JP4369694B2 - Protecting concrete structures - Google Patents
Protecting concrete structures Download PDFInfo
- Publication number
- JP4369694B2 JP4369694B2 JP2003199153A JP2003199153A JP4369694B2 JP 4369694 B2 JP4369694 B2 JP 4369694B2 JP 2003199153 A JP2003199153 A JP 2003199153A JP 2003199153 A JP2003199153 A JP 2003199153A JP 4369694 B2 JP4369694 B2 JP 4369694B2
- Authority
- JP
- Japan
- Prior art keywords
- coating film
- crack
- concrete structure
- cracks
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Building Environments (AREA)
- Working Measures On Existing Buildindgs (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、コンクリート構造物表面のひび割れ発生が検出可能な、コンクリート構造物の保護方法に関する。
【0002】
【従来の技術】
コンクリート構造物は、アルカリ骨材反応等によりひび割れが生じ易く、一旦ひび割れが発生すると、そこから水分や、腐食性イオン物質等が浸入し、コンクリート構造物の劣化が促進され、時には、それが崩壊につながることがある。
そこで、通常、コンクリート構造物表面には、塗料を塗装して、保護塗膜を形成させている。しかしながら、従来の塗膜は、コンクリート構造物表面のひび割れに対する追従性が劣るため、塗膜にもひび割れや、剥離等が生じ易く、保護塗膜としての機能を充分発揮できないという問題点があった。
【0003】
そこで、近年、コンクリート構造物表面のひび割れに追従性を有する、柔軟性塗膜、即ち、伸び率の大きい塗膜を形成する塗料や、該塗料を使用した塗装工法が開発されてきている (例えば、特許文献1、特許文献2、特許文献3等) 。
コンクリート構造物表面に、伸び率の大きい塗膜を形成する方法は、コンクリート構造物表面のひび割れに追従し、塗膜にひび割れや、剥離が生じにくく、そのため、コンクリート構造物表面のひび割れ箇所からの水分や、腐食性イオン物質等の浸入を防止し、非常に効果をあげている。
【0004】
しかしながら、コンクリート構造物表面に、伸び率の大きい塗膜を形成する方法は、コンクリート構造物表面に生じたひび割れが生じた場合でも、それに追従するため、ひび割れが視認できず、それ故、コンクリート構造物表面にひび割れが発生したことによる危険性を予知できなくなる問題点がある。
また、コンクリート構造物にひび割れが発生しているかどうかを、コンクリート表面をハンマー等でたたき、ひび割れ有無を耳で聞き分ける打音法が広く採用されているが、この方法は、作業性が非常に悪く、工数が多くかかる問題点がある。
【0005】
【特許文献1】
特開2000-16886号公報
【特許文献2】
特開2000−17742号公報
【特許文献3】
特開2001−2985号公報
【0006】
【発明が解決しようとする課題】
本発明は、このような従来技術の課題を背景になされたものであり、コンクリート構造物表面に、ひび割れが発生しても、該ひび割れ箇所からの水分や、腐食性イオン物質等の浸入を防止し、かつ、ひび割れが目視で検出可能なコンクリート構造物の保護方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を達成するため、鋭意検討した結果、以下の方法により上記課題を達成できることを見出し、本発明に到達したものである。
即ち、本発明は、以下の方法及びコンクリート構造物に関するものである。
1.コンクリート構造物表面のひび割れが検出可能な、コンクリート構造物の保護方法であって、コンクリート構造物の表面に、JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づくひび割れ追従性能が、0.50mm以上の柔軟性塗膜を形成し、次いで、該柔軟性塗膜表面に、前記追従性能が、0.20mm以下の硬質性塗膜を形成することを特徴とする方法。
2.JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づくひび割れ追従性能が0.50mm以上の柔軟性塗膜と、前記追従性能が0.20mm以下の硬質性塗膜とが、コンクリート構造物の表面に順次設けられていることを特徴とするコンクリート構造物。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明が適用されるコンクリート構造物としては、土木や、建築等に適用されている橋脚や、橋台、桁、床版、高欄、ドルフィン、トンネル、導水路、貯蔵槽、壁、屋根、バルコニー等の各種コンクリート構造物が好適に挙げられる。これらコンクリート構造物は、本発明においては、その表面を、予め下地処理を施したものが好ましい。即ち、コンクリート表面にある突起物や、付着物を除去するために、ディスクサンダーや、ウォータージェット、手工具等を用いてコンクリート素地を調整し、更に、コンクリート表面にある微細孔を埋めるとともに、平滑化し、また、後述する柔軟性塗膜との密着性をよくするために、プライマー材や、パテ材を塗布することにより下地処理を施す。
【0009】
本発明は、このような下地処理を、必要に応じて施したコンクリート構造物表面に、柔軟性塗膜を形成し、次いで、硬質性塗膜を形成するものである。
コンクリート構造物表面に形成する塗膜が、コンクリート構造物自身の許容ひび割れに追従できないと、塗膜がひび割れと共に破断し、破断した部分より水分や、酸素、二酸化炭素、塩化物イオン等の腐食因子が浸入しやすくなり、それが原因でコンクリート構造物の劣化が促進される。
【0010】
そのために、本発明においては、まず、コンクリート構造物のひび割れに追従し、ひび割れが生じにくい柔軟性塗膜を形成し、コンクリート構造物に腐食因子が浸入するのを防止し、保護するのである。更に、本発明においては、コンクリート構造物を柔軟性塗膜で保護しながら、かつ、コンクリート構造物表面にひび割れが発生したことを視認でき、コンクリート構造物のひび割れによる危険性を予知できるよう、柔軟性塗膜表面に、コンクリート構造物のひび割れに追従できない硬質性塗膜を形成したところに特徴を有するものである。
【0011】
コンクリート構造物の許容ひび割れとしては、計算上のGergely-Lutz式や、CEB−FIP Model Code式などで求めた表面上の許容ひび割れ幅があり、その値は、環境、コンクリート施工、構造、外力等の条件で異なるが、0.20mm程度とされている。しかしながら、計算上のみで求めた値では十分ではなく、場合によっては0.30mm程度のひび割れが発生することも考慮しなくてはならないため、公共性の高いコンクリート構造物に塗装される柔軟性塗膜においては、安全率をかけて0.50mm以上のひび割れ追従性を要求する場合がある。また、東海旅客鉄道(株)の幹鉄施工第1031号「東海道新幹線鉄筋コンクリート構造物 維持管理基準」においては、0.60mm以上のひび割れ追従性が規格値として定められている。
【0012】
従って、本発明における前記柔軟性塗膜として、JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づくひび割れ追従性能が、0.50mm以上、好ましくは、0.60mm以上の塗膜を形成するものを利用する。ひび割れ追従性能の上限は特に制限ないが、通常10mm以下が適当である。
本発明において使用される柔軟性塗膜を形成する塗料としては、前記ひび割れ追従性能を有するものであれば、従来から公知の各種塗料が利用可能である。具体的には、例えば、エポキシ樹脂系や、ポリブタジエン樹脂系、アクリル樹脂系、ウレタン樹脂系、シリコン樹脂系、ふっ素樹脂系、ビニルエステル樹脂系、ポリマーセメント系、あるいはウレタン変性エポキシ樹脂系等の各種変性樹脂系などが代表的なものとして挙げられる。これら塗料は、水系や、有機溶剤系、無溶剤系等の各種塗料形態が利用可能である。
【0013】
一方、本発明における、ひび割れ検出用塗膜の機能を有する前記硬質性塗膜として、JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づくひび割れ追従性能が、前記計算上の許容ひび割れ幅である0.20mm以下、好ましくは、0.18mm以下の塗膜を形成するものを利用する。ひび割れ追従性能の下限は特に制限ないが、危険性の少ない微少ひび割れの際も硬質性塗膜にひび割れが生じると、美観を損なうだけでなく、危険性のあることを予知させるひび割れと区別し難くなるので、0.10mm以上が適当である。
【0014】
また、柔軟性塗膜と硬質性塗膜とのひび割れ追従性能の差は、0.40mm以上、好ましくは、0.50〜2.00mmが適当であり、ひび割れを視認しやすい。
本発明において使用される硬質性塗膜を形成する塗料としては、前記ひび割れ追従性能性を有するものであれば、従来から公知の各種塗料が利用可能であるが、特に、耐候性のよい塗料が好ましい。具体的には、例えば、アクリル樹脂系や、ウレタン樹脂系、シリコン樹脂系、ふっ素樹脂系、ビニルエステル樹脂系、ポリマーセメント系、ウレタン変性エポキシ樹脂系等の各種変性樹脂系などが代表的なものとして挙げられる。これら塗料は、水系や、有機溶剤系、無溶剤系等の各種塗料形態が利用可能である。
【0015】
なお、本発明において、柔軟性塗膜と硬質性塗膜の形成に利用される塗料は、同系統の樹脂系塗料を利用するのが適当であるが、層間密着性の良い異種の樹脂系塗料を組み合わせることも可能である。
また、各樹脂系塗料において、一般的に伸び率の高い塗料が柔軟性となり、伸び率の低い塗料が、硬質性となるが、これら柔軟性や、硬質性とする手段は、例えば、形成される塗膜のガラス転移温度の違いや、架橋密度の違い、樹脂骨格の違い等により容易に実現出来、当業者であれば、実験的に容易に理解することが出来る。
具体的には、柔軟性塗膜においては、ガラス転移温度が、10℃以下、好ましくは、−10〜8℃の塗膜を形成する塗料が適当である。一方、硬質性塗膜においては、ガラス転移温度が、50℃以上、好ましくは、60〜80℃の塗膜を形成する塗料が適当である。
【0016】
また、本発明において、柔軟性塗膜と硬質性塗膜の乾燥膜厚は、コンクリート構造物の使用環境等により、塗膜の耐久性等を考慮して、任意に決定すればよいが、通常、前者は、30〜1000μm、好ましくは、50〜700μmが適当であり、後者は、10〜300μm、好ましくは、20〜200μmが適当である。それぞれの塗膜の形成は、1コート塗装にて前記膜厚に仕上げても、また、同種類もしくは異種の塗料にて2コート以上の塗装にて前記膜厚に仕上げてもよい。例えば、柔軟性塗膜は、厚膜化や、プライマーとの付着性付与、腐食性イオン物質の浸入防止効果向上等を目的として、前記ひび割れ追従性能を有する中塗材を介在させて2コート以上で柔軟性塗膜を形成するのが適当である。
【0017】
【実施例】
以下、本発明を実施例により、更に詳細に説明するが、本発明は、これらに限定されるものではない。
実施例及び比較例の塗装工程に使用する大日本塗料(株)製の各使用材料の略称、一般名称、商品名、及び実施例及び比較例で形成する各使用材料の乾燥膜厚とその乾燥膜厚における単膜のひび割れ追従性能は、表1に示す通りである。
なお、ひび割れ追従性能は、JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づく試験方法にて標準状態で作成された試験片を用い、1kNのロードセルを装備した(株)島津製作所社製引張試験機「AG−I」により、静的引張試験を行うことで求めた。試験数は各3回行い、その平均値をひび割れ追従性能として算出した。
【0018】
【表1】
表1
【0019】
参考例1〜6
柔軟性塗膜の形成
以下の表2に示す塗装工程により柔軟性塗膜を形成した。
参考例1の塗装方法は、JSCE−K532−1997「表面被覆材のひび割れ追従性試験方法」に基づく試験片に、表1の乾燥膜厚になるようプライマー材(略称A)、中塗材(略称B)、上塗材(略称F)を刷毛塗りした。各工程の塗装間隔は、1日1工程とした。全ての塗装工程を終えた後、標準状態で定められた温度、湿度環境下で、28日間養生を行った。得られた複層からなる柔軟性塗膜を形成した試験片につき、前記静的引張試験に供した結果、試験数3回の平均値として、ひび割れ追従性能0.64mmであった。
以下、参考例2〜6も同様に表2に示した材料を用い、全ての塗装工程を終えた後、同様に静的引張試験に供し、その結果を表2の下段に示した。
【0020】
【表2】
表2
【0021】
実施例1〜3及び比較例1〜3
参考例1〜6で得られる柔軟性塗膜の最外層を形成する表2の上塗材を塗布し、1日乾燥させた後、以下の表3に示した材料(ひび割れ検出用塗料)を刷毛塗りし、1日乾燥させ、硬質性塗膜となるひび割れ検出用塗膜を形成した。次いで、標準状態で定められた温度、湿度環境下で、28日間養生を行った。得られた柔軟性塗膜とひび割れ検出用塗膜からなる複合塗膜を形成した試験片につき、前記静的引張試験に供した。同時に、この静的引張試験を、松下電器産業(株)社製デジタルビデオカメラNV−MX3000にて20倍で撮影した。静的引張試験後、ひび割れ検出用塗膜を剥離し、柔軟性塗膜の表面を50倍のルーペにてひび割れ発生有無を観察した。撮影された試験片のひび割れ状況映像より、ひび割れ検出用塗膜は、ひび割れ発生しているが、その下層の柔軟性塗膜は、ひび割れ発生していないものを○とし、それ以外を×とし、その結果を表3の下段に示した。
【0022】
【表3】
表3
【0023】
表3より明らかな通り、ひび割れ追従性能が、0.50mm以上の柔軟性塗膜を形成し、該柔軟性塗膜表面に、前記追従性能が、0.20mm以下の硬質性塗膜(ひび割れ検出用塗膜)を形成した本発明の実施例1〜3においては、駆体がひび割れ(破断)しても柔軟性塗膜にひび割れが発生せず、かつ、硬質性塗膜にひび割れが検出でき、コンクリート構造物の保護とひび割れ発生による危険予知が可能である。一方、硬質性塗膜(ひび割れ検出用塗膜)として、ひび割れ追従性能0.20mmを越える比較例1は、駆体がひび割れ発生しているにもかかわらず、ひび割れ検出ができず、危険予知が無理であった。また、下層の柔軟性塗膜のひび割れ追従性能が0.50mm未満の比較例2、比較例3は、駆体のひび割れ発生と追従して、下層の柔軟性塗膜に、硬質性塗膜(ひび割れ検出用塗膜)とともにひび割れが発生し、コンクリート構造物の保護が無理であった。
【0024】
【発明の効果】
コンクリート構造物表面に、ひび割れが発生しても、該ひび割れ箇所からの水分や、腐食性イオン物質の浸入を防止し、かつ、ひび割れが目視で簡単に検出可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for protecting a concrete structure capable of detecting the occurrence of cracks on the surface of the concrete structure.
[0002]
[Prior art]
Concrete structures are prone to cracking due to alkali-aggregate reaction, etc. Once cracking occurs, moisture and corrosive ionic substances enter from there, accelerating deterioration of the concrete structure, and sometimes it collapses May lead to
Therefore, usually, the surface of the concrete structure is coated with a paint to form a protective coating film. However, the conventional coating film has a problem that the followability with respect to cracks on the surface of the concrete structure is inferior, so that the coating film is easily cracked, peeled off, etc., and cannot sufficiently function as a protective coating film. .
[0003]
Therefore, in recent years, paints that form a flexible coating film having a followability to cracks on the surface of a concrete structure, that is, a coating film with a high elongation rate, and a coating method using the coating material have been developed (for example, Patent Document 1, Patent Document 2, Patent Document 3, etc.).
The method of forming a coating film with a high elongation rate on the surface of a concrete structure follows the cracks on the surface of the concrete structure, and the coating film is not easily cracked or peeled off. It is very effective in preventing moisture and corrosive ionic substances from entering.
[0004]
However, the method of forming a coating film with a high elongation rate on the surface of the concrete structure follows the crack even if a crack has occurred on the surface of the concrete structure. There is a problem that the danger due to the occurrence of cracks on the surface of the object cannot be predicted.
In addition, a hitting sound method is widely adopted in which the concrete surface is struck with a hammer to detect whether cracks have occurred in the concrete structure and the presence or absence of cracks is detected by ears. However, this method is very poor in workability. There is a problem that takes a lot of man-hours.
[0005]
[Patent Document 1]
JP 2000-16886 [Patent Document 2]
JP 2000-17742 A [Patent Document 3]
Japanese Patent Laid-Open No. 2001-2985
[Problems to be solved by the invention]
The present invention has been made against the background of the problems of the prior art, and even if cracks occur on the surface of a concrete structure, it prevents the intrusion of moisture, corrosive ionic substances, etc. from the cracks. And it aims at providing the protection method of the concrete structure which a crack can detect visually.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be achieved by the following method, and have reached the present invention.
That is, the present invention relates to the following method and concrete structure.
1. A method of protecting a concrete structure that can detect cracks on the surface of a concrete structure, and the surface of the concrete structure has a crack following performance based on JSCE-K532-1997 “Surface following material cracking test method”. Forming a flexible coating film of 0.50 mm or more, and then forming a hard coating film having a follow-up performance of 0.20 mm or less on the surface of the flexible coating film.
2. A flexible coating film having a crack tracking performance of 0.50 mm or more and a hard coating film having a tracking performance of 0.20 mm or less based on JSCE-K532-1997 “Crack tracking performance test method for surface coating material” is concrete. A concrete structure characterized by being sequentially provided on the surface of the structure.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
Concrete structures to which the present invention is applied include bridge piers, abutments, girders, floor slabs, railings, dolphins, tunnels, conduits, storage tanks, walls, roofs, balconies, etc. that are applied to civil engineering and architecture. The various concrete structures are preferably mentioned. In the present invention, these concrete structures are preferably those whose surfaces have been pretreated beforehand. That is, in order to remove protrusions and deposits on the concrete surface, the concrete substrate is adjusted using a disk sander, water jet, hand tools, etc., and the fine holes on the concrete surface are filled and smoothed. In addition, in order to improve the adhesion to the flexible coating film described later, a primer treatment or a putty material is applied to perform the ground treatment.
[0009]
In the present invention, a flexible coating film is formed on the surface of a concrete structure subjected to such a ground treatment as necessary, and then a hard coating film is formed.
If the coating film formed on the surface of the concrete structure cannot follow the allowable cracks of the concrete structure itself, the coating film will break along with the cracks, and corrosion factors such as moisture, oxygen, carbon dioxide, chloride ions from the broken part Can easily penetrate, which promotes the deterioration of concrete structures.
[0010]
For this reason, in the present invention, first, a flexible coating film that hardly cracks is formed following the cracks in the concrete structure to prevent and protect the corrosion factor from entering the concrete structure. Furthermore, in the present invention, while protecting the concrete structure with a flexible coating film, it is possible to visually recognize the occurrence of cracks on the surface of the concrete structure, and to predict the danger due to cracks in the concrete structure. This is characterized by the fact that a hard coating film that cannot follow the cracks of the concrete structure is formed on the surface of the conductive coating film.
[0011]
The allowable cracks in concrete structures include the allowable crack width on the surface obtained by the Gergely-Lutz equation and the CEB-FIP Model Code equation, and the values are the environment, concrete construction, structure, external force, etc. However, it is about 0.20 mm. However, the value obtained only by calculation is not sufficient, and in some cases it must be taken into consideration that cracks of about 0.30 mm occur, so a flexible coating applied to a highly public concrete structure. The film may require crack followability of 0.50 mm or more with a safety factor. In addition, in Tokai Passenger Railway Co., Ltd. trunk construction work No. 1031 “Tokaido Shinkansen reinforced concrete structure maintenance management standard”, a crack followability of 0.60 mm or more is defined as a standard value.
[0012]
Therefore, as the flexible coating film in the present invention, a coating film having a crack tracking performance based on JSCE-K532-1997 “Crack Tracking Performance Test Method for Surface Coating Material” is 0.50 mm or more, preferably 0.60 mm or more. Use what forms. The upper limit of the crack follow-up performance is not particularly limited, but is usually 10 mm or less.
As the coating material for forming the flexible coating film used in the present invention, conventionally known various coating materials can be used as long as they have the above-mentioned crack tracking performance. Specifically, for example, epoxy resin, polybutadiene resin, acrylic resin, urethane resin, silicon resin, fluorine resin, vinyl ester resin, polymer cement, or urethane-modified epoxy resin A typical example is a modified resin system. These paints can be used in various paint forms such as water-based, organic solvent-based, and solvent-free.
[0013]
On the other hand, as the hard coating film having the function of a crack detection coating film in the present invention, the crack tracking performance based on JSCE-K532-1997 "Surface Tracking Material Crack Tracking Test Method" A material that forms a coating film with a crack width of 0.20 mm or less, preferably 0.18 mm or less is used. The lower limit of the crack tracking performance is not particularly limited, but if a hard coating cracks even when there is little risk of cracking, it will not only detract from the aesthetics but also difficult to distinguish from cracks that predict danger. Therefore, 0.10 mm or more is appropriate.
[0014]
Moreover, the difference in the crack follow-up performance between the flexible coating and the hard coating is 0.40 mm or more, preferably 0.50 to 2.00 mm, and it is easy to visually recognize the crack.
As the coating material for forming the hard coating film used in the present invention, various types of conventionally known coating materials can be used as long as they have the above-mentioned crack tracking performance. Particularly, a coating material having good weather resistance is available. preferable. Specific examples include various modified resin systems such as acrylic resin systems, urethane resin systems, silicon resin systems, fluorine resin systems, vinyl ester resin systems, polymer cement systems, and urethane-modified epoxy resin systems. As mentioned. These paints can be used in various paint forms such as water-based, organic solvent-based, and solvent-free.
[0015]
In the present invention, it is appropriate to use the same type of resin-based coating as the coating used for forming the flexible coating and the hard coating, but different types of resin-based coatings having good interlayer adhesion. It is also possible to combine.
In each resin-based paint, a paint having a high elongation rate is generally flexible, and a paint having a low elongation rate is hard. It can be easily realized by the difference in the glass transition temperature of the coating film, the difference in the crosslinking density, the difference in the resin skeleton, etc., and those skilled in the art can easily understand it experimentally.
Specifically, in the flexible coating film, a coating material that forms a coating film having a glass transition temperature of 10 ° C. or lower, preferably −10 to 8 ° C. is suitable. On the other hand, for a hard coating film, a coating material that forms a coating film having a glass transition temperature of 50 ° C. or higher, preferably 60 to 80 ° C. is suitable.
[0016]
In the present invention, the dry film thickness of the flexible coating film and the hard coating film may be arbitrarily determined in consideration of the durability of the coating film depending on the use environment of the concrete structure, etc. The former is 30 to 1000 μm, preferably 50 to 700 μm, and the latter is 10 to 300 μm, preferably 20 to 200 μm. The formation of each coating film may be finished to the film thickness by one coat coating, or may be finished to the film thickness by painting two or more coats with the same or different kinds of paints. For example, in order to increase the film thickness, to provide adhesion to the primer, and to improve the effect of preventing the invasion of corrosive ionic substances, the flexible coating film is composed of two or more coats with an intermediate coating material having the above-mentioned crack tracking performance. It is appropriate to form a flexible coating.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
Abbreviations, general names, trade names of materials used by Dainippon Paint Co., Ltd. used in the coating process of Examples and Comparative Examples, and dry film thicknesses of the materials used in Examples and Comparative Examples and their drying The crack follow-up performance of the single film at the film thickness is as shown in Table 1.
In addition, the crack follow-up performance uses Shimadzu Corporation equipped with a load cell of 1 kN, using a test piece prepared in a standard state by a test method based on JSCE-K532-1997 “Crack Followability Test Method for Surface Coating Materials” It calculated | required by performing a static tensile test with the tensile tester "AG-I" by a Seisakusho company. The number of tests was performed three times, and the average value was calculated as the crack tracking performance.
[0018]
[Table 1]
Table 1
[0019]
Reference Examples 1-6
Formation of flexible coating film A flexible coating film was formed by the coating process shown in Table 2 below.
The coating method of Reference Example 1 is a primer material (abbreviation A) and an intermediate coating material (abbreviation) on the test piece based on JSCE-K532-1997 “Test method for cracking followability of surface coating material” so as to have a dry film thickness shown in Table 1. B) A top coating material (abbreviation F) was applied with a brush. The coating interval of each process was 1 process per day. After all the painting steps were completed, curing was performed for 28 days in a temperature and humidity environment determined in a standard state. About the test piece which formed the flexible coating film which consists of the obtained multilayer, as a result of using for the said static tensile test, it was a crack follow-up performance 0.64 mm as an average value of 3 times of tests.
Hereinafter, the materials shown in Table 2 were similarly used in Reference Examples 2 to 6, and after all the coating steps were completed, they were similarly subjected to a static tensile test. The results are shown in the lower part of Table 2.
[0020]
[Table 2]
Table 2
[0021]
Examples 1-3 and Comparative Examples 1-3
After applying the top coat material of Table 2 which forms the outermost layer of the flexible coating film obtained in Reference Examples 1 to 6, and drying it for 1 day, brush the materials shown in Table 3 below (paint for crack detection). It was applied and dried for 1 day to form a crack detection coating film that became a hard coating film. Next, curing was performed for 28 days under a temperature and humidity environment determined in a standard state. About the test piece which formed the composite film which consists of the obtained flexible coating film and the coating film for a crack detection, it used for the said static tensile test. At the same time, this static tensile test was taken at a magnification of 20 with a digital video camera NV-MX3000 manufactured by Matsushita Electric Industrial Co., Ltd. After the static tensile test, the crack-detecting coating film was peeled off, and the surface of the flexible coating film was observed for occurrence of cracking with a 50-fold magnifier. From the images of the cracks taken on the test specimen, the crack detection coating film has cracked, but the lower layer flexible coating film is marked with a circle when no cracking occurs, and the others are marked with x. The results are shown in the lower part of Table 3.
[0022]
[Table 3]
Table 3
[0023]
As is apparent from Table 3, a flexible coating film having a crack tracking performance of 0.50 mm or more is formed, and a hard coating film having a tracking performance of 0.20 mm or less (crack detection) is formed on the surface of the flexible coating film. In Examples 1 to 3 of the present invention in which the coating film was formed, the flexible coating film did not crack even if the precursor cracked (broken), and cracks could be detected in the hard coating film. Protecting concrete structures and predicting dangers due to the occurrence of cracks are possible. On the other hand, as a hard coating film (crack detection coating film), Comparative Example 1 exceeding the crack tracking performance of 0.20 mm cannot detect cracks despite the occurrence of cracks in the fuselage. It was impossible. Further, Comparative Example 2 and Comparative Example 3 in which the crack follow-up performance of the lower flexible coating film is less than 0.50 mm follows the occurrence of cracks in the precursor, and the hard coating film ( Cracks occurred with the crack detection coating film), and it was impossible to protect the concrete structure.
[0024]
【The invention's effect】
Even if cracks occur on the surface of the concrete structure, it is possible to prevent moisture and corrosive ionic substances from entering from the cracked portions and easily detect the cracks visually.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003199153A JP4369694B2 (en) | 2003-07-18 | 2003-07-18 | Protecting concrete structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003199153A JP4369694B2 (en) | 2003-07-18 | 2003-07-18 | Protecting concrete structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005035827A JP2005035827A (en) | 2005-02-10 |
JP4369694B2 true JP4369694B2 (en) | 2009-11-25 |
Family
ID=34208703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003199153A Expired - Fee Related JP4369694B2 (en) | 2003-07-18 | 2003-07-18 | Protecting concrete structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4369694B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002553A (en) * | 2005-06-24 | 2007-01-11 | Shimizu Corp | Concrete structure with self-diagnostic function, and its inspection/investigation/diagnosis method |
JP5562310B2 (en) * | 2011-10-07 | 2014-07-30 | 康一 高橋 | Degradation inspection method for structures |
JP5664520B2 (en) * | 2011-10-21 | 2015-02-04 | 東亞合成株式会社 | Concrete structure and manufacturing method thereof |
CN108537628B (en) | 2013-08-22 | 2022-02-01 | 贝斯普客公司 | Method and system for creating customized products |
JP6380054B2 (en) * | 2014-11-28 | 2018-08-29 | Dic株式会社 | Concrete crack detecting agent and concrete crack detecting method |
CN106609563A (en) * | 2016-11-03 | 2017-05-03 | 柏利伟(上海)环保科技有限公司 | Crack-resistant, anticorrosive and anti-seepage protection method for concrete structure surfaces |
JP6909720B2 (en) * | 2017-12-20 | 2021-07-28 | 鹿島建設株式会社 | Method for evaluating crack followability of multi-layer film |
-
2003
- 2003-07-18 JP JP2003199153A patent/JP4369694B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005035827A (en) | 2005-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Virmani et al. | Corrosion protection: Concrete bridges | |
PE | Paint and coatings: applications and corrosion resistance | |
CA2198548C (en) | Chromate-free protective coatings | |
KR101451974B1 (en) | paint composition for preventing salt damage and adhesion method thereof | |
JP4369694B2 (en) | Protecting concrete structures | |
JP6425204B2 (en) | Repair method of slope | |
KR102633999B1 (en) | Building life extension method through concrete neutralization prevention and waterproof painting | |
JP2005254557A (en) | Heavy duty corrosion-proof laminated coat, steel member with heavy duty corrosion-proof laminated coat, and method for forming heavy duty corrosion-proof laminated coat | |
Hinder et al. | Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study | |
KR101211849B1 (en) | Painting mathod of aluminium water-tank having good durability | |
JP4343570B2 (en) | Steel base material and base material adjustment method | |
JP3219028U (en) | Laminated structure of repair and refurbishment treatment layers by coating on exterior materials of building structures | |
KR101908240B1 (en) | Eco-friendly hybrid waterproofing and rust resisting method | |
Knudsen | Review of coating failure incidents on the Norwegian continental shelf since the introduction of NORSOK M-501 | |
EP3719227A1 (en) | Sealing method comprising a step for simultaneous projection of epoxy resin and fibres | |
JP3165263U (en) | Steel corrosion protection structure | |
JP4710821B2 (en) | Resin coated heavy duty steel | |
Yunovich et al. | Corrosion protection system for construction and rehabilitation of reinforced concrete bridges | |
KR20000006872A (en) | Construction method of preventing concrete from deterioration | |
Knudsen et al. | Repair coatings for TSA | |
Zemajtis | Epoxy-coated reinforcement: a historical performance review. | |
KR102674139B1 (en) | Polyurea Composite Waterproof Method | |
Klinge | Altered specifications for the protection of Norwegian steel bridges and offshore structures against corrosion | |
WO2024190890A1 (en) | Method for repairing steel structure, and adhesive sheet for repairing steel structure | |
JP2000042485A (en) | Corrosion prevention of metal structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090806 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4369694 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120904 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130904 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |