JP4371538B2 - Base-isolated building structure - Google Patents

Base-isolated building structure Download PDF

Info

Publication number
JP4371538B2
JP4371538B2 JP2000157729A JP2000157729A JP4371538B2 JP 4371538 B2 JP4371538 B2 JP 4371538B2 JP 2000157729 A JP2000157729 A JP 2000157729A JP 2000157729 A JP2000157729 A JP 2000157729A JP 4371538 B2 JP4371538 B2 JP 4371538B2
Authority
JP
Japan
Prior art keywords
ceiling
seismic isolation
wall
base
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000157729A
Other languages
Japanese (ja)
Other versions
JP2001336301A (en
Inventor
顯信 高畑
智昭 遠藤
典男 櫻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2000157729A priority Critical patent/JP4371538B2/en
Publication of JP2001336301A publication Critical patent/JP2001336301A/en
Application granted granted Critical
Publication of JP4371538B2 publication Critical patent/JP4371538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上部構造部と下部構造部との間に、それらの相対横揺れエネルギーを吸収自在な免震装置を介装させてある免震階を設け、前記上部構造部、及び、前記下部構造部の室内側部分に室内仕上げ部を設けてある免震建物構造に関する。
【0002】
【従来の技術】
一般的な建物においては、壁部は、柱と一体的に形成してあると共に、天井部は、天井スラブに支持(所定間隔で天井スラブに固定された複数の吊り金具でそれぞれの箇所を支持)させてあり、更には、壁部と天井部とも一体的に連結されているわけであるが、免震建物においては、免震装置を境としてそれより上方の上部構造部と、それより下方の下部構造部とが、相対的に横移動することが前提であり、地震等の発生により上下の構造部が相対横揺れを起こした場合、前記壁部と天井部も相対横揺れを起こし、相互の干渉によって破壊してしまう危険性がある。
従って、従来のこの種の免震建物構造の一つ(以後、単に第一の従来技術という)としては、上下の構造部が相対横揺れを起こしても、壁部と天井部とが異なった動きをしないように、図に示すように、壁部8Bも天井部8Aも、共に下部構造部Jdに固定してあるものがあった。
また、これとは異なった従来の免震建物構造(以後、単に第二の従来技術という)としては、図10に示すように、前記第一の従来技術における天井部8Aを、天井スラブSuから吊り下げた複数の支持材30で支持し、その支持点に、支持材30と天井部8Aとの相対横移動を許容するスライド機構31を介在させてあるものがあった(特開平11−62094号公報参照)。
【0003】
【発明が解決しようとする課題】
上述した第一の従来技術によれば、天井部そのものは、両端部分を壁部で支持されるから、その際の支持スパンは、天井部の全幅となり、上述した一般的な建物の場合と比べて非常に大きくなる。従って、天井部そのものを、大きな梁材等で支持して強度アップを図る必要があり、合わせて、強化によって重くなった天井部を支持する壁部についても強化が必要となる。その結果、天井部や壁部の部材が大型化し、室内空間の確保率が低下すると共に、部材コストが増加するといった問題点がある。
一方、上述した第二の従来技術によれば、天井部は、天井スラブから吊り下げられた複数の支持材で支持されているから、天井部を特別に補強する必要はないものの、前記スライド機構を、各支持点毎に設けなければならない。
前記スライド機構は、天井部の支持強度を確保しながら天井面内方向でのあらゆる方向に沿って横移動できるもので無ければならないから、その構造が複雑になって部材コストが高くつき易い。更には、前記スライド機構は、各支持点の数に相当する個数をそろえて夫々取り付ける必要があり、手間と時間が掛かって、全体的な建築コストの増加につながりやすい問題点がある。
【0004】
従って、本発明の目的は、上記問題点を解消し、免震機能を発揮できながら、天井部や壁部の構造を簡単なものに構成できる免震建物構造を提供するところにある。
【0005】
【課題を解決するための手段】
請求項1の発明の特徴構成は、図6〜に例示するごとく、上部構造部Juと下部構造部Jdとの間に、それらの相対横揺れエネルギーを吸収自在な免震装置3を介装させてある免震階Tを設け、前記上部構造部Ju、及び、前記下部構造部Jdの室内側部分に室内仕上げ部8を設けてある免震建物構造において、前記室内仕上げ部8を、前記上部構造部Juに形成した天井部8Aと、前記下部構造部Jdに形成した壁部8Bとで構成し、前記天井部8Aと前記壁部8Bとの取り合い部は、前記壁部の側方に隙間をあけて前記天井部の端部を配置して相対横移動自在に構成し、前記壁部から天井面に沿って室内側に突出する突出部を、その下面が前記天井部の天井板と摺接する状態に設け、前記突出部の突出寸法を前記隙間の寸法以上に形成してあるところにある。
【0006】
請求項1の発明の特徴構成によれば、前記天井部と前記壁部とを、相互の取り合い部において相対横移動自在に形成してあるから、例えば地震発生によって、天井部と壁部とが相対的に横移動しても、相互が干渉し合って破損すると言ったことを防止することが可能となる(以後、干渉防止作用という)。一方、前記天井部は、上部構造部に、壁部は、下部構造部に夫々設けられているから、前記干渉防止作用を叶えることができながら、支持構造は、従来と同様の形態をとることが可能となる。即ち、天井部は、上部構造部に所定間隔で固定された複数の支持材(例えば、吊り金具)で短い支持スパンに区切ってそれぞれの箇所を支持することができ、且つ、壁部は、そのもの単独で下部構造部に取り付けることができ、天井部の荷重を全面的に支持しなくてもよくなる。
その結果、天井部も壁部も共に特別な補強を施さなくてもよくなり、補強に関わる手間や材料等を省略できることによるコストダウンを叶えることができるようになる。従って、免震機能を発揮できながら、天井部や壁部の構造を簡単なものに構成でき、建物全体とした免震機能の維持と、コストダウンとを叶えることが可能となる。
【0008】
また、上部構造部と下部構造部との相対横移動に伴う天井部と壁部とのずれを、前記隙間内で許容することが可能となる。また、前記隙間そのものが、平凡となり易い天井部のデザインに変化を付けることが可能となり、美観性の向上を図ることが可能となる。
また、前記突出部と天井板とを摺接自在な状態に配置してあることによって、天井裏空間と室内空間とを、確実に遮断することが可能となり、天井部と壁部との取り合い部を通した音漏れや、埃の落下等を緩和することが可能となる。
【0009】
請求項の発明の特徴構成は、図8に例示するごとく、前記突出部20の上に被さって、前記突出部20と前記天井板9との合わせ目を被うカバー部17を、前記天井部8Aに設けてあるところにある。
【0010】
請求項の発明の特徴構成によれば、請求項1の発明による作用効果を叶えることができるのに加えて、前記取り合い部を構成するのに、カバー部と天井板とで前記突出部を挟む状態の構造をとることができ、前記取り合い部を通した音漏れや、埃の落下等を、より防止し易くなる。
【0011】
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。
【0013】
図1〜2は、本発明の免震建物構造を取り入れてある建物Aを示すものであり、この建物Aは、建物完成後に、建物の使用状態を維持しながら、並行して柱の中間部に免震装置3を設置して免震化を図ってある(所謂、居ながら免震)ものである。
前記建物Aは、地下一階、地上八階、塔屋三階からなる鉄骨鉄筋コンクリート構造で構成され、横揺れエネルギーを吸収自在な免震階Tを地上一階層F1に設けてある。これは、上述の通り、建物の使用状態を維持するために、免震化工事を地上一階層F1で集中的に実施し、他階層においては、工事中も通常通り使用できるようにするために設定されている。
又、建物Aは、全階層を通じて複数の柱P・梁B・スラブSからなる建物構造部1の外周部に、プレキャストの外壁パネル2を取り付けて構成してある。
【0014】
前記免震階Tを除く他の階層は、通常設計による柱(以後、一般柱という)P1を、平面図における横列と縦列との交点に配して構成してあり、最外列に配置してある各柱に沿わせて前記外壁パネル2が配置してある。
【0015】
前記免震階Tについては、各柱の配置は他の階層と同様であるが、柱の構成を異ならせて地震の横揺れエネルギーを吸収できるように構成してある。
具体的には、最外列に位置する柱以外の柱(以後、免震柱という)P2は、前記一般柱P1より高強度に形成してあると共に、長手方向の中間部に免震装置3を介在させてある。
そして、最外列に位置する柱(以後、増強柱という)P3は、図3に示すように、前記一般柱P1と同様の柱の外周部に低降伏点鋼材を囲繞して一体化を図り、靱性の増強を図ってある。
【0016】
前記免震装置3は、図4に示すように、金属製薄板3aとゴム製薄板3bとを交互に積層させて一体化し、夫々の薄板3a・3bどうしが横方向に層間変位自在に形成してあることによって、前記免震柱P2の上端部と下端部との横方向相対移動に抵抗しながら追従し、免震効果を発揮できるように構成してあるものである。尚、前記各薄板3a・3bの中央部には、夫々を貫通する状態に鉛製の棒状体3cを設けてあり、前記各薄板3a・3bの層間変位に対するダンパー効果をより増強できるように構成してある。また、上下端部には、免震装置胴部分より一回り大きな金属製端面フランジ部3dを一体的に設けてある。この端面フランジ部3dの縁部には、柱体へのボルト固定のためのボルト挿通孔3eを、複数設けてある。
前記免震装置3を介在させてある部分を免震部4という(図6参照)。
【0017】
前記免震柱P2は、図5に示すように、元々、上下に連続した柱Pを、前記免震装置3を設置しようとする部分(前記免震部4)を切断除去し、免震部4より上に残った上柱Puと、免震部4より下に残った下柱Pdとに分断し、その免震部4に免震装置3を取り付けて構成してある。
従って、免震階Tにおいては、地震等による横揺れによって、前記免震装置3を境として、それより上方に位置する上柱Pu・梁Bu・天井スラブSu(以上の構成は上部構造部Juに相当)と、免震装置3より下方に位置する下柱Pd・梁Bd・床スラブSd(以上の構成は下部構造部Jdに相当)とが相対的に横移動し、横揺れエネルギーの緩和・吸収を図ることができるものである。
因みに、前記免震装置3は、上柱Puの下端部5、及び、下柱Pdの上端部6に、夫々、嵌合状態に取り付けられた金属製の有底筒7を介して取り付けられている。
【0018】
また、前記上部構造部Ju、及び、前記下部構造部Jdの室内側部分には、図6に示すように、室内仕上げ部8を設けてある。
前記室内仕上げ部8は、前記上部構造部Juに支持された状態に形成した天井部8Aと、前記下部構造部Jdに取り付けられた壁部8Bとで構成してある。
【0019】
前記天井部8Aは、天井板9と、チャンネル材を格子状に組み付けて天井板9を取り付けられるように構成した下地フレーム10と、前記下地フレーム10を天井スラブSuに吊り下げ支持する吊り金具11とを備えて構成してある。従って、一体的に取り付けられた吊り金具11・下地フレーム10・天井板9は、横揺れの際、天井スラブSu等の上部構造部Juと一体的に動く。
【0020】
前記壁部8Bは、壁板12と、壁板を取り付けられるように構成した下地フレーム13とを備えて構成してある。そして、壁板12は、下地フレーム13に取り付けてあると共に、前記下地フレーム13は、梁Bd上に一体的に設けられた耐震壁Wに取付支持してある。従って、下地フレーム13・壁板12は、横揺れの際、前記梁Bd等の下部構造部Jdと一体的に動く。
【0021】
また、前記天井部8Aと前記壁部8Bとは、相互の取り合い部14において相対横移動自在に形成してある。
具体的には、図7に示すように、壁部8Bの表面にL型アングル部材15を取り付けてあり、前記天井板9は、前記L型アングル部材15の2辺の内、天井面に沿って室内側に突出している方の辺部分15a(突出部20に相当)の下面に摺接自在な状態に配置してある。そして、前記天井板9の端部と、前記壁部8B表面との間に、前記辺部分15aの突出寸法以下(好ましくは突出寸法未満)の寸法の隙間16を形成してある。
従って、横揺れによって、前記上部構造部Juと下部構造部Jdとが相対的に横移動した場合、夫々に固定してある天井板9と壁板12とは、相対的に横移動することが可能となり、相互が干渉し合って破壊するのを防止することが可能となる。
本実施形態の建物においては、前記免震階Tに免震柱P2と増強柱P3とを併用してあることによって、地震時の横揺れを小さく抑えながら且つ免震を図ることが可能となるので、前記隙間16の幅寸法も、それに応じて小さな寸法に設定することができ、室内側美観性の向上を図ることができるものである。
【0022】
〔別実施形態〕
以下に他の実施の形態を説明する。
【0023】
〈1〉 前記建物は、先の実施形態で説明した鉄骨鉄筋コンクリート構造に限るものではなく、例えば、鉄筋コンクリート造や鉄骨造や鋼管コンクリート造であってもよい。
柱の配置についても、先の実施形態で説明した矩形配置に限るものではない。そして、免震階Tにおける柱Pの構成は、先の実施形態で説明したように増強柱P3と免震柱P2との併用に限定されるものでなく、例えば、免震柱P2単独であったり、免震柱P2と一般柱P1との併用であってもよい。
〈2〉 免震階Tは、地上一階層F1に設けられるものに限るものではなく、それ以外の階層に設けてあってもよい。
〈3〉 前記免震装置3は、先の実施形態で説明したように、金属製薄板3aとゴム製薄板3bとを交互に積層させて一体化した構成のものに限らず、鉛ダンパーや、オイルダンパー等によって構成してあるものであってもよく、それらを総称して、免震装置という。また、免震装置3の取付位置は、柱Pの上端部分に設定してあるものに限らず、柱Pの中間部分や下端部分に設定してあってもよい。
〈4〉 前記突出部20は、先の実施形態で説明したように壁部8Bに取り付けたL型アングル部材15の辺部分15aによって構成してあるものに限らず、壁部8Bの一部を、天井面に沿って室内側に突出する状態に形成し、その部分8Baをもって突出部20とする構成であってもよい。
また、図8に示すように、前記突出部20の上に被さって、前記突出部20と前記天井板9との合わせ目を被うカバー部17を、前記天井部8Aに設けてあってもよく、この実施形態によれば、前記取り合い部14の密閉性を向上させることが可能となり、取り合い部14を通した音漏れの防止や、取り合い部14から埃が落下するのを防止することが可能となる
【図面の簡単な説明】
【図1】 建物を示す断面図
【図2】 建物の免震階の平面図
【図3】 増強柱の要部を示す一部切欠き斜視図
【図4】 免震装置の要部を示す一部切欠き斜視図
【図5】 免震装置の取付説明図
【図6】 室内仕上げ部を示す説明図
【図7】 取り合い部を示す詳細断面図
【図8】 別実施形態の取り合い部を示す詳細断面
【図】 従来の建物の要部を示す側面視断面図
【図10】 従来の建物の要部を示す側面視断面図
【符号の説明】
3 免震装置
8 室内仕上げ部
8A 天井部
8B 壁部
9 天井板
14 取り合い部
16 隙間
17 カバー部
20 突出部
Ju 上部構造部
Jd 下部構造部
T 免震階
[0001]
BACKGROUND OF THE INVENTION
According to the present invention, a seismic isolation floor is provided between an upper structure portion and a lower structure portion, and a seismic isolation device that can absorb the relative rolling energy of the upper structure portion and the lower structure portion is provided. The present invention relates to a base-isolated building structure in which an indoor finishing portion is provided on the indoor side portion of the structure portion.
[0002]
[Prior art]
In a typical building, the wall part is formed integrally with the pillar, and the ceiling part is supported by the ceiling slab (each part is supported by a plurality of suspension fittings fixed to the ceiling slab at predetermined intervals) Furthermore, the wall part and the ceiling part are also integrally connected. However, in a base-isolated building, the upper structure part above and below the base part is separated by the base part. It is a premise that the lower structure part is relatively laterally moved, and when the upper and lower structure parts cause a relative roll due to the occurrence of an earthquake or the like, the wall part and the ceiling part also cause a relative roll, There is a risk of destruction due to mutual interference.
Therefore, as one of the conventional seismic isolation buildings of this type (hereinafter simply referred to as the first prior art), even if the upper and lower structural parts cause relative rolls, the wall part and the ceiling part are different. In order not to move, as shown in FIG. 9 , both the wall portion 8B and the ceiling portion 8A are fixed to the lower structure portion Jd.
Further, as a conventional seismic isolation building structure (hereinafter simply referred to as the second prior art) different from this, as shown in FIG. 10 , the ceiling portion 8A in the first prior art is separated from the ceiling slab Su. There is one that is supported by a plurality of suspended support members 30, and a slide mechanism 31 that allows relative lateral movement between the support member 30 and the ceiling portion 8A is interposed at the support point (Japanese Patent Laid-Open No. 11-62094). No. publication).
[0003]
[Problems to be solved by the invention]
According to the first prior art described above, since the ceiling itself is supported by the wall at both ends, the support span at that time is the full width of the ceiling, compared to the case of the general building described above. Become very large. Therefore, it is necessary to increase the strength by supporting the ceiling itself with a large beam material, and in addition, it is necessary to strengthen the wall portion that supports the ceiling portion that has become heavy due to the reinforcement. As a result, there are problems that the members of the ceiling and the wall are increased in size, the securing ratio of the indoor space is reduced, and the member cost is increased.
On the other hand, according to the second prior art described above, since the ceiling portion is supported by a plurality of support members suspended from the ceiling slab, there is no need to reinforce the ceiling portion, but the slide mechanism Must be provided for each support point.
Since the slide mechanism must be able to move laterally along all directions in the ceiling surface while securing the support strength of the ceiling, the structure is complicated and the member cost is likely to be high. Furthermore, it is necessary to arrange the slide mechanism in a number corresponding to the number of each support point, and there is a problem that it takes time and labor and tends to increase the overall construction cost.
[0004]
Accordingly, an object of the present invention is to provide a base-isolated building structure in which the above-mentioned problems can be solved and the structure of the ceiling portion and the wall portion can be simplified while the base-isolation function can be exhibited.
[0005]
[Means for Solving the Problems]
As shown in FIGS. 6 to 8 , the characteristic configuration of the invention of claim 1 is provided with a seismic isolation device 3 capable of absorbing the relative rolling energy between the upper structure portion Ju and the lower structure portion Jd. In the base-isolated building structure in which the seismic isolation floor T is provided and the indoor finishing portion 8 is provided in the indoor side portion of the upper structure portion Ju and the lower structure portion Jd, the indoor finishing portion 8 is The ceiling portion 8A formed on the upper structure portion Ju and the wall portion 8B formed on the lower structure portion Jd are configured, and the joint portion between the ceiling portion 8A and the wall portion 8B is located on the side of the wall portion. An end portion of the ceiling portion is arranged with a gap therebetween, and is configured to be relatively laterally movable, and a projecting portion that protrudes indoors along the ceiling surface from the wall portion has a lower surface that is a ceiling plate of the ceiling portion. Provided in slidable contact state, forming the protrusion dimension of the protrusion more than the gap dimension There is where it is.
[0006]
According to the characteristic configuration of the invention of claim 1, the ceiling and the wall are formed so as to be relatively laterally movable at each other's joint portion. Even if they move relatively side by side, it is possible to prevent them from interfering with each other and being damaged (hereinafter referred to as interference preventing action). On the other hand, since the ceiling part is provided in the upper structure part and the wall part is provided in the lower structure part, the support structure can take the same form as the conventional one while achieving the interference preventing function. Is possible. That is, the ceiling part can be divided into short support spans by a plurality of support members (for example, hanging brackets) fixed to the upper structure part at predetermined intervals, and each part can be supported, and the wall part itself It can be attached to the lower structure alone, and the load on the ceiling need not be fully supported.
As a result, both the ceiling and the wall need not be specially reinforced, and it is possible to achieve cost reduction by eliminating the labor and materials involved in the reinforcement. Therefore, the structure of the ceiling part and the wall part can be made simple while exhibiting the seismic isolation function, and the maintenance of the seismic isolation function of the entire building and the cost reduction can be realized.
[0008]
Also, the deviation between the ceiling and the wall portion due to relative lateral movement between the upper portion structure and the lower structure unit, it is possible to tolerate in the gap. In addition, the gap itself can change the design of the ceiling part that tends to be mediocre, and it is possible to improve the aesthetics.
In addition, by arranging the projecting portion and the ceiling plate in a slidable contact state, it is possible to reliably block the ceiling back space and the indoor space, and the joint portion between the ceiling portion and the wall portion. It is possible to alleviate sound leakage through the filter and falling dust.
[0009]
As illustrated in FIG. 8, the characteristic configuration of the second aspect of the invention is that the cover portion 17 that covers the projecting portion 20 and the ceiling plate 9 is covered with the cover portion 17 that covers the projecting portion 20. It is located in the part 8A.
[0010]
According to the characteristic configuration of the invention of claim 2 , in addition to being able to achieve the function and effect of the invention of claim 1, in order to constitute the joint portion, the cover portion and the ceiling plate are provided with the protrusion portion. It is possible to adopt a sandwiched structure, and it is easier to prevent sound leakage through the joint portion, dust falling, and the like.
[0011]
In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.
[0013]
FIGS. 1 and 2 show a building A incorporating the seismic isolation building structure of the present invention. This building A maintains the use state of the building after the building is completed, and in parallel with the middle part of the column. The seismic isolation device 3 is installed in the seismic isolation system (so-called seismic isolation while living).
The building A is composed of a steel reinforced concrete structure consisting of a first basement floor, an eighth floor above ground, and a third floor tower, and a seismic isolation floor T capable of absorbing roll energy is provided on the first floor F1. As mentioned above, in order to maintain the state of use of the building, the seismic isolation work is concentrated on the ground level F1 so that other levels can be used as usual during construction. Is set.
The building A is configured by attaching a precast outer wall panel 2 to the outer peripheral portion of the building structure portion 1 composed of a plurality of pillars P, beams B, and slabs S throughout the entire hierarchy.
[0014]
The other layers excluding the seismic isolation floor T are configured by arranging pillars P1 by normal design (hereinafter referred to as general pillars) at the intersections of the rows and columns in the plan view, and arranged in the outermost row. The outer wall panel 2 is arranged along each pillar.
[0015]
As for the seismic isolation floor T, the arrangement of the columns is the same as that of the other layers, but the structure of the columns is made different so that the roll energy of the earthquake can be absorbed.
Specifically, the columns P2 other than the columns located in the outermost row (hereinafter referred to as seismic isolation columns) P2 are formed with higher strength than the general columns P1, and the seismic isolation device 3 is provided in the middle in the longitudinal direction. Is interposed.
As shown in FIG. 3, the column P3 located in the outermost row (hereinafter referred to as a strengthening column) P1 is integrated by surrounding a low yield point steel material on the outer periphery of the column similar to the general column P1. The toughness is increased.
[0016]
As shown in FIG. 4, the seismic isolation device 3 is formed by alternately laminating metal thin plates 3a and rubber thin plates 3b so that the thin plates 3a and 3b are formed so as to be capable of inter-layer displacement in the lateral direction. Therefore, it is configured such that it can follow the lateral movement of the upper and lower ends of the seismic isolation column P2 while resisting the lateral movement, and exhibit the seismic isolation effect. In addition, the rod-shaped body 3c made from lead is provided in the state which penetrates each thin plate 3a * 3b, and it is comprised so that the damper effect with respect to the interlayer displacement of each said thin plate 3a * 3b can be strengthened more. It is. In addition, the upper and lower end portions are integrally provided with a metal end face flange portion 3d that is slightly larger than the seismic isolation device body portion. A plurality of bolt insertion holes 3e for fixing bolts to the column body are provided at the edge of the end face flange portion 3d.
A portion where the seismic isolation device 3 is interposed is referred to as a seismic isolation portion 4 (see FIG. 6).
[0017]
As shown in FIG. 5, the seismic isolation column P2 originally has a column P that is vertically continuous by cutting and removing a portion (the seismic isolation unit 4) where the seismic isolation device 3 is to be installed. The upper pillar Pu remaining above 4 and the lower pillar Pd remaining below the seismic isolation part 4 are divided, and the seismic isolation device 3 is attached to the seismic isolation part 4.
Accordingly, in the seismic isolation floor T, the upper pillar Pu, the beam Bu, and the ceiling slab Su located above the seismic isolation device 3 from the seismic isolation device 3 due to rolling due to an earthquake or the like (the above configuration is the upper structure portion Ju And the lower pillar Pd, beam Bd, and floor slab Sd (the above configuration corresponds to the lower structure portion Jd) located below the seismic isolation device 3 are relatively moved laterally to reduce the rolling energy.・ It can absorb.
Incidentally, the said seismic isolation apparatus 3 is attached to the lower end part 5 of the upper pillar Pu, and the upper end part 6 of the lower pillar Pd via the metal bottomed cylinder 7 attached to the fitting state, respectively. Yes.
[0018]
Moreover, as shown in FIG. 6, the indoor finishing part 8 is provided in the indoor side part of the said upper structure part Ju and the said lower structure part Jd.
The indoor finishing portion 8 is composed of a ceiling portion 8A formed so as to be supported by the upper structure portion Ju and a wall portion 8B attached to the lower structure portion Jd.
[0019]
The ceiling portion 8A includes a ceiling plate 9, a base frame 10 configured to attach the ceiling plate 9 by assembling channel members in a lattice shape, and a hanging metal fitting 11 that supports the base frame 10 by suspending it from the ceiling slab Su. And is configured. Accordingly, the hanging metal fitting 11, the base frame 10, and the ceiling plate 9 that are integrally attached move integrally with the upper structure portion Ju such as the ceiling slab Su when rolling.
[0020]
The wall portion 8B includes a wall plate 12 and a base frame 13 configured so that the wall plate can be attached thereto. The wall plate 12 is attached to the base frame 13, and the base frame 13 is attached to and supported by a seismic wall W integrally provided on the beam Bd. Therefore, the base frame 13 and the wall plate 12 move integrally with the lower structure portion Jd such as the beam Bd when rolling.
[0021]
Further, the ceiling portion 8A and the wall portion 8B are formed so as to be relatively laterally movable at the mutual joint portion 14.
Specifically, as shown in FIG. 7, an L-shaped angle member 15 is attached to the surface of the wall portion 8 </ b> B, and the ceiling plate 9 extends along the ceiling surface of the two sides of the L-shaped angle member 15. The side portion 15a (corresponding to the protruding portion 20) that protrudes toward the indoor side is slidably contacted with the lower surface. And the clearance gap 16 of the dimension below the protrusion dimension of the said side part 15a (preferably less than a protrusion dimension) is formed between the edge part of the said ceiling board 9, and the said wall part 8B surface.
Therefore, when the upper structure portion Ju and the lower structure portion Jd relatively move sideways due to rolling, the ceiling plate 9 and the wall plate 12 fixed to each other can relatively move sideways. This makes it possible to prevent mutual interference and destruction.
In the building of the present embodiment, the seismic isolation column P2 and the reinforcing column P3 are used in combination on the seismic isolation floor T, so that it is possible to achieve seismic isolation while minimizing rolls during an earthquake. Therefore, the width dimension of the gap 16 can be set to a small dimension accordingly, and the indoor aesthetics can be improved.
[0022]
[Another embodiment]
Other embodiments will be described below.
[0023]
<1> The building is not limited to the steel reinforced concrete structure described in the previous embodiment, and may be, for example, a reinforced concrete structure, a steel frame structure, or a steel pipe concrete structure.
The arrangement of the pillars is not limited to the rectangular arrangement described in the previous embodiment. And the structure of the pillar P in the seismic isolation floor T is not limited to the combined use of the reinforcement pillar P3 and the seismic isolation pillar P2 as described in the previous embodiment. Or a combination of the seismic isolation column P2 and the general column P1.
<2> The seismic isolation floor T is not limited to that provided in the ground level F1, and may be provided in other levels.
<3> As described in the previous embodiment, the seismic isolation device 3 is not limited to a configuration in which the metal thin plates 3a and the rubber thin plates 3b are alternately stacked and integrated, but a lead damper, An oil damper or the like may be used, and these are collectively referred to as a seismic isolation device. In addition, the mounting position of the seismic isolation device 3 is not limited to that set at the upper end portion of the column P, and may be set at the middle portion or the lower end portion of the column P.
<4> The protruding portion 20 is not limited to the one formed by the side portion 15a of the L-shaped angle member 15 attached to the wall portion 8B as described in the previous embodiment, and a part of the wall portion 8B is formed. Further, it may be formed so as to protrude indoors along the ceiling surface, and the portion 8Ba as the protruding portion 20 may be used.
Further, as shown in FIG. 8, a cover portion 17 may be provided on the ceiling portion 8 </ b> A so as to cover the projection portion 20 and cover the joint of the projection portion 20 and the ceiling plate 9. Well, according to this embodiment, it becomes possible to improve the sealing property of the joint part 14, and it is possible to prevent sound leakage through the joint part 14 and prevent dust from falling from the joint part 14. It becomes possible .
[Brief description of the drawings]
[Fig. 1] Cross-sectional view of the building [Fig. 2] Plan view of the building's seismic isolation floor [Fig. 3] Partially cutaway perspective view showing the main part of the reinforcement pillar [Fig. 4] Shows the main part of the seismic isolation device Partial cutaway perspective view [FIG. 5] Installation explanatory view of seismic isolation device [FIG. 6] Explanatory view showing interior finish part [FIG. 7] Detailed cross-sectional view showing joint part [FIG. 8] The joint part of another embodiment Detailed cross-sectional view shown [FIG. 9 ] Cross-sectional side view showing main parts of a conventional building [FIG. 10 ] Cross-sectional side view showing main parts of a conventional building [Explanation of symbols]
3 Seismic isolation device 8 Indoor finishing part 8A Ceiling part 8B Wall part 9 Ceiling plate 14 Joint part 16 Gap 17 Cover part 20 Projection part Ju Upper structure part Jd Lower structure part T Seismic isolation floor

Claims (2)

上部構造部と下部構造部との間に、それらの相対横揺れエネルギーを吸収自在な免震装置を介装させてある免震階を設け、前記上部構造部、及び、前記下部構造部の室内側部分に室内仕上げ部を設けてある免震建物構造であって、
前記室内仕上げ部を、前記上部構造部に形成した天井部と、前記下部構造部に形成した壁部とで構成し、前記天井部と前記壁部との取り合い部は、前記壁部の側方に隙間をあけて前記天井部の端部を配置して相対横移動自在に構成し、前記壁部から天井面に沿って室内側に突出する突出部を、その下面が前記天井部の天井板と摺接する状態に設け、前記突出部の突出寸法を前記隙間の寸法以上に形成してある免震建物構造。
Between the upper structure part and the lower structure part, a seismic isolation floor in which a seismic isolation device capable of absorbing the relative roll energy is provided is provided, and the upper structure part and the chamber of the lower structure part are provided. It is a base-isolated building structure with an interior finishing part on the inner part,
The indoor finishing portion is composed of a ceiling portion formed in the upper structure portion and a wall portion formed in the lower structure portion, and a joint portion between the ceiling portion and the wall portion is a side of the wall portion. An end portion of the ceiling portion is disposed with a gap in between, and is configured to be relatively laterally movable, and a projecting portion that projects from the wall portion to the indoor side along the ceiling surface has a lower surface that is a ceiling plate of the ceiling portion. A base-isolated building structure which is provided in a state where it slides in contact with each other and has a protruding dimension of the protruding part larger than the dimension of the gap .
前記突出部の上に被さって、前記突出部と前記天井板との合わせ目を被うカバー部を、前記天井部に設けてある請求項に記載の免震建物構造。The overlaying on top of the projecting portion, the seismic isolation building structure according to claim 1, the cover portion covering the joint between the said projecting portion top plate, is provided on the ceiling.
JP2000157729A 2000-05-29 2000-05-29 Base-isolated building structure Expired - Fee Related JP4371538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157729A JP4371538B2 (en) 2000-05-29 2000-05-29 Base-isolated building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157729A JP4371538B2 (en) 2000-05-29 2000-05-29 Base-isolated building structure

Publications (2)

Publication Number Publication Date
JP2001336301A JP2001336301A (en) 2001-12-07
JP4371538B2 true JP4371538B2 (en) 2009-11-25

Family

ID=18662311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157729A Expired - Fee Related JP4371538B2 (en) 2000-05-29 2000-05-29 Base-isolated building structure

Country Status (1)

Country Link
JP (1) JP4371538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427830B2 (en) 2009-06-24 2016-08-30 Nippon Steel & Sumikin Materials Co., Ltd. Copper alloy bonding wire for semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427830B2 (en) 2009-06-24 2016-08-30 Nippon Steel & Sumikin Materials Co., Ltd. Copper alloy bonding wire for semiconductor

Also Published As

Publication number Publication date
JP2001336301A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR20110121309A (en) The friction damper for the earthquake-proof
KR101211145B1 (en) Multi-Story Coupled Seismic Energy Dissipation System with Displacement Amplification
JP4848253B2 (en) Building
JP4371538B2 (en) Base-isolated building structure
JP2014111864A (en) Beam reinforcing member and installation structure of stud in existing building
JP2008133660A5 (en)
JP4287984B2 (en) Base-isolated building structure
JP5106878B2 (en) Seismic isolation structure
JP5059687B2 (en) Building seismic control structure
JP6688856B2 (en) Vibration control structure
JP2001207675A (en) Damping construction method incorporating damping structure and damping device
JP4994009B2 (en) Buildings with steel frame vibration control frames
JPH11152905A (en) Earthquake resistant reinforcing method for existing building and earthquake resistant reinforcing structure
JPH1046864A (en) Vibration-isolation building
JP2001200654A (en) Vibration control building
KR101133177B1 (en) Multi-Story Coupled Seismic Energy Dissipation System with Displacement Amplification
JP2009019409A (en) Prefabricated building
CN215670237U (en) Prefabricated vibration-proof device of structural joint
JP2000064653A (en) Vibration control structure
JP4099418B2 (en) Seismic reinforcement method for existing buildings
JP2009052199A (en) Building
JP4565318B2 (en) Damping structure
JP3721499B2 (en) Seismic reinforcement structure
JP2004137692A (en) Base-isolating device
KR101133178B1 (en) Multi-Story Coupled Seismic Energy Dissipation System with Displacement Amplification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees