JP4370706B2 - Electrophotographic photoreceptor and electrophotographic apparatus using the same - Google Patents

Electrophotographic photoreceptor and electrophotographic apparatus using the same Download PDF

Info

Publication number
JP4370706B2
JP4370706B2 JP2000245914A JP2000245914A JP4370706B2 JP 4370706 B2 JP4370706 B2 JP 4370706B2 JP 2000245914 A JP2000245914 A JP 2000245914A JP 2000245914 A JP2000245914 A JP 2000245914A JP 4370706 B2 JP4370706 B2 JP 4370706B2
Authority
JP
Japan
Prior art keywords
resin
charging
electrophotographic
undercoat layer
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000245914A
Other languages
Japanese (ja)
Other versions
JP2002062675A (en
Inventor
孝 大日方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2000245914A priority Critical patent/JP4370706B2/en
Publication of JP2002062675A publication Critical patent/JP2002062675A/en
Application granted granted Critical
Publication of JP4370706B2 publication Critical patent/JP4370706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は電子写真用感光体(以下、単に「感光体」とも称する)に関し、詳しくは、正帯電型電子写真用感光体およびこれに用いる接触帯電方式の帯電装置に関する。
【0002】
【従来の技術】
複写機、プリンタ、ファクシミリ等の電子写真装置において、感光体表面を所定の電位に帯電させる帯電装置としては、従来より、ワイヤ電極とシールド電極とからなるコロナ放電装置が用いられている。
【0003】
しかし、かかるコロナ放電を用いた装置は、4〜10kVの高電圧電源を必要とすること、帯電効率が低いこと、ワイヤの汚染によって帯電が不均一になること、空気中放電によるオゾン発生量が多いことなど、多くの問題点を有していることから、かかるコロナ放電装置における問題を有しない帯電方式として、導電性繊維状毛ブラシや導電性ゴムローラ等の帯電部材を感光体表面に直接接触させて帯電を行う接触帯電方式が注目されている。
【0004】
この接触帯電方式は、低圧電源が使用可能でオゾン発生量を低減できるというメリットを有するが、帯電部材が感光体表面に直接接触するために、感光層中に微細な泡や異物等の欠陥が存在したり、支持体表面に汚れや突起物、バリ等が存在する場合、その部分に帯電部材からのリーク電流が集中して、感光層や帯電部材が損傷してしまう場合があった。特に、帯電効率を上げる目的で、通常1kV程度である直流電圧を印加している帯電部材に、さらに帯電開始電圧の2倍以上のピーク間電圧を有する交流電圧を重畳した場合、リーク電流による絶縁破壊がより発生しやすくなる。
【0005】
このような接触帯電方法におけるリーク電流の発生を防止するために、また、支持体と感光層との密着性や感光層の塗布均一性の向上、支持体から感光層への電荷注入の抑制等を目的として、導電性支持体(以下、単に「支持体」とも称する)と感光層との間に、樹脂中に所望に応じて金属酸化物を分散させてなる下引き層を設けることが行われている。
【0006】
かかる下引き層に用いられる樹脂としては、例えば、ポリビニルブチラール系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、ポリエステル系樹脂、アクリル系樹脂、塩化ビニル系樹脂等の高分子材料が知られている。しかし、このような樹脂だけで下引き層を形成してその上に感光層を積層した感光体においては、これら樹脂の体積抵抗値が非常に大きいために、光照射で発生した電荷が下引き層中を移動するのが困難となる。そのため、下引き層中で電荷の蓄積やトラップが起こりやすく、これにより感光体の感度低下や残留電位上昇が生じて、結果として画像濃度低下や残像(ゴースト)等の画像不良を発生する原因となっていた。特に、支持体表面に存在する汚れ、ピンホール、突状欠陥等を被覆する目的で、あるいは帯電電圧に対する耐電圧を満足させる目的で、下引き層の膜厚を厚く設定する場合には、感度低下や残留電位上昇が著しく、実用可能な画像特性を得ることができなかった。
【0007】
これらの問題の発生を防止して下引き層の電気導電率を調整する方法として、下引き層中に、ポリピロールやポリアニリン等の導電性ポリマーを含有させる方法、ポリオキシエチレンアルキルエーテル等に代表される非イオン系界面活性剤や、アルキルスルホン酸ナトリウム等に代表されるアニオン系界面活性剤、テトラアルキルアンモニウム塩に代表されるカチオン系界面活性剤のような、いわゆる低分子量の界面活性剤を含有させる方法、アルミニウム、ニッケル、銀等の金属粉末やフレークを分散させる方法、酸化インジウム、酸化スズ、ITO等の導電性金属酸化物を分散させる方法、酸化チタン、硫酸バリウム、チタン酸カリウム、ホウ酸アルミニウム等を芯材として、酸化スズや酸化インジウムを用いて被覆しあるいはドーピングした導電性金属酸化物を分散させる方法などが提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、これらのうち、導電性ポリマーを用いる場合には、溶解性や塗液のポットライフ等に問題が残されており、また、低分子量の界面活性剤を用いる場合には、下引き層形成時に界面活性剤のブリードアウト(析出)による表面欠陥が発生しやすくなるとともに、界面活性剤の吸湿性が高いために湿度の影響を受けやすく、環境安定性が大きな問題になる。また、導電性金属酸化物を用いる場合には、これらの粒子の導電率が10-2〜10-5S/cmと大きいために、支持体から過剰の電荷が注入されて、感光体の帯電低下や画像上の微小黒点等の問題を引き起こすことに加え、これらの粒子を微細化して下引き層中に均一に分散させることが技術的に難しく、2次凝集粒子による塗膜欠陥が発生したり、下引き層中での濃度分布が均一に形成されないことによる導電性不良が起こり、前述と同様の帯電不良や印字欠陥が発生するとともに、リーク電流による絶縁破壊が起こりやすくなるという問題もあった。
【0009】
一方、近年、感光層としては、セレン、酸化亜鉛、アモルファスシリコン等の光導電性物質をその主成分とする無機感光体に代わって、無公害性、高生産性等のメリットを有する有機材料を用いた有機感光体が主流になってきている。特に、層構成的には、高感度特性や高耐久性等の要求の観点から、電荷発生物質を含有する電荷発生層の上に電荷輸送物質を含有する電荷輸送層を積層した機能分離型感光体が広く開発されている。
【0010】
しかし、かかる機能分離型の積層型感光体においては、電荷発生層で発生したキャリア(正孔)を電荷輸送層中において高移動度で輸送することのできる正孔輸送物質は存在するものの、発生した電子を高移動度で輸送することのできる電子輸送物質が得られていないため、感光体表面の帯電極性として負帯電構成を取る必要があり、多量のオゾン発生や帯電装置の制約等の問題が発生していた。
【0011】
最近では、このような負帯電機構における問題を回避してオゾン発生量の低減や画像品質の向上を図る観点から、感光体表面をプラス電荷で帯電させる正帯電型感光体が種々提案されているが、高い輸送能を有する電子輸送物質が極めて少ないために、電子写真プロセスのスピードに対応した感度特性や光応答性は十分に得られていなかった。
【0012】
また、近年、電子受容性構造を有する化合物に溶解性基を導入した幾つかの電子輸送物質が提案されており、例えば、特開平1−206349号公報、特開平3−290666号公報、特開平4−360148号公報、特開平5−92936号公報、特開平5−279582号公報、特開平7−179775号公報、特開平9−151157号公報、特開平10−73937号公報等に記載されたものが挙げられるが、これらいずれの化合物についても、既存の電荷発生物質との組み合わせにおいて感度や電気特性が十分なものではなく、実用上問題を有するのが現状であった。
【0013】
そこで本発明の目的は、帯電装置における帯電方式に係る問題点と、感光体の帯電機構に係る問題点とを同時に解消して、異常リーク電流に対しても十分な電界強度を有する良好な電子写真用感光体および特定の帯電装置との組み合わせにおいてこれを用いた電子写真装置を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明の電子写真用感光体は、電圧を印加した帯電部材を接触させて帯電を行う帯電装置により帯電される電子写真用感光体において、該電子写真用感光体が、導電性支持体上に下引き層および感光層を順次設けてなる正帯電型感光体であり、前記下引き層が、熱硬化性樹脂および導電性金属酸化物を含有し、前記導電性金属酸化物が、金属アンチモン酸塩の微粒子、または、五酸化アンチモンと金属酸化物とが結合してなる複酸化物の微粒子であることを特徴とするものである。これにより、下引き層の体積抵抗値を適正に調整することができ、また、導電性金属酸化物が正孔輸送性物質であるために、下引き層の膜厚を厚く設定しても感度低下や残電上昇が起こらない、安定した電気特性を得ることができる。
【0016】
また、前記下引き層に10V/μmの電圧を印加したときの体積抵抗値が1×1012Ωcm以下であることが好ましく、前記感光層が、少なくとも電荷発生物質、正孔輸送物質、電子輸送物質、増感性有機物質およびバインダー樹脂を含有することが好ましい。
【0017】
さらに、前記増感性有機物質が、下記構造式(I)〜(II)、

Figure 0004370706
(式(I)中、Xは水素原子、ハロゲン原子、置換若しくは無置換のアルキル基、アルコキシ基、アリール基、アリルオキシ基、カルボキシル基、ニトロ基、シアノ基または水酸基を表し、mは0〜5の整数を表す)、
Figure 0004370706
(式(II)中、Xおよびmは上記と同じものを表す)のうちのいずれかで表される化合物を少なくとも1個含有することが好ましい。かかる新規構造の増感性物質を含有することにより、優れた感度特性、光応答性を得ることが可能となる。
【0018】
また、本発明の帯電装置は、電子写真用感光体と、該電子写真用感光体表面に電圧を印加した帯電部材を接触させて帯電を行う帯電装置とを備えた電子写真装置において、前記電子写真用感光体が上記本発明の電子写真用感光体のいずれかであることを特徴とするものである。
【0019】
【発明の実施の形態】
以下、本発明の電子写真用感光体および帯電装置について詳述する。
本発明の感光体は、導電性支持体上に下引き層および感光層を順次設けてなる正帯電型感光体であって、電圧を印加した帯電部材を接触させて帯電を行う接触帯電方式の帯電装置により帯電されるものである。
【0020】
本発明の感光体に使用できる支持体としては、アルミニウム、ニッケル、クロム、ステンレス鋼等の金属類およびアルミニウム、チタン、ニッケル、クロム、ステンレス、酸化錫、酸化インジウム、ITO等の薄膜を設けたプラスチックフィルム等、あるいは、導電性付与剤を塗布または浸漬した紙、プラスチック等が挙げられる。これらの支持体は、例えば、ドラム状、シート状、プレート状等にて使用するが、これらに限定されるものではない。また、必要に応じて、支持体の表面に、酸化処理、薬品処理、着色処理あるいはサンドブラスト等の乱反射処理を施してもよい。
【0021】
本発明における下引き層は、好ましくは熱硬化性樹脂および導電性金属酸化物を含有する。かかる導電性金属酸化物としては、例えば、下記式(A)若しくは(B)、
M・Sb26 (A)
(式中、MはZn、Mg、Cu、Fe、MnまたはCoを示す)
M・SbO4 (B)
(式中、MはIn、Al、Cr、FeまたはGaを示す)
で表される金属アンチモン酸塩、または、下式(C)若しくは(D)、
MO・Sb25 (C)
(式中、MはZn、Mg、Cu、Fe、MnまたはCoを示す)
23・Sb25 (D)
(式中、MはIn、Al、Cr、FeまたはGaを示す)
で表される五酸化アンチモンと金属酸化物とが結合してなる複酸化物の微粒子を用いることができる。
【0022】
導電性金属酸化物粒子の1次粒径としては、好ましくは10〜200nm、より好ましくは15〜50nmである。1次粒径が200nmを超えると塗液中での粒子の分散安定性が悪く、凝集した粒子による塗膜欠陥やそれに伴う画像上の微小黒点、リーク電流による損傷等が発生するとともに、下引き層中での粒子間の導電性通路が十分に形成されないため、光照射時に電荷発生層で発生した電荷が下引き層中を移動しにくくなり、電荷の蓄積やトラップによって、繰り返し使用した時の感度低下や残留電位上昇等の問題が発生する。また、1次粒径が10nm未満であると、粒子間の凝集力(表面エネルギー)が大きくなってしまうために均一に分散させるのが難しく、2次凝集の原因ともなる。
【0023】
また、かかる導電性金属酸化物粒子と混合して用いるバインダー樹脂や溶剤の種類によっては、この粒子の表面をシランカップリング剤で処理し、分散性を改良して、粒子の凝集による微小な印字欠陥を防止することが好ましい。シランカップリング剤の種類は、用いるバインダー樹脂や溶剤、導電性金属酸化物粒子の種類によって適宜決めることができるが、例えば、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ−グリシドシキプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、β−3,4−エポキシシクロヘキシルトリメトキシシラン等を挙げることができる。粒子に対する処理量は、0.5〜5重量%が好適である。
【0024】
従来の、酸化インジウム、酸化スズ、ITO等の導電性金属酸化物や、酸化チタン、硫酸バリウム、チタン酸カリウム、ホウ酸アルミニウム等を酸化スズ若しくは酸化インジウムにて被覆した導電性金属酸化物等を用いる場合には、これらの粒子径が0.5〜2μmと大きいために、最適なバインダー樹脂、溶剤、粉砕処理方法を選定してもなお塗液の分散安定性の不良や塗膜欠陥等の問題が発生していたのに対し、本発明の導電性金属酸化物としての導電性金属アンチモン酸塩または五酸化アンチモンと金属酸化物とが結合してなる複酸化物においては、各種樹脂、溶剤との相溶性が良好であり、ボールミル、サンドミル、ホモジナイザー等の一般的な粉砕法にて容易に微細化できるため、均一な塗膜を形成でき、塗液の分散安定性にも優れている。
【0025】
また、従来の上記導電性金属酸化物等は、導電率が10-2〜10-5S/cmと高いことから支持体から過剰な電荷が注入するため、帯電低下や画像黒点欠陥の発生を防止するには下引き層上に第2の下引き層(ブロッキング層)を設ける必要があったが、本発明の導電性金属酸化物は、TOF(Time of flight、飛行時間型)質量分析法にて電荷輸送特性を測定した結果、正孔輸送性に優れていることが確認されており、下引き層の導電率を適宜設定することができるために、第2の下引き層を設ける必要がない。さらに、この優れた正孔輸送性のために繰り返し使用時にも帯電電位や残留電位の変動がないことに加え、感光体の使用環境、特には湿度の影響を受けにくく、環境変化に対しても安定した電気特性および画像特性を得ることができる。さらにまた、下引き層の膜厚を、例えば、5〜10μmにしても感度の低下や残留電位の上昇が起こらないことから、厚膜化が可能であり、支持体の表面欠陥を十分に被覆することができると同時に、帯電電圧に対して高耐圧性になるため、特に本発明に係る接触帯電方式を適用した帯電装置を備えた電子写真装置においては、絶縁破壊を良好に防止することができる。
【0026】
また、下引き層の体積抵抗値としては、10V/μmの電圧を印加した際の値として、1×1012Ωcm以下、特には、108〜1011Ωcmの範囲内であることが好ましい。下引き層の体積抵抗値が1×1012Ωcmを超えると、光照射時に電荷発生層で発生したキャリアが下引き層中を移動しにくくなり、電荷の蓄積やトラップによって繰り返し使用時の残電上昇や印字濃度低下等の不具合が発生するため、好ましくない。
【0027】
下引き層のバインダー樹脂としては、例えば、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリアクリル酸エステル樹脂、ポリメタクリル酸エステル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリカーボネート樹脂等の熱可塑性樹脂や、ポリウレタン樹脂、フェノール樹脂、エポキシ樹脂、メラミン樹脂等の熱硬化性樹脂を単独または混合して用いることができる。特に、下引き層を形成した後、浸漬法やスプレー法にて感光層を塗布する場合には、感光層形成に用いる溶剤により下引き層が溶解、変質して感光層の塗布ムラやピンホール等が生じ、これにより画像不良が発生することがあるため、かかるバインダー樹脂として熱硬化性樹脂を用いて、感光層用塗布液の溶剤に対し不溶化ないし難溶化させることが好ましい。かかる目的を満足するバインダー樹脂としては、特には下記構造式(E)、
Figure 0004370706
で表されるようなヒドロキシ基を有するスチレン樹脂、または、これらと異なる樹脂、例えば、メタクリル酸メチル樹脂、メタクリル酸ヒドロキシエチル樹脂、アクリル酸ヒドロキシルエチル樹脂、アクリル酸ブチル樹脂、スチレン樹脂、フェニルマレイド樹脂、マレイン酸樹脂、フマル樹脂等との共重合体、若しくは、スルホン化、tert−ブチル化、アミノ化、臭素化された誘導体等が好ましい。
【0028】
かかる混合して用いることのできる樹脂としては、ヒドロキシル基と反応する官能基を有する物質であればよく、例えばメラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、イソシアネート樹脂等が適しており、特にはメラミン樹脂が反応性が高く、硬化した塗膜の耐溶剤性が良好であるとともに、感光層との密着性や塗液のポットライフが向上することから、好ましい。また、硬化反応を促進するために、マレイン酸、フタル酸、トリメリット酸、p−トルエンスルホン酸、ピロメリット酸、安息香酸等の硬化触媒や促進剤を使用することもできる。
【0029】
本発明に係る感光層は、好適には、少なくとも電荷発生物質、正孔輸送物質、電子輸送物質、増感性有機物質およびバインダー樹脂を含有する単層構造である。
【0030】
電荷発生物質としては、特に制限はないが、例えば、フタロシアニン系顔料、アゾ顔料、アントアントロン顔料、ペリレン顔料、ペリノン顔料、多環キノン顔料、スクアリリウム顔料、チアピリリウム顔料、キナクリドン顔料等を使用することができ、これら電荷発生物質を、単独または2種以上組み合わせて使用することが可能である。特に、本発明の感光体には、アゾ顔料としては、ジスアゾ顔料、トリスアゾ顔料、ペリレン顔料としては、N,N’−ビス(3,5−ジメチルフェニル)−3,4:9,10−ペリレンビス(カルボキシイミド)、フタロシアニン系顔料としては、無金属フタロシアニン、銅フタロシアニン、チタニルフタロシアニンが好ましく、さらには、X型無金属フタロシアニン、τ型無金属フタロシアニン、ε型銅フタロシアニン、α型チタニルフタロシアニン、β型チタニルフタロシアニン、Y型チタニルフタロシアニン、アモルファスチタニルフタロシアニン、特に、チタニルフタロシアニンにおいては、特開昭61−217050号公報記載のα型、特開昭64−17066号公報記載のY型、および、特開昭62−275272号公報記載の非晶質チタニルフタロシアニンが、感度特性および印字品質の上で有効である。電荷発生物質の含有量は、感光層の固形分に対して好ましくは0.1〜20重量%、より好ましくは0.5〜10重量%である。
【0031】
正孔輸送物質としては、特に制限はないが、例えば、ヒドラゾン化合物、ピラゾリン化合物、ピラゾロン化合物、オキサジアゾール化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、スチリル化合物、ポリ−N−ビニルカルバゾール、ポリシラン等を使用することができ、これら正孔輸送物質を、単独または2種以上組み合わせて使用することが可能である。本発明に用いる正孔輸送物質としては、光照射時に発生する正孔の輸送能力が優れているほか、電荷発生物質との組み合わせにおいて好適に使用できるものが好ましい。正孔輸送物質の含有量は、感光層の固形分に対して、好ましくは5〜80重量%、より好ましくは10〜60重量%である。
【0032】
電子輸送物質としては、特に制限はないが、無水琥珀酸、無水マレイン酸、ジブロム無水琥珀酸、無水フタル酸、3−ニトロ無水フタル酸、4−ニトロ無水フタル酸、無水ピロメリット酸、ピロメリット酸、トリメリット酸、無水トリメリット酸、フタルイミド、4−ニトロフタルイミド、テトラシアノエチレン、テトラシアノキノジメタン、クロラニル、ブロマニル、o−ニトロ安息香酸、マロノニトリル、トリニトロフルオレノン、トリニトロチオキサントン、ジニトロベンゼン、ジニトロアントラセン、ジニトロアクリジン、ニトロアントラキノン、ジニトロアントラキノン、チオピラン系化合物、キノン系化合物、ベンゾキノン系化合物、ジフェノキノン系化合物、ナフトキノン系化合物、アントラキノン系化合物、スチルベンキノン系化合物、アゾキノン系化合物等の電子輸送物質(アクセプター性化合物)を使用することができ、これら電子輸送物質を、単独または2種以上組み合わせて使用することが可能である。電子輸送物質の含有量は、感光層の固形分に対して、好ましくは1〜50重量%、より好ましくは5〜40重量%である。
【0033】
増感性有機物質としては、特に制限はないが、好ましくは、前記一般式(I)〜(III)に示した有機化合物を単独もしくは2種以上組み合わせて使用することが可能である。特には、具体例として、下記構造式(I−1)〜(I−29)、(II−1)〜(II−29)および(III−1)〜(III−19)で表される有機化合物を挙げることができる。増感性有機物質の含有量は、感光層の固形分に対して、好ましくは1〜50重量%、より好ましくは5〜20重量%である。
【0034】
Figure 0004370706
【0035】
Figure 0004370706
【0036】
Figure 0004370706
【0037】
Figure 0004370706
【0038】
Figure 0004370706
【0039】
Figure 0004370706
【0040】
バインダー樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、ポリウレタン樹脂、エポキシ樹脂、メラミン樹脂、シリコン樹脂、シリコーン樹脂、ポリアミド樹脂、ポリスチレン樹脂、ポリアセタール樹脂、ポリアリレート樹脂、ポリスルホン樹脂、メタクリル酸エステルの重合体およびこれらの共重合体などの樹脂を単独もしくは2種以上にて適宜組み合わせて使用することが可能である。また、分子量の異なる同種の樹脂を混合して用いてもよい。結着樹脂の含有量は、感光層の固形分に対して、好ましくは10〜90重量%、より好ましくは20〜80重量%である。
【0041】
感光層の膜厚は、実用的に有効な表面電位を維持するためには3〜100μmの範囲が好ましく、より好適には10〜50μmである。
【0042】
また、これらの感光層中には、耐環境性や有害な光に対する安定性を向上させる目的で、酸化防止剤や光安定剤などの劣化防止剤を含有することもできる。このような目的に用いられる化合物としては、トコフェロールなどのクロマノール誘導体およびエステル化化合物、ポリアリールアルカン化合物、ハイドロキノン誘導体、エーテル化化合物、ジエーテル化化合物、ベンゾフェノン誘導体、ベンゾトリアゾール誘導体、チオエーテル化合物、フェニレンジアミン誘導体、ホスホン酸エステル、亜リン酸エステル、フェノール化合物、ヒンダードフェノール化合物、直鎖アミン化合物、環状アミン化合物、ヒンダードアミン化合物等が挙げられる。
【0043】
さらに、感光層中には、形成した膜のレベリング性の向上や潤滑性の付与を目的として、シリコーンオイルやフッ素系オイル等のレベリング剤を含有させることもできる。
【0044】
また、本発明の電子写真装置は、電子写真用感光体と、電子写真用感光体表面に電圧を印加した帯電部材を接触させて帯電を行う接触帯電方式の帯電装置とを備えた電子写真装置であって、かかる電子写真用感光体として、本発明の上記感光体を用いたものである。かかる本発明の電子写真装置に係る帯電装置において用いる帯電部材としては、例えば、ブラシ形状、ローラ形状、ブレード形状のもの等が挙げられる。これらのうち、ローラ状帯電部材としては、感光体表面に密着させて回転させるために、比較的硬度の小さい弾性体、例えばNBR、EPDM、シリコン、発泡ウレタン等のゴム材、またはこれらにカーボンや導電性微粒子等を練り込んだ導電性ゴム材を金属心棒に被覆して使用する。感光体表面の帯電均一性を向上させる点からは、かかるゴム材ローラの表面に、ポリアミド樹脂、アクリル樹脂、ポリエステル樹脂等の樹脂層を、0.1〜100μm程度の膜厚でコーティングして、表面層を形成することが好ましい。
【0045】
また、ブラシ状帯電部材としては、レーヨン、ポリアミド、アクリル等の樹脂にカーボンや導電性微粒子等を練り込んだ導電性繊維を、金属心棒や導電性ゴム材等の基体に植毛して使用する。導電性繊維の太さは、帯電性能の要求から適宜設定されるが、0.5〜10デニールが好ましく、体積抵抗値としては、102〜108Ωcmが好適である。
【0046】
これら帯電部材に印加する電圧としては、直流電圧単独でもよいが、感光体表面の帯電性を均一化するためには、特に、帯電開始電圧の2倍以上のピーク間電圧を有する交流電圧を重畳することが好ましい。
【0047】
【実施例】
以下、本発明の具体的な実施例について詳細に説明する。尚、以下において「部」とは、重量部を示す。
実施例1
ヒドロキシスチレンとメタクリル酸メチルとの共重合樹脂(リンカーCMM:丸善石油化学(株))20部とブチル化メラミン樹脂(ユーバン20SB:三井東圧化学(株))16部とをテトラヒドロフラン56部に溶解した樹脂溶液と、透過型電子顕微鏡観察より1次粒子の粒径が15〜40nmのアンチモン酸亜鉛(ZnSb25)8部とをボールミルポットに入れ、直径10mmのジルコニアボールを充填して48時間ボールミリング処理した。この分散液を、外径30mmのアルミニウム円筒状支持体表面に浸漬塗布し、140℃で60分乾燥して、膜厚5μmの下引き層を形成した。
【0048】
次に、ポリカーボネート樹脂(パンライトTS2020:帝人化成(株))10部、下記構造式(F)で表される正孔輸送物質5部、下記構造式(G)で表される電子輸送物質3部および前記構造式(I−1)で表される増感性有機物質2部をテトラヒドロフラン79部に溶解し、さらにこの溶液にX型無金属フタロシアニン1部を加えて、ボールミルにて12時間分散処理を行った。得られた塗布液を上記の下引き層上に浸漬塗布した後、100℃で60分間乾燥して、膜厚25μmの単層型感光層を形成し、感光体を作製した。
Figure 0004370706
【0049】
実施例2
下引き層中に、アンチモン酸亜鉛に代えて、透過型電子顕微鏡観察より1次粒子の粒径が20〜50nmの五酸化アンチモンと酸化マンガンとが結合してなる複酸化物(MnO・Sb25)を用いた他は、実施例1と全く同様にして感光体を作製した。
【0050】
実施例3
前記構造式(I−1)で表される増感性有機物質の代わりに、前記構造式(II−1)で表される増感性有機物質を用いた他は、実施例1と全く同様にして感光体を作製した。
【0051】
実施例4
下引き層を、ポリアリレート樹脂(Uポリマー8000:ユニチカ)30部をテトラヒドロフラン70部に溶解した樹脂溶液を円筒状支持体表面に浸漬塗布し、120℃で60分間乾燥して膜厚5μmにて形成した以外は実施例1と全く同様にして感光体を作製した。
【0052】
比較例1
下引き層を形成しない以外は実施例1と全く同様にして感光体を作製した。
【0053】
比較例2
実施例1と全く同様にして感光体を作製し、この感光体についてのみ、以下に述べるように帯電方式を他の感光体と変えて評価を行った。
【0054】
上記実施例および比較例にて作製した感光体の電気特性を、感光体プロセス試験機により評価した。試験機中の帯電装置は、実施例1〜4および比較例1の感光体に対しては接触帯電方式を用い、また、比較例2の感光体についてはスコロトロン帯電方式を用いた。接触帯電部材としては、ブラシ状帯電部材(繊維抵抗値:105Ωcm、繊維長さ:3mm、繊維太さ:3デニール、植毛密度:4万本/cm2)を用い、印加電圧としては、700Vの直流電圧に1500Vのピーク間電圧を有する交流電圧を重畳した。
【0055】
感光体を試験機に取り付けて、周速50mm/sにて回転させながらブラシ状帯電部材またはスコロトロン帯電部材にて感光体表面を700Vに帯電させ、光照射のない時の電位を暗部電位(帯電電位)として測定した。続いて、波長780nm、放射照度2μW/cm2の光を照射して、0.2秒後の電位をもって明部電位(残留電位)とした。このような帯電、露光のサイクルを温度23℃、相対湿度45%の環境下で10000サイクル繰り返して、暗部電位と明部電位との変動量を測定した。
【0056】
また、各実施例および比較例にて作製した感光体の下引き層に金電極を付けて、10V/μmの電圧を印加した際の電流密度から体積抵抗値を評価した。
これらの測定結果を下記表1中に併せて示す。
【0057】
【表1】
Figure 0004370706
【0058】
上記表1の結果から明らかなように、実施例1〜4の感光体は、感光体の絶縁破壊によるリーク傷の発生がなく、また、下引き層に導電性金属酸化物を含有させた実施例1〜3においては、10000サイクルの繰り返し使用時においても暗部電位および明部電位の変動がない、非常に優れた性能を有することが確認された。また、スコロトロン帯電部材を用いた比較例2の感光体は、帯電部材から発生するオゾンによって膜が劣化し、10000サイクルの繰り返し後に、暗部電位低下を起こした。
【0059】
【発明の効果】
以上説明してきたように、本発明の感光体によれば、導電性支持体上に下引き層および感光層を設けた構成の正帯電型の感光体として、接触帯電方式の帯電装置により帯電させ、特には、下引き層中に導電性金属酸化物としての導電性金属アンチモン酸塩、または五酸化アンチモンと金属酸化物を結合させた複酸化物の微粒子とバインダー樹脂とを含有させたことにより、下引き層の膜厚を厚めに設定することを可能にして、接触帯電方式における異常リーク電流に対する高い耐圧を実現して、絶縁破壊によって生じる画像欠陥を良好に防止することができる。
【0060】
また同時に、下引き層の厚みによって支持体の表面欠陥を十分に被覆することができるため、支持体の表面加工や洗浄にかけるコストを大幅に削減することができ、経済性にも優れている。
【0061】
さらに、バインダー樹脂が熱硬化性樹脂であるために、下引き層上に塗布する感光層用塗布液の溶剤に対して十分な耐溶剤性を有し、これにより下引き層の溶解や変質による塗布むらやピンホールを防止できることとともに、支持体や感光層との密着性も強固にすることができる。尚、本発明の感光体は、2成分、磁性1成分、非磁性1成分現像方式を用いたものに適用可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor (hereinafter also simply referred to as “photoreceptor”), and more particularly to a positively charged electrophotographic photoreceptor and a contact charging type charging device used therefor.
[0002]
[Prior art]
In an electrophotographic apparatus such as a copying machine, a printer, or a facsimile, a corona discharge device including a wire electrode and a shield electrode has been conventionally used as a charging device that charges the surface of a photosensitive member to a predetermined potential.
[0003]
However, such a device using corona discharge requires a high voltage power supply of 4 to 10 kV, low charging efficiency, non-uniform charging due to wire contamination, and the amount of ozone generated by air discharge. Because there are many problems, such as many, as a charging method that does not have a problem in such a corona discharge device, a charging member such as a conductive fibrous bristle brush or a conductive rubber roller is in direct contact with the surface of the photoreceptor. Attention has been paid to a contact charging method in which charging is performed.
[0004]
This contact charging method has the advantage that a low-voltage power supply can be used and the amount of ozone generated can be reduced. However, since the charging member is in direct contact with the surface of the photoreceptor, defects such as fine bubbles and foreign matter are present in the photosensitive layer. If there is dirt, protrusions, burrs, or the like on the surface of the support, leakage current from the charging member concentrates on the portion, and the photosensitive layer and the charging member may be damaged. In particular, for the purpose of increasing charging efficiency, when an AC voltage having a peak-to-peak voltage more than twice the charging start voltage is superimposed on a charging member to which a DC voltage of about 1 kV is applied, insulation due to leakage current Destruction is more likely to occur.
[0005]
In order to prevent the occurrence of leakage current in such a contact charging method, the adhesion between the support and the photosensitive layer and the coating uniformity of the photosensitive layer are improved, the charge injection from the support to the photosensitive layer is suppressed, etc. For this purpose, an undercoat layer in which a metal oxide is dispersed in a resin as desired is provided between a conductive support (hereinafter also simply referred to as “support”) and a photosensitive layer. It has been broken.
[0006]
Examples of the resin used for the undercoat layer include polymer materials such as polyvinyl butyral resin, polycarbonate resin, polyamide resin, polyvinyl alcohol resin, polyester resin, acrylic resin, and vinyl chloride resin. It has been. However, in a photoreceptor in which an undercoat layer is formed only of such a resin and a photosensitive layer is laminated thereon, the volume resistance value of these resins is so large that the charge generated by light irradiation is subtracted. It becomes difficult to move through the layers. For this reason, charge accumulation and trapping are likely to occur in the undercoat layer, which causes a decrease in sensitivity of the photoconductor and an increase in residual potential, resulting in image defects such as a decrease in image density and afterimage (ghost). It was. In particular, when the thickness of the undercoat layer is set to be thick for the purpose of covering dirt, pinholes, protruding defects, etc. existing on the surface of the support or for the purpose of satisfying the withstand voltage against the charging voltage, the sensitivity The decrease and the increase in residual potential were remarkable, and practical image characteristics could not be obtained.
[0007]
As a method of preventing the occurrence of these problems and adjusting the electrical conductivity of the undercoat layer, a method of containing a conductive polymer such as polypyrrole or polyaniline in the undercoat layer, polyoxyethylene alkyl ether, etc. Non-ionic surfactants, anionic surfactants typified by sodium alkylsulfonate, and cationic surfactants typified by tetraalkylammonium salts, so-called low molecular weight surfactants Method of dispersing metal powder and flakes such as aluminum, nickel and silver, method of dispersing conductive metal oxide such as indium oxide, tin oxide and ITO, titanium oxide, barium sulfate, potassium titanate, boric acid Covered with tin oxide or indium oxide, using aluminum as the core material, or dopin A method of dispersing the the conductive metal oxide has been proposed.
[0008]
[Problems to be solved by the invention]
However, among these, when a conductive polymer is used, problems remain in solubility and pot life of the coating liquid, and when a low molecular weight surfactant is used, an undercoat layer is formed. Sometimes surface defects are likely to occur due to bleed-out (deposition) of the surfactant, and because the surfactant has high hygroscopicity, it is easily affected by humidity, and environmental stability becomes a big problem. In addition, when a conductive metal oxide is used, the conductivity of these particles is 10-2-10-FiveSince it is as large as S / cm, excessive charges are injected from the support, causing problems such as a decrease in charge of the photoconductor and minute black spots on the image. It is technically difficult to disperse uniformly in the coating layer, resulting in coating defects due to secondary agglomerated particles, and poor conductivity due to non-uniform concentration distribution in the undercoat layer. There was a problem that charging failure and printing defect occurred, and dielectric breakdown due to leakage current was likely to occur.
[0009]
On the other hand, in recent years, as a photosensitive layer, an organic material having merits such as non-pollution and high productivity has been used in place of an inorganic photoconductor whose main component is a photoconductive substance such as selenium, zinc oxide or amorphous silicon. Organic photoreceptors used are becoming mainstream. In particular, in terms of layer structure, from the viewpoint of requirements such as high sensitivity characteristics and high durability, a function-separated type photosensitive material in which a charge transport layer containing a charge transport material is laminated on a charge generation layer containing a charge generation material. The body is widely developed.
[0010]
However, in such a function-separated type multilayer photoreceptor, although there are hole transport materials that can transport carriers (holes) generated in the charge generation layer with high mobility in the charge transport layer, Since there is no electron transport material that can transport the generated electrons with high mobility, it is necessary to adopt a negative charging configuration as the charge polarity on the surface of the photoconductor. Problems such as generation of a large amount of ozone and restrictions on the charging device Had occurred.
[0011]
Recently, various positively charged photoconductors that charge the surface of the photoconductor with a positive charge have been proposed from the viewpoint of reducing the amount of ozone generated and improving the image quality by avoiding such problems in the negative charging mechanism. However, since there are very few electron transport materials having high transport ability, sensitivity characteristics and photoresponsiveness corresponding to the speed of the electrophotographic process have not been sufficiently obtained.
[0012]
In recent years, several electron transport materials in which a soluble group is introduced into a compound having an electron-accepting structure have been proposed. For example, JP-A-1-206349, JP-A-3-290666, and JP-A-Hei. 4-360148, JP-A-5-92936, JP-A-5-279582, JP-A-7-179775, JP-A-9-151157, JP-A-10-73937, etc. However, none of these compounds have sufficient sensitivity and electrical characteristics in combination with existing charge generation materials, and have practical problems.
[0013]
Therefore, an object of the present invention is to solve the problems related to the charging method in the charging device and the problems related to the charging mechanism of the photosensitive member at the same time, and to obtain good electrons having sufficient electric field strength against abnormal leakage current. An object of the present invention is to provide an electrophotographic apparatus using the same in combination with a photographic photoreceptor and a specific charging device.
[0014]
[Means for Solving the Problems]
  In order to solve the above problems, the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor that is charged by a charging device that performs charging by contacting a charging member to which a voltage is applied. Is a positively charged photoreceptor in which an undercoat layer and a photosensitive layer are sequentially provided on a conductive support, and the undercoat layer contains a thermosetting resin and a conductive metal oxide, The metal oxide is a metal antimonate fine particle or a double oxide fine particle formed by bonding antimony pentoxide and a metal oxide. As a result, the volume resistance value of the undercoat layer can be adjusted appropriately, and since the conductive metal oxide is a hole transporting substance, the sensitivity can be increased even if the thickness of the undercoat layer is set to be large. It is possible to obtain stable electrical characteristics in which no decrease or increase in residual power occurs.
[0016]
The volume resistance value when a voltage of 10 V / μm is applied to the undercoat layer is 1 × 10.12The photosensitive layer preferably contains at least Ωcm, and the photosensitive layer preferably contains at least a charge generating substance, a hole transporting substance, an electron transporting substance, a sensitizing organic substance, and a binder resin.
[0017]
  Further, the sensitizing organic substance has the following structural formulas (I) to (II),
Figure 0004370706
(In formula (I), X represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, an aryl group, an allyloxy group, a carboxyl group, a nitro group, a cyano group, or a hydroxyl group, and m is 0 to 5) Represents an integer),
Figure 0004370706
(In formula (II), it is preferable that at least one compound represented by any one of X and m represents the same as above). By containing such a sensitizing substance having a novel structure, it is possible to obtain excellent sensitivity characteristics and photoresponsiveness.
[0018]
The charging device of the present invention is an electrophotographic apparatus comprising: an electrophotographic photosensitive member; and a charging device that performs charging by contacting a charging member to which a voltage is applied to the surface of the electrophotographic photosensitive member. The photographic photoreceptor is any one of the electrophotographic photoreceptors of the present invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electrophotographic photoreceptor and the charging device of the present invention will be described in detail.
The photoreceptor of the present invention is a positively charged photoreceptor in which an undercoat layer and a photosensitive layer are sequentially provided on a conductive support, and is a contact charging type in which charging is performed by contacting a charging member to which a voltage is applied. It is charged by a charging device.
[0020]
As a support that can be used in the photoreceptor of the present invention, a plastic provided with a metal such as aluminum, nickel, chromium, stainless steel, and a thin film such as aluminum, titanium, nickel, chromium, stainless steel, tin oxide, indium oxide, ITO, etc. Examples thereof include a film, paper, paper coated with or immersed in a conductivity imparting agent, and plastic. These supports are used, for example, in a drum shape, a sheet shape, a plate shape or the like, but are not limited thereto. Further, if necessary, the surface of the support may be subjected to irregular reflection treatment such as oxidation treatment, chemical treatment, coloring treatment or sand blasting.
[0021]
The undercoat layer in the present invention preferably contains a thermosetting resin and a conductive metal oxide. Examples of the conductive metal oxide include the following formula (A) or (B),
M ・ Sb2O6                                                  (A)
(Wherein M represents Zn, Mg, Cu, Fe, Mn or Co)
M ・ SbOFour                                                    (B)
(In the formula, M represents In, Al, Cr, Fe or Ga)
Or a metal antimonate represented by the following formula (C) or (D),
MO ・ Sb2OFive                                                (C)
(Wherein M represents Zn, Mg, Cu, Fe, Mn or Co)
M2OThree・ Sb2OFive                                              (D)
(In the formula, M represents In, Al, Cr, Fe or Ga)
It is possible to use double oxide fine particles formed by bonding antimony pentoxide represented by the formula (I) and a metal oxide.
[0022]
The primary particle size of the conductive metal oxide particles is preferably 10 to 200 nm, more preferably 15 to 50 nm. If the primary particle size exceeds 200 nm, the dispersion stability of the particles in the coating liquid is poor, and coating film defects due to the aggregated particles, accompanying micro black spots on the image, damage due to leakage current, etc. occur, and subtraction Since the conductive path between the particles in the layer is not sufficiently formed, the charge generated in the charge generation layer during light irradiation is less likely to move through the undercoat layer, and when it is used repeatedly due to charge accumulation and trapping. Problems such as reduced sensitivity and increased residual potential occur. Further, if the primary particle size is less than 10 nm, the cohesive force (surface energy) between the particles becomes large, so that it is difficult to disperse uniformly, and this also causes secondary aggregation.
[0023]
Depending on the type of binder resin or solvent used in combination with such conductive metal oxide particles, the surface of these particles may be treated with a silane coupling agent to improve dispersibility and to produce fine prints due to particle aggregation. It is preferable to prevent defects. The type of the silane coupling agent can be appropriately determined depending on the type of binder resin and solvent used and the conductive metal oxide particles. For example, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane , Γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, β-3,4-epoxycyclohexyltrimethoxysilane, etc. be able to. The treatment amount for the particles is preferably 0.5 to 5% by weight.
[0024]
Conventional conductive metal oxides such as indium oxide, tin oxide, and ITO, and conductive metal oxides coated with tin oxide or indium oxide on titanium oxide, barium sulfate, potassium titanate, aluminum borate, etc. When used, since these particle sizes are as large as 0.5 to 2 μm, even if an optimal binder resin, solvent, and pulverization method are selected, the dispersion stability of the coating liquid is still poor, the coating film defects, etc. In contrast to the occurrence of problems, the conductive metal antimonate or the double oxide formed by combining antimony pentoxide and metal oxide as the conductive metal oxide of the present invention includes various resins and solvents. And can be easily refined by a general pulverization method such as a ball mill, sand mill, homogenizer, etc., so that a uniform coating film can be formed and the dispersion stability of the coating liquid is excellent. To have.
[0025]
Further, the conventional conductive metal oxide or the like has a conductivity of 10-2-10-FiveSince S / cm is high, excessive charges are injected from the support. Therefore, it is necessary to provide a second undercoat layer (blocking layer) on the undercoat layer in order to prevent charge reduction and image black spot defects. However, it was confirmed that the conductive metal oxide of the present invention was excellent in hole transportability as a result of measuring the charge transport property by TOF (Time of Flight) mass spectrometry. In addition, since the conductivity of the undercoat layer can be set as appropriate, it is not necessary to provide the second undercoat layer. Furthermore, because of this excellent hole transportability, there is no fluctuation of the charging potential and residual potential even during repeated use. In addition, it is not easily affected by the usage environment of the photoreceptor, particularly humidity, and it is also resistant to environmental changes. Stable electrical characteristics and image characteristics can be obtained. Furthermore, even if the thickness of the undercoat layer is 5 to 10 μm, for example, the sensitivity does not decrease and the residual potential does not increase, so that it is possible to increase the film thickness and sufficiently cover the surface defects of the support. At the same time, since it has a high withstand voltage against the charging voltage, particularly in an electrophotographic apparatus including a charging device to which the contact charging method according to the present invention is applied, it is possible to prevent dielectric breakdown well. it can.
[0026]
The volume resistance value of the undercoat layer is 1 × 10 as a value when a voltage of 10 V / μm is applied.12Ωcm or less, especially 108-1011It is preferably within the range of Ωcm. The volume resistance value of the undercoat layer is 1 × 1012If it exceeds Ωcm, carriers generated in the charge generation layer at the time of light irradiation will not easily move in the undercoat layer, and charge accumulation and traps will cause problems such as increased residual power and reduced print density during repeated use. It is not preferable.
[0027]
Examples of the binder resin for the undercoat layer include heat such as polyvinyl butyral resin, polyvinyl alcohol resin, polyvinyl acetate resin, polyacrylate resin, polymethacrylate resin, polyester resin, polyamide resin, polystyrene resin, and polycarbonate resin. Thermosetting resins such as plastic resins, polyurethane resins, phenol resins, epoxy resins, and melamine resins can be used alone or in combination. In particular, when the photosensitive layer is applied by dipping or spraying after the undercoat layer is formed, the undercoat layer dissolves and changes in quality due to the solvent used for forming the photosensitive layer, resulting in uneven coating of the photosensitive layer or pinholes. Therefore, it is preferable to use a thermosetting resin as the binder resin so as to be insoluble or hardly soluble in the solvent of the photosensitive layer coating solution. As the binder resin satisfying such an object, in particular, the following structural formula (E),
Figure 0004370706
A styrene resin having a hydroxy group as represented by the above, or a resin different from these, for example, methyl methacrylate resin, hydroxyethyl methacrylate resin, hydroxylethyl acrylate resin, butyl acrylate resin, styrene resin, phenylmaleide A resin, a copolymer with a maleic acid resin, a fumarate resin or the like, or a sulfonated, tert-butylated, aminated, brominated derivative or the like is preferable.
[0028]
As such a resin that can be used as a mixture, any resin having a functional group that reacts with a hydroxyl group may be used. For example, a melamine resin, a benzoguanamine resin, a urea resin, an isocyanate resin, and the like are suitable. This is preferable because it has high reactivity and good solvent resistance of the cured coating film, and also improves adhesion to the photosensitive layer and pot life of the coating liquid. In order to accelerate the curing reaction, curing catalysts and accelerators such as maleic acid, phthalic acid, trimellitic acid, p-toluenesulfonic acid, pyromellitic acid, and benzoic acid can also be used.
[0029]
The photosensitive layer according to the present invention preferably has a single layer structure containing at least a charge generating material, a hole transporting material, an electron transporting material, a sensitizing organic material and a binder resin.
[0030]
The charge generation material is not particularly limited, and for example, a phthalocyanine pigment, an azo pigment, an anthrone pigment, a perylene pigment, a perinone pigment, a polycyclic quinone pigment, a squarylium pigment, a thiapyrylium pigment, a quinacridone pigment, or the like can be used. These charge generation materials can be used alone or in combination of two or more. In particular, the photoreceptor of the present invention includes a disazo pigment, a trisazo pigment, and a perylene pigment as N, N′-bis (3,5-dimethylphenyl) -3,4: 9,10-perylenebis as an azo pigment. (Carboximide) and phthalocyanine pigments are preferably metal-free phthalocyanine, copper phthalocyanine, and titanyl phthalocyanine, and further X-type metal-free phthalocyanine, τ-type metal-free phthalocyanine, ε-type copper phthalocyanine, α-type titanyl phthalocyanine, and β-type In the case of titanyl phthalocyanine, Y-type titanyl phthalocyanine, amorphous titanyl phthalocyanine, particularly titanyl phthalocyanine, α-type described in JP-A-61-217050, Y-type described in JP-A-64-17066, and JP-A Amorphous material described in JP-A-62-275272 Quality titanyl phthalocyanine is effective in terms of sensitivity characteristics and print quality. The content of the charge generating substance is preferably 0.1 to 20% by weight, more preferably 0.5 to 10% by weight, based on the solid content of the photosensitive layer.
[0031]
Although there is no restriction | limiting in particular as a positive hole transport material, For example, a hydrazone compound, a pyrazoline compound, a pyrazolone compound, an oxadiazole compound, an oxazole compound, an arylamine compound, a benzidine compound, a stilbene compound, a styryl compound, poly-N-vinyl Carbazole, polysilane, and the like can be used, and these hole transport materials can be used alone or in combination of two or more. As the hole transporting material used in the present invention, those that are excellent in the ability to transport holes generated during light irradiation and that can be suitably used in combination with a charge generating material are preferable. The content of the hole transport material is preferably 5 to 80% by weight, more preferably 10 to 60% by weight, based on the solid content of the photosensitive layer.
[0032]
The electron transport material is not particularly limited, but succinic anhydride, maleic anhydride, dibromosuccinic anhydride, phthalic anhydride, 3-nitrophthalic anhydride, 4-nitrophthalic anhydride, pyromellitic anhydride, pyromellitic Acid, trimellitic acid, trimellitic anhydride, phthalimide, 4-nitrophthalimide, tetracyanoethylene, tetracyanoquinodimethane, chloranil, bromanyl, o-nitrobenzoic acid, malononitrile, trinitrofluorenone, trinitrothioxanthone, dinitrobenzene , Dinitroanthracene, dinitroacridine, nitroanthraquinone, dinitroanthraquinone, thiopyran compounds, quinone compounds, benzoquinone compounds, diphenoquinone compounds, naphthoquinone compounds, anthraquinone compounds, stilbenquino System compound, may be used an electron transport material such as Azokinon compound (acceptor compound), these electron transport materials can be used alone or in combination of two or more. The content of the electron transport material is preferably 1 to 50% by weight, more preferably 5 to 40% by weight, based on the solid content of the photosensitive layer.
[0033]
Although there is no restriction | limiting in particular as a sensitizing organic substance, Preferably, the organic compound shown to the said general formula (I)-(III) can be used individually or in combination of 2 or more types. In particular, as specific examples, organic compounds represented by the following structural formulas (I-1) to (I-29), (II-1) to (II-29) and (III-1) to (III-19) A compound can be mentioned. The content of the sensitizing organic substance is preferably 1 to 50% by weight, more preferably 5 to 20% by weight, based on the solid content of the photosensitive layer.
[0034]
Figure 0004370706
[0035]
Figure 0004370706
[0036]
Figure 0004370706
[0037]
Figure 0004370706
[0038]
Figure 0004370706
[0039]
Figure 0004370706
[0040]
As binder resins, polycarbonate resin, polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride resin, vinyl acetate resin, polyethylene, polypropylene, polystyrene, acrylic resin, polyurethane resin, epoxy resin, melamine resin, silicon Resin, silicone resin, polyamide resin, polystyrene resin, polyacetal resin, polyarylate resin, polysulfone resin, methacrylic acid ester polymer and copolymers thereof may be used alone or in combination of two or more. Is possible. Moreover, you may mix and use the same kind of resin from which molecular weight differs. The content of the binder resin is preferably 10 to 90% by weight, more preferably 20 to 80% by weight, based on the solid content of the photosensitive layer.
[0041]
The film thickness of the photosensitive layer is preferably in the range of 3 to 100 μm, more preferably 10 to 50 μm in order to maintain a practically effective surface potential.
[0042]
These photosensitive layers can also contain an anti-degradation agent such as an antioxidant or a light stabilizer for the purpose of improving environmental resistance and stability against harmful light. Compounds used for this purpose include chromanol derivatives such as tocopherol and esterified compounds, polyarylalkane compounds, hydroquinone derivatives, etherified compounds, dietherified compounds, benzophenone derivatives, benzotriazole derivatives, thioether compounds, phenylenediamine derivatives. Phosphonic acid ester, phosphorous acid ester, phenol compound, hindered phenol compound, linear amine compound, cyclic amine compound, hindered amine compound and the like.
[0043]
Further, the photosensitive layer may contain a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting lubricity.
[0044]
The electrophotographic apparatus of the present invention includes an electrophotographic photosensitive member and a contact charging type charging device that performs charging by bringing a charging member applied with a voltage into contact with the surface of the electrophotographic photosensitive member. Thus, the above-described photoreceptor of the present invention is used as the electrophotographic photoreceptor. Examples of the charging member used in the charging device according to the electrophotographic apparatus of the present invention include a brush shape, a roller shape, and a blade shape. Among these, the roller-shaped charging member is an elastic body having a relatively low hardness, such as a rubber material such as NBR, EPDM, silicon, and urethane foam, or carbon or A conductive rubber material kneaded with conductive fine particles is coated on a metal mandrel for use. From the point of improving the uniformity of charging on the surface of the photoreceptor, a resin layer of polyamide resin, acrylic resin, polyester resin or the like is coated on the surface of the rubber roller with a film thickness of about 0.1 to 100 μm. It is preferable to form a surface layer.
[0045]
As the brush-like charging member, conductive fibers obtained by kneading carbon, conductive fine particles, or the like in a resin such as rayon, polyamide, or acrylic are planted on a base such as a metal mandrel or conductive rubber material. The thickness of the conductive fiber is appropriately set according to the requirement of charging performance, but is preferably 0.5 to 10 denier, and the volume resistance value is 102-108Ωcm is preferred.
[0046]
The voltage applied to these charging members may be a DC voltage alone, but in order to make the charging property of the photoreceptor surface uniform, in particular, an AC voltage having a peak-to-peak voltage more than twice the charging start voltage is superimposed. It is preferable to do.
[0047]
【Example】
Hereinafter, specific examples of the present invention will be described in detail. In the following, “part” means part by weight.
Example 1
20 parts of a copolymer resin of hydroxystyrene and methyl methacrylate (linker CMM: Maruzen Petrochemical Co., Ltd.) and 16 parts of butylated melamine resin (Uban 20SB: Mitsui Toatsu Chemical Co., Ltd.) are dissolved in 56 parts of tetrahydrofuran. Zinc antimonate (ZnSb) having a primary particle size of 15 to 40 nm based on a resin solution and observation with a transmission electron microscope2OFive) 8 parts were placed in a ball mill pot, filled with zirconia balls having a diameter of 10 mm, and ball milled for 48 hours. This dispersion was dip-coated on the surface of an aluminum cylindrical support having an outer diameter of 30 mm and dried at 140 ° C. for 60 minutes to form an undercoat layer having a thickness of 5 μm.
[0048]
Next, 10 parts of a polycarbonate resin (Panlite TS2020: Teijin Chemicals Ltd.), 5 parts of a hole transport material represented by the following structural formula (F), and an electron transport material 3 represented by the following structural formula (G) And 2 parts of the sensitizing organic substance represented by the structural formula (I-1) are dissolved in 79 parts of tetrahydrofuran, and 1 part of X-type metal-free phthalocyanine is added to this solution, followed by dispersion treatment for 12 hours using a ball mill. Went. The obtained coating solution was dip-coated on the above undercoat layer and then dried at 100 ° C. for 60 minutes to form a single-layer type photosensitive layer having a thickness of 25 μm, thereby preparing a photoreceptor.
Figure 0004370706
[0049]
Example 2
In the undercoat layer, instead of zinc antimonate, a double oxide (MnO · Sb) formed by bonding antimony pentoxide having a primary particle diameter of 20 to 50 nm and manganese oxide, instead of zinc antimonate, is observed with a transmission electron microscope.2OFiveA photoconductor was prepared in the same manner as in Example 1 except that
[0050]
Example 3
Except for using the sensitizing organic material represented by the structural formula (II-1) instead of the sensitizing organic material represented by the structural formula (I-1), the same procedure as in Example 1 was performed. A photoconductor was prepared.
[0051]
Example 4
For the undercoat layer, a resin solution prepared by dissolving 30 parts of polyarylate resin (U polymer 8000: Unitika) in 70 parts of tetrahydrofuran was dip-coated on the surface of the cylindrical support, dried at 120 ° C. for 60 minutes, and a film thickness of 5 μm. A photoconductor was produced in the same manner as in Example 1 except for the formation.
[0052]
Comparative Example 1
A photoconductor was prepared in the same manner as in Example 1 except that the undercoat layer was not formed.
[0053]
Comparative Example 2
A photoconductor was prepared in exactly the same manner as in Example 1, and only this photoconductor was evaluated by changing the charging method to other photoconductors as described below.
[0054]
The electrical characteristics of the photoreceptors produced in the above examples and comparative examples were evaluated using a photoreceptor process tester. The charging device in the test machine used a contact charging system for the photoreceptors of Examples 1 to 4 and Comparative Example 1, and used a scorotron charging system for the photoreceptor of Comparative Example 2. As the contact charging member, a brush-like charging member (fiber resistance value: 10FiveΩcm, fiber length: 3 mm, fiber thickness: 3 denier, flocking density: 40,000 pieces / cm2As an applied voltage, an AC voltage having a peak-to-peak voltage of 1500 V was superimposed on a DC voltage of 700 V.
[0055]
Attach the photoconductor to the testing machine and charge the surface of the photoconductor to 700 V with a brush-like charging member or scorotron charging member while rotating at a peripheral speed of 50 mm / s. Potential). Subsequently, wavelength 780 nm, irradiance 2 μW / cm2The potential after 0.2 seconds was used as the light potential (residual potential). Such charge and exposure cycles were repeated 10,000 cycles in an environment of a temperature of 23 ° C. and a relative humidity of 45%, and the amount of fluctuation between the dark portion potential and the light portion potential was measured.
[0056]
In addition, a gold electrode was attached to the undercoat layer of the photoconductor produced in each example and comparative example, and the volume resistance value was evaluated from the current density when a voltage of 10 V / μm was applied.
These measurement results are also shown in Table 1 below.
[0057]
[Table 1]
Figure 0004370706
[0058]
As is clear from the results of Table 1 above, the photoreceptors of Examples 1 to 4 were free from leak damage due to dielectric breakdown of the photoreceptor, and the undercoat layer contained a conductive metal oxide. In Examples 1 to 3, it was confirmed that there was no change in the dark part potential and the light part potential even during repeated use of 10,000 cycles, and the performance was excellent. Further, in the photoconductor of Comparative Example 2 using the scorotron charging member, the film was deteriorated by ozone generated from the charging member, and the dark portion potential was lowered after 10,000 cycles were repeated.
[0059]
【The invention's effect】
As described above, according to the photoconductor of the present invention, a positive charging type photoconductor having a configuration in which an undercoat layer and a photoconductive layer are provided on a conductive support is charged by a contact charging type charging device. In particular, by containing conductive metal antimonate as a conductive metal oxide or double oxide fine particles in which antimony pentoxide and metal oxide are combined and a binder resin in the undercoat layer. Therefore, it is possible to set the thickness of the undercoat layer to be thick, to realize a high withstand voltage against abnormal leakage current in the contact charging method, and to prevent image defects caused by dielectric breakdown well.
[0060]
At the same time, since the surface defects of the support can be sufficiently covered by the thickness of the undercoat layer, the cost for surface processing and cleaning of the support can be greatly reduced, and the economy is excellent. .
[0061]
Furthermore, since the binder resin is a thermosetting resin, it has sufficient solvent resistance to the solvent of the coating solution for the photosensitive layer applied on the undercoat layer, thereby causing dissolution or alteration of the undercoat layer. In addition to preventing uneven coating and pinholes, adhesion to the support and the photosensitive layer can be strengthened. The photoreceptor of the present invention is applicable to those using a two-component, magnetic one-component, non-magnetic one-component developing system.

Claims (5)

電圧を印加した帯電部材を接触させて帯電を行う帯電装置により帯電される電子写真用感光体において、該電子写真用感光体が、導電性支持体上に下引き層および感光層を順次設けてなる正帯電型感光体であり、
前記下引き層が、熱硬化性樹脂および導電性金属酸化物を含有し、
前記導電性金属酸化物が、金属アンチモン酸塩の微粒子、または、五酸化アンチモンと金属酸化物とが結合してなる複酸化物の微粒子であることを特徴とする電子写真用感光体。
In an electrophotographic photosensitive member charged by a charging device that performs charging by bringing a charging member to which a voltage is applied into contact, the electrophotographic photosensitive member has an undercoat layer and a photosensitive layer sequentially provided on a conductive support. positively charged photoreceptor der made is,
The undercoat layer contains a thermosetting resin and a conductive metal oxide;
The conductive metal oxide is fine particles of metal antimonate, or antimony pentoxide and a metal oxide and is an electrophotographic photoreceptor, characterized in Oh Rukoto in fine double oxide formed by bonding.
前記下引き層に10V/μmの電圧を印加したときの体積抵抗値が、1×1012Ωcm以下である請求項記載の電子写真用感光体。Volume resistivity when applying a voltage of 10V / [mu] m on the undercoat layer is, 1 × 10 12 Ωcm or less is claim 1 electrophotographic photosensitive member according. 前記感光層が、少なくとも電荷発生物質、正孔輸送物質、電子輸送物質、増感性有機物質およびバインダー樹脂を含有する請求項1または2記載の電子写真用感光体。Said photosensitive layer contains at least a charge generating material, a hole transport material, electron transport material, sensitizing organic and claim 1 or 2, an electrophotographic photosensitive member according to a binder resin. 前記増感性有機物質が、下記構造式(I)〜(II)
Figure 0004370706
(式(I)中、Xは水素原子、ハロゲン原子、置換若しくは無置換のアルキル基、アルコキシ基、アリール基、アリルオキシ基、カルボキシル基、ニトロ基、シアノ基または水酸基を表し、mは0〜5の整数を表す)、
Figure 0004370706
(式(II)中、Xおよびmは上記と同じものを表す)うちのいずれかで表される化合物を少なくとも1個含有する請求項記載の電子写真用感光体。
The sensitizing organic substance has the following structural formulas (I) to (II) ,
Figure 0004370706
(In formula (I), X represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, an aryl group, an allyloxy group, a carboxyl group, a nitro group, a cyano group, or a hydroxyl group, and m is 0 to 5) Represents an integer),
Figure 0004370706
(Formula (II) in, X and m represent the same as above) The electrophotographic photoreceptor according to claim 3, wherein containing at least one compound represented by any of the.
電子写真用感光体と、該電子写真用感光体表面に電圧を印加した帯電部材を接触させて帯電を行う帯電装置とを備えた電子写真装置において、前記電子写真用感光体が請求項1〜のうちいずれか一項記載の電子写真用感光体であることを特徴とする電子写真装置。An electrophotographic apparatus comprising: an electrophotographic photosensitive member; and a charging device that performs charging by bringing a charging member to which a voltage is applied into contact with the surface of the electrophotographic photosensitive member. electrophotographic apparatus which is a electrophotographic photoreceptor as claimed in any one of the 4.
JP2000245914A 2000-08-14 2000-08-14 Electrophotographic photoreceptor and electrophotographic apparatus using the same Expired - Fee Related JP4370706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245914A JP4370706B2 (en) 2000-08-14 2000-08-14 Electrophotographic photoreceptor and electrophotographic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245914A JP4370706B2 (en) 2000-08-14 2000-08-14 Electrophotographic photoreceptor and electrophotographic apparatus using the same

Publications (2)

Publication Number Publication Date
JP2002062675A JP2002062675A (en) 2002-02-28
JP4370706B2 true JP4370706B2 (en) 2009-11-25

Family

ID=18736346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245914A Expired - Fee Related JP4370706B2 (en) 2000-08-14 2000-08-14 Electrophotographic photoreceptor and electrophotographic apparatus using the same

Country Status (1)

Country Link
JP (1) JP4370706B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300864B2 (en) 2010-05-05 2016-03-29 Space S.R.L. Con Unico Socio System and related method for determining vehicle wheel alignment
US10466604B2 (en) 2017-07-04 2019-11-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030696B2 (en) * 2007-07-19 2012-09-19 株式会社リコー Electrostatic latent image carrier, and image forming apparatus, image forming method, and process cartridge using the electrostatic latent image carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300864B2 (en) 2010-05-05 2016-03-29 Space S.R.L. Con Unico Socio System and related method for determining vehicle wheel alignment
US10466604B2 (en) 2017-07-04 2019-11-05 Ricoh Company, Ltd. Electrophotographic photoconductor, image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JP2002062675A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JPH08146639A (en) Electrophotographic photoreceptor having undercoat layer and electrophotographic apparatus
JP6432694B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
JP3384231B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP4370706B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the same
JP2000214611A (en) Electrophotographic photoreceptor
JP3409540B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP6620900B2 (en) Electrophotographic photosensitive member, method for producing the same, and electrophotographic apparatus using the same
JP4082875B2 (en) Electrophotographic photosensitive member and image forming apparatus
US8846279B2 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
JP4194606B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2006195476A (en) Electrophotographic photoreceptor, electrophotographic cartridge and electrophotographic imaging apparatus
JP2000162791A (en) Electrophotographic photoreceptor and electrophotographic device
JPH07181693A (en) Electrophotographic photoreceptor
JP3791227B2 (en) Electrophotographic photoreceptor and method for producing the same
JP3624611B2 (en) Electrophotographic photoreceptor
JPH06214412A (en) Electrophotographic sensitive body
JP3792750B2 (en) Electrophotographic apparatus and process cartridge
JP3367318B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3583705B2 (en) Electrophotographic photoreceptor
JP2008250079A (en) Electrophotographic photoreceptor
JP2012088430A (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and electrophotographic cartridge
JP2005062221A (en) Single layer type positive charge electrophotographic photoreceptor
JP2010181911A (en) Electrophotographic photoreceptor and electrophotographic device using same
JP3711714B2 (en) Electrophotographic photosensitive member having an intermediate layer
JP2943393B2 (en) Electrophotographic photoreceptor and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4370706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees