JP4370119B2 - Friction stir welding equipment - Google Patents

Friction stir welding equipment Download PDF

Info

Publication number
JP4370119B2
JP4370119B2 JP2003137547A JP2003137547A JP4370119B2 JP 4370119 B2 JP4370119 B2 JP 4370119B2 JP 2003137547 A JP2003137547 A JP 2003137547A JP 2003137547 A JP2003137547 A JP 2003137547A JP 4370119 B2 JP4370119 B2 JP 4370119B2
Authority
JP
Japan
Prior art keywords
holder
friction stir
stir welding
temperature
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003137547A
Other languages
Japanese (ja)
Other versions
JP2004337916A (en
Inventor
慶訓 加藤
悦己 広本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003137547A priority Critical patent/JP4370119B2/en
Publication of JP2004337916A publication Critical patent/JP2004337916A/en
Application granted granted Critical
Publication of JP4370119B2 publication Critical patent/JP4370119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦撹拌接合における回転工具の熱対策を施した装置に係り、特に摩擦撹拌接合中に回転工具が受ける熱影響を排除しうる摩擦攪拌接合装置に関する。
【0002】
【従来の技術】
例えば特表平7−505090号公報(特許文献1)には、摩擦攪拌による固相接合方法として長尺材同士の新規な接合方法が開示されており、かかる接合方法は、加工物より実質的に硬い材質からなる回転ツ−ルを加工物の接合部に挿入し、回転ツ−ルを回転させながら移動することにより、回転ツ−ルと加工物との間に生じる摩擦熱による塑性流動によって加工物を接合する接合方法で、かかる摩擦接合法は、接合部材を固相状態で、回転ツ−ルを回転させながら移動させつつ軟化させた固相部分を一体化しながら接合できるために、熱歪みがなく接合方向に対して実質的に無限に長い長尺材でもその長手方向に連続的に固相接合できる利点がある。さらに、回転ツ−ルと接合部材との摩擦熱による金属の塑性流動を利用した固相接合のため、接合部を溶融させることなく接合できる。また、加熱温度が低いため、接合後の変形が少ない。接合部は溶融されないため、欠陥が少ないなどの多くの利点がある。
【0003】
次に摩擦撹拌接合に使用される回転工具について説明する。摩擦撹拌接合は特表平7−505090号に開示されているように、ブローブ型とボビンツール型の回転工具が存在し、プローブ型工具20は図4に示すように、ショルダ21とこのショルダ21に備えられたプローブ22とを備えており、このショルダ21は円形ショルダ面を有している。そして、複数の型材を突き合わせ、若しくは嵌合された状態の接合線表面より、前記プローブ型工具20を回転させて、プローブ22を被加工物の接合線に設けた不図示の孔に侵入させるとともに、複数の型材の接合線上で摺接回転するショルダ部21によって被加工物に摩擦熱が付与されるとともに、プローブ22周囲が塑性流動化し、この状態でプローブ型工具20を接合線に沿って移動させることにより、接合線周囲が塑性流動化しつつ接合線に沿って2つの素材が圧力を受けながら撹拌混練され、プローブの後方側に移行する。この結果塑性流動した素材は後方側で摩擦熱を失って急速に冷却固化するので両パネル板は素材同士が混じり合って完全に一体化した状態で接合される。
【0004】
そして前記回転工具は一般に工作機械のエンドミル加工時等に使用するミーリングチャック(以下ホルダという)を介して機械主軸に固定され、機械主軸よりの回転駆動力を受けて回転させているが、前記回転工具は、通常の工作機械と異なり冷却液により冷却されずに、逆に450〜560℃の摩擦入熱を受けるために、前記ホルダが焼き戻し状態となり、強度低下が生じ、そのままの状態で接合作業を続けるとホルダのクラックや歪み、更には破損が生じるおそれがある。
【0005】
このため従来技術においては回転工具の冷却が行われている。そして、摩擦攪拌接合に用いる摩擦攪拌接合装置の冷却は、特開平10−52770号公報(特許文献2)や特開平11−10367号公報(特許文献3)に開示されるように、摩擦接合用の回転工具の内部に冷媒を流通させることで回転工具の冷却を行ったり、摩擦攪拌接合用の回転工具の下端部または、下端部近傍の回転工具外表面に冷媒を吹き付けて回転工具の冷却を行っていた。また、ワークの接合部の冷却は、特開平10−52770号公報(特許文献3)に開示されるように、冷媒が、回転工具の下端部だけでなく、被接合材の接合部の上表面に吹き付けて行われていた。
【0006】
しかしながら、回転工具の下端部および下端部近傍のみを冷却すると、回転工具自体の寿命を長くすることができるが、回転工具を保持するスピンドルを冷却していないので、摩擦攪拌接合により生じた熱が、回転工具を介してスピンドルに伝わり、スピンドルを回転可能に支持するベアリングを劣化させることがあった。また、摩擦攪拌接合時には、被接合材の接合部の温度が大きく上昇するため、被接合材は全体が高温になるとともに温度分布が生じ、これが原因となって、接合された被接合材が歪んでしまうことがあった。なお、この現象は、被接合材が薄肉で長尺の部材からなる場合は特に顕著に見られる。また、水などを被接合材の接合部に吹き付けると、却って接合部が腐食してしまうことがあった。
【0007】
かかる課題を解決するために、特開2001−205459(特許文献4)において、被接合材を摩擦攪拌接合する回転工具を一端に支持するスピンドルを冷却するためのスピンドル冷却機構を備え、スピンドル冷却機構は、筐体を貫通して筐体とスピンドルとの間に冷媒を供給する冷媒供給口および冷媒を排出する冷媒排出口とを備えてなる構成とした技術が提案されている。
そして更に、前記従来技術は接合部材の回転工具の反力を受ける裏当て治具を基台に支持させるとともに、該基台の内部に、冷媒流通路を有し、冷媒流通路に冷媒を供給する冷媒供給手段と、冷媒流通路から冷媒を排出する冷媒排出手段とを設けた構成としている。
【0008】
【特許文献1】
特表平7−505090号公報
【特許文献2】
特開平10−52770号公報
【特許文献3】
特開平11−10367号公報
【特許文献4】
特開2001−205459
【0009】
【発明が解決しようとする課題】
しかしながら前記従来技術においては、接合部材の背面に当接する裏当て部材を基台内に内蔵した冷媒通路により冷却することは、接合部材がシングルスキンのように薄板の場合に、前記冷却熱が接合部材表面の摩擦入熱面に伝播し、結果として余分の摩擦入熱を回転工具側で行わなければならず、回転工具の負荷の増大とともに、駆動源の大型化につながるという課題を有する。
【0010】
本発明は、かかる課題に鑑み、プローブ型、ボビン型のいずれの工具の場合でも摩擦撹拌接合工具やその入熱面が無用に冷却されることなく、しかも回転工具やホルダの強度性と良好な接合面を維持して工具の接合能力を最大限発揮することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、ワークの接合部内に侵入するピンと前記ワークの接合面に圧接するショルダとを具えた摩擦攪拌接合工具と、前記摩擦攪拌接合工具を保持するホルダと、前記ホルダを介して前記摩擦攪拌接合用工具が連結された機械主軸と、を備えた摩擦攪拌接合装置において、
前記ホルダが、前記ワークの塑性流動可能な温度域以上の560℃乃至700℃の温度で焼戻された鋼で形成され、更に前記機械主軸を、前記ワークの塑性流動可能な温度域以下の温度で焼戻しされた鋼で形成したことを特徴とする。
この場合、前記機械主軸は、前記ワークの塑性流動可能な温度域以下の温度で焼戻しされた鋼、具体的には前記機械主軸が250℃以下の温度で焼戻された鋼で形成するのがよい。
又前記ホルダと前記機械主軸との間に、前記機械主軸の温度を250℃以下の温度に維持する冷却手段を設けてもよい。
そして前記冷却手段は、具体的には前記機械主軸に設けられた穴と、前記穴に前記ホルダを取り付けるシャンクと、前記シャンクの表面に設けられた冷媒通路と、を備えて構成され、この場合に前記ホルダを支持する機械主軸側より前記冷媒通路に冷却流体を導通可能に構成してもよく、又前記ホルダのシャンク部下方位置に冷却流体導入通路を設け、回転工具側より前記シャンク部側に向け冷却流体を導通可能に構成してもよい。
そして更に前記シャンク部表面に形成された冷却通路の放出口が、シャンク部下面に位置するホルダフランジ部と機械主軸底面間の空隙に形成されているのが好ましい。
即ち具体的には本発明は、前記ワークがアルミニウム若しくはアルミニウム合金鋼である場合に、前記鋼が560℃〜700℃の間の温度で焼き戻しされた鋼、例えば合金工具鋼であり、一方機械主軸を250℃以下の温度で焼き戻しされる鋼で形成し、前記ホルダと機械主軸間に機械主軸側を250℃以下、好ましくは150℃以下の温度に維持する冷却手段を介在させたことを特徴とする。
【0012】
かかる発明によれば、例えば摩擦攪拌接合により軟化されるアルミニウムの融点は660℃であり、従ってかかるアルミ材からなる接合材の場合の軟化温度は450℃前後であり、塑性流動可能な温度域は前記軟化温度以上で且つ融点より大幅に低い450℃〜560℃となる。したがって工具鋼の焼き戻し温度をこの温度以上で且つ焼き入れ温度以下に設定するのがよく、具体的には合金工具鋼が前記560℃〜700℃の間の温度で焼き戻しされるのがよい。
しかしながら合金工具鋼は硬いために機械主軸側まで合金工具鋼で構成すると、材料のコストのみならず、その切削加工に時間やコストがかかる。
そこで本発明は、機械主軸側を250℃以下の温度で焼き戻しされる鋼で形成し、更に、前記ホルダと機械主軸間に機械主軸側を250℃以下の、好ましくは150℃以下の温度に維持する冷却手段を介在させ機械主軸側への熱伝搬を防ぐことにより、機械主軸を既存のもので利用可能となり、特別な主軸の作成が不要になるのみならず、材料のコスト低減等につながる。
そして既存の主軸を利用するには、主軸側へ加工が必要なることは特別な主軸を必要とし、好ましくない。
【0013】
そこで本発明は、前記ホルダを機械主軸穴に取り付けるホルダのシャンク部表面に冷媒通路を設け、該冷媒通路を導通する冷却流体によりホルダを介して回転工具より機械主軸側への熱移動を阻止するように構成している。
【0014】
この場合に、ホルダを支持する機械主軸側より前記冷媒通路に冷却流体を導通可能に構成する方式を採用すれば、冷却流体の導入が容易になり、又前記ホルダのシャンク部下方位置に冷却流体導入通路を設け、回転工具側より前記シャンク部側に向け冷却流体を導通可能に構成すれば、最も発熱の高い回転工具側を冷やすことになり、熱遮断効果が高まる。
【0015】
かかる発明によれば、冷却流体の通路はホルダのテーパシャンク表面に、スプライン状に溝を形成し、その溝に冷却流体を通すように構成するのがよい。
即ち機械主軸の工具ホルダ取付面に溝を形成すると、工場に既存の工作機械の場合、ホルダ取付面の改造加工が発生し、面倒であるが、ホルダのテーパシャンク表面に溝を形成すれば、工作機械側の改造加工(ホルダ取付面の溝加工)が不要となり、好ましい。
【0016】
更に本発明は、前記機械主軸のホルダ収納穴と対面するテーパシャンク表面周囲に冷却通路が形成されており、該冷却通路により設定される、冷媒の流れ方向がホルダ収納穴から上方に向かう上昇流であること、即ち摩擦熱を発生させる回転工具から遠ざかる方向に向けて冷媒が流されることにより回転工具側では冷却熱が緩やかに伝播し、ホルダを介しての間接冷却の効果が一層増進する。
すなわち前記従来技術のように摩擦入熱される回転工具に冷媒を流すと、前記冷媒の冷却熱が接合部材表面の摩擦入熱面に伝播し、結果として余分の摩擦入熱を回転工具側で行わなければならず、回転工具の負荷の増大とともに、駆動源の大型化につながる。
これに対し本発明では熱容量の大きいホルダに対面させて、しかも回転工具側より前記シャンク部側に向け回転工具から遠ざかる方向に冷媒の冷却熱を流すことにより、熱容量は小さいが摩擦入熱温度が高い回転工具側とホルダを介して機械主軸との間で熱遮断が出来、略450℃以上かそれに近い温度域の回転工具側と、焼き戻し温度の低い鋼からなる主軸側との間で無用な熱移動が生じることなく熱遮断が可能となる。従って、主軸側での焼き戻し軟化が起きることがない。
【0017】
更に、前記シャンク部表面に形成された冷却通路の放出口が、シャンク部下面に位置するホルダフランジ部と機械主軸底面間の空隙に形成されていることにより一層の熱遮断が可能となる。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0019】
図1及び図2は本発明の第1及び第2実施例にかかる摩擦攪拌接合装置の概略構成を示す概略図、図3は図1及び図2のA−A線及びB−B線断面図である。
図中3は接合されるワークで、例えばシングルスキンパネル同士を突き合わせて接合する構成をとっている。
またプローブ型工具20は図4に示すように、円筒ショルダー21中心軸にプローブ22が突設するブローブ型回転工具を用い、該工具20をホルダ1によりチャックするとともに、該ホルダのテーパ状シャンク11を主軸2のテーパ状ホルダ穴31に装着させている。
又ワーク3の背面側には定盤4が位置し、該定盤4によりワーク3を位置固定させている。
【0020】
主軸2は、主軸歯車32より伝導される回転力により回転駆動される主軸本体30、該主軸本体30をベアリング60によって回転自在に支持させる一対の主軸軸受40、50によって構成される。
ホルダ穴31と対面位置にある下側主軸軸受40には軸受内筒41と外筒42との間の円周面上にスパイラルリング状の冷媒通路43を設け、該冷媒通路43の下端側に冷媒導入口44を、上端側に冷媒排出口45を夫々設け、該冷媒通路43により、冷媒の流れ方向がホルダ穴31から上方に向かう上昇流になるように設定している。
又前記冷媒導入口44はホルダ穴31の途中位置に対面させて設け、又冷媒排出口45は、ホルダ穴31上方に位置させ、前記冷媒通路43がホルダ穴31途中位置よりプローブ型工具20から遠ざかる方向に形成する。
又前記主軸歯車32の上方に位置する上側主軸軸受50も冷媒通路51を有するが、該冷媒通路51は単なるリングであり、冷却熱勾配を持たせていない。又冷媒にはクーラントで冷やした鉱物油を用いている。
【0021】
ホルダ1は主軸2のテーパホルダ穴31に嵌着され、一体として回転駆動するテーパシャンク11と、前記プローブ型工具20をチャッキングにより掴持するチャッキング部12よりなる。
【0022】
そして機械主軸50には、250℃以下の温度で焼き戻しされる鋼、たとえばクロムモリブデン鋼(SCM415)を用いて1150℃で焼き入れした後150℃〜200℃で焼き戻しをした鋼で構成する。
【0023】
そして前記ホルダ1に、空気や液体窒素等の冷却媒体を導通させて、前記ホルダ1の表面に機械主軸50側を250℃以下、好ましくは150℃以下の温度に維持する冷媒通路71及び放出口72を設けている。
具体的には、前記ホルダ1を機械主軸50のホルダ取り付け穴31Aに取り付けるホルダのシャンク部100表面に冷媒通路71を設け、具体的には空気等の冷却媒体の通路71はホルダのテーパシャンク100表面に、8つのスプライン状溝(軸方向に沿う溝)を形成し、その冷媒通路71の溝に冷却媒体を通すように構成するとともに、前記シャンク部100表面に形成された冷媒通路71の冷媒放出口72が、シャンク部100下面に位置するホルダフランジ部102と機械主軸底面59間のリング状空隙72に形成されている。この結果、冷媒通路71〜冷媒放出口72を導通する冷却流体によりホルダ1を介してプローブ型工具20より機械主軸50側への熱移動を阻止することが出来る。
【0024】
そして図1は、機械主軸中心軸線上に設けた冷媒導入通路58が、テーパシャンク100の中心軸線上の導入通路73に連設し、その途中位置でシャンク部表面のスプライン溝状の冷媒通路に向けて放射状に広がる連絡穴74を介して冷却媒体が前記冷媒通路71に導かれ、ホルダ1の冷却を行いながらリング状空隙72より大気に放出可能に構成されている。
【0025】
かかる実施例によれば、ホルダ1を支持する機械主軸側50より前記冷媒通路58、71〜74に冷却流体を導通可能に構成している為に、冷却流体の導入が容易になる。
【0026】
図2は前記ホルダのシャンク部100下方位置に冷媒導入通路75を設け、回転工具21近接側より前記シャンク部100側に向け冷却流体(冷媒)を導通可能に構成したもので、プローブ型工具20のチャック位置近傍に冷媒導入通路75を設け、テーパシャンク100の中心軸線上の導入通路73に連設し、その途中位置でシャンク部100表面のスプライン溝状の冷媒通路71に向けて放射状に広がる連絡穴74を介して冷却媒体が前記冷媒通路71に導かれ、ホルダ1の冷却を行いながらリング状空隙(冷媒放出口)72より大気に放出可能に構成されている。
かかる実施例によれば、前記ホルダ1のシャンク部下方位置に冷媒導入通路75を設け、回転工具21近接側より前記シャンク部100側に向け冷却流体を導通可能に構成すれば、最も発熱の高いプローブ型工具20側を冷やすことになり、熱遮断効果が高まる。
【0027】
次に前記ホルダ1を、
クロムモリブデン鋼(SCM415)を用いて1150℃で焼き入れした後150〜200℃で焼き戻しをしたもの(比較例1)、
ニッケルクロムモリブデン鋼(SNCM420)を用いて1150℃で焼き入れした後150〜200℃で焼き戻しをしたもの(比較例2)、
更に合金工具鋼(SKD61)を用いて1150℃で焼き入れした後560℃〜650℃で焼き戻しをしたもの(実施例1)、
更に又合金工具鋼(SKD6)を用いて1150℃で焼き入れした後560℃〜650℃で焼き戻しをしたもの(実施例2)
の4種のホルダを作製して、
前記ホルダ1の冷媒通路71及び放出口72に空気や液体窒素等の冷却媒体を導通させて、前記ホルダ1と対面する機械主軸50側のホルダ取り付け穴31Aの温度を150℃以下の機械主軸50の焼き戻し温度に維持した状態で、摩擦攪拌接合用プローブの移動送り速度、0.05〜2m/分、回転速度は、500rpm〜15000rpmの範囲で適宜選択しながら、前記ワークのアルミもしくはアルミ合金の接合面に450℃〜560℃の摩擦熱を入熱しながら摩擦攪拌接合を繰り返し500m〜1000mにわたって摩擦攪拌接合を行った。
この結果、比較例のホルダ1はいずれも強度劣化が生じたのに対し、実施例のホルダ1及び機械主軸は強度劣化が生じていないことが確認された。
【0028】
【発明の効果】
以上記載のごとく本発明によれば、摩擦撹拌接合工具やその入熱面が無用に冷却されることなく、しかも回転工具やホルダの強度性と良好な接合面を維持して工具の接合能力を最大限発揮出来る。
【図面の簡単な説明】
【図1】 本発明の第1実施例にかかる摩擦接合装置の全体構成を示す概略図である。
【図2】 本発明の第2実施例にかかる摩擦接合装置の全体構成を示す概略図である。
【図3】 図1及び図2のA−A線及びB−B線断面図である。
【図4】 従来技術に係る摩擦撹拌接合のプローブ型回転工具の基本構成図である。
【符号の説明】
1 ホルダ
2 主軸
3 ワーク
4 定盤
20 回転工具
43 冷媒通路
44 冷媒導入口
45 冷媒排出口
31 ホルダ穴
71 冷媒通路
72 冷媒放出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus that takes measures against heat of a rotary tool in friction stir welding, and more particularly, to a friction stir welding apparatus that can eliminate the thermal effect on a rotary tool during friction stir welding.
[0002]
[Prior art]
For example, Japanese Patent Application Laid-Open No. 7-505090 (Patent Document 1) discloses a novel method for joining long materials as a solid-phase joining method by friction stirring, which is substantially more effective than a workpiece. By inserting a rotating tool made of a hard material into the joint of the workpiece and moving it while rotating the rotating tool, plastic flow due to frictional heat generated between the rotating tool and the workpiece is caused. In the joining method for joining workpieces, such a friction joining method is capable of joining a joining member in a solid phase state while integrating a softened solid phase portion that is moved while rotating a rotary tool. There is an advantage that even a long material that has no distortion and is infinitely long in the joining direction can be continuously solid-phase joined in the longitudinal direction. Further, since the solid-phase bonding using the plastic flow of the metal by the frictional heat between the rotating tool and the bonding member, the bonding can be performed without melting. Further, since the heating temperature is low, deformation after joining is small. Since the joint is not melted, there are many advantages such as fewer defects.
[0003]
Next, a rotary tool used for friction stir welding will be described. As disclosed in Japanese Patent Publication No. 7-505090, friction stir welding includes a probe type and bobbin tool type rotary tool, and a probe type tool 20 includes a shoulder 21 and a shoulder 21 as shown in FIG. The shoulder 21 has a circular shoulder surface. Then, the probe type tool 20 is rotated from the surface of the joining line in a state where a plurality of mold materials are abutted or fitted, and the probe 22 is inserted into a hole (not shown) provided in the joining line of the workpiece. In addition, frictional heat is applied to the workpiece by the shoulder portion 21 slidably rotating on the joining lines of the plurality of mold materials, and the periphery of the probe 22 is plastically fluidized. In this state, the probe tool 20 is moved along the joining line. As a result, the surroundings of the joining line are plastically fluidized, and the two materials are stirred and kneaded along the joining line while receiving pressure, and move to the rear side of the probe. As a result, the plastic flowed material loses frictional heat on the rear side and rapidly cools and solidifies, so that both panel plates are joined together with the materials mixed together.
[0004]
The rotary tool is generally fixed to a machine spindle through a milling chuck (hereinafter referred to as a holder) used during end milling of a machine tool, and is rotated by receiving a rotational driving force from the machine spindle. Unlike a normal machine tool, the tool is not cooled by the coolant, but receives frictional heat input of 450 to 560 ° C., so that the holder is tempered, the strength is reduced, and the tool is joined as it is. If the work is continued, the holder may be cracked, distorted or even damaged.
[0005]
For this reason, the rotary tool is cooled in the prior art. The friction stir welding apparatus used for the friction stir welding is cooled for friction welding as disclosed in JP-A-10-52770 (Patent Document 2) and JP-A-11-10367 (Patent Document 3). Cool the rotary tool by circulating a coolant through the rotary tool, or spray the coolant on the outer surface of the rotary tool near the lower end or near the lower end of the rotary tool for friction stir welding. I was going. In addition, as disclosed in Japanese Patent Laid-Open No. 10-52770 (Patent Document 3), the cooling of the workpiece joint is performed not only on the lower end of the rotary tool but also on the upper surface of the joint of the workpiece. It was done by spraying on.
[0006]
However, if only the lower end of the rotary tool and the vicinity of the lower end are cooled, the life of the rotary tool itself can be extended. However, since the spindle that holds the rotary tool is not cooled, the heat generated by friction stir welding is reduced. In some cases, the bearing is transmitted to the spindle via the rotary tool and the bearing which rotatably supports the spindle is deteriorated. In addition, during friction stir welding, the temperature of the joined portion of the material to be joined rises significantly, so the temperature of the material to be joined becomes high and a temperature distribution occurs, which causes distortion of the joined material to be joined. There was sometimes. This phenomenon is particularly noticeable when the material to be joined is a thin and long member. Further, when water or the like is sprayed on the joint portion of the material to be joined, the joint portion may be corroded.
[0007]
In order to solve such a problem, in Japanese Patent Application Laid-Open No. 2001-204559 (Patent Document 4), a spindle cooling mechanism for cooling a spindle that supports a rotary tool that frictionally stir welds a material to be joined at one end is provided. Has proposed a technology comprising a refrigerant supply port that passes through the housing and supplies a refrigerant between the housing and the spindle and a refrigerant discharge port that discharges the refrigerant.
Further, the conventional technology supports a backing jig that receives the reaction force of the rotating tool of the joining member on the base, and has a refrigerant flow passage inside the base, and supplies the refrigerant to the refrigerant flow passage. And a refrigerant discharge means for discharging the refrigerant from the refrigerant flow passage.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 7-505090 [Patent Document 2]
Japanese Patent Laid-Open No. 10-52770 [Patent Document 3]
JP 11-10367 A [Patent Document 4]
JP 2001-204559 A
[0009]
[Problems to be solved by the invention]
However, in the above prior art, cooling by the refrigerant passage built in the base with the backing member that contacts the back surface of the joining member means that the cooling heat is joined when the joining member is a thin plate like a single skin. Propagating to the frictional heat input surface of the member surface, and as a result, extra frictional heat input must be performed on the rotary tool side, resulting in an increase in the load on the rotary tool and an increase in the size of the drive source.
[0010]
In view of such a problem, the present invention does not unnecessarily cool the friction stir welding tool or its heat input surface in any case of a probe type or bobbin type tool, and also has good strength and strength of the rotary tool and holder. The purpose is to maintain the joining surface and maximize the joining ability of the tool.
[0011]
[Means for Solving the Problems]
The present invention relates to a friction stir welding tool including a pin that enters a joint portion of a workpiece, and a shoulder that is pressed against the joint surface of the workpiece, a holder that holds the friction stir welding tool, and the friction stirrer through the holder. In a friction stir welding apparatus comprising a machine main shaft to which a welding tool is connected,
The holder is formed of steel tempered at a temperature of 560 ° C. to 700 ° C. that is equal to or higher than the temperature range in which the workpiece can be plastically flowed, and the machine spindle is at a temperature that is lower than the temperature range in which the workpiece can be plastically flowed. It is characterized by being formed of steel tempered in.
In this case, the mechanical spindle is formed of steel tempered at a temperature lower than the temperature range in which the workpiece can be plastically flowed, specifically, steel tempered at a temperature of 250 ° C. or lower. Good.
A cooling means for maintaining the temperature of the mechanical spindle at a temperature of 250 ° C. or less may be provided between the holder and the mechanical spindle.
Specifically, the cooling means includes a hole provided in the machine main shaft, a shank for attaching the holder to the hole, and a refrigerant passage provided on the surface of the shank. the holder may be conductively constituting a cooling fluid to the refrigerant passage from the machine spindle side for supporting the, also the cooling fluid inlet passage provided in the shank portion a lower position of the holder, the shank portion than the rotation Engineering tool side You may comprise so that a cooling fluid can be conducted toward the side.
Furthermore, it is preferable that the discharge port of the cooling passage formed on the surface of the shank portion is formed in a gap between the holder flange portion located on the lower surface of the shank portion and the bottom surface of the machine spindle.
Specifically, the present invention is a steel in which the steel is tempered at a temperature between 560 ° C. and 700 ° C. when the workpiece is aluminum or aluminum alloy steel, for example, alloy tool steel, The main shaft is formed of steel tempered at a temperature of 250 ° C. or less, and a cooling means is interposed between the holder and the machine main shaft to maintain the machine main shaft side at a temperature of 250 ° C. or less, preferably 150 ° C. or less. Features.
[0012]
According to this invention, for example, the melting point of aluminum softened by friction stir welding is 660 ° C. Therefore, the softening temperature in the case of a joining material made of such an aluminum material is around 450 ° C., and the temperature range in which plastic flow is possible is It becomes 450 degreeC-560 degreeC which is more than the said softening temperature and is significantly lower than melting | fusing point. Therefore, the tempering temperature of the tool steel should be set to be higher than this temperature and lower than the quenching temperature. Specifically, the alloy tool steel should be tempered at a temperature between 560 ° C. and 700 ° C. .
However, since the alloy tool steel is hard, if it is composed of the alloy tool steel up to the machine spindle side, not only the cost of the material but also the time and cost for the cutting work are required.
Therefore, the present invention is such that the machine spindle side is formed of steel that is tempered at a temperature of 250 ° C. or less, and the machine spindle side between the holder and the machine spindle is 250 ° C. or less, preferably 150 ° C. or less. By interposing a cooling means to maintain and preventing heat propagation to the machine spindle side, the machine spindle can be used with existing ones, not only making special spindles unnecessary, but also reducing material costs etc. .
And in order to use the existing main spindle, it is not preferable that machining to the main spindle side requires a special main spindle.
[0013]
Therefore, the present invention provides a coolant passage on the surface of the shank portion of the holder that attaches the holder to the machine spindle hole, and prevents heat transfer from the rotary tool to the machine spindle side through the holder by the cooling fluid that conducts the coolant passage. It is configured as follows.
[0014]
In this case, if a system is adopted in which the cooling fluid can be conducted to the refrigerant passage from the side of the machine spindle supporting the holder, the cooling fluid can be easily introduced, and the cooling fluid is placed below the shank portion of the holder. the introduction passage is provided, if conductively constituting the cooling fluid from the rotating Engineering tool side toward the shank side, will be cooled the most exothermic high rotational engineering tool side, it enhances the thermal shielding effect.
[0015]
According to this invention, it is preferable that the passage of the cooling fluid is formed such that a groove is formed in a spline shape on the surface of the tapered shank of the holder and the cooling fluid is passed through the groove.
That is, if a groove is formed on the tool holder mounting surface of the machine spindle, in the case of an existing machine tool in the factory, modification of the holder mounting surface occurs, which is troublesome, but if a groove is formed on the taper shank surface of the holder, It is preferable because reworking on the machine tool side (grooving of the holder mounting surface) is unnecessary.
[0016]
Further, according to the present invention, a cooling passage is formed around the surface of the taper shank facing the holder housing hole of the machine spindle, and the flow direction of the refrigerant set by the cooling passage is upward from the holder housing hole. That is, when the coolant is flowed in a direction away from the rotary tool that generates frictional heat, the cooling heat is slowly propagated on the rotary tool side, and the effect of indirect cooling via the holder is further enhanced.
That is, when a refrigerant is passed through a rotary tool that is frictionally input as in the prior art, the cooling heat of the refrigerant propagates to the frictional heat input surface of the joining member surface, and as a result, excess frictional heat input is performed on the rotary tool side. It is necessary to increase the load of the rotary tool and increase the size of the drive source.
In contrast so as to face the large holder heat capacity in the present invention, moreover, by flowing a cooling heat refrigerant in the direction away from the rotating tool toward the rotation Engineering tool side to said shank portion, but the heat capacity is small frictional heat input temperature Heat can be cut off between the high rotating tool side and the machine spindle through the holder, between the rotating tool side in the temperature range of approximately 450 ° C or higher and the spindle side made of steel with a low tempering temperature. The heat can be cut off without causing unnecessary heat transfer. Therefore, temper softening on the main shaft side does not occur.
[0017]
Furthermore, since the discharge port of the cooling passage formed on the surface of the shank portion is formed in the gap between the holder flange portion located on the lower surface of the shank portion and the bottom surface of the machine spindle, further heat insulation can be achieved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0019]
1 and 2 are schematic views showing a schematic configuration of a friction stir welding apparatus according to first and second embodiments of the present invention, and FIG. 3 is a cross-sectional view taken along lines AA and BB in FIGS. It is.
In the figure, reference numeral 3 denotes a work to be joined, for example, a structure in which single skin panels are brought into contact with each other.
As shown in FIG. 4, the probe-type tool 20 is a probe-type rotary tool in which a probe 22 projects from the central axis of a cylindrical shoulder 21. The probe 20 is chucked by the holder 1, and the tapered shank 11 of the holder is used. Is attached to the tapered holder hole 31 of the main shaft 2.
A surface plate 4 is located on the back side of the work 3, and the work 3 is fixed in position by the surface plate 4.
[0020]
The main shaft 2 includes a main shaft main body 30 that is rotationally driven by the rotational force transmitted from the main shaft gear 32, and a pair of main shaft bearings 40 and 50 that rotatably support the main shaft main body 30 by bearings 60.
The lower spindle bearing 40 facing the holder hole 31 is provided with a spiral ring-shaped refrigerant passage 43 on the circumferential surface between the bearing inner cylinder 41 and the outer cylinder 42, and on the lower end side of the refrigerant passage 43. The refrigerant introduction port 44 is provided with a refrigerant discharge port 45 on the upper end side, and the refrigerant passage 43 is set so that the flow direction of the refrigerant is an upward flow from the holder hole 31 upward.
Further, the refrigerant introduction port 44 is provided in the middle of the holder hole 31, the refrigerant discharge port 45 is located above the holder hole 31, and the refrigerant passage 43 is located from the probe hole 20 in the middle of the holder hole 31. Form in a direction away from you.
The upper main shaft bearing 50 located above the main shaft gear 32 also has a refrigerant passage 51. However, the refrigerant passage 51 is a simple ring and does not have a cooling heat gradient. Mineral oil cooled with a coolant is used as the refrigerant.
[0021]
The holder 1 is fitted into a taper holder hole 31 of the main shaft 2 and includes a taper shank 11 that rotates and rotates as a unit, and a chucking portion 12 that grips the probe-type tool 20 by chucking.
[0022]
The mechanical spindle 50 is made of steel tempered at 1150 ° C. using steel tempered at a temperature of 250 ° C. or lower, for example, chromium molybdenum steel (SCM415), and then tempered at 150 ° C. to 200 ° C. .
[0023]
Then, a cooling medium such as air or liquid nitrogen is passed through the holder 1 so that the mechanical spindle 50 side is maintained on the surface of the holder 1 at a temperature of 250 ° C. or lower, preferably 150 ° C. or lower, and a discharge port. 72 is provided.
Specifically, a coolant passage 71 is provided on the surface of the holder shank portion 100 for attaching the holder 1 to the holder attachment hole 31A of the machine spindle 50. Specifically, the passage 71 for a cooling medium such as air is provided in the taper shank 100 of the holder. Eight spline-shaped grooves (grooves along the axial direction) are formed on the surface, and the cooling medium is configured to pass through the grooves of the refrigerant passage 71, and the refrigerant of the refrigerant passage 71 formed on the surface of the shank portion 100. A discharge port 72 is formed in a ring-shaped gap 72 between the holder flange portion 102 located on the lower surface of the shank portion 100 and the machine spindle bottom surface 59. As a result, it is possible to prevent the heat transfer from the probe-type tool 20 to the machine spindle 50 side via the holder 1 by the cooling fluid conducted through the refrigerant passage 71 to the refrigerant discharge port 72.
[0024]
FIG. 1 shows that the refrigerant introduction passage 58 provided on the central axis of the machine spindle is connected to the introduction passage 73 on the central axis of the taper shank 100, and in the middle of the passage, the refrigerant passage has a spline groove shape on the surface of the shank. The cooling medium is guided to the refrigerant passage 71 through the communication holes 74 that radiate outwardly, and is configured to be able to be released to the atmosphere from the ring-shaped gap 72 while cooling the holder 1.
[0025]
According to this embodiment, since the cooling fluid can be conducted to the refrigerant passages 58 and 71 to 74 from the machine main shaft side 50 supporting the holder 1, the introduction of the cooling fluid is facilitated.
[0026]
FIG. 2 shows a configuration in which a coolant introduction passage 75 is provided at a position below the shank portion 100 of the holder so that a cooling fluid (refrigerant) can be conducted from the proximity side of the rotary tool 21 to the shank portion 100 side. A refrigerant introduction passage 75 is provided in the vicinity of the chuck position, and is connected to the introduction passage 73 on the central axis of the taper shank 100, and spreads radially toward the spline groove-like refrigerant passage 71 on the surface of the shank portion 100 at an intermediate position. A cooling medium is guided to the refrigerant passage 71 through the communication hole 74 and can be discharged to the atmosphere from a ring-shaped gap (refrigerant discharge port) 72 while cooling the holder 1.
According to this embodiment, if the coolant introduction passage 75 is provided in the lower position of the shank portion of the holder 1 and the cooling fluid can be conducted from the proximity side of the rotary tool 21 toward the shank portion 100, the heat generation is highest. The probe-type tool 20 side is cooled, and the heat blocking effect is enhanced.
[0027]
Next, the holder 1 is
What was tempered at 150 to 200 ° C. after being quenched at 1150 ° C. using chromium molybdenum steel (SCM415) (Comparative Example 1),
What was tempered at 150 to 200 ° C. after being quenched at 1150 ° C. using nickel chromium molybdenum steel (SNCM420) (Comparative Example 2),
Furthermore, after quenching at 1150 ° C. using alloy tool steel (SKD61), tempering at 560 ° C. to 650 ° C. ( Example 1 ),
Further, the alloy tool steel (SKD6) was tempered at 1150 ° C. and then tempered at 560 ° C. to 650 ° C. (Example 2)
The four types of holders
A cooling medium such as air or liquid nitrogen is conducted to the refrigerant passage 71 and the discharge port 72 of the holder 1 so that the temperature of the holder mounting hole 31A on the side of the mechanical spindle 50 facing the holder 1 is 150 ° C. or less. While maintaining the tempering temperature, the moving feed speed of the friction stir welding probe, 0.05 to 2 m / min, and the rotation speed are appropriately selected within the range of 500 rpm to 15000 rpm, while the aluminum or aluminum alloy of the workpiece is selected. Friction stir welding was repeated over 500 m to 1000 m while frictional heat of 450 ° C. to 560 ° C. was applied to the joining surfaces of the steel.
As a result, it was confirmed that the holder 1 of the comparative example was deteriorated in strength, whereas the holder 1 and the mechanical spindle of the example were not deteriorated in strength.
[0028]
【The invention's effect】
As described above, according to the present invention, the friction stir welding tool and its heat input surface are not unnecessarily cooled, and the strength of the rotary tool and the holder and the good joining surface are maintained and the joining ability of the tool is improved. I can show it to the maximum.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the overall configuration of a friction welding apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic view showing an overall configuration of a friction welding apparatus according to a second embodiment of the present invention.
3 is a cross-sectional view taken along lines AA and BB in FIGS. 1 and 2. FIG.
FIG. 4 is a basic configuration diagram of a probe-type rotary tool for friction stir welding according to a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Holder 2 Spindle 3 Workpiece 4 Surface plate 20 Rotating tool 43 Refrigerant passage 44 Refrigerant introduction port 45 Refrigerant discharge port 31 Holder hole 71 Refrigerant passage 72 Refrigerant discharge port

Claims (7)

ワークの接合部内に侵入するピンと前記ワークの接合面に圧接するショルダとを具えた摩擦攪拌接合工具と、前記摩擦攪拌接合工具を保持するホルダと、前記ホルダを介して前記摩擦攪拌接合用工具が連結された機械主軸と、を備えた摩擦攪拌接合装置において、
前記ホルダが、前記ワークの塑性流動可能な温度域以上の560℃乃至700℃の温度で焼戻された鋼で形成され、更に前記機械主軸を、前記ワークの塑性流動可能な温度域以下の温度で焼戻しされた鋼で形成したことを特徴とする摩擦攪拌接合装置。
A friction stir welding tool having a pin that enters the workpiece joint and a shoulder that press-contacts the workpiece joining surface, a holder that holds the friction stir welding tool, and the friction stir welding tool via the holder In a friction stir welding apparatus provided with a coupled mechanical spindle,
The holder is formed of steel tempered at a temperature of 560 ° C. to 700 ° C. that is equal to or higher than the temperature range in which the workpiece can be plastically flowed, and the machine spindle is at a temperature that is lower than the temperature range in which the workpiece can be plastically flowed. A friction stir welding apparatus characterized by being formed of steel tempered in step (b).
前記機械主軸が250℃以下の温度で焼戻された鋼で形成されたことを特徴とする請求項に記載の摩擦攪拌接合装置。The friction stir welding apparatus according to claim 1 , wherein the mechanical spindle is formed of steel tempered at a temperature of 250 ° C. or less. 前記ホルダと前記機械主軸との間に、前記機械主軸の温度を250℃以下の温度に維持する冷却手段を設けたことを特徴とする請求項1乃至のいずれか一に記載の摩擦攪拌接合装置。 3. The friction stir welding according to claim 1, further comprising a cooling unit that maintains a temperature of the machine spindle at a temperature of 250 ° C. or less between the holder and the machine spindle. 4. apparatus. 前記冷却手段が、前記機械主軸に設けられた穴と、前記穴に前記ホルダを取り付けるシャンクと、前記シャンクの表面に設けられた冷媒通路と、を備えたことを特徴とする請求項に記載の摩擦攪拌接合装置。It said cooling means comprises a hole provided in the machine main shaft, according to claim 3, a shank for mounting the holder to the bore, and a coolant passage provided in the surface of the shank, comprising the Friction stir welding equipment. ホルダを支持する機械主軸側より前記冷媒通路に冷却流体を導通可能に構成したことを特徴とする請求項記載の摩擦攪拌接合装置。5. The friction stir welding apparatus according to claim 4, wherein a cooling fluid can be conducted to the refrigerant passage from a machine main shaft side supporting a holder. 前記ホルダのシャンク部下方位置に冷却流体導入通路を設け、回転工具側より前記シャンク部側に向け冷却流体を導通可能に構成したことを特徴とする請求項記載の摩擦攪拌接合装置。A cooling fluid inlet passage provided in the shank portion a lower position of the holder, the friction stir welding apparatus according to claim 4, characterized in that conductively constituting a cooling fluid toward the shank portion than the rotation Engineering tool side. 前記シャンク部表面に形成された冷却通路の放出口が、シャンク部下面に位置するホルダフランジ部と機械主軸底面間の空隙に形成されていることを特徴とする請求項4、5、若しくは記載の摩擦攪拌接合装置。Outlet of the cooling passage formed in the shank portion surface, claim 4 and 5, characterized in that it is formed in the gap between the holder flange and the machine spindle bottom located shank lower surface, or 6, wherein Friction stir welding equipment.
JP2003137547A 2003-05-15 2003-05-15 Friction stir welding equipment Expired - Lifetime JP4370119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137547A JP4370119B2 (en) 2003-05-15 2003-05-15 Friction stir welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137547A JP4370119B2 (en) 2003-05-15 2003-05-15 Friction stir welding equipment

Publications (2)

Publication Number Publication Date
JP2004337916A JP2004337916A (en) 2004-12-02
JP4370119B2 true JP4370119B2 (en) 2009-11-25

Family

ID=33527184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137547A Expired - Lifetime JP4370119B2 (en) 2003-05-15 2003-05-15 Friction stir welding equipment

Country Status (1)

Country Link
JP (1) JP4370119B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548530B2 (en) * 2010-06-15 2014-07-16 東芝機械株式会社 Tools and machine tools
KR101230359B1 (en) * 2010-11-22 2013-02-21 주식회사 윈젠 Rotating tool for friction stir welding
CN103758985B (en) * 2013-12-31 2017-01-25 无锡培基机械有限公司 Precise head frame structure
CN103990906B (en) * 2014-06-13 2015-12-02 安阳工学院 Aluminum alloy stirring friction welding electro spindle
CN108296626B (en) * 2018-02-12 2020-05-15 沈阳理工大学 Handheld portable dual-purpose type friction stir welding machine

Also Published As

Publication number Publication date
JP2004337916A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP3523983B2 (en) Friction star welding tool and method
US20060289604A1 (en) Friction stir welding appparatus
US8998064B2 (en) Friction stir method and a pair of workpieces joined by such method
JP5548530B2 (en) Tools and machine tools
US11027363B2 (en) Ironing plate for friction stir welding apparatus and friction stir welding apparatus including the same, and friction stir welding method
EP1769876B1 (en) Friction stir spot welding method and apparatus with an holding member having a restriction portion
CN108406084B (en) Stirring head, friction stir welding device and method for processing magnesium-aluminum dissimilar alloy
US20060043151A1 (en) Advanced friction stir welding tools
US6227432B1 (en) Friction agitation jointing method of metal workpieces
US8998066B2 (en) Method for holding high speed friction spot joining tools
TWI660132B (en) Surfacing welding method of ball screw, manufacturing method of screw shaft, manufacturing method of screw device, manufacturing method of machine, and manufacturing method of vehicle
JP4861038B2 (en) Adapter, adapter cooling method and friction stir welding method
JP2000246465A (en) Tool for friction agitation joining
JP4370119B2 (en) Friction stir welding equipment
CN110524105B (en) Rotary welding tool for friction welding and welding method
US6736305B2 (en) Method and apparatus for friction welding
JP2001205459A (en) Friction stir joining equipment and friction stir joining method
JP5016142B1 (en) Friction stir welding rotary tool and friction stir welding method
JP2004148350A (en) Device and method for friction stir welding
GB2432547A (en) Rotational friction welding system
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
JP2017170603A (en) Tool holder and tool machine
JP2008055430A (en) Friction point welding device
CN214558217U (en) Clamp for realizing orderly-arranged abrasive particles for brazing friction stir welding stirring head
JPH1119848A (en) Head stock for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R151 Written notification of patent or utility model registration

Ref document number: 4370119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370