JP4368496B2 - Cylindrical object separation and supply device - Google Patents

Cylindrical object separation and supply device Download PDF

Info

Publication number
JP4368496B2
JP4368496B2 JP2000135687A JP2000135687A JP4368496B2 JP 4368496 B2 JP4368496 B2 JP 4368496B2 JP 2000135687 A JP2000135687 A JP 2000135687A JP 2000135687 A JP2000135687 A JP 2000135687A JP 4368496 B2 JP4368496 B2 JP 4368496B2
Authority
JP
Japan
Prior art keywords
star wheel
cylindrical object
downstream
cylindrical
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000135687A
Other languages
Japanese (ja)
Other versions
JP2001315950A (en
Inventor
稔 幸田
友敬 川野
謙一 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000135687A priority Critical patent/JP4368496B2/en
Publication of JP2001315950A publication Critical patent/JP2001315950A/en
Application granted granted Critical
Publication of JP4368496B2 publication Critical patent/JP4368496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Specific Conveyance Elements (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
マンガン乾電池、アルカリ乾電池などの円筒形電池は、1個単位で市販される場合もあるが、最近では、2個、4個、6個、12個などの電池をひとまとめとして包装し、販売される場合が一般的となってきた。本発明は上記のように2個、4個、6個、12個などの円筒形物体をひとまとめとして包装する装置に対して、円筒形物体を、それらの個数からなる群れに分離し供給する装置に関するものである。
【0002】
【従来の技術】
従来から、円筒形電池用のシュリンク包装装置に於いて、広く一般的に用いられている分離供給装置の一例についてその主要部を図4に示す。図4ではシュート2によって左上方面から、互いに外径を接触させた状態で押し合いながら連続的に搬送されてきた円筒形物体としての単三形アルカリ乾電池1−aを、左側に設けられたスターホイール5により、電池2個毎にその隙間を拡大して電池2個毎の群れに分離した後、右側に設けられたシュリンク包装装置の回転円盤6に供給する状態を示している。
【0003】
参考までに、簡単にシュリンク包装装置について説明すると、前記回転円盤6の外周部に電池外周を割付け、外周を支えられた円筒形電池のそれぞれを適当な角度だけ回転させて、円筒形電池1−cのラベルの向きを所定の方向にそろえた後、電池2個毎にひとまとめとして熱収縮性フィルムでその周囲を覆い、熱風を吹きつけて加熱することにより前記フィルムを収縮させ、シュリンク包装をする装置である。
【0004】
図示を省略したコンベアーにより搬送されてきた多数の電池と搬送コンベアーとの間に働く摩擦力などの作用で、シュート2内の電池1−a外径相互間は互いに押し合った状態にあり、強い接触圧力が働いている。したがって、左上に設けられたシュート2の内部では、円筒形電池は後続の電池によりスターホイール5の外周に対して強く押しつけられ、スターホイール5の左回転に伴って、シュート2内の電池の位置とスターホイールの凹部7が一致すると電池は速やかに凹部7に嵌まり込み、シュリンク包装装置の回転円盤6に向けて搬送される。
【0005】
なお、図4に示すシュリンク包装装置は、2個の円筒形電池1−cをひとまとめとして、シュリンク包装するためのものであり、事前に電池を2個毎の群れに分離して供給することが必要である。従って、スターホイール5の外周に設けた電池を嵌め込んで搬送する凹部7のそれぞれの間には、幅の狭い凸部8と幅の広い凸部9を交互に設けている。
【0006】
そして、これらの凹部7に供給された電池は、凸部の幅の差を利用して、凸部の幅が狭く互いにその外径を接触させるように接近した電池2個を一群とし、凸部の幅が広く電池外径相互の間に隙間Wを設けた部分を、他の群れの電池との境界と見なし、群れ毎に区分してシュリンク包装装置に供給する。
【0007】
【発明が解決しようとする課題】
しかしながら、上記のような従来の分離供給装置により、高速での処理能力を有するシュリンク包装装置に単三形電池を2個ずつの群れに分離して供給する場合には、電池を連続的にシュートからスターホイールに対して、同期させて高速で供給する必要がある。
【0008】
また、シュートの内部に長く連なり、外径を互いに接する状態となった電池には、シュート内部の電池の自重や、さらに上流側のコンベアー上にある多数の電池とコンベアーとの摩擦力などが加わり、スターホイール5外周に対して強い押し付け力が働いている。さらにシュートの方向は、ほぼスターホイールのピッチ円に対して直角方向を向いているので、スターホイールの凹部7に嵌まり込み、凹部の底に到達した電池は、急激にその走行速度を低下させて、瞬間的に停止状態のようになった後、直角方向に再び走行を開始することになるので大きな衝撃力が働き、電池の外周に巻きつけられた表面に印刷したアルミニウム箔又は、熱収縮性樹脂フィルムからなるラベルに傷や変形が発生する原因となる場合が多い。
【0009】
また、コンベアーやシュート内に連なった多数の電池が一斉に、スターホイール5に向かって一定の周期で断続的な走行を繰り返すことにより、シュリンク包装装置の全体に衝撃や振動が発生し、騒音も大きくなり、品質、稼働率などのほか、職場環境などの面からも好ましくない状態となる。
【0010】
【課題を解決するための手段】
本発明では上記のような課題を解決するために、搬送された円筒形物体が連続的に連なった状態で搬送されることによって働いている円筒形物体の外径間の押しつけ圧力の影響が及ばないように所定の隙間を常時確保し、その所定の隙間として円筒形物体の外径が互いに接触しない隙間確保した状態にして搬送した後に、円筒形物体の搬送を一時的に停止状態にし、所定の複数個に構成する一つの群れと他の群れとの間隔を広く設定して分離し、その状態のままで連続的に円筒形物体を搬送して次工程に供給することを特徴としたもので、コンベアーやシュートなど円筒形物体の搬送経路の上流側と下流側の2箇所にスターホイールを配設し、そのスターホイールの間に下流側のシュートを備えている。コンベアーやシュートで互いに外径を接触させながら連続的に連なった状態で搬送されている多数の円筒形物体を、上流側の第1のスターホイールの外周に設けた凹部に円筒形物体を嵌め合わせて回転により、下流に向けて搬送し、上流側と下流側のスターホイールを結ぶ下流側のシュートの内部で円筒形物体の外径間の押しつけ圧力の影響が及ばないように、円筒形物体の外径が互いに接触しない部分としての所定の隙間を持たせる。また、上流側の第1のスターホイールは外周に幅の狭い凸部を挟んで等間隔に凹部を有する形状とし、一定の速度で連続的に回転させ、円筒形物体を凹部に嵌まり込んで連続的に下流に向かって搬送される。従って、コンベアー上やシュート内にある後続の円筒形物体も下流に向けて連続的に走行することになる。さらに、上流部の第1のスターホイールに接続された下流側のシュートで、所定の隙間を保ちながら一群の円筒形物体を下流側の第2のスターホイールに搬送する。
【0011】
下流側の第2のスターホイールは、その外周に幅の狭い凸部と凹部を設けて、凹部の個数が、ほぼ外径が互いに接触状態となるように接近して一つの群れを構成する所定の複数個に達する毎に、幅の広い凸部を一箇所設けて、不等間隔に凹部を設けた形状とする。従って、外周に設けた凹部のそれぞれに円筒形物体を嵌め込んで、スターホイールを一定の速度で回転させることにより、スターホイールの回転にともなって、このスターホイールよりも上流側の円筒形物体は下流に向けて断続的に走行し搬送される。そして、凹部に嵌まり込んだ一つの群れと幅の広い凸部を挟む凹部に嵌まり込んだ他の群れとの円筒形物体間は、ほぼ外径が互いに接触状態となるように接近してなる群れ内の円筒形物体間の隙間よりも広い隙間となり、この部分を一つの群れと他の群れとの境界として、群れ毎に分離し次工程に供給される。
【0012】
すなわち、上流側のスターホイールで次工程を受け持つ装置の処理能力に一致させるように円筒形物体の走行速度をコントロールし、且つ連続的な流れとして振動や騒音を軽減した後、下流に向けて搬送し、下流側のスターホイールでは、外周に不等間隔に設けた凹部を利用して、搬送される円筒形物体相互の間隔に差を設け、所定の複数個毎の群れに分離する。なお、円筒形物体がスターホイールやシュートなどから別のスターホイールなどに乗り移る際の走行方向や速度の変化を小さくし、衝撃を緩和するために、シュートの方向は可能な範囲でスターホイールのピッチ円に対する接線と同一の方向に向けることが望ましい。
【0013】
さらに、両スターホイール間をつなぐ下流側のシュートの間を走行中の円筒形物体の個数が大きく変動すると、下流側のシュート内の円筒形物体を介して両スターホイールの動作が互いに干渉しあい、スターホイールの上記の機能を十分に発揮できなくなり、常時隙間Sを一定範囲内に保ち、下流側のシュート内の円筒形物体の個数をほぼ一定の範囲内に維持するように両スターホイールの円筒形物体の搬送能力を平均的には等しく設定する必要がある。
【0014】
さらに次工程を受け持つ装置の処理能力とも等しく設定するため、これらの装置間の回転駆動用動力を機械的に、または電気的に連結し、同期運転させることが好ましい。
【0015】
また、円筒形物体が強磁性体からなる場合には、上流側または下流側の少なくとも一つのスターホイールは、円盤の外周付近に小さな永久磁石を埋め込んだ円盤とし、円筒形物体をその外周部に吸着保持させて搬送させることも可能である。
【0016】
このように磁石を利用する場合には、機械加工が非常に簡略化され、騒音も低下する。また異常に大きな力が円筒形物体に働いた場合には、磁石による吸着力を越えて円筒形物体は円盤の外周をスリップして搬送不能となり、装置の破損を未然に防止できるため、過負荷防止装置を省略することも可能である。
【0017】
【発明の実施の形態】
以下、図を参照しながら本発明の実施の形態について説明する。図1は円筒形電池を2個一組からなる群れに分離して次工程に供給する円筒形物体の分離供給装置の一例として取り上げ、その主要部の正面図を示す。
【0018】
図2は本発明の分離供給装置について、2個のスターホイール、及び次工程のシュリンク包装装置の回転円盤6などを同期運転させるための、動力の伝達方法を示した側面図である。
【0019】
図3は分離供給される円筒形物体がスチール製やニッケル製などの強磁性体である場合に、スターホイールに変えて円盤の外周部に小さな永久磁石を埋め込んだ磁石埋め込み円盤に円筒形電池を外周部に吸着保持した状態を示す。なお、図示を簡略化するために、磁石の埋め込み個数を少なくし、埋め込みピッチも等間隔としている。
【0020】
図1の上部に於いては、円筒形物体の一例としての単三形乾電池1−aが、外径を相互に接触させた状態で、図示を省略したコンベアー上にある後続の多数の電池1−aにより押されて、左上方面からシュート2内を上流側のスターホイール4に向かって搬送される。
【0021】
上流側のスターホイール4はその外周に、狭い凸部を挟んで等間隔に凹部7が設けられた形状であり、この凹部7に電池1−aを嵌め込んで、スターホイール4が定速回転することにより、電池を互いに外径を接する状態で連続的に下流側の下流側のシュートであるシュート13に送り出し、スターホイール4から開放された電池1−aは自由落下の速度でシュート13内を落下して、下流側のスターホイール5に向かって進む。
【0022】
スターホイール4よりも上流側にある電池1−aと、スターホイール4の下流でスターホイール5の上流側にある電池が互いに干渉しないようにするために、前記の両スターホイールを結ぶシュート13の内部では、常時ほぼ一定寸法の隙間Sを設け、常に一定個数の電池1−aを下流側に向かって搬送する状態に設定する。従って、上流側と下流側に設けられた2個のスターホイール、さらに次工程のシュリンク包装装置の回転円盤も、同期回転するように設定されている。
【0023】
このようにして、シュート13の内部では、上流側のスターホイールから開放された電池は姿勢に対して規制のない状態で落下するので、転倒を防止するために、電池の全長の1/2〜1/3程度の寸法に設定した間隙間Sを確保し、上流側にあるコンベアーなどを、継続して走行してくる電池による押し圧力の影響を排除する。
【0024】
また、シュート13と下流側のスターホイール5のピッチ円との交点に於ける、交差角度αは図1に於いては約45°程度に描かれているが、電池の走行速度を高速に設定する場合には、電池1−aがシユート13からスターホイール5の凹部7に嵌まり込んだ直後の、急激な方向転換による電池に働く衝撃力を緩和するために、可能な範囲で小さくすることが望ましい。
【0025】
スターホイール5の外周には、幅の狭い凸部8を挟んでその両側に2個の凹部7が設けられ、次に幅の広い凸部9を1個設けて、再び幅の狭い凸部8を挟んでその両側に2個の凹部7が設けられるという、繰り返しで全周に凹部と凸部が交互に設けられている。
【0026】
そして幅の狭い凸部8を挟む両側の2個の凹部7に嵌まり込んだ電池1−bは、ほぼ外径が互いに接触状態となるように接近して一つの群れとなり、幅の広い凸部9の部分では電池の外径間に隙間Wが生じるので、この部分がある群れと他の群れの境界となり分離される。なお、シュート13の内部でスターホイール5の幅の広い凸部9に接触状態となった電池は、次の凹部7が回転してくるまで一時的に走行が停止状態となり、シユート13の内部では電池は断続的な走行をするが、電池の個数も少なく、電池相互の接触圧力も僅かであるため、ラベルの傷や振動、騒音などの原因として問題となる程の悪い影響はない。
【0027】
本発明の分離供給装置の各部に対する、動力の伝達方法は、スターホイール4とスターホイール5の間に設けられたシュート13の部分で、上流部のベルトコンベアー上などを走行中の後続の電池による押し圧力の影響が、スターホイール5の回転に対しては及ばないようにするために、シユート13内部に電池の外径が互いに接触しない部分として常時隙間Sを設けている。またシユート13の隙間Sの部分では、電池の姿勢に対する規制が困難であるために、電池の転倒などの姿勢の乱れを防ぐためにSの間隔は電池の長さの1/2以下が好ましい。
【0028】
このように、シュート13の内部に常時隙間Sを安定して確保するためには、スターホイール4とスターホイール5の電池搬送速度を等しく設定することが必要である。図2では、図示を省略したが、駆動源はシュリンク包装装置用回転円盤6のシャフト17に取りつけられ、回転は順次ギヤー22、21、20、を経由して中間軸15に伝えられる。さらにスプロケット19、チェーン23、スプロケット18、シャフト14を経由して、スターホイール4に伝達される。
【0029】
また、ギヤー21にはスターホイールの回転軸16が固定されているので、スターホイール5にも回転が伝達される。また、上記のギヤーやスプロケットの歯数などは、シュリンク包装装置の処理能力、両スターホイールの凹部個数などを考慮して設定することにより、スターホイール4、スターホイール5、シユリンク包装装置の回転円盤6は同期運転が可能な構成となっている。
【0030】
【発明の効果】
円筒形物体を搬送するコンベアー又はシュートの上流側と下流側の2箇所にスターホイールを設けて、外周に凹部を等間隔に有する上流側のスターホイールにより、シュート又はコンベアー上で外径を相互に接触させた状態で連なって押し合いながら走行している多数の円筒形電池を、連続的な下流に向けた流れとすることにより、衝撃、振動、騒音などを軽減すると共に、下流工程に供給する電池の搬送速度をコントロールする。
【0031】
引き続き、下流側に設けられた外周に凹部を不等間隔に有するスターホイールにより電池外径間のすきまに差を設け、一つの群れと、他の群れとを構成する電池との間隔を広く設定することにより、電池を群れ毎に分離して下流工程に供給するので、両スターホイール間を搬送されている電池については、断続的な走行をするが、両スターホイール間を走行中の電池は常時5〜10個程度の少数に限定されているうえに、電池相互間の接触圧力も非常に僅かなものに軽減されているので、ラベルに発生することの比較的多かった傷もほとんど皆無となり、品質面での大幅な改善のみならず、振動や騒音も低減し職場環境も合わせて改善される。
【図面の簡単な説明】
【図1】本発明の分離供給装置の一実施例について、主要部を示す正面図
【図2】本発明の分離供給装置の主要部を同期運転させるための、動力伝達方法の一実施例を示す側面図
【図3】(a)円盤の外周付近に多数の小さな磁石を埋め込んで、円筒形物体を吸着して搬送する、磁石埋め込み円盤の正面図
(b)同上の断面図
【図4】従来の分離供給装置を示す正面図
【符号の説明】
1−a 円筒形物体(群れに分割前)
1−b 円筒形物体(スターホイールで2個ずつの群れに分割された状態)
1−c 円筒形物体(後工程であるシュリンク包装装置に供給された状態)
2 シュート
3−a 円筒形物体の固定ガイド
3−b 過負荷防止用開閉式ガイド
4 第1のスターホイール
5 第2のスターホイール
6 シュリンク包装装置の回転円盤
7 凹部
8 幅の狭い凸部
9 幅の広い凸部
10 開閉式ガイドの支点
11 レバー
12 つるまきバネ
13 シユート
14 第1のスターホイール用シャフト
15 中間軸シャフト
16 第2のスターホイール用シャフト
17 シュリンク包装装置用回転円盤のシャフト
18 第1のスプロケット
19 第2のスプロケット
20 第3のギアー
21 第2のギアー
22 第1のギアー
23 チエーン
24 軸受け
25 軸受け
26 軸受け
27 軸受け
29 永久磁石
30 空気抜き孔
31 磁石埋め込み円盤
α シュートとスターホイールのピッチ円との接線との成す角度
S シユート内部における所定数の電池と後続の電池との間の隙間
W 第2のスターホイールでの一つの群れと他の群れとの間の隙間
[0001]
BACKGROUND OF THE INVENTION
Cylindrical batteries such as manganese batteries and alkaline batteries may be marketed in units of one unit, but recently, batteries such as 2, 4, 6, and 12 are packaged and sold together. The case has become commonplace. The present invention is an apparatus for separating and supplying a cylindrical object into a group consisting of the number of cylindrical objects such as two, four, six, and twelve as described above. It is about.
[0002]
[Prior art]
FIG. 4 shows a main part of an example of a separation and supply device that has been widely used in a conventional shrink wrapping device for cylindrical batteries. In FIG. 4, the AA alkaline battery 1-a as a cylindrical object that has been continuously conveyed from the upper left surface by the chute 2 while pressing each other with the outer diameters in contact with each other is a star wheel provided on the left side. 5 shows a state in which the gap is enlarged for every two batteries and separated into groups for every two batteries, and then supplied to the rotating disk 6 of the shrink wrapping apparatus provided on the right side.
[0003]
For reference, the shrink wrapping apparatus will be briefly described. The outer periphery of the rotating disk 6 is assigned with the outer periphery of the battery, and each cylindrical battery supported by the outer periphery is rotated by an appropriate angle. After aligning the direction of the label c in a predetermined direction, cover the periphery of the two batteries together with a heat-shrinkable film, blow the hot air and heat the film to shrink it, and shrink wrap Device.
[0004]
The battery 1-a outer diameters in the chute 2 are in a state of being pressed against each other due to the action of frictional force acting between a large number of batteries that have been conveyed by a conveyor not shown and the conveyor, and strong. Contact pressure is working. Therefore, in the inside of the chute 2 provided at the upper left, the cylindrical battery is strongly pressed against the outer periphery of the star wheel 5 by the subsequent battery, and the position of the battery in the chute 2 as the star wheel 5 rotates counterclockwise. When the concave portion 7 of the star wheel coincides with the concave portion 7, the battery quickly fits into the concave portion 7 and is conveyed toward the rotating disk 6 of the shrink wrapping apparatus.
[0005]
In addition, the shrink wrapping apparatus shown in FIG. 4 is for shrink wrapping the two cylindrical batteries 1-c as a group, and the batteries can be supplied separately in groups of two in advance. is necessary. Therefore, the narrow convex portions 8 and the wide convex portions 9 are alternately provided between the concave portions 7 into which the battery provided on the outer periphery of the star wheel 5 is fitted and conveyed.
[0006]
Then, the batteries supplied to these recesses 7 are made up of a group of two batteries that are close to each other so that their outer diameters are in contact with each other using the difference in width of the protrusions. A portion having a wide gap W between the outer diameters of the batteries is regarded as a boundary with other groups of batteries, and is divided into groups and supplied to the shrink wrapping apparatus.
[0007]
[Problems to be solved by the invention]
However, when the conventional separation and supply apparatus as described above is used to separate and supply the AA batteries to the shrink wrapping apparatus having a high-speed processing capacity in groups of two, the batteries are continuously shot. Therefore, it is necessary to supply the star wheel at high speed synchronously.
[0008]
In addition, batteries that have been connected to the inside of the chute for a long time and have their outer diameters in contact with each other are subjected to the weight of the battery inside the chute and the frictional force between the many batteries on the upstream conveyor and the conveyor. A strong pressing force is acting on the outer periphery of the star wheel 5. Furthermore, since the direction of the chute is substantially perpendicular to the pitch circle of the star wheel, the battery that has been fitted into the concave portion 7 of the star wheel and has reached the bottom of the concave portion rapidly decreases its traveling speed. After a momentary stop, the vehicle starts to run in the right-angle direction again, so a large impact force is applied, and the aluminum foil printed on the surface wrapped around the battery or heat shrinkage In many cases, it becomes a cause of scratches and deformations in the label made of a conductive resin film.
[0009]
In addition, a large number of batteries connected in the conveyor or chute are repeatedly driven intermittently toward the star wheel 5 at a constant cycle, so that shock and vibration are generated in the entire shrink wrapping device, and noise is also generated. It becomes large and unfavorable in terms of quality, operating rate, and workplace environment.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above-described problems, the influence of the pressing pressure between the outer diameters of the cylindrical objects working by being conveyed in a state where the conveyed cylindrical objects are continuously connected is exerted. constantly securing a predetermined gap so as not, after the outer diameter of the cylindrical object as its predetermined gap is conveyed in the state of securing a gap that is not in contact with each other, to temporarily stopped conveyance of cylindrical object and characterized in that separated by intervals set wide and one flock and other herds constituting a predetermined plurality number, by continuously transporting the cylindrical object remains in that state is supplied to the next step Thus, a star wheel is disposed at two locations on the upstream side and the downstream side of the conveyance path of a cylindrical object such as a conveyor or a chute, and a downstream chute is provided between the star wheels. A large number of cylindrical objects that are conveyed in a continuous state with their outer diameters being brought into contact with each other by a conveyor or chute are fitted into the recesses provided on the outer periphery of the upstream first star wheel. In order to prevent the influence of the pressing force between the outer diameters of the cylindrical object within the downstream chute connecting the upstream and downstream star wheels, the cylindrical object is not affected by rotation. A predetermined gap is provided as a portion where the outer diameters do not contact each other. In addition, the first star wheel on the upstream side has a concave portion at equal intervals with a narrow convex portion on the outer periphery, is continuously rotated at a constant speed, and a cylindrical object is fitted into the concave portion. It is continuously conveyed downstream. Accordingly, the subsequent cylindrical object on the conveyor or in the chute also continuously travels downstream. Further, the downstream chute connected to the upstream first star wheel conveys the group of cylindrical objects to the downstream second star wheel while maintaining a predetermined gap.
[0011]
Predetermined second star wheel on the downstream side, provided with a narrow protrusion and recess width in its outer periphery, the number of recesses, constituting one flock close to substantially the outer diameter of the contact with each other Each time it reaches a plurality , a wide convex portion is provided, and concave portions are provided at unequal intervals. Therefore, by inserting a cylindrical object into each of the recesses provided on the outer periphery and rotating the star wheel at a constant speed, the cylindrical object upstream of the star wheel is rotated with the rotation of the star wheel. It travels intermittently toward the downstream. And between the cylindrical objects of one group fitted in the recess and the other group fitted in the recess sandwiching the wide convex part, approach so that the outer diameters are in contact with each other. The gap is wider than the gap between the cylindrical objects in the group, and this part is separated into groups as a boundary between one group and another group and supplied to the next process.
[0012]
That is, the traveling speed of the cylindrical object is controlled so that it matches the processing capacity of the equipment that is responsible for the next process with the upstream star wheel, and the vibration and noise are reduced as a continuous flow, and then transported downstream. and, in the downstream of the star wheel, by utilizing the recess formed at irregular intervals on the outer circumference, a difference is provided to the spacing of the cylindrical body in relation to another to be conveyed, it separated a predetermined herd multiple pieces each. In order to reduce the change in traveling direction and speed when a cylindrical object transfers from one star wheel or chute to another star wheel, etc., and to reduce the impact, the chute direction should be within the possible range of the star wheel pitch. It should be oriented in the same direction as the tangent to the circle.
[0013]
Furthermore, when the number of cylindrical objects running between the downstream chutes connecting the two star wheels greatly fluctuates, the operations of both star wheels interfere with each other via the cylindrical objects in the downstream chutes, The cylinders of both starwheels can no longer fully perform the above functions of the starwheel, the gap S is always kept within a certain range, and the number of cylindrical objects in the downstream chute is kept within a substantially constant range. It is necessary to set the carrying capacity of the shaped object to be equal on average.
[0014]
Furthermore, in order to set the processing capacity of the apparatus responsible for the next step equally, it is preferable that the rotational driving power between these apparatuses is mechanically or electrically connected to perform synchronous operation.
[0015]
When the cylindrical object is made of a ferromagnetic material, at least one star wheel on the upstream side or the downstream side is a disk in which a small permanent magnet is embedded in the vicinity of the outer periphery of the disk, and the cylindrical object is disposed on the outer periphery thereof. It is also possible to carry it by suction holding.
[0016]
When using a magnet in this way, machining is greatly simplified and noise is reduced. If an abnormally large force is applied to a cylindrical object, the cylindrical object slips around the outer circumference of the disk beyond the attractive force of the magnet, making it impossible to transport and preventing damage to the device. It is also possible to omit the prevention device.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a front view of the main part of an example of a cylindrical object separating and supplying apparatus that separates cylindrical batteries into groups of two and supplies them to the next process.
[0018]
FIG. 2 is a side view showing a power transmission method for synchronously operating two star wheels and the rotating disk 6 of the shrink wrapping apparatus in the next process in the separation and supply apparatus of the present invention.
[0019]
Fig. 3 shows that when the cylindrical object to be supplied separately is a ferromagnetic material such as steel or nickel, the cylindrical battery is installed in a magnet-embedded disk in which a small permanent magnet is embedded in the outer periphery of the disk instead of a star wheel. The state attracted and held on the outer periphery is shown. In order to simplify the illustration, the number of magnets embedded is reduced, and the embedding pitch is also set at equal intervals.
[0020]
In the upper part of FIG. 1, AA batteries 1-a as an example of a cylindrical object have a large number of subsequent batteries 1 on a conveyer (not shown) with their outer diameters in contact with each other. It is pushed by -a and conveyed from the upper left surface toward the upstream star wheel 4 in the chute 2.
[0021]
The upstream star wheel 4 has a shape in which concave portions 7 are provided at equal intervals around the outer periphery of the star wheel 4. The battery 1-a is fitted in the concave portion 7 so that the star wheel 4 rotates at a constant speed. As a result, the batteries are continuously sent out to the chute 13 which is a downstream chute on the downstream side in a state where the outer diameters are in contact with each other, and the battery 1-a released from the star wheel 4 is in the chute 13 at a free fall speed. And proceed toward the star wheel 5 on the downstream side.
[0022]
In order to prevent the battery 1-a on the upstream side of the star wheel 4 and the battery on the upstream side of the star wheel 5 downstream of the star wheel 4 from interfering with each other, Inside, a gap S having a substantially constant dimension is always provided, and a constant number of batteries 1-a are always conveyed toward the downstream side. Therefore, the two star wheels provided on the upstream side and the downstream side, and the rotating disk of the shrink wrapping apparatus in the next process are also set to rotate synchronously.
[0023]
Thus, inside the chute 13, the battery released from the upstream star wheel falls in an unregulated state with respect to the posture. Therefore, in order to prevent the battery from falling, The clearance S is set while the dimension is set to about 1/3, and the influence of the pressing force by the battery continuously running on the conveyor on the upstream side is eliminated.
[0024]
Further, the intersection angle α at the intersection of the chute 13 and the pitch circle of the downstream star wheel 5 is drawn to about 45 ° in FIG. 1, but the battery traveling speed is set to a high speed. In order to reduce the impact force acting on the battery due to the sudden change of direction immediately after the battery 1-a is fitted into the recess 7 of the star wheel 5 from the shout 13, it is made as small as possible. Is desirable.
[0025]
On the outer periphery of the star wheel 5, two concave portions 7 are provided on both sides of the narrow convex portion 8, followed by one wide convex portion 9, and the narrow convex portion 8 again. Two recesses 7 are provided on both sides of the substrate, and recesses and projections are alternately provided on the entire circumference.
[0026]
Then, the batteries 1-b fitted into the two concave portions 7 on both sides sandwiching the narrow convex portion 8 are brought close together so that the outer diameters are in contact with each other to form one group, and the wide convex portion. Since a gap W is formed between the outer diameters of the batteries in the portion 9, this portion becomes a boundary between one group and another group and is separated. It should be noted that the battery that is in contact with the wide convex portion 9 of the star wheel 5 inside the chute 13 is temporarily stopped until the next concave portion 7 is rotated. Although the batteries run intermittently, the number of batteries is small and the contact pressure between the batteries is small, so that there is no bad influence that causes problems such as scratches, vibrations, and noise on the label.
[0027]
The power transmission method for each part of the separation and supply device of the present invention is based on the subsequent battery running on the upstream belt conveyor or the like at the chute 13 provided between the star wheel 4 and the star wheel 5. In order to prevent the influence of the pressing pressure from affecting the rotation of the star wheel 5, a gap S is always provided inside the shout 13 as a portion where the outer diameters of the batteries do not contact each other. Further, since it is difficult to regulate the posture of the battery in the gap S portion of the shout 13, the interval of S is preferably ½ or less of the length of the battery in order to prevent the posture from being disturbed such as the battery falling.
[0028]
As described above, in order to stably ensure the clearance S constantly in the chute 13, it is necessary to set the battery transport speeds of the star wheel 4 and the star wheel 5 to be equal. Although not shown in FIG. 2, the drive source is attached to the shaft 17 of the rotating disk 6 for the shrink wrapping apparatus, and the rotation is sequentially transmitted to the intermediate shaft 15 via the gears 22, 21, 20. Further, it is transmitted to the star wheel 4 via the sprocket 19, the chain 23, the sprocket 18 and the shaft 14.
[0029]
Further, since the rotation shaft 16 of the star wheel is fixed to the gear 21, the rotation is transmitted to the star wheel 5. The number of teeth of the gear and sprocket is set in consideration of the processing capacity of the shrink wrapping device, the number of concave portions of both star wheels, and the like, so that the rotating wheel of the star wheel 4, the star wheel 5, and the shrink wrapping device 6 has a configuration capable of synchronous operation.
[0030]
【The invention's effect】
A star wheel is provided at two locations on the upstream and downstream sides of a conveyor or chute that conveys a cylindrical object, and the outer diameter is mutually adjusted on the chute or conveyor by the upstream star wheel having recesses on the outer periphery at equal intervals. A battery that reduces the impact, vibration, noise, etc., and supplies it to downstream processes by making a large number of cylindrical batteries that are running in contact with each other while being in contact with each other, and making them flow continuously downstream. Control the transport speed.
[0031]
Subsequently, a star wheel having recesses in the outer periphery provided at the downstream side is provided with a gap between the outer diameters of the batteries so that the gap between one group and the battery constituting the other group is set wide. As a result, the batteries are separated for each group and supplied to the downstream process, so the batteries being transported between the two star wheels travel intermittently, but the batteries traveling between the two star wheels are In addition to being limited to a small number of 5 to 10 at all times, the contact pressure between the batteries has been reduced to a very small amount, so there are almost no scratches that occur on the label, Not only a significant improvement in quality, but also vibration and noise are reduced, and the workplace environment is also improved.
[Brief description of the drawings]
FIG. 1 is a front view showing main parts of an embodiment of a separation and supply apparatus of the present invention. FIG. 2 is an embodiment of a power transmission method for synchronously operating the main parts of the separation and supply apparatus of the present invention. Side view shown [FIG. 3] (a) Front view of a magnet-embedded disk in which a large number of small magnets are embedded near the outer periphery of the disk to attract and convey a cylindrical object (b) Cross-sectional view of the same [FIG. 4] Front view showing a conventional separating and feeding apparatus [Explanation of symbols]
1-a Cylindrical object (before dividing into groups)
1-b Cylindrical object (divided into two groups of two by a star wheel)
1-c Cylindrical object (the state supplied to the shrink wrapping apparatus which is a post process)
2 Chute 3-a Cylindrical object fixing guide 3-b Overload preventing open / close guide 4 First star wheel 5 Second star wheel 6 Rotating disk 7 of shrink wrapping device Recess 8 Narrow protrusion 9 Width Wide convex portion 10 Opening and closing guide fulcrum 11 Lever 12 Spiral spring 13 Shout 14 First star wheel shaft 15 Intermediate shaft 16 Second star wheel shaft 17 Shaft 18 of rotating disk for shrink wrapping device First Sprocket 19 Second sprocket 20 Third gear 21 Second gear 22 First gear 23 Chain 24 Bearing 25 Bearing 26 Bearing 27 Bearing 27 Permanent magnet 30 Air vent hole 31 Magnet embedded disk α Chute and star wheel pitch circle An angle S formed with a tangent line with a predetermined number of batteries inside the shout Gap between subsequent batteries W Gap between one group and the other group at the second star wheel

Claims (4)

コンベアー又はシユート上で互いに外径を接触させながら連続的に連なった状態で搬送されている多数の円筒形物体を、所定の複数個を一群とする群れ毎に分離した後、次工程に供給する円筒形物体の供給装置であって、前記円筒形物体を連続的に連なった状態で搬送する前記コンベアー又はシュートを備え、供給された前記円筒形物体を互いに外径を接する状態で連続的に下流側のシュートに送り出す上流側のスターホイールと、上流側の前記スターホイールから開放された前記円筒形物体を搬送する上流側の前記スターホイールと下流側のスターホイールを結ぶ下流側の前記シュートと、一群を構成する所定の複数個に分離する下流側のスターホイールを設け、それぞれのスターホイールは、外周に設けた凹部に前記円筒形物体を嵌め合わせて回転により、下流に向けて前記円筒形物体を搬送し、両スターホイールを結ぶ下流側の前記シュートの内部で前記円筒形物体の外径が互いに接触しない前記円筒形物体の全長の1/2以下となる所定の隙間を常時確保し、下流側の前記スターホイールは凹部の個数が前記の所定の複数個に達する毎に、幅の広い凸部を一箇所の割合で設けたスターホイールとし、両スターホイールの平均的な円筒形物体の搬送速度が同一となるように同期回転可能に連結し、所定の複数個からなる群れと他の群れとの間に、前記幅の広い凸部により隙間を生じさせ、所定の複数個からなる群れ毎に分離して次工程に供給することを特徴とする円筒形物体の分離供給装置。A large number of cylindrical objects conveyed in a continuously connected state with their outer diameters in contact with each other on a conveyer or a shunt are separated into groups of a predetermined number of groups, and then supplied to the next process. A cylindrical object supply apparatus, comprising the conveyor or chute for conveying the cylindrical objects in a continuous state, and continuously supplying the cylindrical objects in a state where their outer diameters are in contact with each other. An upstream star wheel to be fed to the side chute, and the downstream chute connecting the upstream star wheel and the downstream star wheel conveying the cylindrical object released from the upstream star wheel , the downstream side of the star wheel to separate a predetermined plurality of constituting a group is provided, each of the star wheel, if fitted the cylindrical object in a recess provided in the outer periphery The rotation thereby, toward the downstream conveying the cylindrical object, the entire length of the cylindrical object which outer diameter does not contact with each other of said cylindrical body within said chute downstream connecting both star wheel 1 / A predetermined clearance of 2 or less is always secured, and the downstream side star wheel is a star wheel provided with a wide convex portion at a single ratio every time the number of concave portions reaches the predetermined number. , the conveying speed of the average cylindrical object of both the star wheel is rotatably connected so synchronized the same, between the flock and the other herds of a predetermined plurality, the wide protrusion of the width An apparatus for separating and supplying a cylindrical object, wherein a gap is generated, and a group of predetermined plural pieces is separated and supplied to the next process. 下流側の前記シュート中の円筒形物体が下流側の前記スターホイールの幅の広い凸部に接触して瞬間的な停止後に、再びスムーズに走行速度を高めて凹部に導入され、さらに凹部に導入後の走行速度の急変と衝撃を避けるために、前記シュートの中心線と前記スターホイールのピッチ円の交点に於けるピッチ円に対する接線が前記シユートとのなす角度を45°以下とし、且つ前記スターホイールの幅の広い凸部の頂部の形状をなだらかな曲線としたことを特徴とする請求項記載の円筒形物体の分離供給装置。 After the cylindrical object in the chute on the downstream side comes into contact with the wide convex part of the star wheel on the downstream side and stops instantaneously, the traveling speed is smoothly increased again and introduced into the concave part, and further introduced into the concave part In order to avoid a sudden change in travel speed and an impact later, the angle formed by the tangent to the pitch circle at the intersection of the center line of the chute and the pitch circle of the star wheel is 45 ° or less, and the star separating feeder of cylindrical object according to claim 1, characterized in that the shape of the top portion of the wide protruding portion width of the wheel and gentle curve. 両スターホイールの回転駆動は、スターホイールにより所定の複数個からなる群毎に分離した円筒形物体を供給されるスターホイールの下流側に設けられた装置の駆動源から機械的にスターホイールに動力を伝達することを特徴とする請求項記載の円筒形物体の分離供給装置。The rotational drive of both star wheels is mechanically driven to the star wheel from the drive source of the device provided downstream of the star wheel supplied with a cylindrical object separated into groups of a plurality of predetermined by the star wheel. The apparatus for separating and supplying cylindrical objects according to claim 1, wherein: 略円筒形物体が強磁性体からなる場合に於いては、上流側と下流側に設けた2つのスターホイールのうち、少なくとも一つは外周部に外径の小さな磁石を埋め込んだ円盤として、円筒形物体を円盤の外周に吸着保持して下流に向けて搬送する磁石埋め込み円盤から成ることを特徴とする請求項記載の円筒形物体の分離供給装置。When the substantially cylindrical object is made of a ferromagnetic material, at least one of the two star wheels provided on the upstream side and the downstream side is a cylinder as a disk with a small outer diameter embedded in the outer periphery. separating feeder of cylindrical object as claimed in claim 1, wherein the shape object is characterized by comprising a magnet embedded disc is conveyed toward the downstream sucked and held on the outer circumference of the disk.
JP2000135687A 2000-05-09 2000-05-09 Cylindrical object separation and supply device Expired - Fee Related JP4368496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135687A JP4368496B2 (en) 2000-05-09 2000-05-09 Cylindrical object separation and supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135687A JP4368496B2 (en) 2000-05-09 2000-05-09 Cylindrical object separation and supply device

Publications (2)

Publication Number Publication Date
JP2001315950A JP2001315950A (en) 2001-11-13
JP4368496B2 true JP4368496B2 (en) 2009-11-18

Family

ID=18643731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135687A Expired - Fee Related JP4368496B2 (en) 2000-05-09 2000-05-09 Cylindrical object separation and supply device

Country Status (1)

Country Link
JP (1) JP4368496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103612904A (en) * 2013-11-12 2014-03-05 中银(宁波)电池有限公司 Novel separate arrangement device for battery holder cups

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841139B2 (en) * 2004-12-28 2011-12-21 パナソニック株式会社 Cylindrical battery leakage inspection method
JP4829949B2 (en) * 2008-10-22 2011-12-07 東芝Itコントロールシステム株式会社 Battery inspection device
CN102024986B (en) * 2010-09-28 2013-01-02 珠海华冠电子科技有限公司 Turnover mechanism for battery loading
CN104229435B (en) * 2014-09-12 2016-02-10 德清工业智能制造技术研究院 The shaft-like material feeding device of automatic assembling and charging method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103612904A (en) * 2013-11-12 2014-03-05 中银(宁波)电池有限公司 Novel separate arrangement device for battery holder cups
CN103612904B (en) * 2013-11-12 2016-02-03 中银(宁波)电池有限公司 A kind of novel battery hypanthium separate row device

Also Published As

Publication number Publication date
JP2001315950A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JP3837970B2 (en) Cylindrical can separation and supply device
KR102187249B1 (en) Singulator conveyor
JP5563457B2 (en) Method for unifying adjacent articles
EP0994819B1 (en) Method and device for cushioned stoppage and accompanying of containers along a conveying line for containers
FR2788045A1 (en) APPARATUS FOR SLOWING DOWN AND GUIDING A NOTEBOOK AND MANUFACTURING METHOD THEREOF
JPH08169539A (en) Article separating method and separating-supplying device
JP4368496B2 (en) Cylindrical object separation and supply device
US6510938B1 (en) Soft touch infeed
US5287954A (en) Device for equally-spaced in-line transportation of randomly arranged incoming products
US5301792A (en) Unit for transferring food products, such as chocolates, between production machines
EP0700847A1 (en) Item orienting method and device
US5480021A (en) Pitch change for an orderly succession of elements
US6748984B2 (en) Supply apparatus for spouts or bags with spouts
KR101681541B1 (en) Apparatus for transporting and picking-up mask pack package
JPH11314732A (en) Roller conveyer for transferring piled body
JPS60157418A (en) Device for shifting direction of carrying of cylindrical product in lateral direction from longitudinal direction
JP4007435B2 (en) Chip front / back alignment transport device
KR102621500B1 (en) Device for banding products
JP2018144931A (en) Wheel type direction changing device
JP3630347B2 (en) Box raising device
JP6685210B2 (en) Bottle transport method, screw device, and transport device
JP2004203598A (en) Interval formation device for vessel
JPH10181795A (en) Method and machine for orienting pump operation cap
JP3292554B2 (en) Bottle inspection system
JP3354656B2 (en) Article transfer equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040531

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees