JP4371401B2 - Method and apparatus for adjusting pitch of coil spring forming machine - Google Patents

Method and apparatus for adjusting pitch of coil spring forming machine Download PDF

Info

Publication number
JP4371401B2
JP4371401B2 JP2003107338A JP2003107338A JP4371401B2 JP 4371401 B2 JP4371401 B2 JP 4371401B2 JP 2003107338 A JP2003107338 A JP 2003107338A JP 2003107338 A JP2003107338 A JP 2003107338A JP 4371401 B2 JP4371401 B2 JP 4371401B2
Authority
JP
Japan
Prior art keywords
pitch
coil spring
value
data
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003107338A
Other languages
Japanese (ja)
Other versions
JP2004314082A (en
Inventor
拓生 水野
恵司 長谷川
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP2003107338A priority Critical patent/JP4371401B2/en
Publication of JP2004314082A publication Critical patent/JP2004314082A/en
Application granted granted Critical
Publication of JP4371401B2 publication Critical patent/JP4371401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コイルばね成形機のピッチ調整方法及び装置に関し、特に、複数段ピッチや不等ピッチのコイルばねの製造に好適なコイルばね成形機のピッチ調整方法及び装置に係る。
【0002】
【従来の技術】
従来より、所望の形状のコイルばねを特定する複数のパラメータに基づきNCデータを設定し、該NCデータに基づきコイルばねを成形するコイルばね成形機が知られており、このようなコイルばね成形機に対し、コイルばねの特性に応じてピッチを調整することが要請されている。しかし、自動車のエンジン用のバルブスプリングに供するコイルばねのように、図9に示す不等ピッチのコイルばねS1や図10に示す複数段ピッチ(対称二段ピッチ)のコイルばねS2といった非線形ばね特性を有するコイルばねを成形する場合には、従来のピッチツールに対する直接的な条件設定のみでは、要求特性を充足するピッチ精度を確保することは至難であり、この点については後に詳述する。
【0003】
ところで、下記の特許文献1には、コイルばね成形機用自動プログラミング装置において、NCプログラムのGコードの置き換え、Mコードの付加等を行なうことにより生成されたNCプログラムを修正することなく、即座にばね成形運転を可能とすることを目的として、NCプログラムに施す修正内容を補助動作データとして予め設定することが提案されている。具体的には、NCプログラムの修正内容を表わす補助動作データを、コイルばね成形機用自動プログラミング装置に予め設定しておき、オペレータがCRTに表示された補助動作データの確認を行ない、修正が必要ならば再度入力を行なうこととしている。この補助動作データとしては例えば10個用意され、個々にデータ番号が付与される。これにより、オペレータが所望するNCプログラムを得るまでの成形準備時間の短縮が可能となる旨記載されている。
【0004】
【特許文献1】
特開平8−168841号公報
【0005】
【発明が解決しようとする課題】
図9の不等ピッチのコイルばねS1及び図10の複数段ピッチのコイルばねS2は、図11に示すように巻数に応じてピッチが異なる。このような作動範囲の前半で線間密着を前提とするコイルばねに対しては、通常の等ピッチのコイルばねにおけるピッチ調整方法を適用しても、所望のピッチに調整することはできず、量産時の精度確保が困難である。例えば、図9及び図10に示すようなコイルばねを、通常の冷間コイル成形によって端末から順次成形する場合において、巻き初めのピッチの値が不正確であると、巻き終わり端まで誤差分が集積されるので、荷重たわみ特性における目標値とのずれが大きくなる。この点、総型に材料を挿入して一度に全体形状を決定する工法とは異なる。このため、小ピッチの箇所が初期の荷重特性に大きな影響を及ぼし、初期の小ピッチ部分の精度が、初期の荷重特性のみならず後半部分を含む荷重特性全体に大きく影響する。
【0006】
従って、不等ピッチや複数段ピッチのコイルばねを成形する場合には、巻き初めのピッチ精度を正確に制御できなければ、製品の荷重特性許容値を満足できなくなる。更に、巻き初め部分から他の部分に移行するときには、その都度順次ピッチを速やかに切り換えて行く必要がある。このため、種々のばね仕様に応じて、複数のピッチ値に正確に応答し得る段取値を求め、適正な目標値と段取値の関係を設定し得るようにすることが必要である。
【0007】
然し乍ら、上記の特許文献1に記載のコイルばね成形機用自動プログラミング装置においては、予め用意された例えば10個の補助動作データの中から、修正に供する補助動作データを選択してNCプログラムに変換することとしており、NCプログラムに施す修正内容を補助動作データとして予め設定することが必須とされている。しかも、この補助動作データの設定については、コイルばね成形機の作動状態との関連については言及されておらず、当然ながら、前述のピッチ調整方法における課題解決についての示唆は見当たらない。
【0008】
そこで、本発明は、NCデータに基づきコイルばねを成形するコイルばね成形機に対し、不等ピッチや複数段ピッチのコイルばねを成形する場合であっても、その特性に応じてピッチを高精度且つ迅速に調整し得るピッチ調整方法を提供することを課題とする。
【0009】
また、本発明は、上記コイルばね成形機に対し、不等ピッチや複数段ピッチのコイルばねを成形する場合であっても、その特性に応じてピッチを高精度且つ迅速に調整し得るコイルばね成形機のピッチ調整装置を提供することを別の課題とする。
【0010】
【課題を解決するための手段】
上記の課題を解決するため、本発明は請求項1に記載のように、所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整方法において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係に対する遅れ成分を前記所定の比例関係の遅れ成分(A)と一致させる第1の調整パラメータ(α)を設定すると共に、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係における比例係数を前記所定の比例関係の比例係数(B)と一致させる第2の調整パラメータ(β)を設定し、前記第1の調整パラメータ(α)に基づきピッチツールの作動開始位置を調整すると共に、前記第2の調整パラメータ(β)に基づき前記ピッチ示値(X)に対する前記ピッチツールの移動量の割合を調整して、前記コイルばねのピッチを調整することとしたものである。
【0011】
而して、前記ピッチ指示値をXとし、前記ピッチ目標値をYとすると、前記ピッチ指示値と前記ピッチ目標値の比例関係は、Y=B・X+Aの直線式で表わすことができ、この式における比例係数(B)及び遅れ成分(A)が目標値とされる。また、前記ピッチ実測値は、前記コイルばねにおいて軸方向に離隔した少なくとも2点で計測することにより、前記ピッチ実測値と前記ピッチ指示値の比例関係を表わす直線式を設定することができる。
【0012】
あるいは、本発明は、請求項2に記載のように、所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整方法において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)との比例関係を前記所定の比例関係と一致させるように前記基本NCデータを再設定して再設定NCデータとし、該再設定NCデータに基づき、前記コイルばねのピッチを調整することとしてもよい。
【0013】
また、本発明の装置は、請求項3に記載のように、所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整装置において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を検出するピッチ検出手段と、該ピッチ検出手段が検出したピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係に対する遅れ成分を前記所定の比例関係の遅れ成分(A)と一致させる第1の調整パラメータ(α)を設定すると共に、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係における比例係数を前記所定の比例関係の比例係数(B)と一致させる第2の調整パラメータ(β)を設定する調整パラメータ設定手段と、該調整パラメータ設定手段が設定した前記第1の調整パラメータ(α)に基づきピッチツールの作動開始位置を調整すると共に、前記第2の調整パラメータ(β)に基づき前記ピッチ示値(X)に対する前記ピッチツールの移動量の割合を調整して、前記コイルばねのピッチを調整するピッチ調整手段を備えることとしたものである。
【0014】
あるいは、請求項4に記載のように、所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整装置において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を検出するピッチ検出手段と、該ピッチ検出手段が検出したピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)との比例関係を前記所定の比例関係と一致させるように前記基本NCデータを再設定し、再設定NCデータを設定する再設定手段と、該再設定手段が設定した再設定NCデータに基づき、前記コイルばねのピッチを調整するピッチ調整手段を備えたものとしてもよい。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。図1は本発明の一実施形態を示すもので、所望のコイルばねを特定するコイル径、巻数、ピッチ等、複数のパラメータ11がNCコントローラ10に入力される。NCコントローラ10においては、これらの複数のパラメータに基づきNCデータが設定され、このNCデータに基づきコイルばね成形機20が駆動制御され、コイルばね1が成形されるように構成されている。尚、NCデータ設定時には、コイル径、巻数等の形状データと、ピッチ、線径、材料等のパラメータデータに区別される場合もあるが、本実施形態ではこれらをまとめて複数のパラメータとし、このうちピッチに関連するパラメータをピッチパラメータとしている。
【0016】
更に、本実施形態においては、基本NCデータに基づきコイルばね成形機20が駆動されてコイルばね1が成形されたときのピッチ実測値を検出するピッチ検出手段30が配設され、この検出結果に基づき、ピッチ調整手段40によって、所望のコイルばねの特性に応じてコイルばねのピッチを調整するように構成されている。ここで、上記基本NCデータにおいては、ピッチ指示値がピッチ目標値に対して比例する関係(例えば、比例係数をBとし、遅れ成分をAとする)に設定されるが、ピッチ検出手段30にて検出されたピッチ実測値がピッチ目標値と比較され、ピッチ実測値とピッチ目標値との偏差に基づき、ピッチ指示値とピッチ目標値の比例関係に対する遅れ成分が(A)となるように第1の調整パラメータ(α)が設定される。また、その比例関係における比例係数が(B)となるように第2の調整パラメータ(β)が設定される。
【0017】
即ち、本実施形態のピッチ調整手段40においては、開始位置調整手段41が構成され、第1の調整パラメータ(α)に基づき、ピッチツール21(図1に破線で示す)の作動開始位置が調整されると共に、移動比率調整手段42が構成され、第2の調整パラメータ(β)に基づきピッチ指示値に対するピッチツールの移動量の割合(即ち、移動比率)が調整され、この結果、成形後のコイルばねのピッチが所望の目標値に調整されるように構成されている。つまり、本実施形態においては、ピッチ指示値をXとし、ピッチ目標値をYとすると、Y=B・X+Aの直線式で表わされ、この式における比例係数(B)及び遅れ成分(A)が目標値とされる。
【0018】
尚、上記のコイルばね1は複数段のピッチが設定されるもので、本実施形態のコイルばね1の装着状態を図1に二点鎖線で示すように、例えば内燃機関の動弁系に供される。即ち、エンジン2には、バルブ3(吸気弁あるいは排気弁)のバルブステム3aがステムガイド4に対し摺動自在に支持され、バルブステム3aの先端にはリテーナ5が固定され、バルブリフタ6を介してカム7に押接されるように配置されている。そして、ステムガイド4回りのエンジン2上に配置されるスプリングシート(図示せず)とリテーナ5との間にコイルばね1が介装され、このコイルばね1によってバルブ3がカム7方向に付勢されるように構成されている。
【0019】
図2は、NCコントローラによるコイルばね成形機のメイン制御ルーチン(図示せず)に対し、割り込み処理で行なわれるピッチ調整のサブルーチンを示すものである。図2の実線部分が上記の実施形態に係り、先ず、ステップ101において、所望のコイルばねを特定するコイル径、巻数、ピッチ等、複数のパラメータが設定される。ここで、本実施形態では、ピッチ指示値はピッチ目標値に対して所定の比例関係に設定されており、その比例係数(B)及び遅れ成分(A)がピッチパラメータとして設定される。続いて、ステップ102において、これらの複数のパラメータに基づき基本NCデータが設定される。
【0020】
そして、ステップ103に進み、ピッチ指示値が入力され、ステップ104にてコイルばね成形機20が駆動されると、ピッチに関しては、上記のピッチパラメータ(A,B)に応じて設定されたピッチ目標値に基づきコイルばねが成形される。尚、ステップ104の処理は例えば前掲の特許文献1と同様、NCプログラムに従って行なわれる。
【0021】
この結果、例えば図1のコイルばね1が形成されると、ステップ105に進み、ピッチ検出手段30にてピッチ実測値が検出され、更にステップ106において、このピッチ実測値がピッチ目標値と比較され、ピッチ実測値とピッチ目標値との偏差が判定される。例えば、図3に実線で示す目標特性(傾きB、遅れA)は上記の比例係数(B)及び遅れ成分(A)に対応するものであるのに対し、図3に破線で示す実特性(傾きK、遅れF)は、傾き及び遅れの何れも目標特性とは異なった実測値を示している。尚、図3の横軸はピッチ指示値、縦軸はピッチ実測値を示し、白丸記号は対象とするコイルばねのダンパー部、白三角の記号は胴中部の計測位置を示すもので、これらの位置(2点)のピッチ指示値に対するピッチ実測値に基づき傾きと遅れを含む直線式を求めることとしている。
【0022】
そして、上記の判定結果に基づき、ステップ107において、成形後の遅れ成分が(A)となるように第1の調整パラメータ(α)が設定されると共に、ステップ108において、成形後の比例係数が(B)となるように第2の調整パラメータ(β)が設定される。本実施形態のコイルばね成形機20においては、ピッチツール21の移動量の割合を調整し得るように構成されており、図1に破線で示す開始位置調整手段41及び移動比率調整手段42を備えているので、ステップ109に進み、第1の調整パラメータ(α)に基づきピッチ指示値に対するピッチツール21の作動開始位置が調整されると共に、ステップ110にて、第2の調整パラメータ(β)に基づきピッチ指示値に対するピッチツール21の移動比率が調整される。
【0023】
上記の状況を図3乃至図5を参照して説明する。先ず、図3の状態から第1の調整パラメータ(α)に基づきピッチ指示値に対するピッチツール21の作動開始位置が調整されると、この調整後の特性を一点鎖線で示すように目標特性(傾きB、遅れA)の遅れと一致する。そして、この図4の状態から、更に第2の調整パラメータ(β)に基づきピッチ指示値に対するピッチツール21の移動比率が調整されると、調整後の特性を図5に二点鎖線で示すように目標特性(傾きB、遅れA)の傾き及び遅れの何れも一致する。
【0024】
一方、前述の比例係数(B)を調整できないコイルばね成形機においては、ステップ108から、図2に一点鎖線で示すステップ111に進み、第1の調整パラメータ(α)及び第2の調整パラメータ(β)に基づき基本NCデータが再設定される。即ち、比例係数(B)を調整できないコイルばね成形機に対するピッチ調整装置が、本発明の他の実施形態として構成され、メイン制御ルーチン(図示せず)にて、ステップ111の再設定NCデータに基づき、コイルばねのピッチが調整される。
【0025】
而して、この実施形態においては、前述の実施形態よりは段取時間が長くなるが、図3の状態で、第1の調整パラメータ(α)及び第2の調整パラメータ(β)に基づき基本NCデータが再設定されると、調整後の特性を図6に二点鎖線で示すように目標特性(傾きB、遅れA)の傾き及び遅れの何れも一致することとなる。
【0026】
上記の構成になる本発明の一実施形態に係るピッチ調整装置によるシミュレーション結果について図7及び図8を参照して説明する。図7は、図10のコイルばねS2と同様の対称二段ピッチのコイルばねに対する実測値(実線で示す)に対し、荷重変曲点及び指定荷重の精度が、調整後のシミュレーション値の変動5%以内という高精度を達成することができた。尚、図7の中央の記号L1は第1指定荷重のシミュレーション値、右上の記号L2は第2指定荷重のシミュレーション値を夫々示し、それらの上下のT字状の線分は変動範囲を示す。具体例では、第1指定高さ36.0mmにおけるシミュレーション値249Nに対し実測値252N、第2指定高さ27.9mmにおけるシミュレーション値430Nに対し実測値437Nであった。図8は、両端不等ピッチのコイルばねに対する同様の結果を示し、具体例では、第1指定高さ37.7mmにおけるシミュレーション値142Nに対し実測値142N、第2指定高さ30.5mmにおけるシミュレーション値340.95Nに対し実測値340.95Nと同一であった。また、段取り時間は従来の2時間から1時間に短縮することができた。
【0027】
【発明の効果】
本発明は上述のように構成されているので以下の効果を奏する。即ち、請求項1及び3に係るピッチ調整方法及び装置においては、不等ピッチや複数段ピッチのコイルばねの成形に際し、高ピッチ精度を満足する段取指示条件を正確且つ短時間で求めることができる。従って、種々のばね仕様に応じて、複数のピッチ値に正確に応答し得る適正な目標値と段取値の関係を設定することができ、良好な生産性を確保することができる。
【0028】
また、請求項2及び4に記載のピッチ調整方法及び装置においても、不等ピッチや複数段ピッチのコイルばねの成形に際し、高ピッチ精度を満足する段取指示条件を正確に求めることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の全体構成を示すブロック図である。
【図2】本発明の一実施形態に係るピッチ調整の処理を示すフローチャートである。
【図3】本発明の一実施形態に係るピッチ調整を行なう前の状態における実特性と目標特性との関係を示すグラフである。
【図4】本発明の一実施形態に係るピッチ調整において遅れへの対応を行なった状態における実特性と目標特性との関係を示すグラフである。
【図5】本発明の一実施形態に係るピッチ調整において傾き及び遅れへの対応を行なった状態における実特性と目標特性との関係を示すグラフである。
【図6】本発明の他の実施形態に係るピッチ調整において傾き及び遅れへの対応を行なった状態における実特性と目標特性との関係を示すグラフである。
【図7】本発明の一実施形態に係るピッチ調整を、対称二段ピッチのコイルばねに行なった場合の効果の一例を示すグラフである。
【図8】本発明の一実施形態に係るピッチ調整を、両端不等ピッチのコイルばねに行なった場合の効果の一例を示すグラフである。
【図9】不等ピッチのコイルばねの一例を模式的に示す側面図である。
【図10】対称二段ピッチのコイルばねの一例を模式的に示す側面図である。
【図11】不等ピッチのコイルばね及び対称二段ピッチのコイルばねにおける巻数とピッチとの関係を示すグラフである。
【符号の説明】
1 コイルばね, 10 NCコントローラ, 20 コイルばね成形機,
30 ピッチ検出手段, 40 ピッチ調整手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pitch adjusting method and apparatus for a coil spring forming machine, and more particularly to a pitch adjusting method and apparatus for a coil spring forming machine suitable for manufacturing a coil spring having a multi-stage pitch or an unequal pitch.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a coil spring molding machine that sets NC data based on a plurality of parameters that specify a coil spring having a desired shape and forms the coil spring based on the NC data is known. On the other hand, it is required to adjust the pitch according to the characteristics of the coil spring. However, non-linear spring characteristics such as a non-uniform pitch coil spring S1 shown in FIG. 9 and a multi-stage pitch (symmetric two-stage pitch) coil spring S2 shown in FIG. 10, such as a coil spring used for a valve spring for an automobile engine. In the case of forming a coil spring having the above, it is extremely difficult to ensure the pitch accuracy that satisfies the required characteristics only by setting the conditions directly with respect to the conventional pitch tool, which will be described in detail later.
[0003]
By the way, in the following Patent Document 1, in an automatic programming device for a coil spring molding machine, the NC program generated by replacing the G code of the NC program, adding the M code, etc. is immediately corrected without modification. For the purpose of enabling the spring forming operation, it has been proposed to set in advance the correction contents to be applied to the NC program as auxiliary operation data. Specifically, auxiliary operation data representing the correction contents of the NC program is set in advance in the automatic programming device for the coil spring molding machine, and the operator checks the auxiliary operation data displayed on the CRT, and correction is necessary. If so, it will be input again. For example, ten pieces of auxiliary operation data are prepared, and data numbers are assigned to the auxiliary operation data. This describes that the molding preparation time until the operator obtains the desired NC program can be shortened.
[0004]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-Open No. 8-168841
[Problems to be solved by the invention]
The unequal pitch coil spring S1 in FIG. 9 and the multi-stage pitch coil spring S2 in FIG. 10 have different pitches depending on the number of turns as shown in FIG. For coil springs that presuppose line-to-line contact in the first half of such an operating range, even if the pitch adjustment method in a normal coil coil of equal pitch is applied, it cannot be adjusted to a desired pitch. It is difficult to ensure accuracy during mass production. For example, when coil springs such as those shown in FIGS. 9 and 10 are sequentially formed from the end by ordinary cold coil forming, if the pitch value at the beginning of winding is inaccurate, an error will occur until the winding end. Since they are accumulated, the deviation from the target value in the load deflection characteristic becomes large. This is different from the method of determining the overall shape at once by inserting material into the overall mold. For this reason, the location of the small pitch has a great influence on the initial load characteristics, and the accuracy of the initial small pitch portion greatly affects not only the initial load characteristics but also the entire load characteristics including the latter half.
[0006]
Therefore, when forming coil springs with unequal pitches or multi-step pitches, the product load characteristic allowable value cannot be satisfied unless the pitch accuracy at the beginning of winding can be accurately controlled. Further, when shifting from the winding start portion to another portion, it is necessary to quickly switch the pitch sequentially each time. For this reason, it is necessary to obtain a setup value that can accurately respond to a plurality of pitch values according to various spring specifications, and to set an appropriate relationship between the target value and the setup value.
[0007]
However, in the automatic programming device for a coil spring forming machine described in Patent Document 1, the auxiliary operation data to be corrected is selected from, for example, 10 auxiliary operation data prepared in advance and converted into an NC program. Therefore, it is essential to set in advance the correction contents to be applied to the NC program as auxiliary operation data. In addition, regarding the setting of the auxiliary operation data, there is no mention of the relationship with the operating state of the coil spring molding machine, and of course there is no suggestion for solving the problem in the pitch adjustment method described above.
[0008]
Therefore, the present invention provides a highly accurate pitch according to the characteristics of a coil spring forming machine that forms coil springs based on NC data, even when forming coil springs of unequal pitch or multi-step pitch. It is another object of the present invention to provide a pitch adjustment method that can be adjusted quickly.
[0009]
Further, the present invention provides a coil spring capable of adjusting the pitch with high accuracy and speed according to the characteristics even when the coil spring is formed with an unequal pitch or a multi-stage pitch with respect to the coil spring forming machine. Another object is to provide a pitch adjusting device for a molding machine.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, according to the present invention, NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil is set based on the NC data. In the coil spring forming machine for adjusting the pitch of the coil spring according to the characteristics of the coil spring, the pitch indication value is (X) and the pitch target value is ( Y), the proportionality coefficient is (B), the lag component is (A), Y = B · X + A is set to a predetermined proportional relationship represented by a linear equation and used as basic NC data, and the coil spring forming is based on the basic NC data pitch measured value when driving the machine to molding the coil spring as compared with the pitch target value (Y), the deviation between the pitch measured value and the pitch target value (Y) Hazuki sets a first adjustment parameter to match with the pitch measured value and the pitch instruction value (X) a delay component of the predetermined proportionality delay component for proportional relationship (A) (α), the pitch A second adjustment parameter (β) for setting the proportionality coefficient in the proportional relationship between the actually measured value and the pitch instruction value (X) to coincide with the proportionality coefficient (B) in the predetermined proportionality relationship is set, and the first adjustment parameter ( with adjusting the operation start position of the pitch tool based on alpha), by adjusting the ratio of the amount of movement of said pitch tool with respect to the pitch indicated value on the basis of the second adjustment parameter (β) (X), the coil The pitch of the spring is adjusted.
[0011]
Thus, when the pitch instruction value is X and the pitch target value is Y, the proportional relationship between the pitch instruction value and the pitch target value can be expressed by a linear expression of Y = B · X + A. The proportionality coefficient (B) and the delay component (A) in the equation are set as target values. Further, the measured pitch value is measured at at least two points spaced apart in the axial direction in the coil spring, so that a linear expression representing a proportional relationship between the measured pitch value and the pitch indication value can be set.
[0012]
Alternatively, according to the present invention, as described in claim 2, a coil that sets NC data based on a plurality of parameters including at least a pitch parameter that specifies a desired coil spring, and forms the coil spring based on the NC data. In a pitch adjusting method for a coil spring forming machine that adjusts the pitch of the coil spring according to the characteristics of the coil spring, the pitch indication value is (X), the pitch target value is (Y), and the proportional coefficient. (B), delay component (A) and Y = B · X + A set to a predetermined proportional relationship represented by a linear equation to obtain basic NC data, and the coil spring molding machine is driven based on the basic NC data. comparing the pitch measured values at the shaping of the coil spring the pitch target value (Y), based on the deviation between the pitch measured value and the pitch target value (Y), said pin Chi actual measurement value and the pitch indicated value proportional relationship between (X) and re-set the basic NC data so as to coincide with the predetermined proportional relationship to a reset NC data, based on該再setting NC data, the It is good also as adjusting the pitch of a coil spring.
[0013]
According to a third aspect of the present invention, the NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil spring is formed based on the NC data. In the coil spring forming machine for adjusting the pitch of the coil spring according to the characteristics of the coil spring, the pitch instruction value is (X), the pitch target value is (Y), The proportional coefficient is set to (B), the delay component is set to (A), and a predetermined proportional relationship expressed by a linear equation of Y = B · X + A is set as basic NC data, and the coil spring molding machine is driven based on the basic NC data. and a pitch detecting means for detecting the pitch measured values at the shaping of the coil spring, the pitch measured values said pitch detecting means detects the pitch target value (Y) comparison , Based on the deviation between the pitch measured value and the pitch target value (Y), the pitch measured value and the pitch instruction value and delay component (A) of the predetermined proportionality delay component to proportional relation (X) A first adjustment parameter (α) to be matched is set, and a proportional coefficient in the proportional relationship between the actually measured pitch value and the pitch instruction value (X ) is matched with the proportional coefficient (B) of the predetermined proportional relationship. Adjustment parameter setting means for setting the adjustment parameter (β) , and adjusting the operation start position of the pitch tool based on the first adjustment parameter (α) set by the adjustment parameter setting means, and the second adjustment parameters by adjusting the proportion of the amount of movement of said pitch tool with respect to the pitch indicated value on the basis of the (β) (X), the pitch adjustment means for adjusting the pitch of the coil spring It is to be prepared.
[0014]
Alternatively, as described in claim 4, in a coil spring molding machine that sets NC data based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and forms the coil spring based on the NC data. On the other hand, in the pitch adjustment device of the coil spring molding machine that adjusts the pitch of the coil spring according to the characteristics of the coil spring, the pitch instruction value is (X), the pitch target value is (Y), and the proportionality coefficient is (B). , The delay component is (A) and set to a predetermined proportional relationship represented by a linear equation of Y = B · X + A to obtain basic NC data. Based on the basic NC data, the coil spring molding machine is driven to comparing the pitch detecting means for detecting the pitch measured value at the time of molding, the pitch measured values said pitch detecting means detects the pitch target value (Y), the pitch Based on the deviation between the measured value and the pitch target value (Y), re-set the basic NC data the pitch measured value and the pitch indicated value proportional relationship between (X) so as to coincide with the predetermined proportional relationship Then, resetting means for setting resetting NC data and pitch adjusting means for adjusting the pitch of the coil spring based on the resetting NC data set by the resetting means may be provided.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention, and a plurality of parameters 11 such as a coil diameter, the number of turns, and a pitch for specifying a desired coil spring are input to the NC controller 10. The NC controller 10 is configured such that NC data is set based on the plurality of parameters, the coil spring forming machine 20 is driven and controlled based on the NC data, and the coil spring 1 is formed. In addition, when setting NC data, there are cases in which there is a distinction between shape data such as coil diameter and number of turns, and parameter data such as pitch, wire diameter, and material. In this embodiment, these are combined into a plurality of parameters. Of these, parameters related to pitch are used as pitch parameters.
[0016]
Further, in the present embodiment, pitch detection means 30 for detecting an actual measured pitch value when the coil spring forming machine 20 is driven and the coil spring 1 is formed based on the basic NC data is provided. Based on this, the pitch adjusting means 40 is configured to adjust the pitch of the coil spring in accordance with the desired characteristics of the coil spring. Here, in the basic NC data, the pitch indication value is set to be proportional to the pitch target value (for example, the proportionality coefficient is B and the delay component is A). The pitch actual value detected in this way is compared with the pitch target value, and based on the deviation between the pitch actual value and the pitch target value, the delay component with respect to the proportional relationship between the pitch indication value and the pitch target value becomes (A). One adjustment parameter (α) is set. Further, the second adjustment parameter (β) is set so that the proportionality coefficient in the proportional relationship becomes (B).
[0017]
That is, in the pitch adjusting means 40 of the present embodiment, a start position adjusting means 41 is configured, and the operation start position of the pitch tool 21 (shown by a broken line in FIG. 1) is adjusted based on the first adjustment parameter (α). In addition, the movement ratio adjusting means 42 is configured, and the ratio of the movement amount of the pitch tool to the pitch instruction value (that is, the movement ratio) is adjusted based on the second adjustment parameter (β). The pitch of the coil spring is configured to be adjusted to a desired target value. That is, in this embodiment, if the pitch instruction value is X and the pitch target value is Y, it is represented by a linear equation of Y = B · X + A. In this equation, the proportionality coefficient (B) and the delay component (A) Is the target value.
[0018]
The coil spring 1 has a plurality of stages of pitches, and the mounting state of the coil spring 1 according to the present embodiment is used for, for example, a valve system of an internal combustion engine as shown by a two-dot chain line in FIG. Is done. That is, in the engine 2, a valve stem 3 a of a valve 3 (intake valve or exhaust valve) is slidably supported with respect to the stem guide 4, and a retainer 5 is fixed to the tip of the valve stem 3 a, via a valve lifter 6. Are arranged so as to be pressed against the cam 7. A coil spring 1 is interposed between a spring seat (not shown) arranged on the engine 2 around the stem guide 4 and the retainer 5, and the valve 3 biases the valve 3 toward the cam 7 by the coil spring 1. It is configured to be.
[0019]
FIG. 2 shows a pitch adjustment subroutine performed by interrupt processing for a main control routine (not shown) of the coil spring molding machine by the NC controller. The solid line portion in FIG. 2 relates to the above-described embodiment. First, in step 101, a plurality of parameters such as a coil diameter, the number of turns, and a pitch that specify a desired coil spring are set. Here, in this embodiment, the pitch instruction value is set in a predetermined proportional relationship with respect to the pitch target value, and the proportionality coefficient (B) and the delay component (A) are set as the pitch parameters. Subsequently, in Step 102, basic NC data is set based on the plurality of parameters.
[0020]
Then, the process proceeds to Step 103, where a pitch instruction value is input, and when the coil spring molding machine 20 is driven in Step 104, the pitch target set in accordance with the pitch parameters (A, B) is set. A coil spring is formed based on the value. Note that the processing in step 104 is performed according to the NC program, for example, as in the above-mentioned Patent Document 1.
[0021]
As a result, for example, when the coil spring 1 of FIG. 1 is formed, the process proceeds to step 105, where the actual pitch measurement value is detected by the pitch detection means 30, and in step 106, this actual pitch measurement value is compared with the target pitch value. Then, a deviation between the actually measured pitch value and the target pitch value is determined. For example, the target characteristics (inclination B, delay A) indicated by the solid line in FIG. 3 correspond to the proportionality coefficient (B) and the delay component (A), whereas the actual characteristics (indicated by the broken line in FIG. Inclination K and delay F) indicate measured values that are different from the target characteristics for both the inclination and the delay. The horizontal axis in FIG. 3 indicates the pitch instruction value, the vertical axis indicates the actual pitch measurement value, the white circle symbol indicates the damper portion of the target coil spring, and the white triangle symbol indicates the measurement position in the middle of the trunk. A linear equation including an inclination and a delay is obtained based on a measured pitch value with respect to a pitch instruction value at a position (two points).
[0022]
Based on the determination result, in step 107, the first adjustment parameter (α) is set so that the delayed component after molding becomes (A). In step 108, the proportional coefficient after molding is determined. The second adjustment parameter (β) is set so as to be (B). The coil spring molding machine 20 of the present embodiment is configured to be able to adjust the rate of movement of the pitch tool 21 and includes a start position adjusting means 41 and a movement ratio adjusting means 42 indicated by broken lines in FIG. Therefore, the process proceeds to step 109, where the operation start position of the pitch tool 21 with respect to the pitch instruction value is adjusted based on the first adjustment parameter (α), and in step 110, the second adjustment parameter (β) is set. Based on this, the movement ratio of the pitch tool 21 with respect to the pitch instruction value is adjusted.
[0023]
The above situation will be described with reference to FIGS. First, when the operation start position of the pitch tool 21 with respect to the pitch instruction value is adjusted based on the first adjustment parameter (α) from the state of FIG. 3, the target characteristic (inclination) as shown by the one-dot chain line is the characteristic after this adjustment. B, the delay A) coincides with the delay. When the movement ratio of the pitch tool 21 with respect to the pitch instruction value is further adjusted from the state of FIG. 4 based on the second adjustment parameter (β), the adjusted characteristics are indicated by a two-dot chain line in FIG. Both the slope and the delay of the target characteristic (slope B, delay A) match.
[0024]
On the other hand, in the coil spring molding machine in which the proportional coefficient (B) cannot be adjusted, the process proceeds from step 108 to step 111 indicated by a one-dot chain line in FIG. 2, and the first adjustment parameter (α) and the second adjustment parameter ( Basic NC data is reset based on β). In other words, a pitch adjusting device for a coil spring forming machine that cannot adjust the proportional coefficient (B) is configured as another embodiment of the present invention, and the main control routine (not shown) uses the reset NC data in step 111 as the reset NC data. Based on this, the pitch of the coil spring is adjusted.
[0025]
Thus, in this embodiment, the setup time is longer than that in the previous embodiment, but in the state of FIG. 3, the basic adjustment is based on the first adjustment parameter (α) and the second adjustment parameter (β). When the NC data is reset, as shown by the two-dot chain line in FIG. 6 after the adjustment, both the inclination and the delay of the target characteristic (inclination B, delay A) coincide.
[0026]
A simulation result by the pitch adjusting apparatus according to an embodiment of the present invention having the above-described configuration will be described with reference to FIGS. FIG. 7 shows that the load inflection point and the accuracy of the designated load vary with the simulation value 5 after the adjustment with respect to the actually measured value (indicated by the solid line) for the coil spring having the symmetrical two-stage pitch similar to the coil spring S2 of FIG. High accuracy of within% can be achieved. In FIG. 7, the central symbol L1 indicates the simulation value of the first specified load, the upper right symbol L2 indicates the simulation value of the second specified load, and the upper and lower T-shaped line segments indicate the fluctuation range. In the specific example, the actual measurement value 252N with respect to the simulation value 249N at the first designated height 36.0 mm, and the actual measurement value 437N with respect to the simulation value 430N at the second designated height 27.9 mm. FIG. 8 shows similar results for coil springs with unequal pitches at both ends. In a specific example, the simulation value 142N at the first specified height 37.7 mm is compared with the actual measurement value 142N and the simulation at the second specified height 30.5 mm. The actual value 340.95N was identical to the value 340.95N. In addition, the setup time could be shortened from 2 hours to 1 hour.
[0027]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects. That is, in the pitch adjusting method and apparatus according to claims 1 and 3, when forming a coil spring having an unequal pitch or a multi-step pitch, a setup instruction condition that satisfies high pitch accuracy can be obtained accurately and in a short time. it can. Therefore, an appropriate relationship between the target value and the setup value that can accurately respond to a plurality of pitch values can be set according to various spring specifications, and good productivity can be ensured.
[0028]
In the pitch adjusting method and apparatus according to claims 2 and 4, it is possible to accurately obtain a setup instruction condition that satisfies high pitch accuracy when forming a coil spring having an unequal pitch or a plurality of pitches.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of an embodiment of the present invention.
FIG. 2 is a flowchart showing a pitch adjustment process according to an embodiment of the present invention.
FIG. 3 is a graph showing a relationship between an actual characteristic and a target characteristic in a state before pitch adjustment according to an embodiment of the present invention.
FIG. 4 is a graph showing a relationship between an actual characteristic and a target characteristic in a state where a delay is dealt with in pitch adjustment according to an embodiment of the present invention.
FIG. 5 is a graph showing a relationship between an actual characteristic and a target characteristic in a state in which a slope and a delay are dealt with in pitch adjustment according to an embodiment of the present invention.
FIG. 6 is a graph showing a relationship between an actual characteristic and a target characteristic in a state in which correspondence to inclination and delay is performed in pitch adjustment according to another embodiment of the present invention.
FIG. 7 is a graph showing an example of the effect when the pitch adjustment according to the embodiment of the present invention is performed on a coil spring having a symmetrical two-stage pitch.
FIG. 8 is a graph showing an example of the effect when the pitch adjustment according to the embodiment of the present invention is performed on a coil spring having unequal pitches at both ends.
FIG. 9 is a side view schematically showing an example of coil springs with unequal pitches.
FIG. 10 is a side view schematically showing an example of a symmetrical two-stage pitch coil spring.
FIG. 11 is a graph showing the relationship between the number of turns and the pitch in a coil spring with an unequal pitch and a coil spring with a symmetrical two-stage pitch.
[Explanation of symbols]
1 coil spring, 10 NC controller, 20 coil spring forming machine,
30 pitch detection means, 40 pitch adjustment means

Claims (4)

所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整方法において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係に対する遅れ成分を前記所定の比例関係の遅れ成分(A)と一致させる第1の調整パラメータ(α)を設定すると共に、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係における比例係数を前記所定の比例関係の比例係数(B)と一致させる第2の調整パラメータ(β)を設定し、前記第1の調整パラメータ(α)に基づきピッチツールの作動開始位置を調整すると共に、前記第2の調整パラメータ(β)に基づき前記ピッチ示値(X)に対する前記ピッチツールの移動量の割合を調整して、前記コイルばねのピッチを調整することを特徴とするコイルばね成形機のピッチ調整方法。NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil spring forming machine for forming the coil spring based on the NC data is set according to the characteristics of the coil spring. In the pitch adjustment method of the coil spring forming machine for adjusting the pitch of the coil spring , Y = B where the pitch instruction value is (X), the pitch target value is (Y), the proportionality factor is (B), and the delay component is (A).・ Set to a predetermined proportional relationship represented by a linear equation of X + A to obtain basic NC data, and based on the basic NC data, the coil spring forming machine is driven to form the coil spring, and the measured pitch value is the pitch target. compared with the values (Y), based on the deviation between the pitch measured value and the pitch target value (Y), the proportional relationship between the pitch measured value and the pitch instruction value (X) Sets the first adjustment parameter to match the delay component of the delay components predetermined proportional relationship (A) (α) against the pitch measured value and the pitch indicated value proportional coefficient in a proportional relationship (X) A second adjustment parameter (β) that matches the proportional coefficient (B) of the predetermined proportional relationship is set, the operation start position of the pitch tool is adjusted based on the first adjustment parameter (α), and the first adjust the ratio of the amount of movement of said pitch tool with respect to the pitch indicated value on the basis of the second adjustment parameter (β) (X), the pitch of the coil spring forming machine and adjusting the pitch of the coil spring Adjustment method. 所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整方法において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)との比例関係を前記所定の比例関係と一致させるように前記基本NCデータを再設定して再設定NCデータとし、該再設定NCデータに基づき、前記コイルばねのピッチを調整することを特徴とするコイルばね成形機のピッチ調整方法。NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil spring forming machine for forming the coil spring based on the NC data is set according to the characteristics of the coil spring. In the pitch adjustment method of the coil spring forming machine for adjusting the pitch of the coil spring , Y = B where the pitch instruction value is (X), the pitch target value is (Y), the proportionality factor is (B), and the delay component is (A).・ Set to a predetermined proportional relationship represented by a linear equation of X + A to obtain basic NC data, and based on the basic NC data, the coil spring forming machine is driven to form the coil spring, and the measured pitch value is the pitch target. the value (Y) and compared on the basis of the deviation between the pitch measured value and the pitch target value (Y), the pitch measured value and the pitch instruction value (X) and the proportional function The basic NC data is reset to be reset NC data so as to match the predetermined proportional relationship, and the pitch of the coil spring is adjusted based on the reset NC data How to adjust the pitch of the machine. 所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整装置において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を検出するピッチ検出手段と、該ピッチ検出手段が検出したピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係に対する遅れ成分を前記所定の比例関係の遅れ成分(A)と一致させる第1の調整パラメータ(α)を設定すると共に、前記ピッチ実測値と前記ピッチ指示値(X)の比例関係における比例係数を前記所定の比例関係の比例係数(B)と一致させる第2の調整パラメータ(β)を設定する調整パラメータ設定手段と、該調整パラメータ設定手段が設定した前記第1の調整パラメータ(α)に基づきピッチツールの作動開始位置を調整すると共に、前記第2の調整パラメータ(β)に基づき前記ピッチ示値(X)に対する前記ピッチツールの移動量の割合を調整して、前記コイルばねのピッチを調整するピッチ調整手段を備えたことを特徴とするコイルばね成形機のピッチ調整装置。NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil spring forming machine for forming the coil spring based on the NC data is set according to the characteristics of the coil spring. In the pitch adjusting device of the coil spring molding machine for adjusting the pitch of the coil spring , Y = B , where the pitch instruction value is (X), the pitch target value is (Y), the proportionality coefficient is (B), and the delay component is (A). A pitch for detecting an actual measured pitch value when the coil spring is formed by driving the coil spring molding machine based on the basic NC data by setting a predetermined proportional relationship represented by a linear expression of X + A. and detecting means, the pitch measured values said pitch detecting means detects as compared to the pitch target value (Y), the pitch measured value and the pitch target value (Y) Based on the deviation, and sets the first adjustment parameter to match with the pitch measured value and the pitch instruction value (X) a delay component of the predetermined proportionality delay component for proportional relationship (A) (α), Adjustment parameter setting means for setting a second adjustment parameter (β) that matches the proportionality coefficient in the proportional relationship between the actually measured pitch value and the pitch indication value (X) with the proportionality coefficient (B) of the predetermined proportionality relationship; with adjusting the operation start position of the pitch tool on the basis of the adjustment parameter setting means wherein the first adjustment parameter set (alpha), with respect to the pitch indicated value on the basis of the second adjustment parameter (β) (X) A pitch of a coil spring forming machine comprising pitch adjusting means for adjusting a pitch of the coil spring by adjusting a rate of movement of the pitch tool. Adjustment device. 所望のコイルばねを特定する少なくともピッチパラメータを含む複数のパラメータに基づきNCデータを設定し、該NCデータに基づき前記コイルばねを成形するコイルばね成形機に対し、前記コイルばねの特性に応じて前記コイルばねのピッチを調整するコイルばね成形機のピッチ調整装置において、ピッチ指示値を(X)、ピッチ目標値を(Y)、比例係数を(B)、遅れ成分を(A)としてY=B・X+Aの直線式で表す所定の比例関係に設定して基本NCデータとし、該基本NCデータに基づき前記コイルばね成形機を駆動して前記コイルばねを成形したときのピッチ実測値を検出するピッチ検出手段と、該ピッチ検出手段が検出したピッチ実測値を前記ピッチ目標値(Y)と比較し、前記ピッチ実測値と前記ピッチ目標値(Y)との偏差に基づき、前記ピッチ実測値と前記ピッチ指示値(X)との比例関係を前記所定の比例関係と一致させるように前記基本NCデータを再設定し、再設定NCデータを設定する再設定手段と、該再設定手段が設定した再設定NCデータに基づき、前記コイルばねのピッチを調整するピッチ調整手段を備えたことを特徴とするコイルばね成形機のピッチ調整装置。NC data is set based on a plurality of parameters including at least a pitch parameter for specifying a desired coil spring, and the coil spring forming machine for forming the coil spring based on the NC data is set according to the characteristics of the coil spring. In the pitch adjusting device of the coil spring molding machine for adjusting the pitch of the coil spring , Y = B , where the pitch instruction value is (X), the pitch target value is (Y), the proportionality coefficient is (B), and the delay component is (A). A pitch for detecting an actual measured pitch value when the coil spring is formed by driving the coil spring molding machine based on the basic NC data by setting a predetermined proportional relationship represented by a linear expression of X + A. and detecting means, the pitch measured values said pitch detecting means detects as compared to the pitch target value (Y), the pitch measured value and the pitch target value (Y) Based on the deviation, the re-setting the basic NC data so that pitch measured value and the pitch indicated value proportional relationship between (X) coincides with the predetermined proportional relationship, resetting means for setting a reset NC data And a pitch adjusting device for adjusting the pitch of the coil spring based on the reset NC data set by the resetting device.
JP2003107338A 2003-04-11 2003-04-11 Method and apparatus for adjusting pitch of coil spring forming machine Expired - Fee Related JP4371401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107338A JP4371401B2 (en) 2003-04-11 2003-04-11 Method and apparatus for adjusting pitch of coil spring forming machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107338A JP4371401B2 (en) 2003-04-11 2003-04-11 Method and apparatus for adjusting pitch of coil spring forming machine

Publications (2)

Publication Number Publication Date
JP2004314082A JP2004314082A (en) 2004-11-11
JP4371401B2 true JP4371401B2 (en) 2009-11-25

Family

ID=33469200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107338A Expired - Fee Related JP4371401B2 (en) 2003-04-11 2003-04-11 Method and apparatus for adjusting pitch of coil spring forming machine

Country Status (1)

Country Link
JP (1) JP4371401B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010010895B3 (en) 2010-03-03 2011-10-06 Wafios Ag Method for producing coil springs by spring winches, and spring coiling machine
JP5268162B2 (en) * 2010-03-12 2013-08-21 旭精機工業株式会社 Spring forming machine and control program thereof
JP2013176797A (en) * 2012-02-29 2013-09-09 Asahi- Seiki Manufacturing Co Ltd Coil spring forming device and spring length measuring device
ITMI20131181A1 (en) 2013-07-15 2015-01-16 Simplex Rapid S R L DEVICE FOR THE FORMATION OF SPRINGS
CN117450983B (en) * 2023-11-01 2024-03-15 保利澳瑞凯(江苏)矿山机械有限公司 Shock absorber strut straightness detection device that hangs down

Also Published As

Publication number Publication date
JP2004314082A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4371401B2 (en) Method and apparatus for adjusting pitch of coil spring forming machine
JP5727253B2 (en) Method for manufacturing a helical spring by spring winding
KR102022895B1 (en) Method and appratus for correcting a caracteristic line of a 2-point lambda sensor
JP2003245744A (en) Method and device for manufacturing coil spring
US20070112537A1 (en) Method for learning characteristic curves for hydraulic valves
EP0483192A1 (en) Autocalibration of camshaft phasing feedback in a variable valve timing system.
US6666197B2 (en) Process and device for controlling cylinder selective filling in a combustion engine having a variable operation
US20040099230A1 (en) Method and apparatus for automatically setting rocker arm clearances in an internal combustion engine
TWI539095B (en) A spring characteristic correcting method and a spring characteristic correcting device
JP2012523663A (en) Crimping process monitoring method, crimping press and computer program product
JPH0833291B2 (en) Detection method of measured value of automobile
CN107849949B (en) Predicting camshaft phase
KR101920845B1 (en) Determination of a value for a valve lift of a valve of an individual cylinder of an internal combustion engine with a plurality of cylinders
JP4248145B2 (en) How to control ignition
JP2003528240A (en) Control method and apparatus for a multi-cylinder internal combustion engine
US7543562B2 (en) Method and device for operating an internal combustion engine
US20220410924A1 (en) Vehicle speed command generation device and vehicle speed command generation method
CN103649503A (en) Method for operating an internal combustion engine
JP6513212B2 (en) Method for controlling fuel metering
US10247126B2 (en) Feedback control method for a fuel delivery system
JPH09209819A (en) Detection method of combustion misfire
KR970702424A (en) METHOD FOR SENSING FAULTY COMBUSTION IN AN INTERNAL COMBUSTION ENGINE
CN111894746A (en) Closed-loop adjusting method and device for bare engine emission
US7383117B2 (en) Method for optimizing a valve-lift changeover on spark-ignition engines
KR101987648B1 (en) Control method for actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees