JP4370401B2 - Smelting furnace and platinum group element recovery method using the same - Google Patents

Smelting furnace and platinum group element recovery method using the same Download PDF

Info

Publication number
JP4370401B2
JP4370401B2 JP2004069782A JP2004069782A JP4370401B2 JP 4370401 B2 JP4370401 B2 JP 4370401B2 JP 2004069782 A JP2004069782 A JP 2004069782A JP 2004069782 A JP2004069782 A JP 2004069782A JP 4370401 B2 JP4370401 B2 JP 4370401B2
Authority
JP
Japan
Prior art keywords
furnace
platinum group
layer
slag
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004069782A
Other languages
Japanese (ja)
Other versions
JP2005257175A (en
Inventor
耕司 山田
正彦 荻野
和真 高館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Nippon PGM Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Nippon PGM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd, Nippon PGM Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2004069782A priority Critical patent/JP4370401B2/en
Publication of JP2005257175A publication Critical patent/JP2005257175A/en
Application granted granted Critical
Publication of JP4370401B2 publication Critical patent/JP4370401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

本発明は,鉄皮と水膜流によって耐火物に代わる炉壁を構成した金属製錬炉に係り,さ
らにはこの製錬炉を用いた白金族元素の回収法に関する。
The present invention relates to a metal smelting furnace having a furnace wall that replaces a refractory by an iron skin and a water film flow, and further relates to a method for recovering platinum group elements using the smelting furnace.

金属製錬炉は操業中の炉内温度が1000℃を超えることが殆んどであり,このために熱の遮蔽手段や冷却手段によって炉体を保護することが必要となる。このような炉体の保護法として,従来より,炉の内壁面に耐火物材料を内張りすることが最も一般的に行なわれ,また炉の外壁面に送風したり水冷ジャケットや油冷ジャケットなどを配置して冷却す
ることも行なわれている。
Most metal smelting furnaces have an in-furnace temperature exceeding 1000 ° C., and it is therefore necessary to protect the furnace body by means of heat shielding or cooling. As a method for protecting such a furnace body, the lining of the refractory material on the inner wall surface of the furnace has been most commonly performed conventionally, and the outer wall surface of the furnace is blown, water-cooled jacket, oil-cooled jacket, etc. It is also arranged and cooled.

炉内を保護する耐火物材料は,高温または侵蝕等の過酷な環境下に曝されるので,崩落や溶失などの損傷を受け,それが限度を超えると操業を止めて補修工事を必要とする。炉内に装入された酸化物原料を炭素質還元剤で還元してメタル溶湯を得る製錬炉では,とく
に炉内の耐火物の損傷が起きやすく,その修復には多大の費用が必要とされていた。
Refractory materials that protect the furnace interior are exposed to harsh environments such as high temperatures and erosion, so if they are damaged such as collapse or melting, the operation is stopped and repair work is required if it exceeds the limit. To do. In a smelting furnace in which the oxide raw material charged in the furnace is reduced with a carbonaceous reducing agent to obtain a molten metal, the refractory in the furnace is likely to be damaged, and its repair requires a large amount of cost. It had been.

同一出願人らによる特許文献1や特許文献2には,電極を備えた製錬炉(電気炉)に,白金族元素同伴の酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスを装入し,これらの炉内装入物を該電極により通電加熱して溶融および還元処理する方法が記載されている。このような電気炉の内壁を十分な厚さの耐火物材料でライニングを施しておいても,溶融スラグ層が存在する高さレベルや,それより上部のレベルの内壁の耐火物が著
しい損傷を受けることを本発明者らは知った。
特開平4−317423号公報 特開2000−248322号公報
In Patent Document 1 and Patent Document 2 by the same applicants, a smelting furnace (electric furnace) equipped with an electrode is mixed with an oxide-based material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing material, and a flux. A method is described in which the furnace interior charge is melted and reduced by energizing and heating the furnace interior with the electrodes. Even if the inner wall of such an electric furnace is lined with a sufficiently thick refractory material, the height level where the molten slag layer exists and the refractories on the inner wall at the upper level are significantly damaged. The inventors have learned to receive.
JP-A-4-317423 JP 2000-248322 A

したがって,本発明は,炉内に装入された酸化物原料を炭素質還元剤で還元してメタル溶湯を得る製錬炉において,少なくとも溶融スラグレベルの高さ部分を含む内壁の損傷を回避することを主たる目的とし,より具体的には,電極を備えた製錬炉(電気炉)に,白金族元素同伴の酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスを装入して製錬するさいの内壁の損傷の問題を回避して,操業性よく白金族元素を回収できる方法を
提供しようとするものである。
Therefore, the present invention avoids damage to the inner wall including at least the molten slag level in a smelting furnace that obtains a molten metal by reducing the oxide raw material charged in the furnace with a carbonaceous reducing agent. More specifically, a smelting furnace (electric furnace) equipped with electrodes is charged with an oxide-based material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing material, and a flux. Therefore, it is intended to provide a method for recovering platinum group elements with good operability by avoiding the problem of damage to the inner wall during smelting.

本発明によれば,炉内に装入された酸化物原料を炭素質還元剤で還元してメタル溶湯を得る製錬炉において,炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成し,この鉄皮の外側に,その外側表面と接して下降する水膜流を形成し,さらにはこの鉄皮の炉内側表面に,炉内融解物の凝固層からなるセルフコーティング層を生成したことを特徴とする製錬炉を提供する。ここで,鉄皮の外側表面と接して下降する水膜流は,該炉壁の外側上部に設置されたヘッダーから,該鉄皮の同高さレベルの全外周に向けて,所定の水頭圧の水が均等に配分されることによって形成されるのがよい。この製錬炉は,炉内装入材料を通電加熱するための電極と,炉内装入物を外気雰囲気と実質的に遮断する
ための蓋体とを備えた密閉型の電気炉であることができる。
According to the present invention, in a smelting furnace for obtaining a molten metal by reducing an oxide raw material charged in a furnace with a carbonaceous reducing agent, a furnace including a height level of a molten slag layer generated in the furnace. The wall is composed of an iron skin, and a water film flow descending in contact with the outer surface is formed on the outside of the iron skin, and further, a solidified layer of the melt in the furnace is formed on the inner surface of the furnace. A smelting furnace characterized by producing a self-coating layer is provided. Here, the water film flow descending in contact with the outer surface of the iron skin is transferred from the header installed on the outer upper part of the furnace wall toward the entire outer circumference of the same level of the iron skin. The water should be evenly distributed. The smelting furnace can be a closed electric furnace having an electrode for energizing and heating the furnace interior material and a lid for substantially shutting off the furnace interior material from the outside atmosphere. .

さらに本発明によれば,前記の製錬炉を用いた白金族元素の回収法を提供する。具体的には,炉内装入材料を通電加熱するための電極と,炉内装入物を外気雰囲気と実質的に遮断するための蓋体とを備えた密閉型の電気炉であって,炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成し,この鉄皮の外側に,その外側表面と接して下降する水膜流を形成した本発明に従う電気炉を使用したうえで,この電気炉に,白金族元素同伴の酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスを装入し,これらの炉内装入物を該電極により通電加熱して溶融および還元処理して溶融スラグ層の下方にメタル溶湯の層を形成させ,このメタル溶湯中に白金族元素を濃縮させること,そして,この操業中に前記の鉄皮の内側表面に炉内融解物の凝固層からなるセルフコーティング層を
生成させることを特徴とする白金族元素の回収法を提供する。
Furthermore, according to this invention, the recovery method of the platinum group element using the said smelting furnace is provided. Specifically, it is a sealed electric furnace comprising an electrode for energizing and heating the furnace interior material and a lid for substantially shutting off the furnace interior material from the outside air atmosphere. An electric furnace according to the present invention is used in which the furnace wall including the height level of the molten slag layer produced in step 1 is composed of iron skin, and a water film flow descending in contact with the outer surface is formed outside the iron skin. In addition, this electric furnace was charged with an oxide-based raw material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing material, and a flux, and these furnace interiors were electrically heated by the electrodes and melted. And a reduction treatment to form a molten metal layer below the molten slag layer, to concentrate the platinum group element in the molten metal, and to melt the in-furnace on the inner surface of the iron skin during the operation. A self-coating layer consisting of a solidified layer of To provide a method of recovering platinum group elements.

この白金族元素の回収法において,酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスをいずれも粉粒状物の形態で準備し,これらの粉粒状物を予め混合した上で該電気炉に装入するのがよく,また,炉内装入物の加熱溶融のあと,1200〜1500℃の温度に少なくとも5時間以上保持する静置工程を設けた上で,白金族元素含有のメタル溶湯を炉外に排出するのがよい。そのさい,炉内で生成するスラグ系酸化物の成分組成の範囲を,Al23 :20〜40wt%,SiO2:25〜40wt%,CaO:20〜35
wt%,FeO:0〜35wt%に制御するのが好ましい。
In this platinum group element recovery method, an oxide material, copper oxide, a solid carbonaceous reducing material and a flux are all prepared in the form of particulates, and these electrical particulates are mixed in advance before It is good to charge in the furnace, and after heating and melting the furnace interior material, after providing a standing step for holding at a temperature of 1200 to 1500 ° C. for at least 5 hours, a molten metal containing a platinum group element Should be discharged out of the furnace. At that time, the range of the component composition of the slag-based oxide generated in the furnace is Al 2 O 3 : 20 to 40 wt%, SiO 2 : 25 to 40 wt%, CaO: 20 to 35
It is preferable to control wt% and FeO: 0 to 35 wt%.

図1に,本発明に従う製錬炉の例を示した。図1の製錬炉は,炉内装入材料1を通電加熱するための電極2と,炉内装入物1を外気雰囲気と実質的に遮断するための蓋体3を炉本体4の上部に備えた密閉型の電気炉である。炉内装入材料1は酸化物原料,炭素質還元剤およびフラックスの混合物からなっている。炉内装入材料1は電極2からの通電によって融解され,溶融スラグ層5を形成すると同時に,酸化物が還元されて生成したメタル溶湯6が,溶融スラグ層5の下方に貯留する。生成した溶融スラグ層5およびメタル溶湯6はスラグタッピング口およびメタルタッピング口8を通じて適宜炉外に排出される。図には示されていないが,炉内で発生したガスは排ガス経路を通じて炉外に排出される。図1
において,9は材料投入用シュートを示している。
FIG. 1 shows an example of a smelting furnace according to the present invention. The smelting furnace of FIG. 1 includes an electrode 2 for energizing and heating the furnace interior material 1 and a lid 3 for substantially blocking the furnace interior material 1 from the outside air atmosphere at the upper part of the furnace body 4. It is a closed electric furnace. The furnace interior material 1 is composed of a mixture of an oxide raw material, a carbonaceous reducing agent, and a flux. The furnace interior material 1 is melted by energization from the electrode 2 to form the molten slag layer 5, and at the same time, the molten metal 6 produced by reducing the oxide is stored below the molten slag layer 5. The generated molten slag layer 5 and molten metal 6 are appropriately discharged out of the furnace through the slag tapping port and the metal tapping port 8. Although not shown in the figure, the gas generated in the furnace is discharged outside the furnace through the exhaust gas path. FIG.
, 9 indicates a chute for material charging.

本発明は,このような金属製錬炉において,炉内で生成する溶融スラグ層5の高さレベルを包含する炉壁を鉄皮10で構成し,この鉄皮10の外側に,その外側表面と接して下降する水膜流11を形成する。図示の例では,炉本体4を構成している炉壁(炉底および天井部の蓋3を除く炉の壁部)が全体的に鉄皮10で構成されている。すなわち,溶融スラグ層5が存在する高さレベルはもちろんのこと,これより上方の炉壁(蓋3と接する部位までの炉壁)も鉄皮10で構成されている。図2はこの状態を図解的に示したものであ
る。
In the metal smelting furnace according to the present invention, the furnace wall including the height level of the molten slag layer 5 generated in the furnace is constituted by the iron shell 10, and the outer surface of the iron shell 10 is arranged outside the outer surface. A water film flow 11 that descends in contact with is formed. In the illustrated example, the furnace wall (the wall of the furnace excluding the furnace bottom and the ceiling cover 3) constituting the furnace body 4 is entirely composed of the iron skin 10. That is, not only the height level at which the molten slag layer 5 exists, but also the furnace wall above this (the furnace wall up to the portion in contact with the lid 3) is also composed of the iron shell 10. FIG. 2 schematically shows this state.

図2では炉壁の全体を円筒状の鉄皮10で構成している。このように円筒状の鉄皮10で炉壁を構成した場合には,この鉄皮10の外側上部に,鉄皮10を取り巻くように且つ鉄皮10から一定の距離だけ離して,環状のヘッダー12を設置し,同様に鉄皮10の外側下部に,鉄皮10を取り巻くように且つ鉄皮10に接して環状樋13を設置する。ヘッダー12からは鉄皮10の外側周面全体に向けて一様に水を噴出させ,これによって,鉄皮10の外表面を伝って落ちるカーテン状の水膜流を形成させ,この落下してくる水膜流
を環状樋13で受ける。
In FIG. 2, the entire furnace wall is formed of a cylindrical iron skin 10. When the furnace wall is constituted by the cylindrical iron skin 10 as described above, an annular header is formed on the outer upper portion of the iron skin 10 so as to surround the iron skin 10 and be separated from the iron skin 10 by a certain distance. 12 is similarly installed in the lower part of the outer side of the iron skin 10 so as to surround the iron skin 10 and in contact with the iron skin 10. Water is uniformly ejected from the header 12 toward the entire outer peripheral surface of the iron skin 10, thereby forming a curtain-like water film flow that falls along the outer surface of the iron skin 10. The coming water film flow is received by the annular trough 13.

このように,鉄皮10の外表面に連続した水膜流11(図1)を形成することにより,鉄皮10の内側表面が連続的に冷却されるので,炉内で生成している溶融スラグが凝固して,所定の厚みのセルフコーティング層14(図1)を形成する。このセルフコーティング層14は,炉内の溶融スラグ層7の存在レベルのみならず,これより上方の内面にも同様に形成することもある。したがって,築炉のさいに,炉壁のライニングを省略しても,鉄皮10の内側には該スラグの凝固層からなるセルフコーティング層14が主として溶融スラグ相7のレベルに形成され,これがライニングの役割を果たす。このセルフコーティング層14は操業の途中で一部が損傷を受けることがあっても,その損傷部は操業中に自然に回復するので,耐火物でライニングする場合のように,損傷部の補修工事を必要とす
ることは殆んどない。
In this way, by forming a continuous water film flow 11 (FIG. 1) on the outer surface of the iron skin 10, the inner surface of the iron skin 10 is continuously cooled, so that the melting generated in the furnace The slag solidifies to form a self-coating layer 14 (FIG. 1) having a predetermined thickness. This self-coating layer 14 may be formed not only on the presence level of the molten slag layer 7 in the furnace, but also on the inner surface above it. Therefore, even if the lining of the furnace wall is omitted during the construction of the furnace, a self-coating layer 14 composed of a solidified layer of the slag is formed inside the iron shell 10 mainly at the level of the molten slag phase 7, which is the lining. To play a role. Even if a part of the self-coating layer 14 is damaged during the operation, the damaged part naturally recovers during the operation, so that repair work for the damaged part is performed as in the case of lining with a refractory. Is rarely needed.

図3は,連続した水膜流11を鉄皮10の外側表面に形成させる場合の水処理系統を図解的に示したものである。図3に示すように,軸を水平にして鉄皮10の周面に配置されるヘッダー12には鉄皮10の側にスリット状のノズル口15が設けられている。ヘッダー12に所定の水頭圧をもつ冷却水が供給されることにより,スリット状のノズル口15から冷却水が鉄皮10の方向に向けて水平方向に水膜状に流れ出し,放物線を描きながら落下する定常的な環状流を形成する。この定常的な環状流が自然に鉄皮10の円筒表面と接するように,すなわち,その環状流が鉄皮10の表面で跳ね返るような現象が起きず且つ鉄皮10に到達したあと落下する過程で鉄皮10から離れたり,枝分かれや収束流になったりせずに,自然な広がりをもって鉄皮10全体を覆って流れるように,鉄皮10とノズル口15との距離,ノズル口の大きさ,ヘッダー内の水圧および供給水量等が決められる。また,このための冷却水の温度制御や水量・水圧の制御は以下のようにして行なわれ
る。
FIG. 3 schematically shows a water treatment system when a continuous water film flow 11 is formed on the outer surface of the iron skin 10. As shown in FIG. 3, a slit-like nozzle port 15 is provided on the side of the iron skin 10 in the header 12 arranged on the peripheral surface of the iron skin 10 with the axis horizontal. When cooling water having a predetermined head pressure is supplied to the header 12, the cooling water flows out from the slit-shaped nozzle port 15 in the horizontal direction toward the iron skin 10 and falls while drawing a parabola. A steady annular flow is formed. A process in which the steady annular flow naturally contacts the cylindrical surface of the iron skin 10, that is, a phenomenon in which the annular flow does not rebound on the surface of the iron skin 10 and falls after reaching the iron skin 10. The distance between the iron skin 10 and the nozzle mouth 15 and the size of the nozzle mouth so as to flow over the whole iron skin 10 with a natural spread without leaving the iron skin 10 or branching or converging. The water pressure in the header and the amount of water to be supplied are determined. For this purpose, the temperature control of the cooling water and the control of the water amount and the water pressure are performed as follows.

鉄皮10の外側表面を伝って流れ落ちる水膜流11は環状樋13で受け止められたあと貯留槽16に一たん収容される。この貯留槽16には補給水路17から蒸発損に相当する補給水が補給される。貯留槽16内の温水は,ポンプ18によって冷却塔19の散水装置20に送水され,この冷却塔19で温水が外気と熱交換されることにより冷却される。この冷却された水が定量ポンプ21によって水頭槽22に汲み上げられた上でヘッダー12内に供給される。その際,ヘッダー12内における水面レベルが一定となるように,水頭槽22からヘッダー12に送り込む水量が制御される。これによって,ノズル口15からは一定圧力の冷却水が吐出するので,鉄皮10の表面に連続した水膜流11が定常的に形成される。そして,この水膜流11が定常的に形成されることにより,セルフコーティン
グ層14が一定の厚さをもって鉄皮10の内側に保持される。
The water film flow 11 flowing down along the outer surface of the iron skin 10 is received by the annular ridge 13 and then stored in the storage tank 16. The storage tank 16 is supplied with makeup water corresponding to evaporation loss from a makeup water channel 17. The hot water in the storage tank 16 is sent to the watering device 20 of the cooling tower 19 by the pump 18, and the hot water is cooled by exchanging heat with the outside air in the cooling tower 19. The cooled water is pumped into the head tank 22 by the metering pump 21 and then supplied into the header 12. At that time, the amount of water fed from the head tank 22 to the header 12 is controlled so that the water level in the header 12 is constant. As a result, cooling water with a constant pressure is discharged from the nozzle port 15, so that a continuous water film flow 11 is constantly formed on the surface of the iron skin 10. The water film flow 11 is constantly formed, so that the self-coating layer 14 is held inside the iron skin 10 with a certain thickness.

以下に,このような製錬炉を用いると,使用済み廃触媒等から白金族元素等の有用金属
を効率よく回収する製錬が実現できる。以下にその回収法を説明する。
In the following, when such a smelting furnace is used, smelting that efficiently recovers useful metals such as platinum group elements from spent spent catalysts and the like can be realized. The recovery method will be described below.

前掲のように,特許文献1および2には,電極を備えた製錬炉(電気炉)に,白金族元素同伴の酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスを装入し,これらの炉内装入物を該電極により通電加熱して溶融および還元処理する方法が記載されている。本発明者らは,この方法の実施において,電気炉の内壁を十分な厚さの耐火物材料でライニングを施しておいても,また溶融スラグ層とそれより上部位置の気相の層とに適切な耐火物を使い分けてライニングを施しても,溶融スラグ層が存在する高さレベルや,それ
より上部のレベルの内壁の耐火物が著しい損傷を受けることを経験した。
As described above, in Patent Documents 1 and 2, a smelting furnace (electric furnace) equipped with electrodes is charged with an oxide-based material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing material, and a flux. In addition, a method is described in which these furnace interior materials are heated and energized by the electrodes to be melted and reduced. In carrying out this method, the inventors of the present invention have made the inner wall of the electric furnace lined with a refractory material having a sufficient thickness, and the molten slag layer and the gas phase layer located above the molten slag layer. Even when lining was applied using appropriate refractories, it was experienced that the refractories on the inner wall at the height level where the molten slag layer exists and at the upper level were significantly damaged.

本発明によれば,本発明に従う電気炉(例えば図1)に,炉内装入物原料1として,白金族元素同伴の酸化物系原料,酸化銅,固形の炭素質還元材およびフラックスを装入し,これらの炉内装入物1を該電極2により通電加熱して溶融および還元処理して溶融スラグ層5の下方にメタル溶湯6の層を形成させ,このこのメタル溶湯6中に白金族元素を濃縮させると,鉄皮10の内側にはセルフコーティング層14が形成され,このセルフコーティング層14で鉄皮10が保護された状態で,効率よく連続操業ができることがわかった
According to the present invention, an electric furnace (for example, FIG. 1) according to the present invention is charged with an oxide-based material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing material, and a flux as the furnace interior material 1. Then, the furnace interior charge 1 is electrically heated by the electrode 2 to be melted and reduced to form a molten metal 6 layer below the molten slag layer 5, and a platinum group element is formed in the molten metal 6. It was found that the self-coating layer 14 was formed on the inner side of the iron skin 10 and the continuous operation could be efficiently performed with the iron coating 10 protected by the self-coating layer 14.

このような電気炉により,以下のような操業の態様が実現できる。 With such an electric furnace, the following modes of operation can be realized.

まず,本発明でいう白金族元素含有の被処理物質とは,たとえばプラチナ,パラジウム等を含有する使用済み石油化学系廃触媒,プラチナ,パラジウムさらにロジウム等を含有する使用済みの自動車排ガス浄化用廃触媒はもとより,それらの触媒の製造工程から得られるロットアウト品やスクラップ等も含まれ,その他,パラジウム等を含有する使用済みの電子基板,デンタル部品,リードフレーム等も含まれる。このような白金族元素含有の被処理物質は,通常は金属酸化物やセラミツクスに微量の白金族元素が担持された状態に
ある。
First, the platinum group element-containing material to be treated in the present invention is, for example, a used petrochemical waste catalyst containing platinum, palladium or the like, a spent automobile exhaust gas purification waste containing platinum, palladium or rhodium or the like. This includes not only catalysts but also lot-out products and scraps obtained from the manufacturing process of these catalysts, and also includes used electronic boards, dental parts, lead frames and the like containing palladium. Such a material to be treated containing a platinum group element is usually in a state where a trace amount of the platinum group element is supported on a metal oxide or ceramics.

これら白金族元素含有の被処理物質を,酸化銅含有の銅源材料,フラックスおよび炭素質還元剤と共に製錬炉に装入して溶融し,形成される酸化物主体の溶融スラグ層の下方に金属銅主体の溶融メタル層を沈降させ,下方に沈降した溶融メタル層に白金族元素を濃縮させるのであるが,そのさい,本発明においては,次のような特徴的な態様を採用するこ
とができる。
These platinum group element-containing substances to be treated are introduced into a smelting furnace and melted together with a copper source material containing copper oxide, a flux and a carbonaceous reducing agent, and below the formed oxide-based molten slag layer. The molten metal layer mainly composed of copper metal is allowed to settle, and the platinum group element is concentrated in the molten metal layer that has settled downward. In this case, the present invention can adopt the following characteristic aspects. it can.

1.製錬炉として鉄皮で炉壁を構成し,該鉄皮の外側表面に連続した水膜流を形成させ,該鉄皮の内側表面に溶融スラグが凝固したセルフコーティング層を形成する密閉型の電気
炉を使用する。
2.白金族元素含有の被処理物質,酸化銅含有の銅源材料,固形の炭素質還元材およびフラックスはいずれも粉粒状物の形態で準備し,これらの粉粒状物を予め混合された上で該
電気炉に装入する。
3.炉内装入物の加熱溶融のあと,1200〜1500℃の温度に少なくとも5時間以上
保持する静置工程を設けたあとで,白金族元素含有のメタル溶湯を炉外に排出する。
4.炉内で生成するスラグ系酸化物の成分組成の範囲が,Al23 :20〜30wt%,SiO2:25〜40wt%,CaO:20〜35wt%,FeO:0〜35wt%となるよう
に原料配合を調整する。
5.白金族元素同伴の酸化物系原料に含まれるAl,SiおよびFeの少なくとも1種の酸化物の含有量を予め分析して把握しておき,これらの酸化物の含有量に応じて炉に装入するフラックス成分組成を調整することにより,前記の酸化物原料の成分組成を制御する

6.メタル溶湯と分離されるスラグが,
Al:10〜22wt%,
Si:10〜16wt%,
Ca:14〜22wt%,
Fe:27wt%以下(0%を含む),
Pt:10ppm以下,
残部が実質的に酸素からなる成分組成となるように調整する。
以下にこれらの態様を具体的に説明する。
1. A closed smelting furnace is constructed with a steel wall as a smelting furnace, a continuous water film flow is formed on the outer surface of the iron skin, and a self-coating layer is formed on the inner surface of the iron skin. Use an electric furnace of the type.
2. The platinum group element-containing material, copper oxide-containing copper source material, solid carbonaceous reductant, and flux are all prepared in the form of powder, and these powder are mixed in advance. To charge the electric furnace.
3. After heating and melting the furnace interior material, after providing a standing step for holding at a temperature of 1200 to 1500 ° C. for at least 5 hours, the molten metal containing the platinum group element is discharged out of the furnace.
4. Component ranges of slag-based oxides generated in the furnace are Al 2 O 3 : 20-30 wt%, SiO 2 : 25-40 wt%, CaO: 20-35 wt%, FeO: 0-35 wt% The raw material composition is adjusted so that
5. The content of at least one oxide of Al, Si, and Fe contained in the oxide-based material accompanied by the platinum group element is analyzed and grasped in advance, and the furnace according to the content of these oxides The component composition of the oxide raw material is controlled by adjusting the flux component composition to be charged into the material.
6. Slag separated from molten metal is
Al: 10 to 22 wt%,
Si: 10 to 16 wt%,
Ca: 14-22 wt%,
Fe: 27 wt% or less (including 0%),
Pt: 10 ppm or less,
The balance is adjusted so that the composition is substantially composed of oxygen.
These aspects will be specifically described below.

白金族元素を含有の被処理物質(PGM含有物質という)に,フラックス成分(例えばシリカ,酸化カルシウム,炭酸カルシウム等),炭素質還元剤(例えばコークス粉)および銅源材料(銅または酸化銅)を適切な比率で混合して電気炉に装入する。フラックス成分の混合比は,PGM含有物質の組成によっても異なるが,加熱溶融後のガラス状の酸化物(電気炉スラグ)の組成が,Al23 :20〜40wt%,SiO2:25〜35wt%,CaO:20〜35wt%となるように配合することが好ましい。炉内で生成するスラグ系酸化物は,結局のところ炉内に装入するPGM含有物質とフラックス成分によって決まる。炭素質還元剤は酸化物としてスラグに残存しないし,銅源材料として装入される酸化
銅の実質的に全ては金属銅に還元されるからである。
To be treated with platinum group element (referred to as PGM-containing substance), flux component (eg silica, calcium oxide, calcium carbonate, etc.), carbonaceous reducing agent (eg coke powder) and copper source material (copper or copper oxide) Are mixed in an appropriate ratio and charged into an electric furnace. The mixing ratio of the flux components varies depending on the composition of the PGM-containing material, but the composition of the glassy oxide (electric furnace slag) after heating and melting is Al 2 O 3 : 20 to 40 wt%, SiO 2 : 25 to 25%. It is preferable to blend so as to be 35 wt% and CaO: 20 to 35 wt%. The slag oxide produced in the furnace is ultimately determined by the PGM-containing material and the flux component charged into the furnace. This is because the carbonaceous reducing agent does not remain in the slag as an oxide, and substantially all of the copper oxide charged as the copper source material is reduced to metallic copper.

したがって,原理的には,PGM含有物質とフラックスの配合により炉内で生成するスラグ系酸化物の組成範囲を決めることが可能となる。しかし,このためには,炉内でのメルトダウン,還元反応,スラグ・メタルの相分離などが良好に行なわれることが前提となる。この前提条件は,前記の態様2のように,炉内への装入原料をいずれも粉粒状物の形態で準備し,これらの粉粒状物を予め混合された上で該電気炉に装入することによって満たされることがわかった。より具体的には,電気炉に装入する金属銅または酸化銅については,その径が0.1mm以上10mm未満であることが好ましく,PGM含有物質についてもその50wt%が10mm未満の径を有することが好ましい。そして,これらを粉状のフラックスおよび粉状の炭素質還元剤と均一に混合し,その混合粉を炉内に装入するのが
よい。
Therefore, in principle, it is possible to determine the composition range of the slag oxide generated in the furnace by the combination of the PGM-containing substance and the flux. However, for this purpose, it is premised that meltdown in the furnace, reduction reaction, slag metal phase separation, etc. are performed well. This precondition is that, as in the above-mentioned aspect 2, all the raw materials charged into the furnace are prepared in the form of powder and granular materials, and these powder and granular materials are mixed in advance and charged into the electric furnace. It turns out that it is satisfied by doing. More specifically, the metal copper or copper oxide charged in the electric furnace preferably has a diameter of 0.1 mm or more and less than 10 mm, and the PGM-containing substance also has a diameter of less than 10 mm by 50 wt%. It is preferable. Then, it is preferable that these are uniformly mixed with the powdery flux and the powdery carbonaceous reducing agent, and the mixed powder is charged into the furnace.

還元剤は酸化銅を金属銅に還元することを主目的として使用される。還元剤としては代表的にはコークスを使用するが,貴金属やPGMを含有する卑金属類を使用することも可能であり,この場合には,卑金属中の貴金属やPGMも同時に回収することができる。樹脂,活性炭なども還元剤として使用可能である。銅源材料はPGMを溶かし込む媒体とし
て使用されるが,金属銅そのものでもよいが,酸化銅も使用することができる。
The reducing agent is mainly used to reduce copper oxide to metallic copper. As the reducing agent, coke is typically used, but base metals containing noble metal and PGM can also be used. In this case, the noble metal and PGM in the base metal can be recovered at the same time. Resin, activated carbon, etc. can also be used as a reducing agent. The copper source material is used as a medium in which PGM is dissolved, but metal copper itself may be used, but copper oxide can also be used.

これらの装入原料を用いた電気炉操業ではまず装入原料を加熱溶融(メルトダウン)する。加熱溶融の温度は1200℃〜1700℃,好ましくは1300℃〜1550℃である。1200℃未満ではスラグの溶融が完全とはならず粘性も高まってPGMの回収率が下がる。しかし1700℃を越えるとエネルギーの浪費はもちろん電気炉の炉体の破損を招く要因となるので好ましくない。このメルトダウンによって,PGM含有物質の殆どを占めているPGMの担体材料(アルミナ他の酸化物)はガラス状の溶融スラグとなって浮遊し,酸化銅はコークス等により還元されて金属銅となり,比重差によりスラグ中を沈降
して溶融した金属銅の層(メタル溶湯)を形成する。
In the electric furnace operation using these charged raw materials, the charged raw materials are first heated and melted (melted down). The temperature for heating and melting is 1200 ° C to 1700 ° C, preferably 1300 ° C to 1550 ° C. If it is less than 1200 degreeC, melting | fusing of slag will not be perfect, but viscosity will also increase and the recovery rate of PGM will fall. However, if the temperature exceeds 1700 ° C., it is not preferable because energy is wasted and the furnace body of the electric furnace is damaged. Due to this meltdown, the PGM support material (alumina and other oxides) that occupies most of the PGM-containing material floats as glassy molten slag, and the copper oxide is reduced by coke to become metallic copper. A metal copper layer (melted metal) is formed which settles and melts in the slag due to the specific gravity difference.

炉内への装入物のチャージが完了したあとは,炉内を密閉雰囲気にして通電加熱して炉内装入物を加熱溶融するが,この加熱溶融のあとは,前記の態様3のように,1200〜1500℃の温度に少なくとも5時間以上保持する静置工程を設けることが好ましい。スラグ,メルトダウンからメタル溶湯の排出までに少なくとも5時間以上の静置工程を設けるのである。装入原料を粉粒状物の混合体とし且つこの静置工程を設けると金属銅が殆ん
どである電気炉内のメタル溶湯中に高い回収率でPGMを取り込むことができる。
After the charging of the charge in the furnace is completed, the furnace interior is heated and melted by energizing and heating the furnace interior. After this heating and melting, as in the above-mentioned mode 3. , It is preferable to provide a standing step for holding at a temperature of 1200 to 1500 ° C. for at least 5 hours. A standing process of at least 5 hours or more is provided from the slag and meltdown to the discharge of the molten metal. When the charging raw material is a mixture of powdered and granular materials and this standing step is provided, PGM can be taken into the molten metal in the electric furnace containing almost all metallic copper at a high recovery rate.

静置工程の温度が1200℃未満では静置時間を長くしてもPGMの回収率は十分ではなく,また1500℃を越えてもPGM回収率の向上は期待できず,炉の損傷を招くようになる。1200〜1500℃の温度に少なくとも5時間静置することによりPGMの殆どが回収されるが,あまり静置時間が長くしても回収率の向上傾向は飽和に達する。このために例えば約5〜10時間程度の静置時間を取って静置工程を終えるのが,熱経済でも
ある。
If the temperature of the standing process is less than 1200 ° C, the recovery rate of PGM is not sufficient even if the standing time is extended, and if it exceeds 1500 ° C, the improvement of the recovery rate of PGM cannot be expected, leading to damage to the furnace. become. Although most of the PGM is recovered by standing at a temperature of 1200 to 1500 ° C. for at least 5 hours, the improvement tendency of the recovery rate reaches saturation even if the standing time is too long. For this reason, it is also thermoeconomic to take a standing time of about 5 to 10 hours and finish the standing step.

この金属銅がスラグ中を沈降する過程でPGMが金属銅に吸収されるが,このときのPGMの金属銅への回収率は,メルトダウン後の材料温度および静置時間によって変動し,さらには,炉内に投入する金属銅または酸化銅の粒径,炉内に投入するPGM含有物質の
粒径等によって変動するので,前記のように適切に管理することが肝要となる。
The PGM is absorbed by the copper metal in the process of sinking the metal copper into the slag, but the recovery rate of the PGM to the metal copper at this time varies depending on the material temperature after the meltdown and the standing time. Since it varies depending on the particle diameter of the metal copper or copper oxide introduced into the furnace, the particle diameter of the PGM-containing material introduced into the furnace, etc., it is important to appropriately manage as described above.

このようにして,本発明によると,静置工程を適切に管理し,また装入原料を粒状物として混合して炉に装入すると,金属銅が殆んどである電気炉内のメタル溶湯中に高い回収率でPGMを取り込むことができる。この理由はついては明確ではないが,次のように考
えることができる。
In this way, according to the present invention, when the stationary process is appropriately managed, and the charged raw materials are mixed as particulates and charged into the furnace, the molten metal in the electric furnace in which most of the metallic copper is contained. PGM can be taken in at a high recovery rate. The reason for this is not clear, but can be considered as follows.

PGM含有物質の殆どを占めている担体材料(アルミナ等の酸化物)がフラックスとともに溶融された時点で適度な粘性を有するスラグとして分散されるが,そこに,装入された金属銅または還元剤によって還元された金属銅もスラグ中に分散され,とくに,粒状物として混合された場合にはその分散が良好となり,スラグ中に分散浮遊しているPGMを吸収し,自重で下層の金属銅中に沈降し金属銅層に吸収される。この現象はメルトダウンから開始するが,その後の静置時の温度が低いと(例えば1200℃未満では)スラグの粘性が大きくなって,その中に存在するPGMも金属銅も運動量が少なくなり,そのまま浮遊状態を続けることになる。一方,静置時の温度が高すぎると(例えば1500℃を越
えると)加熱エネルギーが必要以上に消費される結果となり不経済である。
When the carrier material (oxide such as alumina) that occupies most of the PGM-containing material is melted together with the flux, it is dispersed as slag having an appropriate viscosity. The metal copper reduced by slag is also dispersed in the slag, especially when it is mixed as a granular material, the dispersion is good, and the PGM dispersed and suspended in the slag is absorbed, and the weight of the metal copper in the lower layer is reduced. And is absorbed by the metal copper layer. This phenomenon starts from the meltdown, but if the temperature after standing still is low (for example, below 1200 ° C), the viscosity of the slag increases, and the momentum of both PGM and metallic copper in the slag decreases. It will continue to float. On the other hand, if the temperature at the time of standing is too high (for example, exceeding 1500 ° C.), the heating energy is consumed more than necessary, which is uneconomical.

このように考えると,静置工程では,適正な粘性を有し且つPGMが全体的に分散したスラグ中に,溶融した金属銅がスラグ中に適正に分散された状態で且つゆっくりした速度でしかも適正な運動量をもって沈降することが肝要であることになる。分散状態を良好にするには,装入原料を粒状化して混合しておくことが必要となり,粘性を適正にするにはフラックス成分の添加量と成分の調整,並びに温度管理が肝要となる。この静置には,溶融した金属銅の実質的に全てがスラグ中を沈降し終えるに十分な時間を与えることが必要となり,もはや酸化銅の還元が進行せず且つ溶融した金属銅が沈降し終えれば,PGMは下層のメタル溶湯には吸収されなくなる。この条件を満たす本発明法によれば,PGMが
高い回収率でメタル溶湯に吸収させることができる。
Considering this, in the stationary process, molten metal copper is properly dispersed in the slag having an appropriate viscosity and the PGM is totally dispersed, and at a slow speed. It is important to sink with an appropriate momentum. In order to achieve a good dispersion state, it is necessary to granulate and mix the charged raw materials, and in order to achieve an appropriate viscosity, it is important to add the flux component, adjust the component, and control the temperature. This standing requires sufficient time for substantially all of the molten metallic copper to settle in the slag, so that the reduction of the copper oxide no longer proceeds and the molten metallic copper settles. When finished, the PGM will not be absorbed by the underlying metal melt. According to the method of the present invention that satisfies this condition, PGM can be absorbed into the molten metal with a high recovery rate.

静置工程を終えたら,炉内のスラグは一部を残したまま,大半は炉外に流出させて廃棄すればよい。操業時間を短縮したい場合には,電気炉を並列に2基用意し,第1の電気炉で静置状態としている間に第2の電気炉に原料装入と加熱溶融を行い,両者を交互に実施すればよい。また,加熱溶融した炉内物を,別の静置炉に移して,ここで静置工程を実施
することもできる。
When the stationary process is completed, most of the slag in the furnace can be drained out of the furnace while leaving a part of it. If you want to shorten the operation time, prepare two electric furnaces in parallel, charge the raw material in the second electric furnace and heat and melt it while it is left stationary in the first electric furnace. It is sufficient to carry out. Further, the heated and melted furnace contents can be transferred to another stationary furnace, where the stationary process can be carried out.

炉内で生成するスラグ系酸化物の成分組成の範囲は,Al23 :20〜40wt%,SiO2:25〜40wt%,CaO:20〜35wt%,FeO:0〜35wt%となるように原料配合を調整するのが好ましいが,これは,PGM含有物質に含まれるAl,SiおよびFeの各酸化物の含有量を予め分析して把握しておき,これらの酸化物の含有量に応じ
て炉に装入するフラックス成分組成を調整するのが好ましい。
Range of component composition of the slag-based oxide produced in the furnace, Al 2 O 3: 20~40wt% , SiO 2: 25~40wt%, CaO: 20~35wt%, FeO: become as 0~35Wt% It is preferable to adjust the raw material composition to this, but this is because the content of each oxide of Al, Si and Fe contained in the PGM-containing material is analyzed and grasped in advance. It is preferable to adjust the flux component composition charged into the furnace accordingly.

より具体的には,PGM含有物質を,炉に装入する前に5mm以下の粒状物に粉砕し,この粉砕混合された被処理原料から分析用サンプルを採集する。その分析値とフラックス成分(Al23 ,SiO2,CaOおよびFeOの群から選ばれる少なくとも1種を使用する)の調整によって,炉内で生成するスラグ系酸化物の成分組成の範囲を,前記の態
様4のように,
Al23 :20〜40wt%,
SiO2:25〜40wt%,
CaO:20〜35wt%,
FeO:0〜35wt%
に制御する。
More specifically, the PGM-containing substance is pulverized into granular materials of 5 mm or less before being charged into the furnace, and an analytical sample is collected from the pulverized and mixed raw material. By adjusting the analysis value and the flux component (using at least one selected from the group of Al 2 O 3 , SiO 2 , CaO and FeO), the range of the component composition of the slag oxide generated in the furnace is As in aspect 4 above,
Al 2 O 3 : 20 to 40 wt%,
SiO 2: 25~40wt%,
CaO: 20 to 35 wt%,
FeO: 0 to 35 wt%
To control.

これによって,メタル溶湯と分離されたスラグ系酸化物は,前記の態様5のように,
Al:10〜22wt%,
Si:10〜16wt%,
Ca:14〜22wt%,
Fe:27wt%以下(0%を含む),
Pt:10ppm以下,
残部は実質的に酸素からなる成分組成のものとすることができる。
As a result, the slag oxide separated from the molten metal is, as in the fifth aspect,
Al: 10 to 22 wt%,
Si: 10 to 16 wt%,
Ca: 14-22 wt%,
Fe: 27 wt% or less (including 0%),
Pt: 10 ppm or less,
The balance can be of a component composition consisting essentially of oxygen.

スラグ系酸化物の成分組成が前記のようにAl23 :20〜40wt%,SiO2:25〜40wt%,CaO:20〜35wt%,FeO:0〜35wt%であると,適度な粘性を有し且つ分散して流れやすいスラグとなり,比重分離の過程で,被処理原料中に混在していた白金族元素が溶融金属銅に吸収され易くなる。これによって,処理末期の最終的なスラグは,前記のように,Al:10〜22wt%,Si:10〜16wt%,Ca:14〜22wt%,Fe:27wt%以下(0%を含む),Pt:10ppm以下,残部は実質的に酸
素からなる。
As component composition of the slag-based oxide of the Al 2 O 3: 20~40wt%, SiO 2: 25~40wt%, CaO: 20~35wt%, FeO: If it is 0~35wt%, moderate viscosity In the process of specific gravity separation, the platinum group element mixed in the raw material to be processed is easily absorbed by the molten metal copper. As a result, the final slag at the end of the treatment is, as described above, Al: 10-22 wt%, Si: 10-16 wt%, Ca: 14-22 wt%, Fe: 27 wt% or less (including 0%), Pt: 10 ppm or less, the balance being substantially composed of oxygen.

電気炉で生成するスラグが前記の制御範囲を外れると,例えばAl23 が40wt%を越えると,極端にスラグの粘性が上がり,その結果,白金族元素と,酸化銅から還元された溶融金属銅との接触速度が遅くなり,白金族元素を吸収した溶融金属銅がスラグ中に浮遊しやすくなることがその原因であろうと考えられるが,白金族元素のメタル溶湯への吸
収率が低下する。好ましいAl23 の範囲は20〜30wt%である。
If the slag generated in the electric furnace is out of the above control range, for example, if Al 2 O 3 exceeds 40 wt%, the viscosity of the slag will be extremely increased, and as a result, the molten material reduced from the platinum group elements and copper oxide. The reason for this is thought to be that the contact speed with the metallic copper becomes slow and the molten metallic copper that has absorbed the platinum group element is likely to float in the slag, but the absorption rate of the platinum group element into the molten metal is reduced. To do. A preferable range of Al 2 O 3 is 20 to 30 wt%.

前記の静置工程のあとは,上層のスラグはその一部を炉内に残したまま,大半は炉外に流出させて廃棄する。つぎに白金族元素を吸収したメタル溶湯を電気炉から出湯し,溶融状態で酸化を行う炉に移し入れて白金族元素の濃縮を図る。このためには,酸化炉で酸素ガスまたは酸素含有ガスによって該溶湯を酸化処理し,主として酸化銅からなる酸化物層と,白金族元素が濃縮した主として金属銅からなるメタル溶湯に比重差で分離する。酸化処理は1100℃〜1600℃の温度,好ましくは1200℃〜1500℃の温度に維持しながら,酸素ガスまたは酸素含有ガスを導入して行う。1100℃未満では酸化速度が低く,逆に1600℃を越すと炉体の破損が生じる。酸化処理のあとは上層の酸化物層は炉を傾けて炉外に流出分離し,次いで,下層の白金族元素が濃縮したメタル溶湯も炉外に
流出させて次回収工程へ送る。
After the standing step, most of the upper slag is left outside the furnace while leaving most of it in the furnace and discarded. Next, the molten metal that has absorbed the platinum group element is discharged from the electric furnace and transferred to a furnace that oxidizes in the molten state to concentrate the platinum group element. For this purpose, the molten metal is oxidized with oxygen gas or oxygen-containing gas in an oxidation furnace, and separated into specific gravity differences between an oxide layer composed mainly of copper oxide and a molten metal composed mainly of metallic copper enriched in platinum group elements. To do. The oxidation treatment is performed by introducing an oxygen gas or an oxygen-containing gas while maintaining a temperature of 1100 ° C. to 1600 ° C., preferably 1200 ° C. to 1500 ° C. If the temperature is lower than 1100 ° C, the oxidation rate is low. Conversely, if the temperature exceeds 1600 ° C, the furnace body will be damaged. After the oxidation process, the upper oxide layer is separated from the furnace by tilting the furnace, and then the molten metal enriched with the lower platinum group element is also flowed out of the furnace and sent to the next recovery step.

この酸化処理の終了時に,通常は上層の酸化物層を流出させた後,その減量分,電気炉から新たに白金族元素を吸収したメタル溶湯を受入れ,炉内に残存しているメタル溶湯と合わせ湯にしたうえで,酸化処理を繰り返す。その繰り返しにより,下層のメタル溶湯中の白金族元素の含有量が10%〜75%となった時点で始めて酸化炉から該メタル溶湯を
出湯して,次工程の白金族元素採集工程に回すのがよい。
At the end of this oxidation treatment, after the upper oxide layer is usually discharged, the molten metal that has newly absorbed the platinum group element is received from the electric furnace by the reduced amount, and the remaining molten metal in the furnace. Repeat the oxidation process after making the combined hot water. By repeating this process, the molten metal is discharged from the oxidation furnace only when the content of the platinum group element in the molten metal in the lower layer becomes 10% to 75%, and is sent to the next platinum group element collecting process. Is good.

また酸化炉から流出させた酸化物層については,殆どが酸化銅であるのでこれを炉から流出させて冷却固化したあと,電気炉への銅源材料として再利用することができる。これによって,酸化物層に同伴していた白金族元素も回収できる。この酸化物を溶融状態から急水冷することによって水砕化することができ,これによって0.1mm以上10mm以
下の粒状物とすることができ,電気炉への装入原料として好適なものとなる。
The oxide layer discharged from the oxidation furnace is mostly copper oxide and can be reused as a copper source material for the electric furnace after flowing out of the furnace and cooling and solidifying. As a result, platinum group elements accompanying the oxide layer can also be recovered. This oxide can be pulverized by rapid water cooling from the molten state, whereby a granular material having a size of 0.1 mm or more and 10 mm or less can be obtained, which is suitable as a raw material charged in an electric furnace. .

〔実施例1〕
平均でPt約1200ppm,Pd約300ppm,Rh約90ppm含有した自動車排ガス浄化用廃触媒(平均でAl23 約38.5wt%,SiO2約39.6wt%,MgO約12.5wt%含有する)を10mm以下に破砕した。この粒状の廃触媒1000kgに,フラックス成分としてのCaO500kgとSiO2100kg,還元剤としてのコークス30kg,および酸化銅(0.1mm以上10mm以下の粒状物が約80wt%)3
00kgを混合し,電気炉に装入した。
[Example 1]
Waste catalyst for purification of automobile exhaust gas containing about 1200 ppm Pt, about 300 ppm Pd and about 90 ppm Rh (average containing about 38.5 wt% Al 2 O 3, about 39.6 wt% SiO 2, about 12.5 wt% MgO) ) Was crushed to 10 mm or less. To 1000 kg of this granular waste catalyst, 500 kg of CaO as a flux component and 100 kg of SiO 2 , 30 kg of coke as a reducing agent, and copper oxide (about 80 wt% of granular material of 0.1 mm to 10 mm) 3
00 kg was mixed and charged into an electric furnace.

使用した電気炉は,外径が約5m,高さが約2.2mの円筒状の鉄皮10によって炉壁を構成したものであり,鉄皮10の材質としては厚さ22mmの炭素鋼板を用いたものである。ヘッダー12から流出させる水量は全体で36m3/hrとし,ヘッダー12から流出するときの温度は45℃以下とした。炉の操業中は鉄皮10の内側に約30〜50mm
のセルフコーティング層14が形成されていることが推定された。
The used electric furnace has a furnace wall made of a cylindrical iron skin 10 having an outer diameter of about 5 m and a height of about 2.2 m. The material of the iron skin 10 is a carbon steel plate having a thickness of 22 mm. It is what was used. The total amount of water flowing out of the header 12 was 36 m 3 / hr, and the temperature when flowing out of the header 12 was 45 ° C. or less. During operation of the furnace, about 30-50mm inside the iron skin 10
It was estimated that the self-coating layer 14 was formed.

この装入物を電気炉内で約1500℃で加熱溶融した。メルトダウンのあと,材料温度が約1400℃に保たれるように通電しながら静置し,1時間ごとに上層のスラグの一部を電気炉の側面より流出させ,冷却固化させた。この操作をメルトダウン後20時間まで行い,各時間ごとに採集されたスラグ中のPGMを分析した。その分析結果を表1に示し
た。
This charge was heated and melted at about 1500 ° C. in an electric furnace. After the meltdown, the material was allowed to stand while being energized so that the material temperature was maintained at about 1400 ° C., and a part of the upper slag was allowed to flow out from the side of the electric furnace every hour to be cooled and solidified. This operation was performed up to 20 hours after the meltdown, and the PGM in the slag collected every hour was analyzed. The analysis results are shown in Table 1.

表1の結果から,この保持温度では静置時間が5時間以内では相当量のPt,PdおよびRhがスラグに残存するが,5時間を越えると非常に少なくなり,ほぼ8時間程度でそ
の傾向はほぼ停止することがわかる。
From the results in Table 1, at this holding temperature, a considerable amount of Pt, Pd and Rh remain in the slag when the standing time is within 5 hours, but when it exceeds 5 hours, it decreases very much, and the tendency is about 8 hours. Can be seen to almost stop.

〔実施例2〕
保持温度を1200℃,静置時間を5時間とした以外は,実施例1を繰り返した。実施例1と同様にスラグ中のPGMを分析したところ,表1に示したようにPt:0.9pp
m,Pd:0.2ppm,Rh:0.1ppm以下であった。
[Example 2]
Example 1 was repeated except that the holding temperature was 1200 ° C. and the standing time was 5 hours. When PGM in the slag was analyzed in the same manner as in Example 1, as shown in Table 1, Pt: 0.9 pp
m, Pd: 0.2 ppm, Rh: 0.1 ppm or less.

〔実施例3〕
保持温度を1300℃,静置時間を5時間とした以外は,実施例1を繰り返した。実施例1と同様にスラグ中のPGMを分析したところ,表1に示したようにPt:0.7pp
m,Pd:0.1ppm,Rh:0.1ppm以下であった。
Example 3
Example 1 was repeated except that the holding temperature was 1300 ° C. and the standing time was 5 hours. The PGM in the slag was analyzed in the same manner as in Example 1. As shown in Table 1, Pt: 0.7 pp
m, Pd: 0.1 ppm, Rh: 0.1 ppm or less.

〔比較例1〕
保持温度を1100℃,静置時間を5時間とした以外は,実施例1を繰り返した。実施例1と同様にスラグ中のPGMを分析したところ,表1に示したようにPt:2.5ppm,Pd:0.9ppm,Rh:0.2ppmであり,保持温度が1200℃未満ではP
GMをスラグから十分にメタル中に移行できなかった。
[Comparative Example 1]
Example 1 was repeated except that the holding temperature was 1100 ° C. and the standing time was 5 hours. The PGM in the slag was analyzed in the same manner as in Example 1. As shown in Table 1, Pt: 2.5 ppm, Pd: 0.9 ppm, Rh: 0.2 ppm, and when the holding temperature was less than 1200 ° C.
GM could not be fully transferred from the slag into the metal.

〔比較例2〕
保持温度を1550℃,静置時間を5時間とした以外は,実施例1を繰り返した。実施例1と同様にスラグ中のPGMを分析したところ,表1に示したようにPt:1.5ppm,Pd:0.4ppm,Rh:0.1ppmであり,保持温度が1500℃を越えても
PGMをスラグから十分にメタル中に移行できなかった。
[Comparative Example 2]
Example 1 was repeated except that the holding temperature was 1550 ° C. and the standing time was 5 hours. The PGM in the slag was analyzed in the same manner as in Example 1. As shown in Table 1, Pt: 1.5 ppm, Pd: 0.4 ppm, Rh: 0.1 ppm, and the holding temperature exceeded 1500 ° C. Also, PGM could not be fully transferred from the slag into the metal.

Figure 0004370401
Figure 0004370401

〔実施例4〕
実施例1と同様に処理して1400℃で8時間静置した段階で,電気炉から溶融メタルをタッピングし,これを加熱された酸化炉内に導いた。該酸化炉内の溶融メタルに対し,酸素濃度40%の酸化富化空気を溶湯表面に吹付け,溶湯の表面にほぼ1cm厚みの酸化物層が形成された時点で,炉を傾けてその酸化物の層を炉から排出し,大量の水が流れる水槽中に投入した。その後,再び炉を元にもどして同様の酸素富化空気を溶湯表面に吹付け,酸化物の層がほぼ1cm厚みに達したところで,それを水槽中に投入する操作を繰り返した。この水冷により粒径が10mm以下の水砕が形成された。このものは,電気炉装
入用原料の一部としての酸化銅として使用することができるものである。
Example 4
At the stage where the treatment was carried out in the same manner as in Example 1 and allowed to stand at 1400 ° C. for 8 hours, the molten metal was tapped from the electric furnace and introduced into a heated oxidation furnace. Oxygen-enriched air with an oxygen concentration of 40% is sprayed onto the molten metal in the oxidation furnace, and when the oxide layer with a thickness of approximately 1 cm is formed on the surface of the molten metal, the furnace is tilted to oxidize the molten metal. The layer of material was discharged from the furnace and put into a water tank in which a large amount of water flowed. Thereafter, the furnace was returned again, and the same oxygen-enriched air was sprayed onto the surface of the molten metal. When the oxide layer reached approximately 1 cm in thickness, the operation of throwing it into the water tank was repeated. By this water cooling, water granulation having a particle size of 10 mm or less was formed. This can be used as copper oxide as part of the raw material for electric furnace charging.

酸化物の層を炉外に排出したあとの酸化炉内の溶融メタルに対し,電気炉側において実施例2に相当する処理を終えた溶融メタルを追加し,この合湯の表面に前記同様の酸素富化空気を吹付けた。そして,酸化物層の厚みがほぼ1cmに達した時点で酸化炉外に排出する操作を2回繰り返した。処理後の溶湯全量を酸化炉から排出して冷却固化したところ,約10.5kgの金属銅が得られ,この金属銅中のPGMの含有量は,Pt:約22wt
%,Pd:約5.5wt%,Rh:約1.5wt%であった。
The molten metal in the oxidation furnace after the oxide layer was discharged outside the furnace was added with the molten metal that had undergone the treatment corresponding to Example 2 on the electric furnace side, and the same as described above on the surface of the molten metal. Oxygen-enriched air was blown. Then, when the thickness of the oxide layer reached approximately 1 cm, the operation of discharging out of the oxidation furnace was repeated twice. When the molten metal after treatment was discharged from the oxidation furnace and cooled and solidified, about 10.5 kg of metallic copper was obtained, and the content of PGM in this metallic copper was Pt: about 22 wt.
%, Pd: about 5.5 wt%, and Rh: about 1.5 wt%.

〔実施例5〕
使用済のハニカム形状の自動車排ガス浄化用触媒1000kgをコンベア上に投入し,1段でジョウクラッシャー,2段でダブルロールクラッシャーに供給し,全量を5mm以下に破砕した。破砕した被処理原料の全量を3段式の2分器(1/2×1/2×1/2=1/8に縮分)2基に通し,1/64の代表試料15.5kgを採集した。残りの母体はサイロに保管した。代表試料を全量乾燥させ,水分量を測定したあと(水分量=(0.5wt%),パルベライザーでその全量を100メッシュアンダーまで粉砕し,V型混合機
で混合した後,回転型12分器を用いて100gの分析試料を得た。
Example 5
1000 kg of spent honeycomb-shaped automobile exhaust gas purification catalyst was put on a conveyor and supplied to a jaw crusher in one stage and a double roll crusher in two stages, and the whole amount was crushed to 5 mm or less. Pass the entire amount of the crushed raw material through two three-stage bifurcaters (1/2 × 1/2 × 1/2 = 1/8), and 15.5 kg of 1/64 representative sample. Collected. The rest of the mother was stored in a silo. After drying the representative sample in its entirety and measuring the moisture content (moisture content = (0.5 wt%)), the whole amount was ground to 100 mesh with a pulverizer, mixed with a V-type mixer, An analytical sample of 100 g was obtained.

この分析試料を蛍光X線分析装置にかけて酸化物を分析したところ,
Al23 :40.5wt%,
SiO2:41.6wt%,
MgO:11.5wt%,
FeO:1.5wt%であった。
When this analysis sample was analyzed with an X-ray fluorescence analyzer, oxides were analyzed.
Al 2 O 3 : 40.5 wt%,
SiO 2 : 41.6 wt%
MgO: 11.5 wt%,
FeO: 1.5 wt%.

電気炉で生成するスラグの目標成分組成を,
Al23 :22.3wt%,
SiO2:28.5wt%,
CaO:28.1wt%,
FeO:12.1wt%とし,
この目標成分組成となるように,前記の分析値を根拠として,サイロに保管した前記の母体984.5kgと,フラックス成分として,CaO500kg,SiO2100kg,FeO200kgを秤量した。さらに還元剤としてコークス30kgと,銅源材料として酸化銅(0.1mm以上10mm以下の粉粒状物が約80wt%)300kgを秤量し,こ
れらの4種の材料全部を混合した。
The target composition of slag generated in the electric furnace is
Al 2 O 3 : 22.3 wt%,
SiO 2 : 28.5 wt%
CaO: 28.1 wt%,
FeO: 12.1 wt%
Based on the analysis values, 984.5 kg of the base material stored in the silo, and 500 kg of CaO, 100 kg of SiO 2 and 200 kg of FeO were weighed as flux components so that the target component composition was obtained. Further, 30 kg of coke as a reducing agent and 300 kg of copper oxide (about 80 wt% of powder particles of 0.1 mm to 10 mm) as a copper source material were weighed and all these four materials were mixed.

この混合物を電気炉に装入し,約1350℃で加熱溶融し,メルトダウンのあと1250〜1300℃の温度で約5時間静置したあと,上層のスラグ系酸化物を電気炉の側面より流出させ,冷却固化させた。このスラグ中の白金族元素を分析したところ,Pt=0.7ppm,Pd=0.1ppm,Rh=0.1ppm以下であり,スラグ中への白金族元
素のロスは非常に軽微であった。
This mixture was charged into an electric furnace, heated and melted at about 1350 ° C., allowed to stand at a temperature of 1250 to 1300 ° C. for about 5 hours after melting down, and then the upper slag oxide was discharged from the side of the electric furnace. And allowed to cool and solidify. When the platinum group elements in the slag were analyzed, Pt = 0.7 ppm, Pd = 0.1 ppm, and Rh = 0.1 ppm or less, and the loss of the platinum group elements in the slag was very slight.

また,該スラグの酸化物成分を分析したところ,
Al23 :21.5wt%,
SiO2:29.2wt%,
CaO:27.9wt%,
FeO:11.8wt%であり,各成分とも,前記の目標成分組成の±1.0wt%以内にお
さまっていた。
Moreover, when the oxide component of the slag was analyzed,
Al 2 O 3 : 21.5 wt%,
SiO 2 : 29.2 wt%
CaO: 27.9 wt%,
FeO: 11.8 wt%, and each component was within ± 1.0 wt% of the target component composition.

〔参考例1〕
フレコンの2袋に入った大小の割れた塊状のハニカム形自動車排ガス浄化用廃触媒(コンバータの破片)1000kgから15kgを代表試料としてランダムに抜き取った。この代表試料を全量乾燥させ,水分量を測定した後(水分=0.8wt%),ジョウクラッシャーで破砕した。破砕物をパルベライザーで全量を100メッシュアンダーまで粉砕し,
V型混合機で混合した後,回転型12分器を用いて100gの分析試料を得た。
[Reference Example 1]
Randomly withdrawing 1000 to 15 kg of waste catalyst (converter fragments) of honeycomb type automobile exhaust gas purification of large and small cracked lump in two flexible container bags. The representative sample was completely dried and the moisture content was measured (moisture = 0.8 wt%), and then crushed with a jaw crusher. Crush the crushed material with a pulverizer to 100 mesh or less,
After mixing with a V-type mixer, 100 g of an analytical sample was obtained using a rotary 12-minute device.

この分析試料を蛍光X線分析装置にかけて酸化物の成分を分析したところ,
Al23 :37.8wt%,
SiO2:43.1wt%,
MgO:12.3wt%,
FeO:1.2wt%であった。
When this analytical sample was subjected to a fluorescent X-ray analyzer and analyzed for oxide components,
Al 2 O 3 : 37.8 wt%
SiO 2 : 43.1 wt%,
MgO: 12.3 wt%,
FeO: 1.2 wt%.

電気炉で生成するスラグの目標成分組成を,
Al23 :22.0wt%,
SiO2:25.1wt%,
CaO:29.1wt%,
FeO:12.6wt%とし,
この目標成分組成となるように,該分析値を根拠として,使用済の塊状のハニカム形自動車排ガス浄化用触媒(コンバータの破片)=985Kgと,フラックス成分としてCaO500Kg,FeO200Kgを秤量し,さらに還元剤としてコークス30Kg,および酸化銅(0.1mm以上10mm以下の粉粒状物が約80wt%)300Kgを秤量し,こ
れらを電気炉に装入し,1350℃で加熱溶融した。
The target composition of slag generated in the electric furnace is
Al 2 O 3 : 22.0 wt%,
SiO 2 : 25.1 wt%,
CaO: 29.1 wt%,
FeO: 12.6 wt%,
Based on the analysis value, the used bulk honeycomb-type automobile exhaust gas purification catalyst (converter fragment) = 985 kg, CaO 500 kg, and FeO 200 kg as flux components are weighed to obtain the target component composition. 30 kg of coke and 300 kg of copper oxide (about 80 wt% of 0.1 mm to 10 mm powdered granular material) were charged into an electric furnace and heated and melted at 1350 ° C.

電気炉において約1350℃で装入物を加熱溶融し,メルトダウンのあと1250〜1300℃の温度で約5時間静置したあと,上層のスラグ系酸化物を電気炉の側面より流出させ,冷却固化させた。このスラグ中の白金族元素を分析したところ,Pt=1.8ppm,Pd=0.4ppm,Rh=0.2ppmであり,実施例5の場合に比べて白金族元
素のスラグ中へのロスが多くなった。
In the electric furnace, the charge is heated and melted at about 1350 ° C., and after standing down at a temperature of 1250 to 1300 ° C. for about 5 hours, the upper slag oxide is allowed to flow out from the side of the electric furnace and cooled. Solidified. When the platinum group element in this slag was analyzed, Pt = 1.8 ppm, Pd = 0.4 ppm, and Rh = 0.2 ppm. Compared with the case of Example 5, the loss of the platinum group element into the slag was Increased.

また,該スラグの酸化物成分を分析したところ,
Al23 :23.5wt%,
SiO2:22.1wt%,
CaO:29.5wt%,
FeO:11.8wt%であった。すなわち,前記の目標成分組成とした値に比べると,A
23 とSiO2の含有量が1.5%以上ずれている結果となった。
Moreover, when the oxide component of the slag was analyzed,
Al 2 O 3 : 23.5 wt%,
SiO 2 : 22.1 wt%,
CaO: 29.5 wt%,
FeO: 11.8 wt%. That is, when compared with the value of the target component composition, A
As a result, the contents of l 2 O 3 and SiO 2 were shifted by 1.5% or more.

〔実施例6〕
実施例1を実施したあとの電気炉内の白金族元素含有のメタル溶湯を電気炉下部から出湯し,これを加熱した酸化炉内に導いた。そして,酸化炉内のメタル溶湯に対して酸素40%の酸素富化空気を溶湯表面に吹きつけて酸化処理し,溶湯表面に生成する酸化物の層が約1cmの厚さとなったところで炉を傾けて該酸化物を炉外に流出させ,大量の水の流
れる水槽内に投入した。
Example 6
The molten metal containing platinum group elements in the electric furnace after carrying out Example 1 was discharged from the lower part of the electric furnace and led into a heated oxidation furnace. Then, 40% oxygen-enriched air is blown onto the surface of the molten metal in the oxidation furnace to oxidize it, and when the oxide layer formed on the molten surface has a thickness of about 1 cm, the furnace is The oxide was tilted to flow out of the furnace and put into a water tank in which a large amount of water flowed.

さらに,酸化炉内のメタル溶湯に対して同様に酸素富化空気を吹き込み続け,酸化物の厚みがほぼ1cmに成長したところで,これを炉外に流出させて水冷する操作を繰り返した。この操作を5回繰り返したあと,前記の比較例1で得られた電気炉内の白金族元素含有メタル溶湯を電気炉下部より導き,この酸化炉内に導き,酸化炉内のメタル溶湯と合わせ湯にした。その後,炉内のメタル溶湯に対して同様の酸素富化空気を吹き込み,生成した酸化物を炉外に流出させて水冷する操作を繰り返した。処理後に得られたメタル溶湯を全量酸化炉から出湯させ,冷却固化し,これを分析したところ,金属銅=5.4Kgであり,白金族元素の含有量は,Pt=21.3wt%,Pd=6.7wt%,Rh=1.4wt%
であった。
Furthermore, oxygen-enriched air was continuously blown into the molten metal in the oxidation furnace, and when the thickness of the oxide grew to about 1 cm, the operation of allowing this to flow out of the furnace and water cooling was repeated. After repeating this operation five times, the platinum group element-containing molten metal in the electric furnace obtained in Comparative Example 1 is led from the lower part of the electric furnace, led into the oxidizing furnace, and combined with the molten metal in the oxidizing furnace. I made hot water. Thereafter, the same oxygen-enriched air was blown into the molten metal in the furnace, and the generated oxide was discharged outside the furnace and water-cooled. The molten metal obtained after the treatment was completely discharged from the oxidation furnace, solidified by cooling, and analyzed. As a result, the metal copper was 5.4 kg, and the platinum group element content was Pt = 21.3 wt%, Pd = 6.7 wt%, Rh = 1.4 wt%
Met.

本発明に従う製錬炉の要部を示す略断面図である。It is a schematic sectional drawing which shows the principal part of the smelting furnace according to this invention. 本発明に従う製錬炉の炉壁の要部を示す略斜視図である。It is a schematic perspective view which shows the principal part of the furnace wall of the smelting furnace according to this invention. 本発明に従う製錬炉の冷却水の処理系統図である。It is a processing system diagram of the cooling water of the smelting furnace according to the present invention.

符号の説明Explanation of symbols

1 炉内装入物
2 電極
3 炉蓋
4 炉本体
5 溶融スラグ層
6 メタル溶湯
7 スラグ排出口
8 メタル溶湯排出口
9 材料投入用シュート
10 鉄皮
11 水膜流
12 ヘッダー
13 環状樋
14 セルフコーティング層
15 ノズル口
16 貯留槽
19 冷却塔
22 水頭槽
DESCRIPTION OF SYMBOLS 1 Furnace interior 2 Electrode 3 Furnace 4 Furnace main body 5 Molten slag layer 6 Metal melt 7 Slag discharge port 8 Metal melt discharge port 9 Material injection chute 10 Iron skin 11 Water film flow 12 Header 13 Annular cage 14 Self-coating layer 15 Nozzle port 16 Storage tank 19 Cooling tower 22 Water head tank

Claims (13)

炉内に装入された酸化物原料を炭素質還元剤で還元してメタル溶湯を得る製錬炉において、該炉が炉内装入物を外気雰囲気と実質的に遮断するための蓋体と上方から該炉内に挿入配置され該炉内装入物を通電加熱するための電極とを備えた密閉型の電気炉であり、炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成し、最外周面とした該鉄皮外側表面と接して下降する水膜流を形成し該鉄皮の炉内側表面に接して前記スラグの凝固層からなるセルフコーティング層が生成されてなることを特徴とする製錬炉。 In a smelting furnace for obtaining a molten metal by reducing an oxide raw material charged in a furnace with a carbonaceous reducing agent, the furnace has a lid and an upper part for substantially shutting off the furnace interior material from the outside atmosphere. A closed electric furnace provided with an electrode for energizing and heating the furnace interior material, and including a furnace wall including a height level of a molten slag layer generated in the furnace. A self-coating layer composed of a solidified layer of the slag is formed in contact with the furnace inner surface of the iron skin, forming a water film flow falling in contact with the outer surface of the iron skin as the outermost peripheral surface. smelting furnace characterized by comprising Te. 炉内に装入された酸化物原料を炭素質還元剤で還元してメタル溶湯を得る製錬炉において、該炉が炉内装入物を外気雰囲気と実質的に遮断するための蓋体と上方から該炉内に挿入配置され該炉内装入物を通電加熱するための電極とを備えた密閉型の電気炉であり、炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成すると共に該溶融スラグ層の下端近傍レベルにおいて該鉄皮を取り巻くように且つ該鉄皮の外側表面に接して樋を設置し、最外周面とした該鉄皮外側表面と接して該溶融スラグ層の上端レベルより上方のレベルから該樋のレベルまで下降する水膜流を形成し該鉄皮の該溶融スラグ層の高さレベルを包含する炉内側表面に接して該スラグの凝固層からなるセルフコーティング層が生成されてなることを特徴とする製錬炉。 In a smelting furnace for obtaining a molten metal by reducing an oxide raw material charged in a furnace with a carbonaceous reducing agent, the furnace has a lid and an upper part for substantially shutting off the furnace interior material from the outside atmosphere. A closed electric furnace provided with an electrode for energizing and heating the furnace interior material, and including a furnace wall including a height level of a molten slag layer generated in the furnace. It is composed of an iron skin and is provided with a flange so as to surround the iron skin at the level near the lower end of the molten slag layer and in contact with the outer surface of the iron skin, in contact with the outer surface of the iron skin as the outermost peripheral surface. Solidification of the slag by forming a water film flow descending from a level above the upper end level of the molten slag layer to the level of the soot and in contact with the furnace inner surface including the height level of the molten slag layer of the iron skin be characterized in that the self-coating layer comprising a layer formed by generated Smelting furnace. 鉄皮の外側表面と接して下降する水膜流は、該炉壁の外側上部に設置されたヘッダーから、該鉄皮の同高さレベルの全外周に向けて、所定の水頭圧の水が均等に配分されることによって形成される請求項1または2に記載の製錬炉。   The water film flow descending in contact with the outer surface of the iron skin is caused by water of a predetermined head pressure from the header installed on the outer upper part of the furnace wall toward the entire outer circumference of the same level of the iron skin The smelting furnace according to claim 1 or 2, which is formed by being evenly distributed. 炉内を外気雰囲気と実質的に遮断するための蓋体と上方から該炉内に挿入配置され通電加熱するための電極とを備えた密閉型の電気炉からなり該炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成した製錬炉に、白金族元素同伴の酸化物原料、酸化銅、固形の炭素質還元剤およびフラックスを装入し、これらの炉内装入物を該電極により通電加熱すると共に最外周面とした該鉄皮外側表面と接して下降する水膜流を形成して、該装入物を溶融および還元処理して溶融スラグ層の下方にメタル溶湯の層を形成させこのメタル溶湯中に白金族元素を濃縮させると共に該鉄皮の炉内側表面に接して前記スラグの凝固層からなるセルフコーティング層を生成することを特徴とする該製錬炉を用いた白金族元素の回収法。 A molten slag formed in a closed type electric furnace having a lid for substantially blocking the inside of the furnace from the outside atmosphere and an electrode inserted and arranged in the furnace from above and energized and heated. The smelting furnace , which is composed of a steel wall with the furnace wall including the level of the layer, is charged with an oxide raw material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing agent, and a flux. The charge is energized and heated by the electrode and forms a water film flow descending in contact with the outer surface of the iron skin as the outermost peripheral surface, and the charge is melted and reduced to be below the molten slag layer. Forming a self-coating layer comprising a solidified layer of the slag in contact with the furnace inner surface of the iron skin while forming a molten metal layer and concentrating the platinum group element in the molten metal Recovery method for platinum group elements using a furnace. 炉内を外気雰囲気と実質的に遮断するための蓋体と上方から該炉内に挿入配置され通電加熱するための電極とを備えた密閉型の電気炉からなり該炉内で生成する溶融スラグ層の高さレベルを包含する炉壁を鉄皮で構成すると共に該溶融スラグ層の下端近傍レベルにおいて該鉄皮を取り巻くように且つ該鉄皮の外側表面に接して樋を設置した製錬炉に、白金族元素同伴の酸化物原料、酸化銅、固形の炭素質還元剤およびフラックスを装入し、これらの炉内装入物を該電極により通電加熱すると共に最外周面とした該鉄皮外側表面と接して該溶融スラグ層の上端レベルより上方のレベルから該樋のレベルまで下降する水膜流を形成して、該装入物を溶融および還元処理して溶融スラグ層の下方にメタル溶湯の層を形成させこのメタル溶湯中に白金族元素を濃縮させると共に該鉄皮の該溶融スラグ層の高さレベルを包含する炉内側表面に接して前記スラグの凝固層からなるセルフコーティング層を生成することを特徴とする該製錬炉を用いた白金族元素の回収法。 A molten slag formed in a closed type electric furnace having a lid for substantially blocking the inside of the furnace from the outside atmosphere and an electrode inserted and arranged in the furnace from above and energized and heated. A smelting furnace in which a furnace wall including the height level of the layer is made of iron skin, and a slag is installed so as to surround the iron skin at a level near the lower end of the molten slag layer and in contact with the outer surface of the iron skin Into the outer surface of the iron skin , which is charged with an oxide raw material accompanied by a platinum group element, copper oxide, a solid carbonaceous reducing agent and a flux, and these furnace interiors are energized and heated by the electrodes and used as the outermost peripheral surface. Forming a water film flow that is in contact with the surface and descends from a level above the upper end level of the molten slag layer to the level of the soot, and melts and reduces the charge to form a metal melt below the molten slag layer. In this molten metal, a layer of platinum is formed Use the formulation smelting furnace, characterized in that to produce a self-coating layer composed of a solidified layer of the slag in contact with the height level of the molten slag layer of iron skin to encompass furnace inner surface causes the element to the concentrated Recovery method for platinum group elements. 酸化物原料、酸化銅、固形の炭素質還元剤およびフラックスはいずれも粉粒状物の形態で準備され、これらの粉粒状物が予め混合された上で該製錬炉に装入される請求項4または5に記載の白金族元素の回収法。 Oxide material, copper oxide, prepared in the form of a carbonaceous reducing agent and flux Any particulate matter in the solid, claims these particulate matter is charged into the formulation smelting furnace after having been premixed 4. The method for recovering a platinum group element according to 4 or 5 . 炉内装入物の加熱溶融のあと、1200〜1500℃の温度に少なくとも5時間以上保持する静置工程を設けたあとで、白金族元素含有のメタル溶湯を炉外に排出する請求項4〜6のいずれかに記載の白金族元素の回収法。 After heating and melting of the furnace interior container, after having a standing step of holding at least 5 hours or more to a temperature of 1200 to 1500 ° C., claim to discharge the molten metal of the platinum group element-containing out of the furnace 4 to 6 A method for recovering a platinum group element according to any one of the above. 炉内で生成するスラグ系酸化物の成分組成の範囲を、Al23:20〜40wt%、SiO2:25〜40wt%、CaO:20〜35wt%、FeO:0〜35wt%に制御する請求項4〜7のいずれかに記載の白金族元素の回収法。 The range of the component composition of the slag-based oxide generated in the furnace is controlled to Al 2 O 3 : 20 to 40 wt%, SiO 2 : 25 to 40 wt%, CaO: 20 to 35 wt%, and FeO: 0 to 35 wt%. The method for recovering a platinum group element according to any one of claims 4 to 7 . 白金族元素同伴の酸化物原料に含まれるAl、SiおよびFeの少なくとも1種の酸化物の含有量を予め分析して把握しておき、これらの酸化物の含有量に応じて炉に装入するフラックス成分組成を調整することにより、前記のスラグ系酸化物の成分組成を制御する請求項8に記載の白金族元素の回収法。   The content of at least one oxide of Al, Si and Fe contained in the oxide raw material accompanied by the platinum group element is analyzed and grasped in advance, and charged into the furnace according to the content of these oxides. The method for recovering a platinum group element according to claim 8, wherein the component composition of the slag oxide is controlled by adjusting a flux component composition to be performed. フラックスは、Al23、SiO2、CaOおよびFeOの群から選ばれる少なくとも1種の成分を含む請求項9に記載の白金族元素の回収法。 The method for recovering a platinum group element according to claim 9, wherein the flux contains at least one component selected from the group consisting of Al 2 O 3 , SiO 2 , CaO, and FeO. メタル溶湯と分離されるスラグが、
Al:10〜22wt%、
Si:10〜16wt%、
Ca:14〜22wt%、
Fe:27wt%以下(0wt%を含む)、
Pt:10ppm以下、
残部が実質的に酸素からなる成分組成となるように調整される請求項8または9に記載の白金族元素の回収法。
Slag separated from molten metal
Al: 10 to 22 wt%,
Si: 10 to 16 wt%,
Ca: 14-22 wt%
Fe: 27 wt % or less (including 0 wt %),
Pt: 10 ppm or less,
The method for recovering a platinum group element according to claim 8 or 9, wherein the balance is adjusted so as to have a component composition substantially consisting of oxygen.
スラグ系酸化物と分離されたメタル溶湯を別の炉に移して酸化処理し、酸化銅を主成分とする酸化物層と、白金族元素が濃縮された金属銅を主成分とするメタル溶湯とに比重差で分離する請求項4または5に記載の白金族元素の回収法。 The molten metal separated from the slag oxide is transferred to another furnace for oxidation treatment, an oxide layer mainly composed of copper oxide, and a molten metal mainly composed of metal copper enriched with platinum group elements, The method for recovering a platinum group element according to claim 4 or 5, wherein the platinum group element is separated by a specific gravity difference. 請求項12における酸化銅を主成分とする酸化物層は、請求項4または5の酸化銅として再利用される請求項4または5に記載の白金族元素の回収法。 The method for recovering a platinum group element according to claim 4 or 5, wherein the oxide layer mainly composed of copper oxide according to claim 12 is reused as the copper oxide according to claim 4 or 5 .
JP2004069782A 2004-03-11 2004-03-11 Smelting furnace and platinum group element recovery method using the same Expired - Fee Related JP4370401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069782A JP4370401B2 (en) 2004-03-11 2004-03-11 Smelting furnace and platinum group element recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004069782A JP4370401B2 (en) 2004-03-11 2004-03-11 Smelting furnace and platinum group element recovery method using the same

Publications (2)

Publication Number Publication Date
JP2005257175A JP2005257175A (en) 2005-09-22
JP4370401B2 true JP4370401B2 (en) 2009-11-25

Family

ID=35083069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069782A Expired - Fee Related JP4370401B2 (en) 2004-03-11 2004-03-11 Smelting furnace and platinum group element recovery method using the same

Country Status (1)

Country Link
JP (1) JP4370401B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192255A1 (en) 2008-10-09 2011-08-11 National Institute Of Advanced Industrial Science And Technology Composition for collecting metal component
JP5652765B2 (en) * 2010-03-31 2015-01-14 独立行政法人産業技術総合研究所 Metal component recovery agent and metal component recovery method
CN111893314B (en) * 2020-07-03 2021-06-29 北京科技大学 Design method for iron-trapping waste catalyst platinum group metal slag mold

Also Published As

Publication number Publication date
JP2005257175A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US8366991B2 (en) Apparatus for recovering platinum group elements
JP5066690B2 (en) Blast furnace and method for producing pig iron using the same
KR101096498B1 (en) Method for recovering platinum group element
JP5388398B2 (en) Microwave direct metal manufacturing method
CN1327072A (en) Method and device for making metal iron
JPS6366885B2 (en)
JP5074332B2 (en) Platinum group element recovery equipment
FI73742C (en) Acid conversion process for solid metal stone.
CN102649999A (en) Plasma arc melting enrichment method and plasma arc melting enrichment device for recycling metal elements of platinum group
ES2215676T3 (en) PROCEDURE FOR THE CONDITIONING OF ESCORIES WITH CONTRIBUTION OF SIDERURGICAL WASTE, ASY AS INSTALLATION FOR IT.
JP5355977B2 (en) Method for treating materials containing platinum group elements, rhenium and arsenic
JP4370401B2 (en) Smelting furnace and platinum group element recovery method using the same
JP3903141B2 (en) Methods for recovering platinum group elements
JP2010077470A (en) Method for treating material to be treated, containing platinum group element, rhenium and/or arsenic
JP4284124B2 (en) Methods for recovering platinum group elements
JP2000045008A (en) Production of reduced metal
JP3843075B2 (en) Dry recovery of platinum group elements
RU2233889C2 (en) Method of production of iron in furnace provided with rotating hearth and updated furnace apparatus
Sima et al. Mortimer Smelter: Operations Description
JPH07331353A (en) Treatment of steelmaking waste material
JP2004346340A (en) Production method of blast furnace feed and blast furnace operation method using the blast furnace feed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4370401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees