JP4368576B2 - Dithiol compound - Google Patents

Dithiol compound Download PDF

Info

Publication number
JP4368576B2
JP4368576B2 JP2002369190A JP2002369190A JP4368576B2 JP 4368576 B2 JP4368576 B2 JP 4368576B2 JP 2002369190 A JP2002369190 A JP 2002369190A JP 2002369190 A JP2002369190 A JP 2002369190A JP 4368576 B2 JP4368576 B2 JP 4368576B2
Authority
JP
Japan
Prior art keywords
group
nmr
compound
cdcl
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002369190A
Other languages
Japanese (ja)
Other versions
JP2004196732A (en
Inventor
雅巳 大塚
一夫 梅澤
昭行 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto Technology and Industry Foundation
Original Assignee
Kumamoto Technology and Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto Technology and Industry Foundation filed Critical Kumamoto Technology and Industry Foundation
Priority to JP2002369190A priority Critical patent/JP4368576B2/en
Publication of JP2004196732A publication Critical patent/JP2004196732A/en
Application granted granted Critical
Publication of JP4368576B2 publication Critical patent/JP4368576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pyridine Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ファルネシル・蛋白質転移酵素阻害活性を有する新規なジチオール化合物に関する。また、本発明は、上記ジチオール化合物を有効成分として含有するファルネシル・蛋白質転移酵素阻害剤及び制癌剤に関する。
【0002】
【従来の技術】
ファルネシル・蛋白質転移酵素(Farnesyl protein transferase;以下、本明細書において「FTase」と略す場合がある)は細胞内シグナル伝達に関与する亜鉛酵素である。FTaseは、癌遺伝子rasの産物であるRas蛋白質のC末端のCAAX boxと呼ばれる部位にファルネシル基を転移する。シグナル伝達において、Ras蛋白質の下流にはMAPキナーゼ系があり、最終的には細胞の増殖、分化へとつながっていく。多くの癌細胞でRas蛋白質の活性化変異が見られ、Rasの活性が亢進した状態が細胞の癌化の第一段階、つまり無限に増殖し続ける状態を生み出しているといわれている。従って、Ras蛋白質の翻訳後修飾において重要な役割を果たすFTaseに対して酵素阻害活性を示す化合物は、Ras蛋白質の活性化を抑え、制癌剤の有効な成分となり得ると考えられる。
【0003】
現在までにFTase阻害剤として、基質であるCAAX box又はファルネシル基供与体であるファルネシルピロリン酸のアナログとしてデザイン及び合成されたもの(J. Biol. Chem., 1995, 270, 26802; J. Biol. Chem., 1993, 268, 7617; Oncogene, 1995, 10, 1763)、及び化合物ライブラリーや天然物のランダムスクリーニングで得られたもの(Biol.Chem.,1995, 270, 30611; J.Org.Chem.,1994, 59, 6296)が報告されている。しかし、FTaseの亜鉛部位に作用することを意図してデザイン又は合成されたものはほとんどない。
【0004】
また、藤田はヒスチジンやシステインを構造の基本としたキレート性側鎖をピリジン環に導入した下記の化合物を報告しているが(非特許文献1〜4)、FTaseへの特異性は十分ではなく、さらに特異性の高い阻害剤の開発が求められていた。
【化2】

Figure 0004368576
【非特許文献1】
J. Med. Chem., 37 (25), 4267-4269, 1994.
【非特許文献2】
J. Med. Chem., 38 (17), 3264-3270, 1995.
【非特許文献3】
J. Med. Chem., 39 (2), 503-507, 1996.
【非特許文献4】
Bioorg. Med. Chem., 5 (1), 205-215, 1997.
【0005】
【発明が解決しようとする課題】
本発明の課題は、FTaseの亜鉛部位に作用してFTase活性を阻害するキレート性化合物を提供することにある。また、本発明の別の課題は、上記化合物を有効成分として含有するファルネシル・蛋白質転移酵素阻害剤、及び制癌剤を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく、鋭意探索した結果、キレート性測鎖をピリジン環に導入した下記一般式で表されるジチオール化合物がFTase阻害活性を有することを見いだした。本発明は上記の知見を基にして完成されたものである。
【0007】
すなわち、本発明は、下記の一般式(I):
【化3】
Figure 0004368576
〔式中、Arは、低級アルキル基、ハロゲン原子、ハロゲノ低級アルキル基及び低級アルコキシ基からなる群から選択される置換基を1若しくは2以上有していてもよいフェニル基、又は低級アルキル基、ハロゲン原子、ハロゲノ低級アルキル基及び低級アルコキシ基からなる群から選択される置換基を1若しくは2以上有していてもよいナフチル基を示す。〕
で表される化合物又はその塩を提供するものである。上記発明の好ましい態様によれば、Arがm-トルイル基である化合物又はその塩が提供される。
【0008】
別の観点からは、本発明により、上記の一般式(I)で表される化合物又は生理学的に許容されるその塩を含むファルネシル・蛋白質転移酵素阻害剤が提供される。さらに本発明により、上記の一般式(I)で表される化合物又は生理学的に許容されるその塩を含む医薬、好ましくは制癌剤である医薬が提供される。
【0009】
さらに別の観点からは、ヒトを含む哺乳類動物の体内においてファルネシル・蛋白質転移酵素を阻害する方法であって、上記の一般式(I)で表される化合物又は生理学的に許容されるその塩の有効量を哺乳類動物に投与する工程を含む方法;及び癌の治療方法であって、上記の一般式(I)で表される化合物又は生理学的に許容されるその塩の治療有効量をヒトを含む哺乳類動物に投与する工程を含む方法が本発明により提供される。
【0010】
【発明の実施の形態】
本明細書において、「低級アルキル基」とは、例えば、炭素数1ないし6個の直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基であり、より具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、s−ブチル基、t−ブチル基、シクロブチル基、シクロプロピルメチル基、ペンチル基、イソペンチル基、2−メチルブチル基、ネオペンチル基、1−エチルプロピル基、ヘキシル基、イソヘキシル基、4−メチルペンチル基、3−メチルペンチル基、2−メチルペンチル基、1−メチルペンチル基、3,3−ジメチルブチル基、2,2−ジメチルブチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基などを挙げることができる。好ましくはC1−C4アルキル基であり、さらに好ましくはC1−C2アルキル基であり、最も好ましくはメチル基である。
【0011】
「ハロゲン原子」とはフッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくはフッ素原子である。「ハロゲノ低級アルキル基」とは、前記「低級アルキル基」にハロゲン原子が1個又は2個以上置換した基を意味する。置換するハロゲン原子の種類、個数、及び置換位置は特に限定されず、2個以上のハロゲン原子が置換している場合には、ハロゲン原子の種類は同一でも異なっていてもよい。「ハロゲノ低級アルキル基」としては、より具体的には、トリフルオロメチル基、トリクロロメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、フルオロメチル基、2,2,2−トリフルオロエチル基、2,2,2−トリクロロエチル基、2−ブロモエチル基、2−クロロエチル基、2−フルオロエチル基、2−ヨ−ドエチル基、3−クロロプロピル基、4−フルオロブチル基、6−ヨードヘキシル基、2,2−ジブロモエチル基のようなハロゲノC1−C6アルキル基を挙げることができ、好ましくはハロゲノC1−C2アルキル基であり、好ましくはフルオロC1−C2アルキル基であり、最も好ましくはトリフルオロメチル基である。
【0012】
「低級アルコキシ基」とは、前記「低級アルキル基」が酸素原子に結合した基を示し、より具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、s−ブトキシ基、t−ブトキシ基、ペントキシ基、イソペントキシ基、2−メチルブトキシ基、1−エチルプロポキシ基、2−エチルプロポキシ基、ネオペントキシ基、ヘキシルオキシ基、4−メチルペントキシ基、3−メチルペントキシ基、2−メチルペントキシ基、3,3−ジメチルブトキシ基、2,2−ジメチルブトキシ基、1,1−ジメチルブトキシ基、1,2−ジメチルブトキシ基、1,3−ジメチルブトキシ基、2,3−ジメチルブトキシ基などを挙げることができ、好ましくはC1−C4アルコキシ基であり、さらに好ましくはC1−C2アルコキシ基であり、最も好ましくはメトキシ基である。
【0013】
Arがモノ置換フェニル基の場合の置換位置はメタ位又はパラ位が好ましい。ジ置換フェニル基である場合はメタ位が好ましい。特に好ましい態様としてあげられるのは、m-トルイル基、p-トルイル基、及び3,5-ジトリフルオロメチルフェニル基である。Arがナフチル基の場合は1-ナフチル基が好ましく、無置換であることが好ましい。Arとして最も好ましいのはm-トルイル基である。
【0014】
一般式(I)で表される本発明の化合物は、酸付加塩又は塩基付加塩などの塩の形態で存在する場合があるが、本発明の範囲にはいかなる塩も包含される。酸付加塩としては、塩酸塩若しくは臭化水素酸塩などの鉱酸塩、又はp-トルエンスルホン酸塩、メタンスルホン酸塩、シュウ酸塩、若しくは酒石酸塩などの有機酸塩を挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、マグネシウム塩、若しくはカルシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩若しくはエタノールアミン塩などの有機アミン塩などを用いることができる。また、グリシン塩などのアミノ酸塩として存在することもできる。さらに、本発明の化合物又はその塩は、水和物又は溶媒和物として存在する場合があるが、これらの物質も本発明の範囲に包含される。また、本発明の化合物は、置換基の種類によっては1個又は2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。
【0015】
本明細書の実施例には、上記一般式(I) に包含される化合物の製造方法が具体的に説明されている。従って、これらの製造方法において用いられた出発原料、反応試薬、及び反応条件などを適宜選択し、必要に応じてこれらの製造方法に適宜の修飾ないし改変を加えることにより、本発明の範囲に包含される化合物はいずれも製造可能である。もっとも、本発明の化合物の製造方法は、実施例に具体的に説明されたものに限定されることはない。なお、類似構造の化合物の製造方法については、既報の方法(J. Organomet. Chem., 611, 577-585, 2000)を参照することにより本発明の化合物を容易に製造することが可能である。
【0016】
天然の金属蛋白質の金属配位様式は蛋白質によって様々であるが、亜鉛酵素の場合は、ヒスチジン、システイン、グルタミン酸、及びアスパラギン酸などのアミノ酸残基が配位に関与している例が多く見られる。特にシステイン残基は亜鉛との結合に重要であることが多く、最近の例ではProtein Kinase CK2の結晶構造解析(EMBO J.,1999, 18, 2930)より、4つのシステイン残基が亜鉛との配位に関与していることが示されている。いかなる特定の理論に拘泥するわけではないが、本発明の化合物は、システイン類似の構造を有しており、この部位がFTaseの亜鉛部分に配位すると考えられる。また、このような配位部分を有するキレート性化合物を作用させるだけではFTaseのみでなく、生命維持等に必要な反応を触媒する酵素をも阻害してしまう可能性がある。本発明の化合物では、金属の配位に直接関与しないピリジン環4位にFTaseに親和性をもつ部位としてフェニル基又はナフチル基が導入されており、FTaseに対する特異性が高められているという特徴がある。
【0017】
本発明のFTase阻害剤及び制癌剤は、上記の一般式(I)で表される化合物及びその塩、並びにそれらの水和物及びそれらの溶媒和物からなる群から選ばれる物質の1種又は2種以上を有効成分として含んでいる。本発明のFTase阻害剤及び制癌剤としては上記物質それ自体を投与してもよいが、好ましくは、当業者に周知の方法によって製造可能な経口用あるいは非経口用の医薬組成物として投与することができる。経口投与に適する医薬用組成物としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができ、非経口投与に適する医薬組成物としては、例えば、注射剤、点滴剤、座剤、吸入剤、点眼剤、点鼻剤、軟膏剤、クリーム剤、貼付剤、経皮吸収剤、又は経粘膜吸収剤等を挙げることができる。
【0018】
上記の医薬組成物の製造に用いられる製剤用添加物としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を挙げることができるが、これらは医薬組成物の形態に応じて当業者が適宜選択することができ、2種以上を組み合わせて用いてもよい。上記の医薬組成物には、さらに他の医薬の有効成分の1種又は2種以上を配合して、いわゆる合剤の形態の医薬組成物として用いることもできる。医薬組成物は経口投与用又は非経口投与用のいずれの形態で調製することも可能である。
【0019】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例の範囲に限定されることはない。
以下に示す工程に従って、一般式(I)におけるArがフェニル基(a)、o-トルイル基(b)、m-トルイル基(c)、p-トルイル基(d)、3,5-ビストリフルオロメチルフェニル基(e)、3,4-ジメトキシフェニル基(f)、1-ナフチル基(g)、及び3-塩化フェニル基(h)である化合物の合成を行った。
【化4】
Figure 0004368576
【0020】
融点(mp)は全て柳本微量融点測定機で測定し、測定温度未補正で示した。NMRスペクトルはJEOL JNM-AL300で測定した。化学シフト値は1H-NMRではテトラメチルシランを、13C-NMRでは測定溶媒又はテトラメチルシランを内部標準物質としてppmで示し、J値はHzで示した。IRスペクトルはJASCO JIR-6500Wで測定した。質量分析[MS(EI)]、[MS(FAB)]スペクトルは、JEOL JMS-DX303HF Mass Spectrometerで測定した。元素分析(Anal)は、Yanaco MT-5Sで測定した。カラムクロマトグラフィー用シリカゲルにはSilica Gel 60N(40-100Mesh) (Merck)を、薄層クロマトグラフィー用シリカゲルにはSilica Gel 60 F254 (Merck)を用いた。
【0021】
(1)ビアリール化合物3の合成
ボロン酸化合物 2、ジエステル化合物 1 (Jagannath B. Lamture, Theodore G. Wensel, Tetrahedron Letters, 34, 4141-4144 (1993)) (1.2eq)、臭化カリウム (1.1eq)、リン酸三カリウム(2eq)をジオキサンに懸濁し、アルゴン雰囲気下ソニケーションにより脱気した。室温でテトラキス(トリフェニルホスフィン)パラジウム(0) (3.0mol%)を加えた後、1-16時間加熱還流した。不溶物をろ去し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー又は再結晶により精製を行い化合物3を得た。なお、フェニル体3aは既知化合物である(J. Am. Chem. Soc., 110, 8134-8144, 1988)。
【0022】
4-o-トルイルピリジン-2,6-ジカルボン酸ジメチルエステル(3b):
収率 67%;
mp 91.0-93.0℃;
1H-NMR (CDCl3) δ 2.30 (s, 3H, Ar-CH3), 4.05 (s, 6H, O-CH3), 7.26-7.34 (m, 4H, Ph), 8.30 (s, 2H, Py);MS (EI) m/z 285 (M+)。
4-m-トルイルピリジン-2,6-ジカルボン酸ジメチルエステル (3c):
収率 67%;
mp 142.0-143.0℃;
1H-NMR (CDCl3) δ 2.46 (s, 3H, Ar-CH3), 4.06 (s, 6H, OCH3), 7.31 (d, J=3.6Hz, 1H, Ar), 7.42 (t, J=8.1Hz, 1H, Ar), 7.55 (d, J=3.6Hz, 2H, Ar), 8.54 (s, 2H, Py);
13C-NMR (CDCl3) δ 21.37 (Ar-CH3), 53.17 (OMe), 124.18, 125.61, 127.75, 129.24, 130.83 (Ar), 136.03, 139.17, 148.72, 151.21 (C), 165.23 (C=O);
IR (KBr) 2955, 1744, 1717, 1600, 1437, 1356, 1242, 1194, 1162, 1127, 999, 968, 894, 777, 736, 710 cm-1
MS (EI) m/z 285 (M+);
Anal. Calcd. for C16H15NO4 : C, 67.36; H, 5.30; N, 4.91. Found : C, 67.22; H, 5.37; N, 5.00。
【0023】
4-p-トルイルピリジン-2,6-ジカルボン酸ジメチルエステル (3d):
収率 56%;
mp 167.2-168.5℃;
1H-NMR (CDCl3) δ 2.43 (s, 3H, Ar-CH3), 4.05 (s, 6H, OCH3), 7.33 (d, J=3.9Hz, 2H, Ph), 7.66 (d, J=4.1Hz, 2H, Ph), 8.53 (s, 2H, Py).
13C-NMR (CDCl3) δ 21.22, 53.15 (CH3), 125.28, 126.89, 130.08 (-CH=), 133.13, 140.48, 148.74, 150.93, 165.27 (C);
IR (KBr) 2961, 1755, 1717, 1598, 1445, 1355, 1263, 1188, 1165, 1132, 1068, 990, 957, 881, 812, 780, 750, 737 cm-1
MS (EI) m/z 285 (M+)。
4-(3,5-ビストリフルオロメチルフェニル)ピリジン-2,6-ジカルボン酸ジメチルエステル(3e):
収率 68%;
mp 97.5-99.0℃;
1H-NMR (CDCl3) δ 4.08 (s, 6H, CH3), 8.05 (s, 1H, Ph), 8.18 (s, 2H, Ph), 8.57 (s, 2H, Py);
IR (KBr) 3424, 2959, 1723, 1602, 1445, 1343, 1281, 1184, 1132, 1087, 992, 903, 847, 785, 739, 706, 684, 653 cm-1
MS (EI) m/z 407 (M+)。
【0024】
4-(3,4-ジメトキシフェニル)ピリジン-2,6-ジカルボン酸ジメチルエステル(3f):
収率 62%;
mp 143.0-144.0℃;
1H-NMR (CDCl3) δ 3.96 (s, 3H, Ar-OCH3), 4.00 (s, 3H, Ar-OCH3), 4.06 (s, 6H, CO2-CH3), 7.01 (d, J=4.2Hz, 1H, Ph), 7.24 (d, J=1.1Hz, 1H, Ph), 7.37 (dd, J=6.3, 2.2Hz, 1H, Ph), 8.50 (s, 2H, Py);
IR (KBr) 3003, 2952, 2841, 1718, 1600, 1526, 1445, 1364, 1273, 1227, 1150, 1135, 1073, 1027, 783, 740 cm-1
MS (EI) m/z 331 (M+)。
4-(ナフタレン-1-イル)ピリジン-2,6-ジカルボン酸ジメチルエステル(3g):
収率 62%;
mp 159.5-160.0℃;
1H-NMR (CDCl3) δ 4.05 (s, 6H, CH3), 7.45-7.59 (m, 5H, Ar), 7.93-7.97 (m, 2H, Ar), 8.46 (s, 2H, Py);
IR (KBr) 3463, 2954, 1753, 1589, 1441, 1262, 1247, 1197, 1167, 1009, 957, 810, 787, 733 cm-1
MS (EI) m/z 321 (M+)。
4-(3-クロロフェニル)ピリジン-2,6-ジカルボン酸ジメチルエステル (3h):
収率 65%;
mp 176.5-177.5℃;
1H-NMR (CDCl3) δ 4.06 (s, 6H, CH3), 7.47-7.50 (m, 2H, Ph), 7.62-7.66 (m, 1H, Ph), 7.74 (s, 1H, Ph), 8.52 (s, 2H, Py);
13C-NMR (CDCl3) δ 53.30 (CH3), 125.30, 125.59, 127.29, 130.11, 130.67 (-CH=), 135.50, 137.96, 148.98, 149.69, 165.02 (C);
IR (KBr) 3091, 2359, 1760, 1716, 1592, 1440, 1335, 1249, 988, 780 cm-1
MS (FAB) m/z 306 (M+1)+
【0025】
(2)ジアルコール体4の合成
ビアリール化合物3をエタノールに溶解又は懸濁し、室温にて水素化ホウ素ナトリウム(4.0eq)を加えた。反応液の色が消失するまで(1-3時間)加熱還流した後、溶媒を減圧留去した。残渣を水に溶解し、酢酸エチルで3回抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥し溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、ジアルコール化合物4を得た。なお、フェニル化合物4aは既知化合物である(J. Am. Chem. Soc., 110, 8134-8144, 1988)。
(6-ヒドロキシメチル-4-o-トルイルピリジン-2-イル)メタノール (4b):
収率 87%;
1H-NMR (DMSO-d6) δ 2.24 (s, 3H, CH3), 4.59 (d, J=2.9Hz, 4H, CH2), 5.42 (t, J=5.6Hz, 2H, OH), 7.20-7.33 (m, 6H, Ar);
13C-NMR (DMSO-d6) δ 19.87 (CH3), 64.09 (CH2), 118.36, 126.10, 128.13, 128.89, 130.50 (-CH=), 134.39, 139.36, 149.74, 160.97 (C);
(6-ヒドロキシメチル-4-m-トルイルピリジン-2-イル)メタノール (4c):
収率 92%。
(6-ヒドロキシメチル-4-p-トルイルピリジン-2-イル)メタノール (4d):
収率 76%;
mp 138.0-139.2℃;
1H-NMR (CD3OD) δ 2.37 (s, 3H, CH3), 4.87 (s, 4H, -CH2-), 7.29 (d, J=3.9Hz, 2H, Ph), 7.62 (d, J=5.2Hz, 2H, Ph), 7.64 (s, 2H, Py);
13C-NMR (CD3OD) δ 21.23 (CH3), 65.53 (-CH2-), 117.65, 127.89, 130.86 (CH), 136.51, 140.66, 151.59, 162.12 (C);
IR (KBr) 3357, 1608, 1550, 1515, 1430, 1190, 1092, 1025, 1003, 817 cm-1
【0026】
[4-(3,5-ビストリフルオロメチルフェニル)-6-ヒドロキシメチルピリジン-2-イル]メタノール (4e):
収率 88%;
mp 137.0-138.0℃;
IR (KBr) 3400, 1609, 1561, 1447, 1386, 1311, 1279, 1133, 986, 906, 877, 845, 703, 683 cm-1
MS (EI) m/z 351 (M+)。
[4-(3,4-ジメトキシフェニル)-6-ヒドロキシメチルピリジン-2-イル]メタノール (4f):
収率 68%;
1H-NMR (DMSO-d6) δ 3.81 (s, 3H, CH3), 3.86 (s, 3H, CH3), 4.57 (d, J=2.9Hz, 4H, -CH2-), 5.41 (t, J=5.9Hz, 2H, OH), 7.09 (d, J=4.1Hz, 1H, Ph), 7.29-7.33 (m, 2H, Ph), 7.57 (s, 2H, Py);
13C-NMR (DMSO-d6) δ 55.57, 55.60 (CH3), 64.26 (-CH2-), 109.98, 112.19, 115.32, 119.21 (-CH=), 130.44, 147.96, 149.20, 149.77, 161.46 (C)。
[6-ヒドロキシメチル-4-(ナフタレン-1-イル)ピリジン-2-イル]メタノール (4g):
収率 83%;
mp 138.0-140.0℃;
IR (KBr) 3256, 1603, 1551, 1508, 1399, 1073, 990, 886, 802, 780 cm-1
MS (EI) m/z 265 (M+)。
[4-(3-クロロフェニル)-6-ヒドロキシメチルピリジン-2-イル]メタノール (4h):
収率 64%。
【0027】
(3)ジアルデヒド体5の合成
ジアルコール体4、二酸化マンガン(12eq)をベンゼンに懸濁させ、3時間加熱還流した。二酸化マンガンをセライトろ過で除き、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー又は再結晶により精製し、ジアルデヒド体5を得た。
4-フェニルピリジン-2,6-ジカルボアルデヒド (5a):
収率 58%;
mp 92.1-93.0℃;
1H-NMR (CDCl3) δ 7.53-7.55 (m, 3H, Ar), 7.73-7.77 (m, 2H, Ar), 8.39 (s, 2H, Ar), 10.22 (s, 2H, CHO);
13C-NMR (CDCl3) δ 122.79, 127.11, 129.48, 130.32 (CH), 135.93, 151.11, 153.60 (C), 192.51 (CHO);
IR (KBr) 2844, 1710, 1598, 1451, 1373, 1194, 957, 887, 765, 704 cm-1
MS (EI) m/z 211 (M+);
Anal. Calcd. for C13H9NO2 : C, 73.92; H, 4.29; N, 6.63. Found : C, 74.15; H, 4.30; N, 6.54。
【0028】
4-o-トルイルピリジン-2,6-ジカルボアルデヒド (5b):
収率 40%;
1H-NMR (CDCl3) δ 2.30 (s, 3H, CH3), 7.23-7.41 (m, 4H, Ph), 8.12 (s, 2H, Py), 10,23 (s, 2H, CHO);
13C-NMR (CDCl3) δ 20.17 (CH3), 125.64, 126.52, 129.30, 129.42, 131.03 (CH), 134.94, 137.03, 152.69, 153.02 (C), 192.45 (CHO)。
4-m-トルイルピリジン-2,6-ジカルボアルデヒド (5c):
収率 33%;
mp 109.0-110.0℃;
1H-NMR (CDCl3) δ 2.46 (s, 3H, CH3), 7.33 (d, J=3.7Hz, 1H, Ph), 7.43 (t, J=8.0Hz, 1H, Ph), 7.55 (d, J=3.7Hz, 2H, Ph), 8.38 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDCl3) δ 21.43 (CH3), 122.79, 124.22, 125.31, 127.78, 129.38, 131.10 (CH), 135.88, 139.36, 151.26, 153.58 (C), 192.58 (CHO);
IR (KBr) 2831, 1709, 1594, 1362, 957, 789, 691 cm-1
MS (EI) m/z 225 (M+);
Anal. Calcd. for C14H11NO2 : C, 74.65; H, 4.92; N, 6.22. Found : C, 74.58; H, 4.95; N, 5.98。
4-p-トルイルピリジン-2,6-ジカルボアルデヒド (5d):
収率 37%;
mp 88.0-89.0℃;
1H-NMR (CDCl3) δ 2.44 (s, 3H, CH3), 7.34 (d, J=4.0Hz, 2H, Ph), 7.65 (d, J=4.1Hz, 2H, Ph), 8.37 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDCl3) δ 21.27 (CH3), 122.44, 126.93, 130.21, 132.96 (CH), 140.77, 150.98, 153.60 (C), 192.56 (CHO);
IR (KBr) 2360, 1708, 1596, 1446, 1371, 1316, 1205, 992, 956, 884, 813, 704, 681 cm-1
MS (EI) m/z 225 (M+);
Anal. Calcd. for C14H11NO2 : C, 74.65; H, 4.92; N, 6.22. Found : C, 74.50; H, 4.91; N, 6.13。
【0029】
4-(3,5-ビストリフルオロメチルフェニル)ピリジン-2,6-ジカルボアルデヒド (5e):
収率 43%;
mp 154.2-155.8℃;
1H-NMR (CDCl3) δ 8.05 (s, 1H, Ph), 8.18 (s, 2H, Ph), 8.42 (s, 2H, Py), 10.26 (s, 2H, CHO);
IR (KBr) 3085, 2360, 1707, 1351, 1305, 1277, 1200, 1173, 1135, 1083, 957, 903, 706, 682 cm-1
MS (EI) m/z 347 (M+)。
4-(3,4-ジメトキシフェニル)ピリジン-2,6-ジカルボアルデヒド (5f):
収率 34%;
mp 139.0-140.0℃;
1H-NMR (CDCl3) δ 3.97 (s, 3H, CH3), 4.00 (s, 3H, CH3), 7.01 (d, J=4.2Hz, 1H, Ph), 7.23 (d, J=1.1Hz, 1H, Ph), 7.37 (dd, J=4.2, 2.3Hz, 1H, Ph), 8.34 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDCl3) δ 56.01, 56.15 (CH3), 109.64, 111.68, 120.17, 122.10 (CH), 128.38, 149.79, 150.70, 151.11, 153.53 (C), 192.68 (C=O);
IR (KBr) 2842, 1707, 1593, 1523, 1439, 1374, 1268, 1027, 957, 808, 686 cm-1
MS (EI) m/z 271 (M+);
Anal. Calcd. for C15H13NO4 : C, 66.41; H, 4.83; N, 5.16. Found : C, 66.18; H, 4.78; N, 5.07。
【0030】
4-(ナフタレン-1-イル)ピリジン-2,6-ジカルボアルデヒド (5g):
収率 61%;
mp 148.0-149.0℃;
1H-NMR (CDCl3) δ 7.44-7.60 (m, 4H, Ar), 7.71 (d, J=3.9Hz, 1H, Ar), 7.97 (d, J=3.6Hz, 2H, Ar), 8.32 (s, 2H, Py), 10.27 (s, 2H, CHO);
IR(KBr) 3410, 2829, 2360, 1711, 1595, 1508, 1359, 1195, 957, 806, 782, 683 cm-1
MS (EI) m/z 261 (M+)。
4-(3-クロロフェニル)ピリジン-2,6-ジカルボアルデヒド (5h):
収率 45%;
mp 179.0-181.0℃;
IR (KBr) 3074, 2860, 2359, 1714, 1596, 1365, 1214, 1106, 957, 795, 677 cm-1
MS (FAB) m/z 246 (M+1)+
【0031】
(4)ジチオール体6の合成
Zhangらの方法(Tetrahedron Letters, 40, 4615-4618 (1999))に従い、ジアルデヒド体5及び2-アミノエタンチオール塩酸塩より合成した。ジアルデヒド体5、2-アミノエタンチオール塩酸塩(2eq)をメタノールに溶解し、1-16時間室温で撹拌した。その後シアノ水素化ホウ素ナトリウム(10eq)を加え、1M塩酸エタノール溶液(20eq)を室温にて滴下した。1-16時間撹拌後溶媒を減圧留去し、残渣を2N水酸化ナトリウム水溶液に溶解した。クロロホルムで3回洗浄し、濃塩酸でpH7とした後クロロホルムで3回抽出した。抽出したクロロホルム層を合わせ、無水硫酸ナトリウムで乾燥後溶媒を減圧留去しジチオール化合物6を得た。
2-([6-[(2-メルカプトエチルアミノ)メチル]-4-フェニルピリジン-2-イルメチル]アミノ)エタンチオール (6a)(Ph-HPH-SH):
収率 81%(油状物);
1H-NMR (CDCl3) δ 2.34 (brs, 4H), 2.72 (t, J=6.3Hz, 4H, -CH2-S), 2.91 (t, J=6.3Hz, 4H, -CH2-N), 3.98 (s, 4H, -CH2-Py), 7.42 (s, 2H, Py), 7.44-7.47 (m, 3H, Ph), 7.64-7.66 (m, 2H, Ph);
13C-NMR (CDCl3) δ 24.76, 51.78, 54.35 (-CH2-), 118.50, 126.96, 128.92 (-CH=), 138.17, 149.48, 159.25 (C);
IR (Film) 3300, 2929, 1668, 1606, 1554, 1449, 1123, 766, 697 cm-1
MS (FAB) m/z 334 (M+1)+
【0032】
2-([6-[(2-メルカプトエチルアミノ)メチル]-4-o-トルイルピリジン-2-イルメチル]アミノ)エタンチオール (6b):
収率 95%(油状物);
1H-NMR (CDCl3) δ 2.17 (brs, 4H), 2.27 (s, 3H, CH3), 2.71 (t, J=6.4Hz, 4H, -CH2-S), 2.90 (t, J=6.3Hz, 4H, -CH2-N), 3.96 (s, 4H, -CH2-Py), 7.15-7.28 (m, 6H, Ar);
13C-NMR (CDCl3) δ 20.23 (CH3), 24.88, 51.85, 54.38 (-CH2-), 120.96, 125.92, 128.18, 129.12, 130.49 (-CH=), 134.84, 139.21, 150.81, 158.77 (C);
IR (Film) 3300, 3059, 2928, 2831, 2555, 1667, 1606, 1550, 1492, 1456, 1408, 1361, 1289, 1120, 994, 865, 763, 727 cm-1
2-([6-[(2-メルカプトエチルアミノ)メチル]-4-m-トルイルピリジン-2-イルメチル]アミノ)エタンチオール (6c) (3-Tol-HPH-SH):
収率 20%(油状物);
1H-NMR (CDCl3) δ 2.43 (s, 3H, CH3), 2.73 (t, J=6.3Hz, 4H, -CH2-S), 2.79 (brs, 4H), 2.93 (t, J=6.4Hz, 4H, -CH2-N), 4.00 (s, 4H, -CH2-Py), 7.23-7.46 (m, 6H, Ar);
13C-NMR (CDCl3) δ 21.40 (CH3), 24.58, 51.75, 54.19 (-CH2-), 118.72, 124.13, 127.74, 128.91, 129.80 (-CH=), 138.05, 138.70, 149.82, 158.76 (C);
IR (Film) 3214, 3945, 2412, 2254, 1609, 1559, 1445, 1195, 1102, 1001, 882, 791, 701 cm-1
MS (EI) m/z 347 (M+)。
【0033】
2-([6-[(2-メルカプトエチルアミノ)メチル]-4-p-トルイルピリジン-2-イルメチル]アミノ)エタンチオール (6d)(4-Tol-HPH-SH):
収率 66%(油状物);
1H-NMR (CDCl3) δ 2.38 (s, 3H, CH3), 2.78 (t, J=6.5Hz, 4H, -CH2-N), 3.02 (t, J=6.6Hz, 4H, -CH2-S), 4.09 (s, 4H, N-CH2-Ar), 7.26 (d, J=4.3Hz, 2H, Ph), 7.41 (s, 2H, Py), 7.53 (d, J=4.1Hz, 2H, Ph);
13C-NMR (CDCl3) δ 21.15 (CH3), 23.36, 51.27, 52.95 (-CH2-), 118.97, 126.85, 129.83 (-CH=), 134.30, 139.60, 150.09, 156.24 (C);
IR (Film) 2932, 2330, 1666, 1606, 1551, 1518, 1453, 1119, 997, 818, 732 cm-1
MS (EI) m/z 347 (M+)。
2-([4-(3,5-ビストリフルオロメチルフェニル)-6-[(2-メルカプトエチルアミノ)メチル]ピリジン-2-イルメチル]アミノ)エタンチオール (6e)(3,5-CF3-HPH-SH):
収率 82%(油状物);
1H-NMR (CDCl3) δ 2.09 (brs, 2H, SH), 2.74 (t, J=6.2Hz, 4H, -CH2-S), 2.93 (t, J=6.3Hz, 4H, -CH2-CH 2 -N), 4.03 (s, 4H, N-CH2-Ar), 7.49 (s, 2H, Ar), 7.95 (s, 1H, Ar), 8.09 (s, 2H, Ar);
IR (Film) 2832, 1604, 1560, 1456, 1389, 1281, 1176, 1133, 903, 845, 704, 683 cm-1
【0034】
2-([4-(3,4-ジメトキシフェニル)-6-[(2-メルカプトエチルアミノ)メチル]ピリジン-2-イルメチル]アミノ)エタンチオール (6f):
収率 65%(油状物);
1H-NMR (CDCl3) δ 2.23 (brs, 4H), 2.72 (t, J=6.4Hz, 4H, -CH2-S), 2.90 (t, J=7.2Hz, 4H, -CH2-CH 2 -N), 3.92 (s, 3H, CH3), 3.93 (s, 3H, CH3), 3.97 (s, 4H, N-CH2-Ar), 6.96 (d, J=4.2Hz, 1H, Ph), 7.17 (s, 1H, Ph), 7.24 (d, J=4.2Hz, 1H, Ph), 7.39 (s, 2H, Py)。
2-([6-[(2-メルカプトエチルアミノ)メチル]-4-(ナフタレン-1-イル)ピリジン-2-イルメチル]アミノ)エタンチオール (6g)(1-Naph-HPH-SH):
収率 63%(油状物);
1H-NMR (CDCl3) δ 2.21 (brs, 4H), 2.27 (t, J=6.3Hz, 4H, -CH2-S), 2.93 (t, J=6.2Hz, 4H, -CH2-CH 2 -N), 4.00 (s, 4H, N-CH2-Ar), 7.31-7.55 (m, 5H, Ar), 7.81-7.92 (m, 4H, Ar);
IR (Film) 2829, 1603, 1550, 1443, 1119, 778 cm-1
MS (EI) m/z 383 (M+)。
2-([4-(3-クロロフェニル)-6-[(2-メルカプトエチルアミノ)メチル]ピリジン-2-イルメチル]アミノ)エタンチオール (6h):
収率 37%(油状物);
IR (KBr) 3298, 2930, 2832, 1607, 1594, 1455, 1395, 1103, 1081, 868, 788 cm-1
【0035】
試験例:
細胞はK-ras-NRK細胞を使用した。K-ras-NRK細胞は、グルタミン0.6 g/l、カナマイシン0.2 g/l、NaHCO3 2.25 g/lを含むダルベッコ変法イーグル培地(DMEM;日水製薬株式会社)に5% 仔牛血清(CS;Gibco Laboratories)を加えた培養液で、37℃、5% CO2の恒温器中で培養して得た。
(1)形態変化誘導効果の観察
K-ras-NRK細胞を48穴プラスチックプレート(Costar 3548)に、1.5×104 cells:DMEM 0.5ml/wellでまき、1日37℃、5%CO2の恒温器中で培養した。翌日、被験化合物を加え、その後3日目まで細胞の形態を位相差顕微鏡で観察し、写真に撮った。結果を図1〜3に示す。
【0036】
(2)細胞増殖抑制効果の測定
K-ras-NRK細胞を48穴プラスチックプレートに、1.5×104 cells:DMEM 0.5ml/wellでまき、1日37℃、5%CO2の恒温器中で培養した。翌日試験化合物を加え、更に3日間培養した後DMEMを取り除き、PBS-(8.0g/l NaCl、0.916g/l Na2HPO4、0.2g/l KCl、0.2g/l KH2PO4)で2回洗浄した後トリプシン水溶液(0.5g/l trypsin、8.0g/l NaCl、0.0475g/l Na2HPO4、0.4g/l KCl、0.06g/l KH2PO4、1.0g/l glucose、0.02g/l phenol red、0.35g/l NaCO2、0.2g/l EDTA・4Na)を100μl/wellずつ加え、0% CO2条件下の恒温器中で細胞をはがした。これにDMEMを900μl/wellずつ加えシリンジで2回ほぐして均一にした溶液の細胞濃度を、コールターカウンター(Model ZM; Coulter Electronics)を用いて測定し、細胞増殖を50%阻害する濃度(IC50)を求めた。また、K-ras-NRK細胞について同様にして1〜3日目までの細胞数を測定し、細胞増殖抑制の濃度依存性を求めた。表に示す6つの化合物について同じ試験を3回実施し、平均値を求めた。結果を表1に示す。
【0037】
【表1】
Figure 0004368576
【0038】
【発明の効果】
本発明の化合物はFTase阻害活性を有しており、FTase阻害剤又は制癌剤の有効成分として有用である。
【図面の簡単な説明】
【図1】 K-ras-NRK細胞に対する形態変化誘導効果を示した写真である。コントロール(溶媒であるジメチルスルホキシド5μlのみを添加)の結果を示す。
【図2】 K-ras-NRK細胞に対する本発明の化合物の形態変化誘導効果を示した写真である。1-Naph-HPH-SH 0.5μg/mlの結果を示す。
【図3】 K-ras-NRK細胞に対する形態変化誘導効果を示した写真である。陽性対照(Conophylline 1.0 μg/ml: Drugs Exp. Clin. Res., 22 (2), 35-40, 1996)の結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel dithiol compound having farnesyl-protein transferase inhibitory activity. The present invention also relates to a farnesyl-protein transferase inhibitor and an anticancer agent containing the dithiol compound as an active ingredient.
[0002]
[Prior art]
Farnesyl protein transferase (hereinafter, abbreviated as “FTase” in the present specification) is a zinc enzyme involved in intracellular signal transduction. FTase transfers the farnesyl group to a site called CAAX box at the C-terminus of Ras protein, which is a product of oncogene ras. In signal transduction, there is a MAP kinase system downstream of the Ras protein, which ultimately leads to cell proliferation and differentiation. Ras protein activation mutations are observed in many cancer cells, and it is said that the state in which Ras activity is enhanced has produced the first stage of canceration of cells, that is, a state that continues to grow indefinitely. Therefore, it is considered that a compound exhibiting enzyme inhibitory activity against FTase that plays an important role in post-translational modification of Ras protein can suppress the activation of Ras protein and can be an effective component of an anticancer agent.
[0003]
To date, FTase inhibitors have been designed and synthesized as analogs of the substrate CAAX box or the farnesyl group donor farnesyl pyrophosphate (J. Biol. Chem., 1995, 270, 26802; J. Biol. Chem., 1993, 268, 7617; Oncogene, 1995, 10, 1763), and those obtained by random screening of compound libraries and natural products (Biol. Chem., 1995, 270, 30611; J. Org. Chem. , 1994, 59, 6296). However, few are designed or synthesized with the intention of acting on the zinc site of FTase.
[0004]
Fujita has reported the following compounds in which a chelating side chain based on the structure of histidine or cysteine is introduced into the pyridine ring (Non-Patent Documents 1 to 4), but the specificity to FTase is not sufficient. In addition, development of inhibitors with higher specificity has been demanded.
[Chemical formula 2]
Figure 0004368576
[Non-Patent Document 1]
J. Med. Chem., 37 (25), 4267-4269, 1994.
[Non-Patent Document 2]
J. Med. Chem., 38 (17), 3264-3270, 1995.
[Non-Patent Document 3]
J. Med. Chem., 39 (2), 503-507, 1996.
[Non-Patent Document 4]
Bioorg. Med. Chem., 5 (1), 205-215, 1997.
[0005]
[Problems to be solved by the invention]
The subject of this invention is providing the chelating compound which acts on the zinc site | part of FTase and inhibits FTase activity. Another object of the present invention is to provide a farnesyl-protein transferase inhibitor and an anticancer agent containing the above compound as an active ingredient.
[0006]
[Means for Solving the Problems]
As a result of diligent search to solve the above problems, the present inventors have found that a dithiol compound represented by the following general formula in which a chelating chain is introduced into a pyridine ring has FTase inhibitory activity. The present invention has been completed based on the above findings.
[0007]
That is, the present invention provides the following general formula (I):
[Chemical 3]
Figure 0004368576
[Wherein Ar represents a phenyl group optionally having one or more substituents selected from the group consisting of a lower alkyl group, a halogen atom, a halogeno lower alkyl group and a lower alkoxy group, or a lower alkyl group, A naphthyl group optionally having one or more substituents selected from the group consisting of a halogen atom, a halogeno lower alkyl group and a lower alkoxy group is shown. ]
Or a salt thereof. According to a preferred embodiment of the present invention, there is provided a compound or a salt thereof, wherein Ar is an m-toluyl group.
[0008]
From another aspect, the present invention provides a farnesyl-protein transferase inhibitor comprising a compound represented by the above general formula (I) or a physiologically acceptable salt thereof. Furthermore, the present invention provides a medicament, preferably a medicament that is an anticancer agent, comprising the compound represented by the above general formula (I) or a physiologically acceptable salt thereof.
[0009]
Yet another aspect is a method for inhibiting farnesyl-protein transferase in the body of a mammal, including a human, comprising the compound represented by the above general formula (I) or a physiologically acceptable salt thereof. A method comprising administering an effective amount to a mammal; and a method for treating cancer, wherein a therapeutically effective amount of a compound represented by the above general formula (I) or a physiologically acceptable salt thereof is administered to a human. Provided by the present invention is a method comprising the step of administering to a containing mammal.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, the “lower alkyl group” is, for example, an alkyl group composed of a linear, branched, cyclic, or combination thereof having 1 to 6 carbon atoms, and more specifically, Methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, cyclobutyl group, cyclopropylmethyl group, pentyl group, isopentyl group, 2-methylbutyl group , Neopentyl group, 1-ethylpropyl group, hexyl group, isohexyl group, 4-methylpentyl group, 3-methylpentyl group, 2-methylpentyl group, 1-methylpentyl group, 3,3-dimethylbutyl group, 2, 2-dimethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group Group, 1-ethylbutyl group, and the like 2-ethylbutyl group. Preferably C1-CFourAn alkyl group, more preferably C1-C2An alkyl group, most preferably a methyl group.
[0011]
The “halogen atom” is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a fluorine atom. The “halogeno lower alkyl group” means a group in which one or more halogen atoms are substituted on the “lower alkyl group”. The type, number, and substitution position of the halogen atoms to be substituted are not particularly limited, and when two or more halogen atoms are substituted, the types of halogen atoms may be the same or different. More specifically, as the “halogeno lower alkyl group”, a trifluoromethyl group, a trichloromethyl group, a difluoromethyl group, a dichloromethyl group, a dibromomethyl group, a fluoromethyl group, a 2,2,2-trifluoroethyl group 2,2,2-trichloroethyl group, 2-bromoethyl group, 2-chloroethyl group, 2-fluoroethyl group, 2-iodoethyl group, 3-chloropropyl group, 4-fluorobutyl group, 6-iodohexyl Groups such as 2,2-dibromoethyl groups1-C6An alkyl group, preferably halogeno C1-C2An alkyl group, preferably fluoro-C1-C2An alkyl group, most preferably a trifluoromethyl group.
[0012]
The “lower alkoxy group” refers to a group in which the “lower alkyl group” is bonded to an oxygen atom, and more specifically, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, s -Butoxy group, t-butoxy group, pentoxy group, isopentoxy group, 2-methylbutoxy group, 1-ethylpropoxy group, 2-ethylpropoxy group, neopentoxy group, hexyloxy group, 4-methylpentoxy group, 3-methyl Pentoxy group, 2-methylpentoxy group, 3,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 1,3-dimethylbutoxy group 2,3-dimethylbutoxy group and the like, preferably C1-CFourAn alkoxy group, more preferably C1-C2An alkoxy group, most preferably a methoxy group.
[0013]
When Ar is a mono-substituted phenyl group, the substitution position is preferably a meta position or a para position. When it is a disubstituted phenyl group, the meta position is preferred. Particularly preferred embodiments are m-toluyl group, p-toluyl group, and 3,5-ditrifluoromethylphenyl group. When Ar is a naphthyl group, a 1-naphthyl group is preferable, and unsubstituted is preferable. Most preferred as Ar is an m-toluyl group.
[0014]
The compound of the present invention represented by the general formula (I) may exist in the form of a salt such as an acid addition salt or a base addition salt, but any salt is included in the scope of the present invention. Acid addition salts include mineral acid salts such as hydrochloride or hydrobromide, or organic acid salts such as p-toluenesulfonate, methanesulfonate, oxalate, or tartrate. . As the base addition salt, for example, a metal salt such as sodium salt, potassium salt, magnesium salt, or calcium salt, an ammonium salt, or an organic amine salt such as triethylamine salt or ethanolamine salt can be used. It can also exist as an amino acid salt such as a glycine salt. Furthermore, the compound of the present invention or a salt thereof may exist as a hydrate or a solvate, and these substances are also included in the scope of the present invention. In addition, the compound of the present invention may have one or two or more asymmetric carbons depending on the type of substituent, and may have a stereoisomer such as an optical isomer or a diastereoisomer. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
[0015]
In the examples of the present specification, the production methods of the compounds included in the general formula (I) are specifically described. Therefore, the starting materials, reaction reagents, reaction conditions, etc. used in these production methods are appropriately selected, and appropriate modifications or alterations are made to these production methods as necessary, thereby being included in the scope of the present invention. Any of the compounds can be produced. But the manufacturing method of the compound of this invention is not limited to what was specifically demonstrated by the Example. Regarding the method for producing a compound having a similar structure, the compound of the present invention can be easily produced by referring to a previously reported method (J. Organomet. Chem., 611, 577-585, 2000). .
[0016]
The metal coordination modes of natural metal proteins vary depending on the protein, but in the case of zinc enzymes, there are many examples in which amino acid residues such as histidine, cysteine, glutamic acid, and aspartic acid are involved in coordination. . In particular, cysteine residues are often important for binding to zinc. In recent examples, from the crystal structure analysis of Protein Kinase CK2 (EMBO J., 1999, 18, 2930), four cysteine residues It has been shown to be involved in coordination. Without being bound to any particular theory, the compounds of the present invention have a cysteine-like structure and this site is thought to coordinate with the zinc moiety of FTase. In addition, if only a chelating compound having such a coordination moiety is allowed to act, not only FTase but also enzymes that catalyze reactions necessary for life support may be inhibited. The compound of the present invention is characterized in that a phenyl group or a naphthyl group is introduced as a site having affinity for FTase at the 4-position of the pyridine ring not directly involved in metal coordination, and the specificity for FTase is enhanced. is there.
[0017]
The FTase inhibitor and anticancer agent of the present invention are one or two substances selected from the group consisting of the compound represented by the above general formula (I) and salts thereof, and hydrates and solvates thereof. Contains more than seeds as active ingredients. As the FTase inhibitor and anticancer agent of the present invention, the above substances themselves may be administered, but preferably administered as an oral or parenteral pharmaceutical composition that can be produced by methods well known to those skilled in the art. it can. Examples of the pharmaceutical composition suitable for oral administration include tablets, capsules, powders, fine granules, granules, liquids, and syrups. The pharmaceutical composition suitable for parenteral administration includes Examples include injections, instillations, suppositories, inhalants, eye drops, nasal drops, ointments, creams, patches, transdermal absorbents, transmucosal absorbents, and the like.
[0018]
Examples of the additive for preparation used in the production of the above pharmaceutical composition include excipients, disintegrants or disintegration aids, binders, lubricants, coating agents, dyes, diluents, bases, and solubilizers. Or a solubilizing agent, an isotonic agent, a pH adjuster, a stabilizer, a propellant, an adhesive, and the like, which can be appropriately selected by those skilled in the art depending on the form of the pharmaceutical composition. It may be used in combination of two or more. The above-mentioned pharmaceutical composition can be used as a pharmaceutical composition in the form of a so-called mixture by further blending one or more active ingredients of other pharmaceuticals. The pharmaceutical composition can be prepared in any form for oral administration or parenteral administration.
[0019]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the scope of the following examples.
According to the steps shown below, Ar in the general formula (I) is phenyl group (a), o-toluyl group (b), m-toluyl group (c), p-toluyl group (d), 3,5-bistrifluoro The compounds that were methylphenyl group (e), 3,4-dimethoxyphenyl group (f), 1-naphthyl group (g), and 3-chlorophenyl group (h) were synthesized.
[Formula 4]
Figure 0004368576
[0020]
All melting points (mp) were measured with a Yanagimoto micro melting point measuring machine, and the measurement temperature was uncorrected. NMR spectra were measured with JEOL JNM-AL300. The chemical shift value is1In H-NMR, tetramethylsilane is13In C-NMR, the measurement solvent or tetramethylsilane was used as an internal standard substance in ppm, and the J value was shown in Hz. IR spectrum was measured with JASCO JIR-6500W. Mass spectrometry [MS (EI)] and [MS (FAB)] spectra were measured with a JEOL JMS-DX303HF Mass Spectrometer. Elemental analysis (Anal) was measured with Yanaco MT-5S. Silica Gel 60N (40-100Mesh) (Merck) for silica gel for column chromatography, Silica Gel 60 F for silica gel for thin layer chromatography254 (Merck) was used.
[0021]
(1) Synthesis of biaryl compound 3
Boronic acid compound 2, diester compound 1 (Jagannath B. Lamture, Theodore G. Wensel, Tetrahedron Letters, 34, 4141-4144 (1993)) (1.2eq), potassium bromide (1.1eq), tripotassium phosphate (2eq ) Was suspended in dioxane and degassed by sonication under an argon atmosphere. Tetrakis (triphenylphosphine) palladium (0) (3.0 mol%) was added at room temperature, and the mixture was heated to reflux for 1-16 hours. Insoluble material was removed by filtration, and the solvent was distilled off under reduced pressure. Then, purification was performed by silica gel column chromatography or recrystallization to obtain compound 3. The phenyl compound 3a is a known compound (J. Am. Chem. Soc., 110, 8134-8144, 1988).
[0022]
4-o-Toluylpyridine-2,6-dicarboxylic acid dimethyl ester (3b):
Yield 67%;
mp 91.0-93.0 ° C;
1H-NMR (CDClThree) δ 2.30 (s, 3H, Ar-CHThree), 4.05 (s, 6H, O-CHThree), 7.26-7.34 (m, 4H, Ph), 8.30 (s, 2H, Py); MS (EI) m / z 285 (M+).
4-m-Toluylpyridine-2,6-dicarboxylic acid dimethyl ester (3c):
Yield 67%;
mp 142.0-143.0 ° C;
1H-NMR (CDClThree) δ 2.46 (s, 3H, Ar-CHThree), 4.06 (s, 6H, OCHThree), 7.31 (d, J = 3.6Hz, 1H, Ar), 7.42 (t, J = 8.1Hz, 1H, Ar), 7.55 (d, J = 3.6Hz, 2H, Ar), 8.54 (s, 2H, Py);
13C-NMR (CDClThree) δ 21.37 (Ar-CHThree), 53.17 (OMe), 124.18, 125.61, 127.75, 129.24, 130.83 (Ar), 136.03, 139.17, 148.72, 151.21 (C), 165.23 (C = O);
IR (KBr) 2955, 1744, 1717, 1600, 1437, 1356, 1242, 1194, 1162, 1127, 999, 968, 894, 777, 736, 710 cm-1;
MS (EI) m / z 285 (M+);
Anal. Calcd. For C16H15NOFour : C, 67.36; H, 5.30; N, 4.91. Found: C, 67.22; H, 5.37; N, 5.00.
[0023]
4-p-Toluylpyridine-2,6-dicarboxylic acid dimethyl ester (3d):
Yield 56%;
mp 167.2-168.5 ° C;
1H-NMR (CDClThree) δ 2.43 (s, 3H, Ar-CHThree), 4.05 (s, 6H, OCHThree), 7.33 (d, J = 3.9Hz, 2H, Ph), 7.66 (d, J = 4.1Hz, 2H, Ph), 8.53 (s, 2H, Py).
13C-NMR (CDClThree) δ 21.22, 53.15 (CHThree), 125.28, 126.89, 130.08 (-CH =), 133.13, 140.48, 148.74, 150.93, 165.27 (C);
IR (KBr) 2961, 1755, 1717, 1598, 1445, 1355, 1263, 1188, 1165, 1132, 1068, 990, 957, 881, 812, 780, 750, 737 cm-1;
MS (EI) m / z 285 (M+).
4- (3,5-Bistrifluoromethylphenyl) pyridine-2,6-dicarboxylic acid dimethyl ester (3e):
Yield 68%;
mp 97.5-99.0 ° C;
1H-NMR (CDClThree) δ 4.08 (s, 6H, CHThree), 8.05 (s, 1H, Ph), 8.18 (s, 2H, Ph), 8.57 (s, 2H, Py);
IR (KBr) 3424, 2959, 1723, 1602, 1445, 1343, 1281, 1184, 1132, 1087, 992, 903, 847, 785, 739, 706, 684, 653 cm-1;
MS (EI) m / z 407 (M+).
[0024]
4- (3,4-Dimethoxyphenyl) pyridine-2,6-dicarboxylic acid dimethyl ester (3f):
Yield 62%;
mp 143.0-144.0 ° C;
1H-NMR (CDClThree) δ 3.96 (s, 3H, Ar-OCHThree), 4.00 (s, 3H, Ar-OCHThree), 4.06 (s, 6H, CO2-CHThree), 7.01 (d, J = 4.2Hz, 1H, Ph), 7.24 (d, J = 1.1Hz, 1H, Ph), 7.37 (dd, J = 6.3, 2.2Hz, 1H, Ph), 8.50 (s, 2H, Py);
IR (KBr) 3003, 2952, 2841, 1718, 1600, 1526, 1445, 1364, 1273, 1227, 1150, 1135, 1073, 1027, 783, 740 cm-1;
MS (EI) m / z 331 (M+).
4- (Naphthalen-1-yl) pyridine-2,6-dicarboxylic acid dimethyl ester (3 g):
Yield 62%;
mp 159.5-160.0 ℃;
1H-NMR (CDClThree) δ 4.05 (s, 6H, CHThree), 7.45-7.59 (m, 5H, Ar), 7.93-7.97 (m, 2H, Ar), 8.46 (s, 2H, Py);
IR (KBr) 3463, 2954, 1753, 1589, 1441, 1262, 1247, 1197, 1167, 1009, 957, 810, 787, 733 cm-1;
MS (EI) m / z 321 (M+).
4- (3-Chlorophenyl) pyridine-2,6-dicarboxylic acid dimethyl ester (3h):
Yield 65%;
mp 176.5-177.5 ° C;
1H-NMR (CDClThree) δ 4.06 (s, 6H, CHThree), 7.47-7.50 (m, 2H, Ph), 7.62-7.66 (m, 1H, Ph), 7.74 (s, 1H, Ph), 8.52 (s, 2H, Py);
13C-NMR (CDClThree) δ 53.30 (CHThree), 125.30, 125.59, 127.29, 130.11, 130.67 (-CH =), 135.50, 137.96, 148.98, 149.69, 165.02 (C);
IR (KBr) 3091, 2359, 1760, 1716, 1592, 1440, 1335, 1249, 988, 780 cm-1;
MS (FAB) m / z 306 (M + 1)+.
[0025]
(2) Synthesis of dialcohol 4
Biaryl compound 3 was dissolved or suspended in ethanol, and sodium borohydride (4.0 eq) was added at room temperature. After heating to reflux until the color of the reaction solution disappeared (1-3 hours), the solvent was distilled off under reduced pressure. The residue was dissolved in water and extracted three times with ethyl acetate. The organic layers were combined, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography to obtain dialcohol compound 4. The phenyl compound 4a is a known compound (J. Am. Chem. Soc., 110, 8134-8144, 1988).
(6-Hydroxymethyl-4-o-toluylpyridin-2-yl) methanol (4b):
Yield 87%;
1H-NMR (DMSO-d6) δ 2.24 (s, 3H, CHThree), 4.59 (d, J = 2.9Hz, 4H, CH2), 5.42 (t, J = 5.6Hz, 2H, OH), 7.20-7.33 (m, 6H, Ar);
13C-NMR (DMSO-d6) δ 19.87 (CHThree), 64.09 (CH2), 118.36, 126.10, 128.13, 128.89, 130.50 (-CH =), 134.39, 139.36, 149.74, 160.97 (C);
(6-Hydroxymethyl-4-m-toluylpyridin-2-yl) methanol (4c):
Yield 92%.
(6-Hydroxymethyl-4-p-toluylpyridin-2-yl) methanol (4d):
Yield 76%;
mp 138.0-139.2 ° C;
1H-NMR (CDThreeOD) δ 2.37 (s, 3H, CHThree), 4.87 (s, 4H, -CH2-), 7.29 (d, J = 3.9Hz, 2H, Ph), 7.62 (d, J = 5.2Hz, 2H, Ph), 7.64 (s, 2H, Py);
13C-NMR (CDThreeOD) δ 21.23 (CHThree), 65.53 (-CH2-), 117.65, 127.89, 130.86 (CH), 136.51, 140.66, 151.59, 162.12 (C);
IR (KBr) 3357, 1608, 1550, 1515, 1430, 1190, 1092, 1025, 1003, 817 cm-1.
[0026]
[4- (3,5-Bistrifluoromethylphenyl) -6-hydroxymethylpyridin-2-yl] methanol (4e):
Yield 88%;
mp 137.0-138.0 ° C;
IR (KBr) 3400, 1609, 1561, 1447, 1386, 1311, 1279, 1133, 986, 906, 877, 845, 703, 683 cm-1;
MS (EI) m / z 351 (M+).
[4- (3,4-Dimethoxyphenyl) -6-hydroxymethylpyridin-2-yl] methanol (4f):
Yield 68%;
1H-NMR (DMSO-d6) δ 3.81 (s, 3H, CHThree), 3.86 (s, 3H, CHThree), 4.57 (d, J = 2.9Hz, 4H, -CH2-), 5.41 (t, J = 5.9Hz, 2H, OH), 7.09 (d, J = 4.1Hz, 1H, Ph), 7.29-7.33 (m, 2H, Ph), 7.57 (s, 2H, Py) ;
13C-NMR (DMSO-d6) δ 55.57, 55.60 (CHThree), 64.26 (-CH2-), 109.98, 112.19, 115.32, 119.21 (-CH =), 130.44, 147.96, 149.20, 149.77, 161.46 (C).
[6-Hydroxymethyl-4- (naphthalen-1-yl) pyridin-2-yl] methanol (4 g):
Yield 83%;
mp 138.0-140.0 ° C;
IR (KBr) 3256, 1603, 1551, 1508, 1399, 1073, 990, 886, 802, 780 cm-1;
MS (EI) m / z 265 (M+).
[4- (3-Chlorophenyl) -6-hydroxymethylpyridin-2-yl] methanol (4h):
Yield 64%.
[0027]
(3) Synthesis of dialdehyde body 5
Dialcohol 4, manganese dioxide (12 eq) was suspended in benzene and heated to reflux for 3 hours. Manganese dioxide was removed by celite filtration, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography or recrystallization to obtain dialdehyde form 5.
4-Phenylpyridine-2,6-dicarbaldehyde (5a):
Yield 58%;
mp 92.1-93.0 ℃;
1H-NMR (CDClThree) δ 7.53-7.55 (m, 3H, Ar), 7.73-7.77 (m, 2H, Ar), 8.39 (s, 2H, Ar), 10.22 (s, 2H, CHO);
13C-NMR (CDClThree) δ 122.79, 127.11, 129.48, 130.32 (CH), 135.93, 151.11, 153.60 (C), 192.51 (CHO);
IR (KBr) 2844, 1710, 1598, 1451, 1373, 1194, 957, 887, 765, 704 cm-1;
MS (EI) m / z 211 (M+);
Anal. Calcd. For C13H9NO2 : C, 73.92; H, 4.29; N, 6.63. Found: C, 74.15; H, 4.30; N, 6.54.
[0028]
4-o-Toluylpyridine-2,6-dicarbaldehyde (5b):
40% yield;
1H-NMR (CDClThree) δ 2.30 (s, 3H, CHThree), 7.23-7.41 (m, 4H, Ph), 8.12 (s, 2H, Py), 10,23 (s, 2H, CHO);
13C-NMR (CDClThree) δ 20.17 (CHThree), 125.64, 126.52, 129.30, 129.42, 131.03 (CH), 134.94, 137.03, 152.69, 153.02 (C), 192.45 (CHO).
4-m-Toluylpyridine-2,6-dicarbaldehyde (5c):
Yield 33%;
mp 109.0-110.0 ° C;
1H-NMR (CDClThree) δ 2.46 (s, 3H, CHThree), 7.33 (d, J = 3.7Hz, 1H, Ph), 7.43 (t, J = 8.0Hz, 1H, Ph), 7.55 (d, J = 3.7Hz, 2H, Ph), 8.38 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDClThree) 21.43 (CHThree), 122.79, 124.22, 125.31, 127.78, 129.38, 131.10 (CH), 135.88, 139.36, 151.26, 153.58 (C), 192.58 (CHO);
IR (KBr) 2831, 1709, 1594, 1362, 957, 789, 691 cm-1;
MS (EI) m / z 225 (M+);
Anal. Calcd. For C14H11NO2 : C, 74.65; H, 4.92; N, 6.22. Found: C, 74.58; H, 4.95; N, 5.98.
4-p-Toluylpyridine-2,6-dicarbaldehyde (5d):
Yield 37%;
mp 88.0-89.0 ° C;
1H-NMR (CDClThree) δ 2.44 (s, 3H, CHThree), 7.34 (d, J = 4.0Hz, 2H, Ph), 7.65 (d, J = 4.1Hz, 2H, Ph), 8.37 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDClThree) δ 21.27 (CHThree), 122.44, 126.93, 130.21, 132.96 (CH), 140.77, 150.98, 153.60 (C), 192.56 (CHO);
IR (KBr) 2360, 1708, 1596, 1446, 1371, 1316, 1205, 992, 956, 884, 813, 704, 681 cm-1;
MS (EI) m / z 225 (M+);
Anal. Calcd. For C14H11NO2 : C, 74.65; H, 4.92; N, 6.22. Found: C, 74.50; H, 4.91; N, 6.13.
[0029]
4- (3,5-Bistrifluoromethylphenyl) pyridine-2,6-dicarbaldehyde (5e):
Yield 43%;
mp 154.2-155.8 ° C;
1H-NMR (CDClThree) δ 8.05 (s, 1H, Ph), 8.18 (s, 2H, Ph), 8.42 (s, 2H, Py), 10.26 (s, 2H, CHO);
IR (KBr) 3085, 2360, 1707, 1351, 1305, 1277, 1200, 1173, 1135, 1083, 957, 903, 706, 682 cm-1;
MS (EI) m / z 347 (M+).
4- (3,4-Dimethoxyphenyl) pyridine-2,6-dicarbaldehyde (5f):
Yield 34%;
mp 139.0-140.0 ° C;
1H-NMR (CDClThree) δ 3.97 (s, 3H, CHThree), 4.00 (s, 3H, CHThree), 7.01 (d, J = 4.2Hz, 1H, Ph), 7.23 (d, J = 1.1Hz, 1H, Ph), 7.37 (dd, J = 4.2, 2.3Hz, 1H, Ph), 8.34 (s, 2H, Py), 10.21 (s, 2H, CHO);
13C-NMR (CDClThree) δ 56.01, 56.15 (CHThree), 109.64, 111.68, 120.17, 122.10 (CH), 128.38, 149.79, 150.70, 151.11, 153.53 (C), 192.68 (C = O);
IR (KBr) 2842, 1707, 1593, 1523, 1439, 1374, 1268, 1027, 957, 808, 686 cm-1;
MS (EI) m / z 271 (M+);
Anal. Calcd. For C15H13NOFour : C, 66.41; H, 4.83; N, 5.16. Found: C, 66.18; H, 4.78; N, 5.07.
[0030]
4- (Naphthalen-1-yl) pyridine-2,6-dicarbaldehyde (5g):
Yield 61%;
mp 148.0-149.0 ° C;
1H-NMR (CDClThree) δ 7.44-7.60 (m, 4H, Ar), 7.71 (d, J = 3.9Hz, 1H, Ar), 7.97 (d, J = 3.6Hz, 2H, Ar), 8.32 (s, 2H, Py), 10.27 (s, 2H, CHO);
IR (KBr) 3410, 2829, 2360, 1711, 1595, 1508, 1359, 1195, 957, 806, 782, 683 cm-1;
MS (EI) m / z 261 (M+).
4- (3-Chlorophenyl) pyridine-2,6-dicarbaldehyde (5h):
Yield 45%;
mp 179.0-181.0 ° C;
IR (KBr) 3074, 2860, 2359, 1714, 1596, 1365, 1214, 1106, 957, 795, 677 cm-1;
MS (FAB) m / z 246 (M + 1)+.
[0031]
(4) Synthesis of dithiol 6
According to the method of Zhang et al. (Tetrahedron Letters, 40, 4615-4618 (1999)), it was synthesized from dialdehyde 5 and 2-aminoethanethiol hydrochloride. Dialdehyde form 5, 2-aminoethanethiol hydrochloride (2 eq) was dissolved in methanol and stirred at room temperature for 1-16 hours. Thereafter, sodium cyanoborohydride (10 eq) was added, and 1M hydrochloric acid ethanol solution (20 eq) was added dropwise at room temperature. After stirring for 1-16 hours, the solvent was distilled off under reduced pressure, and the residue was dissolved in 2N aqueous sodium hydroxide solution. The extract was washed 3 times with chloroform, adjusted to pH 7 with concentrated hydrochloric acid, and extracted 3 times with chloroform. The extracted chloroform layers were combined and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain dithiol compound 6.
2-([6-[(2-Mercaptoethylamino) methyl] -4-phenylpyridin-2-ylmethyl] amino) ethanethiol (6a) (Ph-HPH-SH):
Yield 81% (oil);
1H-NMR (CDClThree) δ 2.34 (brs, 4H), 2.72 (t, J = 6.3Hz, 4H, -CH2-S), 2.91 (t, J = 6.3Hz, 4H, -CH2-N), 3.98 (s, 4H, -CH2-Py), 7.42 (s, 2H, Py), 7.44-7.47 (m, 3H, Ph), 7.64-7.66 (m, 2H, Ph);
13C-NMR (CDClThree) δ 24.76, 51.78, 54.35 (-CH2-), 118.50, 126.96, 128.92 (-CH =), 138.17, 149.48, 159.25 (C);
IR (Film) 3300, 2929, 1668, 1606, 1554, 1449, 1123, 766, 697 cm-1;
MS (FAB) m / z 334 (M + 1)+;
[0032]
2-([6-[(2-Mercaptoethylamino) methyl] -4-o-toluylpyridin-2-ylmethyl] amino) ethanethiol (6b):
Yield 95% (oil);
1H-NMR (CDClThree) δ 2.17 (brs, 4H), 2.27 (s, 3H, CHThree), 2.71 (t, J = 6.4Hz, 4H, -CH2-S), 2.90 (t, J = 6.3Hz, 4H, -CH2-N), 3.96 (s, 4H, -CH2-Py), 7.15-7.28 (m, 6H, Ar);
13C-NMR (CDClThree) δ 20.23 (CHThree), 24.88, 51.85, 54.38 (-CH2-), 120.96, 125.92, 128.18, 129.12, 130.49 (-CH =), 134.84, 139.21, 150.81, 158.77 (C);
IR (Film) 3300, 3059, 2928, 2831, 2555, 1667, 1606, 1550, 1492, 1456, 1408, 1361, 1289, 1120, 994, 865, 763, 727 cm-1.
2-([6-[(2-Mercaptoethylamino) methyl] -4-m-toluylpyridin-2-ylmethyl] amino) ethanethiol (6c) (3-Tol-HPH-SH):
Yield 20% (oil);
1H-NMR (CDClThree) δ 2.43 (s, 3H, CHThree), 2.73 (t, J = 6.3Hz, 4H, -CH2-S), 2.79 (brs, 4H), 2.93 (t, J = 6.4Hz, 4H, -CH2-N), 4.00 (s, 4H, -CH2-Py), 7.23-7.46 (m, 6H, Ar);
13C-NMR (CDClThree) 21.40 (CHThree), 24.58, 51.75, 54.19 (-CH2-), 118.72, 124.13, 127.74, 128.91, 129.80 (-CH =), 138.05, 138.70, 149.82, 158.76 (C);
IR (Film) 3214, 3945, 2412, 2254, 1609, 1559, 1445, 1195, 1102, 1001, 882, 791, 701 cm-1;
MS (EI) m / z 347 (M+).
[0033]
2-([6-[(2-Mercaptoethylamino) methyl] -4-p-toluylpyridin-2-ylmethyl] amino) ethanethiol (6d) (4-Tol-HPH-SH):
Yield 66% (oil);
1H-NMR (CDClThree) δ 2.38 (s, 3H, CHThree), 2.78 (t, J = 6.5Hz, 4H, -CH2-N), 3.02 (t, J = 6.6Hz, 4H, -CH2-S), 4.09 (s, 4H, N-CH2-Ar), 7.26 (d, J = 4.3Hz, 2H, Ph), 7.41 (s, 2H, Py), 7.53 (d, J = 4.1Hz, 2H, Ph);
13C-NMR (CDClThree) 21.15 (CHThree), 23.36, 51.27, 52.95 (-CH2-), 118.97, 126.85, 129.83 (-CH =), 134.30, 139.60, 150.09, 156.24 (C);
IR (Film) 2932, 2330, 1666, 1606, 1551, 1518, 1453, 1119, 997, 818, 732 cm-1;
MS (EI) m / z 347 (M+).
2-([4- (3,5-Bistrifluoromethylphenyl) -6-[(2-mercaptoethylamino) methyl] pyridin-2-ylmethyl] amino) ethanethiol (6e) (3,5-CFThree-HPH-SH):
Yield 82% (oil);
1H-NMR (CDClThree) δ 2.09 (brs, 2H, SH), 2.74 (t, J = 6.2Hz, 4H, -CH2-S), 2.93 (t, J = 6.3Hz, 4H, -CH2-CH 2 -N), 4.03 (s, 4H, N-CH2-Ar), 7.49 (s, 2H, Ar), 7.95 (s, 1H, Ar), 8.09 (s, 2H, Ar);
IR (Film) 2832, 1604, 1560, 1456, 1389, 1281, 1176, 1133, 903, 845, 704, 683 cm-1.
[0034]
2-([4- (3,4-Dimethoxyphenyl) -6-[(2-mercaptoethylamino) methyl] pyridin-2-ylmethyl] amino) ethanethiol (6f):
Yield 65% (oil);
1H-NMR (CDClThree) δ 2.23 (brs, 4H), 2.72 (t, J = 6.4Hz, 4H, -CH2-S), 2.90 (t, J = 7.2Hz, 4H, -CH2-CH 2 -N), 3.92 (s, 3H, CHThree), 3.93 (s, 3H, CHThree), 3.97 (s, 4H, N-CH2-Ar), 6.96 (d, J = 4.2 Hz, 1H, Ph), 7.17 (s, 1H, Ph), 7.24 (d, J = 4.2 Hz, 1H, Ph), 7.39 (s, 2H, Py).
2-([6-[(2-Mercaptoethylamino) methyl] -4- (naphthalen-1-yl) pyridin-2-ylmethyl] amino) ethanethiol (6 g) (1-Naph-HPH-SH):
Yield 63% (oil);
1H-NMR (CDClThree) δ 2.21 (brs, 4H), 2.27 (t, J = 6.3Hz, 4H, -CH2-S), 2.93 (t, J = 6.2Hz, 4H, -CH2-CH 2 -N), 4.00 (s, 4H, N-CH2-Ar), 7.31-7.55 (m, 5H, Ar), 7.81-7.92 (m, 4H, Ar);
IR (Film) 2829, 1603, 1550, 1443, 1119, 778 cm-1;
MS (EI) m / z 383 (M+).
2-([4- (3-Chlorophenyl) -6-[(2-mercaptoethylamino) methyl] pyridin-2-ylmethyl] amino) ethanethiol (6h):
Yield 37% (oil);
IR (KBr) 3298, 2930, 2832, 1607, 1594, 1455, 1395, 1103, 1081, 868, 788 cm-1.
[0035]
Test example:
The cells used were K-ras-NRK cells. K-ras-NRK cells are glutamine 0.6 g / l, kanamycin 0.2 g / l, NaHCOThree Dulbecco's modified Eagle's medium (DMEM; Nissui Pharmaceutical Co., Ltd.) containing 2.25 g / l is supplemented with 5% calf serum (CS; Gibco Laboratories) at 37 ° C, 5% CO2Obtained by culturing in an incubator.
(1) Observation of morphological change induction effect
K-ras-NRK cells in a 48-well plastic plate (Costar 3548), 1.5 x 10Four cells: DMEM with 0.5ml / well, 1 day 37 ℃, 5% CO2Incubated in an incubator. On the next day, the test compound was added, and the morphology of the cells was observed with a phase contrast microscope until the third day, and photographed. The results are shown in FIGS.
[0036]
(2) Measurement of cell growth inhibitory effect
K-ras-NRK cells in a 48-well plastic plate, 1.5 x 10Four cells: DMEM with 0.5ml / well, 1 day 37 ℃, 5% CO2Incubated in an incubator. The test compound is added the next day, and after further incubation for 3 days, DMEM is removed and PBS-(8.0g / l NaCl, 0.916g / l Na2HPOFour, 0.2g / l KCl, 0.2g / l KH2POFour) Twice and then trypsin solution (0.5 g / l trypsin, 8.0 g / l NaCl, 0.0475 g / l Na2HPOFour, 0.4g / l KCl, 0.06g / l KH2POFour, 1.0g / l glucose, 0.02g / l phenol red, 0.35g / l NaCO2, 0.2g / l EDTA · 4Na) is added at 100μl / well and 0% CO2Cells were peeled off in an incubator under conditions. The cell concentration of a solution obtained by adding 900 μl / well of DMEM to each well and loosening with a syringe twice to make it uniform was measured using a Coulter Counter (Model ZM; Coulter Electronics).50) In addition, the number of cells from day 1 to day 3 was similarly measured for K-ras-NRK cells, and the concentration dependence of cell growth inhibition was determined. The same test was carried out three times for the six compounds shown in the table, and the average value was determined. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004368576
[0038]
【The invention's effect】
The compound of the present invention has FTase inhibitory activity and is useful as an active ingredient of FTase inhibitors or anticancer agents.
[Brief description of the drawings]
FIG. 1 is a photograph showing a morphological change-inducing effect on K-ras-NRK cells. The result of control (adding only 5 μl of dimethyl sulfoxide as a solvent) is shown.
FIG. 2 is a photograph showing the morphological change-inducing effect of the compound of the present invention on K-ras-NRK cells. The result of 1-Naph-HPH-SH 0.5 μg / ml is shown.
FIG. 3 is a photograph showing the morphological change-inducing effect on K-ras-NRK cells. The result of a positive control (Conophylline 1.0 μg / ml: Drugs Exp. Clin. Res., 22 (2), 35-40, 1996) is shown.

Claims (5)

下記の一般式(I):
Figure 0004368576
〔式中、Arは、低級アルキル基、ハロゲン原子、ハロゲノ低級アルキル基及び低級アルコキシ基からなる群から選択される置換基を1若しくは2以上有していてもよいフェニル基、又は低級アルキル基、ハロゲン原子、ハロゲノ低級アルキル基及び低級アルコキシ基からなる群から選択される置換基を1若しくは2以上有していてもよいナフチル基を示す。〕
で表される化合物又はその塩。
The following general formula (I):
Figure 0004368576
[Wherein Ar represents a phenyl group optionally having one or more substituents selected from the group consisting of a lower alkyl group, a halogen atom, a halogeno lower alkyl group and a lower alkoxy group, or a lower alkyl group, A naphthyl group optionally having one or more substituents selected from the group consisting of a halogen atom, a halogeno lower alkyl group and a lower alkoxy group is shown. ]
Or a salt thereof.
Arがm-トルイル基である請求項1に記載の化合物又はその塩。The compound or a salt thereof according to claim 1, wherein Ar is an m-toluyl group. 請求項1又は2に記載の化合物又は生理学的に許容されるその塩を含むファルネシル・蛋白質転移酵素阻害剤。A farnesyl-protein transferase inhibitor comprising the compound according to claim 1 or 2 or a physiologically acceptable salt thereof. 請求項1又は2に記載の化合物又は生理学的に許容されるその塩を有効成分として含む医薬。A pharmaceutical comprising the compound according to claim 1 or 2 or a physiologically acceptable salt thereof as an active ingredient. 制癌剤である請求項4に記載の医薬。The medicament according to claim 4, which is an anticancer drug.
JP2002369190A 2002-12-20 2002-12-20 Dithiol compound Expired - Fee Related JP4368576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369190A JP4368576B2 (en) 2002-12-20 2002-12-20 Dithiol compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369190A JP4368576B2 (en) 2002-12-20 2002-12-20 Dithiol compound

Publications (2)

Publication Number Publication Date
JP2004196732A JP2004196732A (en) 2004-07-15
JP4368576B2 true JP4368576B2 (en) 2009-11-18

Family

ID=32765480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369190A Expired - Fee Related JP4368576B2 (en) 2002-12-20 2002-12-20 Dithiol compound

Country Status (1)

Country Link
JP (1) JP4368576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6567654B2 (en) * 2014-09-09 2019-08-28 学校法人沖縄科学技術大学院大学学園 4-Substituted pyridine-2,6-dicarboxylic acid derivative and process for producing the same

Also Published As

Publication number Publication date
JP2004196732A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
TWI336697B (en) Thiazole derivatives as cannabinoid receptor modulators
TW202204323A (en) Substituted pyridazine compound
US6660724B1 (en) Compounds and pharmaceutical compositions containing them
KR101450960B1 (en) New Thiourea derivatives as RORα Activators, and pharamaceutical compositions containing the same
JP2005534619A (en) Azaindole as C-JUNN-terminal kinase inhibitor
JP6165744B2 (en) Treatment of malignant and non-malignant diseases with RAS antagonists
JPH10279477A (en) Protein tyrosine kinase inhibitor for suppression of proliferation process in mammal cell, containing benzylidene-and cinnamylidene-malonic nitrile derivative as active ingredient
NZ566722A (en) Novel pyrimidine carboxamides
JP2008535824A (en) Substituted aminoalkylbenzopyran derivatives and amidoalkylbenzopyran derivatives
JP2022537605A (en) Bicyclic compounds as CRBN protein modulators
JP7028780B2 (en) Benzamide derivative
JPS6360755B2 (en)
CN111757770B (en) 3-Phenyl-4-hexynoic acid derivatives as GPR40 agonists
TWI714702B (en) Preparation method of pyridine derivates compounds, and intermidiates and structures thereof
JP4368576B2 (en) Dithiol compound
TW381023B (en) Use of 5-acyl-1,4-dihydropyridines for the treatment of disorders of the central nervous system
JP2012526054A (en) Heterocyclic substituted diphenylurea derivatives and uses thereof
US5180746A (en) Aralkylamine compounds
US5196418A (en) Hemicholinium lipids and use thereof
JP5302214B2 (en) O-substituted dibenzylurea derivatives as TRPV1 receptor antagonists
Zhong et al. Synthesis, Crystal Structure and Anti-ischaemic Activity of (E)-1-{4-[Bis (4-methoxy-phenyl) methyl] piperazin-1-yl}-3-(4-chlorophenyl)-prop-2-en-1-one
JPS6251672A (en) Novel 2-(4-phenyl-1-piperazinyl alkyl)-aminopyrimidine derivative and acid addition salt thereof
EP0645379B1 (en) Benzoylacetylene derivatives
JP7483032B2 (en) Novel quercetin redox derivatives and their use as BET inhibitors
JPS62145073A (en) Quinazoline derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees