through the exterior member to return to the shape before precharging without swelling. As a result, it is possible to prevent the inner surface of the exterior member from being separated from the electrode group or between the positive and negative electrode plates. That is, the inner surface of the exterior member (particularly the exterior can) can be in close contact with the outer surface of the electrode group, and the electrodes can be in close contact with each other. In addition, since the space between the positive and negative electrode plates can be reduced, the occurrence of electrodeposition of the metallic lithium can be prevented. Therefore, even if the positive and negative active materials expand in the main charging, it is possible to prevent the electrodes from being twisted, the finished thickness of the battery from becoming thicker, and the metal lithium from being electrodeposited between the electrode plates. Therefore, it is possible to manufacture a non-aqueous electrolyte secondary battery that has a set dimension after the completion of the initial charge and can maintain a high discharge capacity in the initial stage and in the long term.
[0055]
Further, even if the gas pressure is reduced by the combination of the storage and the gas pressurization, a gas such as hydrogen remaining in the exterior member, particularly between the positive and negative electrodes of the electrode group, is removed by non-aqueous electrolysis in the exterior member. It can be effectively dissolved in the liquid. As a result, it is possible to manufacture a non-aqueous electrolyte secondary battery that has excellent charge / discharge characteristics and has set dimensions with a pressurizing facility such as a pressure vessel that is simple in gas pressure and thin in thickness.
[0056]
That is, if the gas remaining between the positive and negative electrodes of the electrode group is dissolved in the non-aqueous electrolyte only by gas pressurization, it is necessary to apply a considerably high gas pressure to the exterior member. For this reason, it is necessary to use a large-scale and complicated pressurization facility, resulting in a decrease in productivity and cost increase of the non-aqueous electrolyte secondary battery.
[0057]
By storing the sealed exterior member containing the electrode group and the non-aqueous electrolyte as in the present invention described above prior to gas pressurization, the state between the positive and negative electrodes of the electrode group after the precharge reaction is stabilized. Then, the gas remaining between the positive and negative electrodes can be dissolved in the non-aqueous electrolyte, and the subsequent gas dissolving operation by gas pressurization can be performed. As a result, in the gas pressurization operation for the exterior member, hydrogen remaining between the positive and negative electrodes of the electrode group in the exterior member under a low pressure condition, that is, a pressurization facility such as a simple and thin pressure vessel. Such gas can be effectively dissolved in the non-aqueous electrolyte in the exterior member.
[0058]
【Example】
Hereinafter, embodiments of the present invention will be described in detail.
[0059]
Example 1
<Preparation of positive electrode>
First, lithium cobalt oxide (LiCoO2) To 90% by weight of powder, 5% by weight of acetylene black and 5% by weight of polyvinylidene fluoride (PVdF) in dimethylformamide (DMF) were added and mixed to prepare a slurry. The slurry was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 μm, then dried and pressed to produce a positive electrode having a structure in which the positive electrode layer was supported on both surfaces of the current collector. The thickness of the positive electrode layer was 60 μm per side.
[0060]
<Production of negative electrode>
Mesophase pitch carbon fiber heat treated at 3000 ° C. as a carbonaceous material [(002) plane spacing determined by powder X-ray diffraction (d002) Was 0.336 nm] and a dimethylformamide (DMF) solution containing 5% by weight of polyvinylidene fluoride (PVdF) was mixed to prepare a slurry. This slurry was applied to both sides of a current collector made of a copper foil having a thickness of 12 μm, dried and pressed to prepare a negative electrode having a structure in which the negative electrode layer was supported on the current collector. The thickness of the negative electrode layer was 55 μm per side.
[0061]
Note that the spacing d of the (002) plane of the carbonaceous material002Was determined from the powder X-ray diffraction spectrum by the half-width half-point method. At this time, scattering correction such as Lorentz scattering was not performed.
[0062]
<Separator>
Thickness 20μm, porosity 50%, air permeability 300sec / 100cmThreeA separator made of a polyethylene microporous membrane was prepared.
[0063]
<Preparation of non-aqueous electrolyte>
Ethylene carbonate (EC) / methyl ethyl carbonate (MEC) / lithium hexafluorophosphate (LiPF)6 ) = 34.9 / 53.1 / 12 (weight ratio) A non-aqueous electrolyte was prepared by adding 0.5% by weight of vinylene carbonate (VC).
[0064]
<Production of electrode group>
After ultrasonically welding a positive electrode lead made of a strip-shaped aluminum foil with a thickness of 100 μm to the positive electrode current collector, and ultrasonically welding a negative electrode lead made of a strip-shaped nickel foil with a thickness of 100 μm to the negative electrode current collector, The positive electrode and the negative electrode were spirally wound through the separator therebetween, then formed into a flat shape, further heated and compressed with a hydraulic press, and formed into a flat electrode body (electrode group).
[0065]
<Assembly and manufacture of secondary batteries>
The electrode body is inserted into a bottomed rectangular tubular outer can made of aluminum having a wall thickness of 0.25 mm, and an aluminum lid having a liquid injection hole at the upper end opening of the outer can is laser-seam welded to form the electrode. The body was sealed in the exterior member. Subsequently, the exterior member containing the electrode group was vacuum dried at 85 ° C. for 12 hours to remove moisture contained in the electrode group and the exterior member. Subsequently, an amount corresponding to 85% of the rated amount was injected into the electrode group in the exterior member through the liquid injection hole of the lid body. Preliminary charging was performed at 0.5 C (310 mA) for 2 hours in dry nitrogen at room temperature and atmospheric pressure with the liquid injection hole opened, and the generated gas was discharged through the liquid injection hole. Thereafter, the nonaqueous electrolytic solution having the above composition was injected again into the electrode group in the exterior member through the injection hole of the lid body, and the rated amount of the nonaqueous electrolytic solution was accommodated.
[0066]
Next, after completion of the preliminary charging, a sealing lid made of an aluminum disk was joined to the lid body including the liquid injection hole by welding to seal the exterior member. Subsequently, the sealed exterior member was left (stored) in an atmosphere at 20 ° C. for 24 hours, then placed in a pressure resistant container, and dried air compressed at room temperature was fed into the exterior member at 0.9 MPa ( The pressure was applied for 12 hours. As a result, the gas that is generated in the pre-charging and remains without being discharged is dissolved in the non-aqueous electrolyte, and at the same time, a minute gap generated between the outer can and the electrode group and between the positive and negative electrodes of the electrode group is pushed. I crushed it.
[0067]
Finally, by performing main charging for 10 hours under the conditions of 20 ° C., 0.2 C (124 mA), and 4.2 V, the non-rated dimensions are 4.4 mm thick, 30 mm wide, 48 mm high, and the capacity is 620 mAh (0 .2C) prismatic non-aqueous electrolyte secondary battery was manufactured.
[0068]
(Example 2)
A rectangular non-aqueous electrolyte secondary battery of the same type was manufactured in the same manner as in Example 1 except that the standing (storage) condition after the preliminary charging was 168 hours in an atmosphere of 20 ° C.
[0069]
(Example 3)
A rectangular nonaqueous electrolyte secondary battery of the same type was manufactured in the same manner as in Example 1 except that the standing (storage) condition after the preliminary charging was 168 hours in an atmosphere of 40 ° C.
[0070]
(Comparative Example 1)
A rectangular non-aqueous electrolyte secondary battery of the same type was manufactured in the same manner as in Example 1 except that after the preliminary charging, the main charging was performed without performing gas pressurization.
[0071]
(Battery performance test)
The obtained non-aqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Example 1 were evaluated by the tests described below. The results are shown in Table 1 below.
[0072]
1) Thickness test during charging
The thickness of each secondary battery after charging at 620 mA, 4.2 V, 3 hours at 20 ° C. was determined.
[0073]
2) 0.2C capacity test
Each secondary battery was charged at 620 mA, 4.2 V, 3 hours at 20 ° C., and after 10 minutes of rest, the discharge capacity at 124 mA, 3.0 V cutoff was determined.
[0074]
3) Test of battery thickness and capacity recovery after high temperature storage
Each secondary battery was charged at 620 mA, 4.2 V, 3 hours at 20 ° C., and after 10 minutes of rest, the discharge capacity (reference capacity) at 620 mA, 3.0 V cutoff was measured. Again, charging was performed at 20 ° C. at 620 mA, 4.2 V, and 3 hours. After measuring the battery thickness in this charged state, it was left in a constant temperature bath at 85 ° C. for 24 hours. The battery thickness after standing was measured, and the amount of battery swelling was determined from the difference from the battery thickness before leaving.
[0075]
Furthermore, discharging, charging, discharging (discharging conditions: 620 mA, 3.0 V cut-off, charging conditions: 620 mA, 4.2 V, 3 hours) were repeated, the final discharging capacity was measured, and the obtained discharging capacity was The capacity recovery rate was determined from the value (percentage; maintenance rate) when divided by the reference capacity.
[0076]
4) Test of battery thickness and capacity retention after 500 cycles
After repeating 500 cycles of charging and discharging (charging conditions; 620 mA, 4.2 V, 3 hours, discharging conditions; 620 mA, 3.0 V cutoff) at 20 ° C. under the conditions of 1.0 C / 1.0 C for each secondary battery. The battery thickness and the discharge capacity retention ratio (maintenance ratio relative to the initial discharge capacity) were determined.
[0077]
[Table 1]
Figure 0004371721
[0078]
As is apparent from Table 1, the nonaqueous electrolyte secondary batteries of Examples 1 to 3 are thinner than the nonaqueous electrolyte secondary battery of Comparative Example 1 in charging. Recognize.
[0079]
It can be seen that the nonaqueous electrolyte secondary batteries of Examples 1 to 3 have a 0.2C capacity that is not significantly different from the nonaqueous electrolyte secondary battery of Comparative Example 1, but is still large.
[0080]
In addition, the non-aqueous electrolyte secondary batteries of Examples 1 and 2 in which the storage (storage) conditions were 20 ° C. were compared with the amount of change in battery thickness (expansion amount) during storage at high temperatures without applying gas pressurization. It can be seen that it is smaller than the non-aqueous electrolyte secondary battery of Example 1. In addition, although the nonaqueous electrolyte secondary battery of Example 3 in which the storage (storage) condition was 40 ° C. was larger than the nonaqueous electrolyte secondary battery of Examples 1 and 2, It can be seen that the effect is smaller than that of the non-aqueous electrolyte secondary battery of Example 1.
[0081]
The non-aqueous electrolyte secondary batteries of Examples 1 to 3 have a higher capacity recovery rate during high-temperature storage than the non-aqueous electrolyte secondary battery of Comparative Example 1.
[0082]
Thus, it can be seen that the non-aqueous electrolyte secondary batteries of Examples 1 to 3 have improved initial characteristics as compared with the non-aqueous electrolyte secondary battery of Comparative Example 1.
[0083]
The amount of swelling after 500 cycles of charge / discharge is smaller in the non-aqueous electrolyte secondary battery of Examples 1 to 3 than in the non-aqueous electrolyte secondary battery of Comparative Example 1, and the battery thickness is reduced. I understand that I can do it. Regarding the capacity retention after 500 cycles, there is no significant difference between the non-aqueous electrolyte secondary battery of Examples 1 to 3 and the non-aqueous electrolyte secondary battery of Comparative Example 1, but it satisfies the rating. there were.
[0084]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to prevent swelling during initial and long-term charging / discharging, to have a set dimension, and to maintain a large discharge capacity during initial and long-term charging / discharging. A method for producing a nonaqueous electrolyte secondary battery and a nonaqueous electrolyte secondary battery can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a prismatic nonaqueous electrolyte secondary battery manufactured by the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Exterior member, 2 ... Metal bottomed rectangular cylindrical exterior can, 3 ... Injection hole, 4 ... Cover body, 6 ... Electrode body (electrode group), 7 ... Negative electrode, 8 ... Separator, 9 ... Positive electrode, 10 ... sealing lid, 13 ... negative electrode terminal.

Claims (2)

正極、負極およびセパレータで構成された電極群と非水電解液とを金属製の有底矩形筒状外装缶を有する外装部材内に収納した非水電解液二次電池の製造方法であって、
前記電極群および前記非水電解液が収納され、外部に開放された前記外装部材を3.6〜3.9Vの電圧条件で予備充電して発生したガスをその開放部から排出する工程と、
前記外装部材を封口した後、20〜40℃の雰囲気中に1日〜7日の間貯蔵する工程と、
貯蔵後の封口した外装部材をゲージ圧で0.1〜15MPaにてガス加圧し、さらに本充電する工程と
を含むことを特徴とする非水電解液二次電池の製造方法。
A method for producing a non-aqueous electrolyte secondary battery in which an electrode group composed of a positive electrode, a negative electrode, and a separator and a non-aqueous electrolyte is housed in an exterior member having a metal bottomed rectangular cylindrical outer can,
A step of pre-charging the exterior member in which the electrode group and the non-aqueous electrolyte are housed and opened to the outside under a voltage condition of 3.6 to 3.9 V and discharging gas generated from the open portion;
After sealing the exterior member, storing in an atmosphere of 20 to 40 ° C. for 1 to 7 days ;
A method for producing a non-aqueous electrolyte secondary battery, comprising the steps of: gas-pressing the sealed exterior member after storage at a gauge pressure of 0.1 to 15 MPa , and further performing main charging.
前記非水電解液は、前記予備充電前と、予備充電後で前記外装部材を封口する前との2回に分けて前記外装部材の前記外装管内に注液され、1回目は非水電解液の定格量の70〜85%に相当する量で電解液を前記外装管内に注液し、2回目は残りの量で電解液を前記外装管内に注液することを特徴とする請求項1記載の非水電解液二次電池の製造方法。The non-aqueous electrolyte is injected into the exterior tube of the exterior member in two times, before the preliminary charge and before the exterior member is sealed after the preliminary charge, and the first time is the non-aqueous electrolyte. 2. The electrolytic solution is injected into the outer tube in an amount corresponding to 70 to 85% of the rated amount, and the remaining amount of the electrolytic solution is injected into the outer tube in the second time. Of manufacturing a non-aqueous electrolyte secondary battery.
JP2003192100A 2003-07-04 2003-07-04 Method for producing non-aqueous electrolyte secondary battery Expired - Fee Related JP4371721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192100A JP4371721B2 (en) 2003-07-04 2003-07-04 Method for producing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192100A JP4371721B2 (en) 2003-07-04 2003-07-04 Method for producing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005026145A JP2005026145A (en) 2005-01-27
JP4371721B2 true JP4371721B2 (en) 2009-11-25

Family

ID=34189495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192100A Expired - Fee Related JP4371721B2 (en) 2003-07-04 2003-07-04 Method for producing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4371721B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599051B2 (en) * 2003-11-11 2010-12-15 株式会社東芝 Square non-aqueous electrolyte secondary battery
JP5046352B2 (en) * 2005-04-06 2012-10-10 日立マクセルエナジー株式会社 Method for producing lithium ion secondary battery
JP5157062B2 (en) * 2005-12-07 2013-03-06 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
KR100793010B1 (en) * 2007-02-16 2008-01-08 에스케이에너지 주식회사 Fabrication of lithium secondary battery
EP3373365B1 (en) 2011-02-18 2019-10-02 Kabushiki Kaisha Toshiba Electrode for non-aqueous electrolyte secondary battery
KR101837586B1 (en) * 2013-10-31 2018-03-12 주식회사 엘지화학 Manufacturing method of lithium secondary battery and lithium secondary battery formed therefrom
JP6107606B2 (en) * 2013-11-05 2017-04-05 株式会社豊田自動織機 Method for manufacturing power storage device
WO2016132444A1 (en) * 2015-02-16 2016-08-25 日産自動車株式会社 Lithium ion secondary battery production method and lithium ion secondary battery
JP6876365B2 (en) * 2015-05-15 2021-05-26 株式会社Gsユアサ Power storage element

Also Published As

Publication number Publication date
JP2005026145A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
US20090280411A1 (en) Positive electrode, production method thereof, and lithium secondary battery using the same
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP4383781B2 (en) Battery manufacturing method
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP4371721B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP4690643B2 (en) Nonaqueous electrolyte secondary battery
WO2002073731A1 (en) Battery
JP4342258B2 (en) Electrode, nonaqueous electrolyte secondary battery, and method for producing nonaqueous electrolyte secondary battery
JP3475530B2 (en) Non-aqueous electrolyte secondary battery
KR20210092217A (en) Anode material for lithium ion secondary batteries, manufacturing method of negative electrode material for lithium ion secondary batteries, negative electrode material slurry for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
KR101977973B1 (en) Negative electrode for fast charging, battery comprising the same and fabricating methods thereof
JP4351858B2 (en) Nonaqueous electrolyte secondary battery
JP4686131B2 (en) Nonaqueous electrolyte secondary battery
JP2005085627A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2017183256A (en) Nonaqueous electrolyte secondary battery
JP2010080116A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP4599051B2 (en) Square non-aqueous electrolyte secondary battery
JP4585229B2 (en) Nonaqueous electrolyte secondary battery
JP4559763B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005032688A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees