JP4368212B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP4368212B2
JP4368212B2 JP2004025892A JP2004025892A JP4368212B2 JP 4368212 B2 JP4368212 B2 JP 4368212B2 JP 2004025892 A JP2004025892 A JP 2004025892A JP 2004025892 A JP2004025892 A JP 2004025892A JP 4368212 B2 JP4368212 B2 JP 4368212B2
Authority
JP
Japan
Prior art keywords
heat
air
hygroscopic liquid
air conditioner
contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004025892A
Other languages
Japanese (ja)
Other versions
JP2005214595A (en
Inventor
彦夫 宮内
正裕 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DYNA AIR CO Ltd
Original Assignee
DYNA AIR CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DYNA AIR CO Ltd filed Critical DYNA AIR CO Ltd
Priority to JP2004025892A priority Critical patent/JP4368212B2/en
Publication of JP2005214595A publication Critical patent/JP2005214595A/en
Application granted granted Critical
Publication of JP4368212B2 publication Critical patent/JP4368212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants

Description

本発明は、ヒートポンプを構成する空調サイクルの凝縮器と蒸発器の少なくともいずれか一方に、吸湿性液体を循環する管路を介在して外部熱の有効利用を図るようにした空調機に関するものである。   The present invention relates to an air conditioner that makes effective use of external heat through a conduit that circulates a hygroscopic liquid in at least one of a condenser and an evaporator of an air conditioning cycle that constitutes a heat pump. is there.

外部熱である排熱源とその排熱利用技術の形態を、熱エネルギーの段階的利用の観点から述べると、以下のようになる。
(1)熱利用
これは、気体又は液体による排熱を、熱交換器を介して利用されやすい流体に熱交換して利用するもので、高温度域の排熱を利用する排熱ボイラーのような最も基本的な方法である。
(2)動力回収
排熱を熱の形で利用しないで、動力に変換して利用する方法で、例えば、ランキングサイクルと呼ばれる高低の温度差で作動する熱機関の熱源として排熱を利用し、直接動力を利用したり、発電機を駆動させて電気エネルギーを利用する形態である。
(3)ヒートポンプ
これは、排熱源より熱を汲み上げ、さらに高い温度又は中低温度の熱エネルギーに変換して利用する方法である。利用できない低温度レベルの排熱を、利用できる高い温度レベルの熱エネルギーに移動させる際、その移動熱量がヒートポンプへ投入する駆動動力の数倍となるきわめて有効な熱エネルギーに変換する方法である。
(4)直接利用
排熱を温水などの熱媒を通じて断熱したまま利用目的地まで移動させ、有効利用する最も基本的な方法である。コージェネレーション設備による地域冷暖房、原子力又は火力発電所からの温排水による魚介類の養殖、海水の淡水化など多数の実例がある。
The form of the waste heat source that is external heat and its waste heat utilization technology is described from the viewpoint of stepwise utilization of thermal energy as follows.
(1) Use of heat This is a method of using exhaust heat from gas or liquid by exchanging heat with a fluid that is easy to use via a heat exchanger, like an exhaust heat boiler that uses exhaust heat in a high temperature range. This is the most basic method.
(2) Power recovery By using exhaust heat in the form of heat, converting it into power, for example, using exhaust heat as a heat source for a heat engine that operates at a high and low temperature difference called a ranking cycle, It is a form in which electric power is used directly or electric energy is used by driving a generator.
(3) Heat pump This is a method in which heat is pumped from an exhaust heat source and converted into heat energy at a higher temperature or a medium to low temperature. This is a method for converting waste heat at a low temperature level that cannot be used into heat energy at a high temperature level that can be used to convert it into extremely effective heat energy in which the amount of heat transferred is several times the driving power input to the heat pump.
(4) Direct use This is the most basic method for effectively using exhaust heat by moving it to a destination while keeping heat insulated through a heat medium such as hot water. There are many examples such as district heating and cooling by cogeneration facilities, fishery and seafood cultivation by hot waste water from nuclear or thermal power plants, and desalination of seawater.

これらの方法のうち、特に、ヒートポンプによる方法は、河川、海洋大規模熱源とヒートポンプを組み合わせた地域冷暖房システム、夜間電力と地区熱装置などを組み合わせた高効率熱利用システムの実現が期待されている(非特許文献1)。
蓄熱工学2[応用編]第46〜48頁、第59頁 関 信弘 編集 1995年12月25日 森北出版株式会社発行。
Among these methods, the heat pump method is expected to realize a high-efficiency heat utilization system that combines rivers, marine large-scale heat sources and district cooling and heating systems that combine heat pumps, and night power and district heat equipment. (Non-Patent Document 1).
Thermal Storage Engineering 2 [Application] Pages 46-48, 59 Page Nobuhiro Seki Edit December 25, 1995 Published by Morikita Publishing Co., Ltd.

来の冷房空調は、10℃以下の冷却物体に空気を接触させる仕組みであることから、冷房装置に組み込まれたヒートポンプは、10℃以下の低温から外気温よりも高い温度まで、大温度差間で熱の汲み上げを行う必要があり、ヒートポンプの効率、成績係数(COP)を低下させていた。 解決しようとする問題点は、吸湿液に温度差をつけるためだけにヒートポンプを駆動することで、冷房用ヒートポンプよりも汲み上げ温度差が低く、高い効率、高い成績係数での運転が可能になるものを得る点にある。 Cooling and heating tufts air conditioning traditional, since the cooling objects 10 ° C. or less is a mechanism for contacting the air, the heat pump incorporated in heating and cooling tufts apparatus, to a temperature higher than the outside air temperature from a low temperature of 10 ° C. or less It was necessary to pump heat between large temperature differences, and the efficiency and coefficient of performance (COP) of the heat pump were reduced. A problem to be solved is only to drive the heat pump to give a temperature difference to moisture absorption liquid, the temperature difference pumped than the cooling heat pump is low, allowing operation at high efficiency, high coefficient of performance The point is to get things.

本発明は、蒸発器16、圧縮機12、凝縮器14、減圧器15を冷媒管路17で連結したヒートポンプからなる室外機10と、この室外機10で得た熱エネルギーを吸入空気68と熱交換して処理済み空気69吐出する室内機とを有する空調機において、前記凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の途中に、前記凝縮器14での熱交換後の吸湿性液体を噴射して吸入空気68と熱交換する室内機としてのエアコンタクタ11を設け、この室内機としてのエアコンタクタ11の出力側を前記凝縮器14の入力側に連結し、かつ、この吸湿液循環管路44の途中に、外部からの補給水導入部64を設け、前記蒸発器16に、吸湿性液体を循環する供給管路54を設け、この供給管路54の途中に、前記吸湿性液体を噴射して熱交換する室外機用再生コンタクタ19を設け、この再生コンタクタ19に、排熱を導入して噴射した前記吸湿性液体と熱交換する外部熱管路70を設け、この再生コンタクタ19における受液タンク25を前記蒸発器16の入力側の供給管路54に連結したことを特徴とする空調機である。 The present invention relates to an outdoor unit 10 comprising a heat pump in which an evaporator 16, a compressor 12, a condenser 14, and a decompressor 15 are connected by a refrigerant pipe 17, and heat energy obtained by the outdoor unit 10 is converted into intake air 68 and heat. In an air conditioner having an indoor unit that exchanges and discharges treated air 69 , the condenser 14 is provided with a hygroscopic liquid circulation line 44 that circulates the hygroscopic liquid. The air conditioner 11 is provided as an indoor unit that injects the hygroscopic liquid after heat exchange in the condenser 14 to exchange heat with the intake air 68, and the output side of the air conditioner 11 as the indoor unit is connected to the condenser. 14 is provided in the middle of the hygroscopic liquid circulation pipe 44 and an external replenishment water introduction section 64 is provided, and the evaporator 16 is provided with a supply pipe 54 for circulating the hygroscopic liquid. The way of this supply line 54 In addition, an outdoor unit regeneration contactor 19 for injecting the hygroscopic liquid to exchange heat is provided, and an external heat pipe 70 for exchanging heat with the hygroscopic liquid injected by introducing exhaust heat is provided in the regeneration contactor 19. The air conditioner is characterized in that the liquid receiving tank 25 in the regeneration contactor 19 is connected to the supply line 54 on the input side of the evaporator 16 .

請求項記載の発明によれば、蒸発器16、圧縮機12、凝縮器14、減圧器15を冷媒管路17で連結したヒートポンプからなる室外機10と、この室外機10で得た熱エネルギーを吸入空気68と熱交換して処理済み空気69を吐出する室内機とを有する空調機において、暖房モードにおける凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の途中に、前記凝縮器14での熱交換後の吸湿性液体を噴射して吸入空気68と熱交換する室内機としてのエアコンタクタ11を設け、この室内機としてのエアコンタクタ11の出力側を前記凝縮器14の入力側に連結し、かつ、この吸湿液循環管路44の途中に、外部からの補給水導入部64を設け、前記蒸発器16に、吸湿性液体を循環する供給管路54を設け、この供給管路54の途中に、前記吸湿性液体を噴射して熱交換する室外機用再生コンタクタ19を設け、この再生コンタクタ19に、排熱を導入して噴射した前記吸湿性液体と熱交換する外部熱管路70を設け、この再生コンタクタ19における受液タンク25を前記蒸発器16の入力側の供給管路54に連結したので、吸湿液に温度差をつけるためだけにヒートポンプを駆動することで、冷房用ヒートポンプよりも汲み上げ温度差が低く、高い効率、高い成績係数での運転が可能になる。また、暖房モードにおける吸湿処理部と濃縮再生部とを別々に独立して構成でき、それぞれのユニットを別々にして自由な配置が可能になる。さらに、吸湿性液体は、食塩水、塩化リチウムなど潮解性を有する塩の溶液の他、グリセリン、エチレングリコール、プロピレングリコールなどの吸湿性の高い多価アルコール、その他の吸湿性を有する安価な液体であって、廃液は希釈して下水に流しても公害にならないものを用いることができる。高濃度の塩の水溶液や多価アルコールに空気を接触させる湿式であるから、常に、除塵、除菌などの作用を有する。 According to the first aspect of the present invention, the outdoor unit 10 including a heat pump in which the evaporator 16, the compressor 12, the condenser 14, and the decompressor 15 are connected by the refrigerant pipe 17, and the thermal energy obtained by the outdoor unit 10. In the air conditioner having the indoor unit that exchanges heat with the intake air 68 and discharges the processed air 69, the condenser 14 in the heating mode is provided with a hygroscopic liquid circulation line 44 that circulates the hygroscopic liquid. An air conditioner 11 as an indoor unit for injecting the hygroscopic liquid after heat exchange in the condenser 14 and exchanging heat with the intake air 68 is provided in the middle of the liquid circulation pipe 44. 11 is connected to the input side of the condenser 14, and an external makeup water introduction section 64 is provided in the middle of the hygroscopic liquid circulation pipe 44, and hygroscopic liquid is supplied to the evaporator 16. Circulating supply line 4 is provided, and an outdoor unit regenerative contactor 19 for injecting the hygroscopic liquid and exchanging heat is provided in the middle of the supply pipe 54, and the hygroscopic property injected by introducing exhaust heat into the regenerative contactor 19. Since the external heat pipe 70 for exchanging heat with the liquid is provided and the liquid receiving tank 25 in the regeneration contactor 19 is connected to the supply pipe 54 on the input side of the evaporator 16 , the heat pump is used only to make a temperature difference between the hygroscopic liquids. By driving, the pumping temperature difference is lower than that of the cooling heat pump, and operation with high efficiency and high coefficient of performance becomes possible. Further, the moisture absorption processing unit and the concentration regeneration unit in the heating mode can be configured separately and independently, and each unit can be configured separately and freely arranged. Furthermore, hygroscopic liquids include salt solutions such as saline and lithium chloride, dehydrating polyhydric alcohols such as glycerin, ethylene glycol, propylene glycol, and other hygroscopic inexpensive liquids. The waste liquid can be diluted so as not to cause pollution even if it is poured into sewage. Since it is a wet type in which air is brought into contact with a high-concentration salt aqueous solution or a polyhydric alcohol, it always has actions such as dust removal and sterilization.

請求項記載の発明によれば、室内機としてのエアコンタクタ11に、このエアコンタクタ11の空気吸入側に配置した蒸発部39と、このエアコンタクタ11の空気吐出側に配置した凝縮部40と、これら蒸発部39と凝縮部40をヒートパイプ41とからなる連結する熱交換器38とを設けたので、熱交換効率をより向上させることができるとともに、冷房モードでは、過冷却の改善ができる。 According to the second aspect of the present invention, the air conditioner 11 as an indoor unit is provided with an evaporator 39 disposed on the air suction side of the air conditioner 11 and a condenser 40 disposed on the air discharge side of the air conditioner 11. Since the heat exchanger 38 that connects the evaporator 39 and the condenser 40 to the heat pipe 41 is provided, the heat exchange efficiency can be further improved, and in the cooling mode, the supercooling can be improved. .

請求項記載の発明によれば、室外機用再生コンタクタ19における再生用空気吸入側と空気排出側に、前記再生コンタクタ19で吸湿処理された外気と前記再生コンタクタ19内に吸入された外気との熱交換をする熱交換器29とを設けたので、再生コンタクタ19における吸湿処理及び/又は濃縮再生処理がより効率的に行なえる。
According to the third aspect of the present invention, the outdoor air regenerated by the regenerative contactor 19 and the external air sucked into the regenerative contactor 19 are provided on the regenerative air suction side and the air discharge side of the regenerative contactor 19 for the outdoor unit. Therefore, the moisture absorption process and / or the concentration regeneration process in the regeneration contactor 19 can be performed more efficiently.

請求項記載の発明によれば、室外機用再生コンタクタ19は、供給管路54からの吸湿性液体を噴射する噴射ノズル56と、戻し管路59からの吸湿性液体を噴射する噴射ノズル61と、これらの噴射ノズル56及び/又は噴射ノズル61から噴射される吸湿性液体と空気の接触面積を増加させる充填材24と、液化した吸湿性液体を貯留する受液タンク25とからなるので、空気と吸湿性液体との接触がより確実に行なわれる。
According to the invention described in claim 4 , the outdoor unit regenerative contactor 19 includes an injection nozzle 56 for injecting hygroscopic liquid from the supply pipe 54 and an injection nozzle 61 for injecting hygroscopic liquid from the return pipe 59. When, with these injection nozzles 56 and / or filler material 24 to increase the contact area of the intake wet liquid and air that will be injected from the injection nozzle 61, since the receiver tank 25 for storing liquefied hygroscopic liquid, Contact between the air and the hygroscopic liquid is more reliably performed.

請求項記載の発明によれば、室内機としてのエアコンタクタ11は、吸湿液循環管路44からの吸湿性液体を噴射する噴射ノズル47と、戻し管路49からの吸湿性液体を噴射する噴射ノズル50と、これらの噴射ノズル47及び/又は噴射ノズル50から噴射される吸湿性液体と内部を通過する空気との接触面積を増加させる充填材35と、液化した吸湿性液体を貯留する受液タンク36とからなるので、吸入した空気がより効果的に冷却又は加熱処理される。 According to the fifth aspect of the invention, the air conditioner 11 as an indoor unit injects the hygroscopic liquid from the hygroscopic liquid circulation pipe 44 and the hygroscopic liquid from the return pipe 49. The injection nozzle 50, the filler 35 for increasing the contact area between the injection nozzle 47 and / or the hygroscopic liquid injected from the injection nozzle 50 and the air passing through the inside, and the receiver for storing the liquefied hygroscopic liquid. Since the liquid tank 36 is used, the sucked air is cooled or heated more effectively.

請求項記載の発明によれば、冷房モード時における蒸発器16又は暖房モード時における凝縮器14に連結された吸湿液循環管路44に、循環する吸湿性液体を貯留する吸湿液リザーバタンク22を設けたので、吸湿液リザーバタンク22に、高密度冷熱蓄積ができる。例えば、夏季の明け方や夜間など、運転しても熱が余剰になる時間帯には、吸湿性溶液を加熱・濃縮して吸湿液リザーバタンク22に貯めておき、冷熱負荷が高くなる日中に処理側へ投入することで、再生用エネルギー投入を増加させずに安定した除湿空調が可能である。 According to the sixth aspect of the present invention, the hygroscopic liquid reservoir tank 22 stores the hygroscopic liquid circulating in the hygroscopic liquid circulation pipe 44 connected to the evaporator 16 in the cooling mode or the condenser 14 in the heating mode. Therefore, high-density cold storage can be performed in the hygroscopic reservoir tank 22. For example, during the time when the heat is excessive even after driving, such as at dawn in summer or at night, the hygroscopic solution is heated and concentrated and stored in the hygroscopic reservoir tank 22 during the day when the cooling load increases. By supplying to the processing side, stable dehumidification air conditioning is possible without increasing the input of energy for regeneration.

本発明は、蒸発器16、圧縮機12、凝縮器14、減圧器15を冷媒管路17で連結したヒートポンプからなる室外機10と、この室外機10で得た熱エネルギーを吸入空気68と熱交換して処理済み空気69吐出する室内機とを有する空調機において、前記凝縮器14に、吸湿性液体を循環する吸湿液循環管路44を設け、この吸湿液循環管路44の途中に、前記凝縮器14での熱交換後の吸湿性液体を噴射して吸入空気68と熱交換する室内機としてのエアコンタクタ11を設け、この室内機としてのエアコンタクタ11の出力側を前記凝縮器14の入力側に連結し、かつ、この吸湿液循環管路44の途中に、外部からの補給水導入部64を設け、前記蒸発器16に、吸湿性液体を循環する供給管路54を設け、この供給管路54の途中に、前記吸湿性液体を噴射して熱交換する室外機用再生コンタクタ19を設け、この再生コンタクタ19に、排熱を導入して噴射した前記吸湿性液体と熱交換する外部熱管路70を設け、この再生コンタクタ19における受液タンク25を前記蒸発器16の入力側の供給管路54に連結したことを特徴とする空調機である。 The present invention relates to an outdoor unit 10 comprising a heat pump in which an evaporator 16, a compressor 12, a condenser 14, and a decompressor 15 are connected by a refrigerant pipe 17, and heat energy obtained by the outdoor unit 10 is converted into intake air 68 and heat. In an air conditioner having an indoor unit that exchanges and discharges treated air 69 , the condenser 14 is provided with a hygroscopic liquid circulation line 44 that circulates the hygroscopic liquid. The air conditioner 11 is provided as an indoor unit that injects the hygroscopic liquid after heat exchange in the condenser 14 to exchange heat with the intake air 68, and the output side of the air conditioner 11 as the indoor unit is connected to the condenser. 14 is provided in the middle of the hygroscopic liquid circulation pipe 44 and an external replenishment water introduction section 64 is provided, and the evaporator 16 is provided with a supply pipe 54 for circulating the hygroscopic liquid. The way of this supply line 54 In addition, an outdoor unit regeneration contactor 19 for injecting the hygroscopic liquid to exchange heat is provided, and an external heat pipe 70 for exchanging heat with the hygroscopic liquid injected by introducing exhaust heat is provided in the regeneration contactor 19. The air conditioner is characterized in that the liquid receiving tank 25 in the regeneration contactor 19 is connected to the supply line 54 on the input side of the evaporator 16 .

本発明の実施例を図1に基づき説明する。
図1において、点線を境にして、右側が室外機10で、左側が室内機としてのエアコンタクタ11である。
前記室外機10は、ヒートポンプ機能の冷凍機18に、吸湿性液体を循環する管路を組み込んだものである。
前記吸湿性液体には、食塩水、塩化リチウムなど潮解性を有する塩の溶液の他、グリセリン、エチレングリコール、プロピレングリコールなどの吸湿性の高い多価アルコール、その他の吸湿性を有する安価な液体であって、廃液は希釈して下水に流しても公害にならないものが用いられる。
前記冷凍機18は、圧縮機12、熱交換器としての凝縮器14、(膨張弁、キャピラリーチューブなどの)減圧器15、熱交換器としての蒸発器16が冷媒管路17により順次閉回路として連結され、ヒートポンプを構成している。この閉回路において、4方弁13が冷房運転(図1又は図2のように右側のバルブに切り替わっている)の場合には、図中右側の熱交換器が凝縮器14として作用し、左側の熱交換器が蒸発器16として作用し、また、4方弁13が暖房運転(図3又は図4のように左側のバルブに切り替わっている)の場合には、図中左側の熱交換器が凝縮器14として作用し、右側の熱交換器が蒸発器16として作用する。
前記圧縮機12には、駆動源31と連結し、この駆動源31は、モータ、ガスエンジンなどが使用される。
An embodiment of the present invention will be described with reference to FIG.
In FIG. 1, the right side is an outdoor unit 10 and the left side is an air conditioner 11 as an indoor unit with a dotted line as a boundary.
The outdoor unit 10 includes a refrigerator 18 having a heat pump function and a pipe for circulating a hygroscopic liquid.
Examples of the hygroscopic liquid include salt solutions having a deliquescent salt property such as lithium chloride, polyhydric alcohols having high hygroscopic properties such as glycerin, ethylene glycol, propylene glycol, and other inexpensive liquids having hygroscopic properties. The waste liquid is diluted so as not to cause pollution even if it is poured into sewage.
The refrigerator 18 includes a compressor 12, a condenser 14 as a heat exchanger, a decompressor 15 (such as an expansion valve and a capillary tube), and an evaporator 16 as a heat exchanger that are sequentially closed by a refrigerant line 17. Connected to form a heat pump. In this closed circuit, when the four-way valve 13 is in a cooling operation (switched to the right valve as shown in FIG. 1 or FIG. 2), the right heat exchanger in FIG. When the four-way valve 13 is in the heating operation (switched to the left valve as shown in FIG. 3 or 4), the heat exchanger on the left side in the figure is operated as the evaporator 16 Acts as a condenser 14, and the right heat exchanger acts as an evaporator 16.
The compressor 12 is connected to a drive source 31, and a motor, a gas engine or the like is used as the drive source 31.

前記図1中、左側の熱交換器としての蒸発器16(図2に示すように4方弁13が右側の弁に切り換っている冷房運転時のときの蒸発器16を指す。ただし、図3又は図4に示すように4方弁13が左側の弁に切り換っている暖房運転時のときは、図1中、左側の凝縮器14を指す。)には、吸湿液を循環する吸湿液循環管路44を介して熱交換器20が臨ませて設けられている。この熱交換器20の内部には、前記吸湿液循環管路44が設けられているとともに、外部熱導入部33からエンジン駆動源31、太陽熱温排水などの外部排熱その他の外部熱を導入する外部熱管路71が設けられている。
また、前記図1中、右側の熱交換器としての凝縮器14(図2に示すように4方弁13が右側の弁に切り換っている冷房運転時のときの凝縮器14を指す。ただし、図3又は図4に示すように4方弁13が左側の弁に切り換っている暖房運転時のときは、図1中、右側の蒸発器16を指す。)には、再生コンタクタ19が連結されている。この再生コンタクタ19は、コンタクタ筐体23の内部に充填材24を充填したものである。この充填材24は、気液接触による吸湿を行なうためのもので、例えば、300〜4000m/m(充填容積)という大きな表面積を有するものからなる。前記コンタクタ筐体23の上端部には、再生用空気66を吸入し、かつ、排出するためのファン26が取り付けられ、下端部には、受液タンク25が設けられているとともに、再生用空気66を導入する底部28が設けられている。この再生コンタクタ19の側部であって、前記ファン26による排気67側には、ドレン30付きの熱交換器29が設けられ、この熱交換器29は、通風路27を経て底部28からコンタクタ筐体23の内部に連通している。前記底部28には、また、ダンパー75の付いた排熱供給口74が設けられ、前記エンジン駆動源31とは異なるガスタービン排気などの排温風その他の外部熱源76を導入する。
In FIG. 1, the evaporator 16 as the left heat exchanger (the evaporator 16 in the cooling operation in which the four-way valve 13 is switched to the right valve as shown in FIG. 2 is shown. In the heating operation in which the four-way valve 13 is switched to the left valve as shown in FIG. 3 or 4, the left condenser in FIG. 1 is indicated. The heat exchanger 20 is provided so as to face the moisture absorption liquid circulation pipe 44. The heat exchanger 20 is provided with the hygroscopic liquid circulation pipe 44 and introduces external exhaust heat such as the engine drive source 31 and solar heat drainage and other external heat from the external heat introduction section 33. An external heat pipe 71 is provided.
Further, in FIG. 1, the condenser 14 as the right heat exchanger (refers to the condenser 14 in the cooling operation in which the four-way valve 13 is switched to the right valve as shown in FIG. 2). However, in the heating operation in which the four-way valve 13 is switched to the left valve as shown in FIG. 3 or FIG. 4, the right-side evaporator 16 in FIG. 19 are connected. The regenerative contactor 19 is a contactor housing 23 filled with a filler 24. The filler 24 is for absorbing moisture by gas-liquid contact, and has a large surface area of, for example, 300 to 4000 m 2 / m 3 (fill volume). A fan 26 for sucking and discharging the regeneration air 66 is attached to the upper end portion of the contactor housing 23, and a liquid receiving tank 25 is provided at the lower end portion. A bottom 28 for introducing 66 is provided. A heat exchanger 29 with a drain 30 is provided on the side of the regeneration contactor 19 and on the exhaust 67 side of the fan 26. The heat exchanger 29 is connected to the contactor housing from the bottom 28 via the ventilation path 27. It communicates with the inside of the body 23. The bottom portion 28 is also provided with an exhaust heat supply port 74 with a damper 75, and introduces an external heat source 76 such as exhaust warm air such as gas turbine exhaust different from the engine drive source 31.

前記蒸発器16における吸湿液循環管路44の入口側には、ポンプ45が連結され、このポンプ45には、補給水導入部64、吸湿液リザーバタンク22に吸湿液を出入りする吸湿液出入管42のバルブ43、バルブ63、65が連結されている。前記蒸発器16における吸湿液循環管路44の出口側は、前記熱交換器20の内部を通り、ポンプ46を経て各室内機としてのエアコンタクタ11の噴射ノズル47に連結されている。
前記エアコンタクタ11からの入口側に連結された循環管路52は、バルブ65を介して前記ポンプ45等に連結されるとともに、バルブ53を介して熱交換器21を通り、供給管路54とバルブ55に連結されている。この供給管路54は、前記凝縮器14の内部、切り替え弁77を経て再生コンタクタ19の噴射ノズル56に連結されている。前記受液タンク25には、出口管路57が連結され、この出口管路57は、ポンプ58を介して戻し管路59と、バルブ55と循環管路62に連結されている。前記戻し管路59は、バルブ60、切り替え弁77を介して再生コンタクタ19内の噴射ノズル61に連結され、また、前記循環管路62は、前記熱交換器21を通り前記バルブ63に連結されている。
前記駆動源31がモータである場合は、排熱の利用がほとんどないが、駆動源31がガスエンジンその他のエンジンである場合には、排熱管路78を結合し、この排熱管路78をバルブ72を介して外部熱導入部33に結合するとともに、バルブ73を介して外部熱導入部32に結合する。
A pump 45 is connected to the inlet side of the hygroscopic liquid circulation line 44 in the evaporator 16, and the hygroscopic liquid inlet / outlet pipe for the hygroscopic liquid to enter and exit from the replenishing water introducing section 64 and the hygroscopic liquid reservoir tank 22 is connected to the pump 45. 42 valve 43 and valves 63 and 65 are connected. The outlet side of the hygroscopic liquid circulation pipe 44 in the evaporator 16 passes through the inside of the heat exchanger 20 and is connected to an injection nozzle 47 of the air conditioner 11 as each indoor unit through a pump 46.
A circulation line 52 connected to the inlet side from the air conditioner 11 is connected to the pump 45 and the like via a valve 65 and also passes through the heat exchanger 21 via a valve 53 and a supply line 54. The valve 55 is connected. The supply line 54 is connected to the injection nozzle 56 of the regeneration contactor 19 through the inside of the condenser 14 and the switching valve 77. An outlet pipe 57 is connected to the liquid receiving tank 25, and the outlet pipe 57 is connected to a return pipe 59, a valve 55, and a circulation pipe 62 via a pump 58. The return line 59 is connected to the injection nozzle 61 in the regeneration contactor 19 through a valve 60 and a switching valve 77, and the circulation line 62 is connected to the valve 63 through the heat exchanger 21. ing.
When the drive source 31 is a motor, there is little use of exhaust heat. However, when the drive source 31 is a gas engine or other engine, an exhaust heat line 78 is connected, and the exhaust heat line 78 is connected to a valve. The external heat introduction unit 33 is coupled to the external heat introduction unit 33 through 72, and is coupled to the external heat introduction unit 32 through the valve 73.

前記室内機としてのエアコンタクタ11は、上下端が開口したコンタクタ筐体34の内部に前記充填材24と同様の充填材35を充填したもので、上端開口部には、吸気と処理済空気69を吐出するためのファン37が取り付けられ、下端開口部には、受液タンク36が設けられているとともに、吸入空気68の吸気口が設けられている。この室内機としてのエアコンタクタ11の側部には、ヒートパイプ熱交換器38が設けられ、このヒートパイプ熱交換器38の蒸発部39が前記吸入空気68の吸気口に臨ませられ、前記ヒートパイプ熱交換器38の凝縮部40が前記処理済空気69の吐出口に臨ませられ、これら蒸発部39と凝縮部40の間をヒートパイプ41で連結している。
この室内機としてのエアコンタクタ11は、必要に応じて複数台11a、11b、…が並列に取り付けられる。
The air conditioner 11 as the indoor unit is configured such that the inside of a contactor housing 34 whose upper and lower ends are opened is filled with a filler 35 similar to the filler 24, and intake and treated air 69 are provided at the upper end opening. A fan 37 is attached to the lower end opening, a liquid receiving tank 36 is provided at the lower end opening, and an intake port for intake air 68 is provided. A heat pipe heat exchanger 38 is provided at a side portion of the air conditioner 11 as the indoor unit, and an evaporation portion 39 of the heat pipe heat exchanger 38 is exposed to an intake port of the intake air 68, so that the heat The condensing part 40 of the pipe heat exchanger 38 is made to face the discharge port of the treated air 69, and the evaporation part 39 and the condensing part 40 are connected by a heat pipe 41.
A plurality of units 11a, 11b,... Are attached in parallel to the air conditioner 11 as the indoor unit as necessary.

以下、本発明の作用を図2、図3、図4に基づきモード別に説明する。
(1)除湿冷房・外気加湿モード(図2)
4方弁13は、右側のバルブに切り替わっており、また、バルブ43、バルブ53、バルブ60、バルブ63、バルブ73は、開放し、バルブ55、バルブ65、バルブ72は、閉鎖している。なお、駆動源31が、モータであるときは、排熱管路78、バルブ72,73は存在しない。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば+10℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば20気圧)下におかれることにより、高温(例えば、50℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、45℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、キャピラリーチューブ、膨張弁等の減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻り、冷凍サイクル動作をする。
Hereinafter, the operation of the present invention will be described for each mode based on FIG. 2, FIG. 3, and FIG.
(1) Dehumidification cooling / outside air humidification mode (Fig. 2)
The four-way valve 13 is switched to the right valve, the valve 43, the valve 53, the valve 60, the valve 63, and the valve 73 are opened, and the valve 55, the valve 65, and the valve 72 are closed. In addition, when the drive source 31 is a motor, the exhaust heat pipe 78 and the valves 72 and 73 do not exist.
First, the operation of the general compression heat pump will be described. Since the refrigerant is in a low pressure state in the evaporator 16, the refrigerant (for example, R-22) in the refrigerant pipe 17 is saturated at low pressure and low temperature. It absorbs heat from the surroundings until it reaches a temperature (for example, + 10 ° C.) and evaporates to obtain a freezing effect. The evaporated refrigerant is sent to the compressor 12 and placed under a high pressure (for example, 20 atmospheres), thereby reaching a high saturation temperature (for example, 50 ° C.). This refrigerant is sent to the condenser 14 and is radiated and condensed until the surroundings reach a high temperature (for example, 45 ° C.) and liquefaction proceeds. The liquefied high-pressure refrigerant drops in pressure in a decompressor 15 such as a capillary tube or an expansion valve to become a low-pressure refrigerant, returns to the evaporator 16, and performs a refrigeration cycle operation.

次に、吸湿液リザーバタンク22からバルブ43を介して供給された吸湿性液体は、ポンプ45により蒸発器16に送られ、入力時に34.2℃であった吸湿性液体が吸熱され、出力時の点aでは27℃となり、7.18Kだけ冷却される。この蒸発器16では、熱の汲み上げ温度差が20.9度という低い温度差で動作するので極めて効率がよい。ちなみに、一般的な空調機では、40度以上の汲み上げ温度差を必要とする。以下、一つの実施例としてヒートポンプ圧縮機駆動動力3.7kw機を想定する。
蒸発器16から熱交換器20へ送られるが、この熱交換器20では、駆動源31がエンジンであった場合であっても、バルブ72が閉鎖しているので、熱交換することなく、点bでも27℃(流量42.0L/min)である。この27℃の吸湿性液体は、ポンプ46によって、各エアコンタクタ11(11a、11b、…)に送られる。これらのエアコンタクタ11では、吸湿性液体が噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を冷却する。この冷却された処理済空気69は、凝縮部40を経て吐出して室内を冷房する。受液タンク36内に貯まった吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を冷却して処理済空気69を吐出する。このようにして例えば、34.3℃(吸気風量1500m/h、絶対湿度19.40g/kg)の吸入空気68は、エアコンタクタ11aのように、ヒートパイプ熱交換器38がない場合、30.0℃(処理後風量1430m/h、絶対湿度6.40g/kg)の除湿処理済空気69として吐出される。
エアコンタクタ11bのように、ヒートパイプ熱交換器38が取り付けられている場合、蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善と過冷却改善を行なわれ、32.2℃の処理済空気69として吐出される。
Next, the hygroscopic liquid supplied from the hygroscopic liquid reservoir tank 22 via the valve 43 is sent to the evaporator 16 by the pump 45, and the hygroscopic liquid that was 34.2 ° C. at the time of input is absorbed and output. At point a, the temperature becomes 27 ° C. and is cooled by 7.18K. The evaporator 16 operates at a temperature difference as low as 20.9 degrees because the heat pumping temperature difference is extremely high. Incidentally, general air conditioners require a pumping temperature difference of 40 degrees or more. Hereinafter, a heat pump compressor driving power of 3.7 kW is assumed as one embodiment.
Although it is sent from the evaporator 16 to the heat exchanger 20, even if the drive source 31 is an engine, the valve 72 is closed in this heat exchanger 20. Even b is 27 ° C. (flow rate: 42.0 L / min). The hygroscopic liquid at 27 ° C. is sent to each air conditioner 11 (11 a, 11 b,...) By a pump 46. In these air conditioners 11, the hygroscopic liquid is sprayed onto the filler 35 in the contactor housing 34 by the spray nozzle 47, and the suction air 68 that has entered through the evaporation section 39 is cooled by the suction of the fan 37. The cooled treated air 69 is discharged through the condensing unit 40 to cool the room. A part of the hygroscopic liquid stored in the liquid receiving tank 36 is circulated from the outlet pipe 48 to the return pipe 49 by the pump 51 and sprayed by the injection nozzle 50 to similarly cool the intake air 68 to be processed. Spent air 69 is discharged. Thus, for example, the intake air 68 at 34.3 ° C. (intake air volume 1500 m 3 / h, absolute humidity 19.40 g / kg) is 30 when there is no heat pipe heat exchanger 38 as in the air conditioner 11a. It is discharged as dehumidified air 69 at 0.0 ° C. (after-treatment air volume 1430 m 3 / h, absolute humidity 6.40 g / kg).
When the heat pipe heat exchanger 38 is attached like the air conditioner 11b, the sensible heat is transferred from the evaporator 39 to the condenser 40 through the heat pipe 41, thereby improving efficiency and subcooling. It is discharged as treated air 69 at 32.2 ° C.

各室内機としてのエアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、点cで32.2℃(流量42.4L/min)となり、バルブ53、熱交換器21を通り、逆方向の吸湿性液体と熱交換して点dで36.8℃となり、供給管路54を介して凝縮器14に送られる。この凝縮器14では、冷媒の放熱により加熱され、点eで43.9℃となり7.12度だけ加熱され、切り替え弁77を介して噴射ノズル56(又は点eの温度がgより低い時は切り替え弁77で噴射ノズル61に切り換えて)で再生コンタクタ19内の充填材24に噴射し、この噴射した吸湿性液体は、ファン26の吸引により、吸気予熱用熱交換器29、通風路27、底部28を経て入ってきた再生用空気66(吸気温度34.3℃、吸気風量2004m/h、絶対湿度19.40g/kg)によって冷却される。受液タンク25内に溜まった吸湿性液体は、出口管路57からその一部をポンプ58により戻し管路59へ循環し、噴射ノズル61(又は点gの温度がeより高い時は切り替え弁77で噴射ノズル56に切り換えて)で噴霧して同様に再生用空気66によって冷却される。受液タンク25から吐出した吸湿性液体の点fでの温度は、38.8℃に下降する。また、ポンプ58で吐出した点fでの量が57.0L/minとすると、戻し管路59には15.0L/minを循環し、循環管路62には42.0L/minを送る。
ここで、駆動源31がエンジンである場合、エンジン効率25%程度と考えられるが、60.0℃、7.4kwの排熱を排熱管路78、バルブ73を介して外部熱導入部32へ投入することにより、出温度は、43.8℃となり、総合効率75%が期待できる。
駆動源31がモータであって、3.7kw駆動、95%モータ効率とすると、モータの消費電力である場合、3.7kw/95%≒3.9kwの消費電力となる。また、点cにおける吸収全熱量17.5kw、温度上昇5.2度とすると、駆動源31における消費電力基準COP=17.5/3.9≒4.5となる。ただし、駆動源31がモータである場合、外部熱導入部32から外部熱が導入されない。
外部熱源76として駆動源31と関係ないガスタービン排気など排気温度150℃の排熱が質量流量0.6kg/secで導入されるようにすることもできる。
The hygroscopic liquid returned from the air conditioner 11 as each indoor unit to the circulation pipe 52 of the outdoor unit 10 becomes 32.2 ° C. (flow rate 42.4 L / min) at the point c, and the valve 53 and the heat exchanger 21. , And exchanges heat with the hygroscopic liquid in the reverse direction to reach 36.8 ° C. at point d, and is sent to the condenser 14 via the supply line 54. In this condenser 14, it is heated by the heat radiation of the refrigerant, becomes 43.9 ° C. at point e and is heated by 7.12 degrees, and when the temperature of the injection nozzle 56 (or point e is lower than g) via the switching valve 77. The changeover valve 77 switches to the injection nozzle 61) to inject the filler 24 in the regeneration contactor 19. It is cooled by the regenerating air 66 (intake temperature 34.3 ° C., intake air volume 2004 m 3 / h, absolute humidity 19.40 g / kg) that has entered through the bottom 28. Part of the hygroscopic liquid accumulated in the liquid receiving tank 25 is circulated from the outlet pipe 57 to the return pipe 59 by the pump 58, and when the temperature of the injection nozzle 61 (or point g is higher than e), the switching valve. At 77, the spray nozzle 56 is switched to the spray nozzle 56, and the spray air is similarly cooled by the regeneration air 66. The temperature at the point f of the hygroscopic liquid discharged from the liquid receiving tank 25 falls to 38.8 ° C. Further, if the amount discharged at the point f by the pump 58 is 57.0 L / min, 15.0 L / min is circulated through the return line 59 and 42.0 L / min is sent to the circulation line 62.
Here, when the drive source 31 is an engine, it is considered that the engine efficiency is about 25%, but the exhaust heat of 60.0 ° C. and 7.4 kw is sent to the external heat introduction unit 32 via the exhaust heat line 78 and the valve 73. By adding it, the output temperature becomes 43.8 ° C., and an overall efficiency of 75% can be expected.
If the drive source 31 is a motor, 3.7 kw drive, and 95% motor efficiency, the power consumption of the motor is 3.7 kw / 95% ≈3.9 kw. Further, if the absorbed total heat amount at the point c is 17.5 kW and the temperature rise is 5.2 degrees, the power consumption reference COP in the drive source 31 is 17.5 / 3.9≈4.5. However, when the drive source 31 is a motor, external heat is not introduced from the external heat introduction unit 32.
As the external heat source 76, exhaust heat having an exhaust temperature of 150 ° C. such as gas turbine exhaust not related to the drive source 31 may be introduced at a mass flow rate of 0.6 kg / sec.

このようにして例えば、名古屋市内、夏季日中標準外気条件として、34.3℃(吸気風量2004m/h、絶対湿度19.40g/kg)の再生用空気66は、37.3℃(吸気風量2076m/h、絶対湿度36.76g/kg)の高温多湿の排気67として排気される。
このとき、熱交換器29にて、導入された再生用空気66と、再生コンタクタ19内で処理された排気67とで吸気予熱用熱交換して顕熱回収を行なう。
前記ポンプ58による点fでの吸湿性液体の吐出量57.0L/minのうち、循環管路62には42.0L/minを送り、点hで38.8℃の吸湿性液体が熱交換器21を通り、逆方向の吸湿性液体と熱交換して点iで34.2℃となり、吸湿液循環管路44に戻される。
なお、夏季の冷房を必要とする時季であって、明け方や夜間などの熱が余剰になる時間帯には、バルブ43から吸湿液出入管42を通して吸湿液リザーバタンク22に吸湿性液体を貯め込み、飽和に近いところまでに濃度を上げておき、日中に処理側へ投入する。
以上の動作を繰り返して、除湿冷房・外気加湿が行なわれる。
In this way, for example, as a standard outdoor air condition during the summer day in Nagoya city, the regeneration air 66 with 34.3 ° C. (intake air volume 2004 m 3 / h, absolute humidity 19.40 g / kg) is 37.3 ° C. ( It is exhausted as a hot and humid exhaust 67 having an intake air volume of 2076 m 3 / h and an absolute humidity of 36.76 g / kg.
At this time, in the heat exchanger 29, the introduced regeneration air 66 and the exhaust 67 processed in the regeneration contactor 19 are subjected to heat exchange for intake preheating to recover sensible heat.
Of the discharge amount 57.0 L / min of the hygroscopic liquid at the point f by the pump 58, 42.0 L / min is sent to the circulation line 62, and the hygroscopic liquid of 38.8 ° C. is heat-exchanged at the point h. Heat is exchanged with the hygroscopic liquid in the reverse direction through the vessel 21 to reach 34.2 ° C. at the point i and returned to the hygroscopic liquid circulation line 44.
In addition, in a time when summer cooling is required and heat is excessive, such as at dawn or at night, the hygroscopic liquid reservoir tank 22 stores the hygroscopic liquid through the hygroscopic liquid inlet / outlet pipe 42. The concentration is increased to a point close to saturation, and it is put into the processing side during the day.
The above operation is repeated to perform dehumidification cooling and outdoor air humidification.

(2)加湿暖房・補給水ありモード(図3)
4方弁13は、左側のバルブに切り替わっており、また、バルブ43、バルブ55、バルブ65、バルブ72は、開放し、バルブ53、バルブ60、バルブ63、バルブ73は、閉鎖している。なお、駆動源31が、モータであるときは、排熱管路78、バルブ72,73は設けない。
したがって、このモードでは、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路と、凝縮器14とエアコンタクタ11側の吸湿性液体の循環路とは、それぞれ分離独立している。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば−15℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば16気圧)下におかれることにより、高温(例えば、35℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、30℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻る。
(2) Humidification heating / mode with makeup water (Figure 3)
The four-way valve 13 is switched to the left valve, the valve 43, the valve 55, the valve 65, and the valve 72 are opened, and the valve 53, the valve 60, the valve 63, and the valve 73 are closed. In addition, when the drive source 31 is a motor, the exhaust heat pipe 78 and the valves 72 and 73 are not provided.
Therefore, in this mode, the hygroscopic liquid circulation path on the evaporator 16 and the regeneration contactor 19 side and the hygroscopic liquid circulation path on the condenser 14 and air conditioner 11 side are separated and independent.
First, the operation of the general compression heat pump will be described. Since the refrigerant is in a low pressure state in the evaporator 16, the refrigerant (for example, R-22) in the refrigerant pipe 17 is saturated at low pressure and low temperature. It absorbs heat from the surroundings until it reaches a temperature (for example, −15 ° C.) and evaporates to obtain a freezing effect. The evaporated refrigerant is sent to the compressor 12 and placed under a high pressure (for example, 16 atmospheres), thereby reaching a high temperature (for example, 35 ° C.) saturation temperature. This refrigerant is sent to the condenser 14 and is radiated and condensed until the surroundings reach a high temperature (for example, 30 ° C.) and liquefaction proceeds. The liquefied high-pressure refrigerant drops in pressure in the decompressor 15 and becomes low-pressure refrigerant, and returns to the evaporator 16.

次に、凝縮器14とエアコンタクタ11側の吸湿性液体の循環路において、吸湿液循環管路44の吸湿性液体は、ポンプ45により凝縮器14に送られる。この凝縮器14では、入力時に19.8℃(59.4L/min)であった吸湿性液体が加熱され、外部から約0.6L/minの補給水を得て、出力時の点aでは27℃(60.0L/min)に上昇する。吸湿性液体は希釈加熱され、その吸湿能力は低下し、加湿能力が増加する。この25℃の低吸湿性液体は、ポンプ46によって、熱交換器20、点bを経て各エアコンタクタ11(11a、11b、…)に送られる。なお、駆動源31がエンジンである場合、排熱がバルブ72を介して外部熱導入部33から熱交換器20に導入されて、熱交換する。しかし、駆動源31がモータである場合、排熱がほとんどないので排熱管路78自体がなく、熱交換器20では、熱交換することがない。 これらのエアコンタクタ11では、噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を加熱して処理済空気69を吐出して室内を暖房する。受液タンク36内に貯まった吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を加湿して加湿処理済空気69を吐出する。このようにして例えば、15℃(2551m3/h)の吸入空気68は、25℃(3000m3/h)の処理済空気69として吐出される。 このとき、ヒートパイプ熱交換器38の蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善を行なう。 Next, in the circulation path of the hygroscopic liquid on the condenser 14 and the air conditioner 11 side, the hygroscopic liquid in the hygroscopic liquid circulation pipe 44 is sent to the condenser 14 by the pump 45. In this condenser 14, the hygroscopic liquid that was 19.8 ° C. (59.4 L / min) at the time of input is heated, and about 0.6 L / min of makeup water is obtained from the outside. The temperature rises to 27 ° C. (60.0 L / min). The hygroscopic liquid is diluted and heated, its hygroscopic capacity decreases, and the humidifying capacity increases. This low hygroscopic liquid at 25 ° C. is sent to each air conditioner 11 (11 a, 11 b,...) By the pump 46 via the heat exchanger 20 and the point b. In addition, when the drive source 31 is an engine, exhaust heat is introduced into the heat exchanger 20 from the external heat introduction part 33 via the valve | bulb 72, and heat-exchanges. However, when the drive source 31 is a motor, there is almost no exhaust heat, so there is no exhaust heat pipe 78 itself, and the heat exchanger 20 does not exchange heat. In these air conditioners 11, the sprayed nozzle 47 sprays the filler 35 in the contactor housing 34 and heats the intake air 68 that has entered through the evaporation section 39 by the suction of the fan 37 to process the processed air 69. Discharge to heat the room. A portion of the hygroscopic liquid stored in the liquid receiving tank 36 is circulated from the outlet pipe 48 to the return pipe 49 by the pump 51 and sprayed by the injection nozzle 50 to humidify the intake air 68 in the same manner. Processed air 69 is discharged. Thus, for example, intake air 68 15 ℃ (2551m 3 / h) is discharged as treated air 69 25 ℃ (3000m 3 / h) . At this time, the sensible heat is transferred from the evaporator 39 of the heat pipe heat exchanger 38 to the condenser 40 via the heat pipe 41, thereby improving the efficiency.

各エアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、僅かに濃縮され、点cで19.8℃(59.4L/min)となり、バルブ65を経て吸湿液循環管路44に戻され、以下、循環を繰り返す。再生コンタクタ19側のエアコンタクタ11側とは、それぞれ分離独立しており、再生コンタクタ19側で吸湿されないので、補給水導入部64からは、各室内機としてのエアコンタクタ11の受液タンク36における水位を見ながら、36.5L/h程度の水を補給する。   The hygroscopic liquid returned from the air conditioner 11 to the circulation pipe 52 of the outdoor unit 10 is slightly concentrated, reaches 19.8 ° C. (59.4 L / min) at the point c, and circulates the hygroscopic liquid through the valve 65. It returns to the pipe line 44 and repeats circulation thereafter. Since the regeneration contactor 19 side is separated and independent from the air contactor 11 side and is not absorbed by the regeneration contactor 19 side, the make-up water introduction unit 64 has a liquid receiving tank 36 of the air conditioner 11 as each indoor unit. While watching the water level, replenish about 36.5 L / h of water.

次に、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路において、蒸発器16への入力時に13.0℃(59.4L/min)であった吸湿性液体は、蒸発器16での冷媒の吸熱により冷却され、点eで7.3℃に降下し、切り替え弁77を経て再生コンタクタ19内で噴射ノズル56から充填材24に噴射する。駆動源31がエンジンである場合、排熱管路78にバルブ73が設けられているが、このバルブ73は閉じており、排熱が外部熱導入部32に送られてくることはない。
再生コンタクタ19の内部で熱交換して受液タンク25内に溜まった吸湿性液体は、出口管路57からポンプ58により供給管路54へ循環する。このとき、点fでの13.0℃(59.4L/min)の吸湿性液体は、バルブ60が閉鎖しているので戻し管路59を循環することはなく、すべて再び供給管路54を経て噴射ノズル56へ送られる。
なお、外気温度が10℃などの低温であるときは、ファン26も停止し、再生コンタクタ19内への吸気を停止するようにしてもよい。
このようにして例えば、エンジン31などの外部熱が低吸湿性液体に熱交換されて蒸発器16で有効に利用される。
以上の動作を繰り返して、加湿暖房が行なわれる。
Next, in the circulation path of the hygroscopic liquid on the evaporator 16 and the regeneration contactor 19 side, the hygroscopic liquid that was 13.0 ° C. (59.4 L / min) at the time of input to the evaporator 16 is The refrigerant is cooled by the endothermic heat of the refrigerant, drops to 7.3 ° C. at the point e, and is injected into the filler 24 from the injection nozzle 56 in the regeneration contactor 19 via the switching valve 77. When the drive source 31 is an engine, a valve 73 is provided in the exhaust heat pipe 78, but the valve 73 is closed, and exhaust heat is not sent to the external heat introduction unit 32.
The hygroscopic liquid accumulated in the liquid receiving tank 25 by exchanging heat inside the regeneration contactor 19 is circulated from the outlet line 57 to the supply line 54 by the pump 58. At this time, the hygroscopic liquid at 13.0 ° C. (59.4 L / min) at the point f does not circulate through the return line 59 because the valve 60 is closed, and all of the hygroscopic liquid again passes through the supply line 54. Then, it is sent to the injection nozzle 56.
Note that when the outside air temperature is a low temperature such as 10 ° C., the fan 26 may also be stopped to stop the intake air into the regeneration contactor 19.
In this way, for example, the external heat of the engine 31 or the like is exchanged with the low hygroscopic liquid and effectively used in the evaporator 16.
Humidification heating is performed by repeating the above operation.

(3)加湿暖房・外気吸湿・補給水なしモード(図4)
4方弁13は、左側のバルブに切り替わっており、また、バルブ43、バルブ53、バルブ60、バルブ63、バルブ72は、開放し、バルブ55、バルブ65、バルブ73は、閉鎖している。なお、駆動源31が、モータであるときは、排熱管路78、バルブ72,73は設けない。
したがって、このモードでは、蒸発器16と再生コンタクタ19側の吸湿性液体の循環路と、凝縮器14と室内機としてのエアコンタクタ11側の吸湿性液体の循環路とは、互いに連通して一つの循環路を形成している。
まず、一般的な上記圧縮式ヒートポンプの動作を説明すると、蒸発器16では、冷媒が低圧の状態にあるから、冷媒管路17内の冷媒(例えば、R−22)は、その低圧低温の飽和温度(例えば−15℃)になるまで周りから吸熱して蒸発し、冷凍効果を得る。蒸発した冷媒は、圧縮機12に送られて高圧(例えば16気圧)下におかれることにより、高温(例えば、35℃)の飽和温度になる。この冷媒は、凝縮器14に送られて周囲が高温(例えば、30℃)になるまで放熱凝縮して液化が進む。液化した高圧冷媒は、減圧器15において圧力降下して低圧冷媒となり、蒸発器16へ戻る。
(3) Humidification heating, moisture absorption outside air, no makeup water mode (Figure 4)
The four-way valve 13 is switched to the left valve, the valve 43, the valve 53, the valve 60, the valve 63, and the valve 72 are opened, and the valve 55, the valve 65, and the valve 73 are closed. In addition, when the drive source 31 is a motor, the exhaust heat pipe 78 and the valves 72 and 73 are not provided.
Therefore, in this mode, the hygroscopic liquid circulation path on the evaporator 16 and the regeneration contactor 19 side, and the condenser 14 and the hygroscopic liquid circulation path on the air conditioner 11 side as the indoor unit communicate with each other. Two circulation paths are formed.
First, the operation of the general compression heat pump will be described. Since the refrigerant is in a low pressure state in the evaporator 16, the refrigerant (for example, R-22) in the refrigerant pipe 17 is saturated at low pressure and low temperature. It absorbs heat from the surroundings until it reaches a temperature (for example, −15 ° C.) and evaporates to obtain a freezing effect. The evaporated refrigerant is sent to the compressor 12 and placed under a high pressure (for example, 16 atmospheres), thereby reaching a high temperature (for example, 35 ° C.) saturation temperature. This refrigerant is sent to the condenser 14 and is radiated and condensed until the surroundings reach a high temperature (for example, 30 ° C.) and liquefaction proceeds. The liquefied high-pressure refrigerant drops in pressure in the decompressor 15 and becomes low-pressure refrigerant, and returns to the evaporator 16.

次に、熱交換器20に入力する直前の低吸湿性液体が20℃あったものとすると、この吸湿性液体は、ポンプ45により凝縮器14に送られて加熱された後、出力時の点aでは25℃(60.0L/min)に上昇する。さらに熱交換器20へ送られ、エンジン31からバルブ72を経て4方弁13に送られてきた外部熱により加熱され、出力時の点bでは27℃(60.0L/min)に上昇する。この27℃の低吸湿性液体は、ポンプ46によって、各エアコンタクタ11a、11b、…に送られる。これらのエアコンタクタ11では、噴射ノズル47でコンタクタ筐体34内の充填材35に噴射し、ファン37の吸引により蒸発部39を通って入ってきた吸入空気68を加湿・加熱して処理済空気69を吐出して室内を暖房する。受液タンク36内に貯まった低吸湿性液体は、出口管路48からその一部をポンプ51により戻し管路49へ循環し、噴射ノズル50で噴霧して同様に吸入空気68を加湿・加熱して処理済空気69を吐出する。このようにして例えば、15℃(1152m/h)の吸入空気68は、25℃(1200m/h)の処理済空気69として吐出される。
このとき、ヒートパイプ熱交換器38の蒸発部39からヒートパイプ41を経て凝縮部40に顕熱移動することにより、効率改善を行なう。
Next, assuming that the low hygroscopic liquid immediately before being input to the heat exchanger 20 is 20 ° C., the hygroscopic liquid is sent to the condenser 14 by the pump 45 and heated, and then is output. In a, it rises to 25 ° C. (60.0 L / min). Further, the heat is sent to the heat exchanger 20 and heated by the external heat sent from the engine 31 to the four-way valve 13 via the valve 72, and rises to 27 ° C. (60.0 L / min) at the point b at the time of output. This low hygroscopic liquid at 27 ° C. is sent to each air conditioner 11a, 11b,. In these air conditioners 11, treated air is obtained by spraying the filler 35 in the contactor housing 34 by the spray nozzle 47 and humidifying and heating the intake air 68 that has entered through the evaporation section 39 by suction of the fan 37. 69 is discharged to heat the room. A part of the low hygroscopic liquid stored in the liquid receiving tank 36 is circulated from the outlet pipe 48 to the return pipe 49 by the pump 51 and sprayed by the spray nozzle 50 to similarly humidify and heat the intake air 68. Then, the treated air 69 is discharged. Thus, for example, intake air 68 15 ℃ (1152m 3 / h) is discharged as treated air 69 25 ℃ (1200m 3 / h) .
At this time, the sensible heat is transferred from the evaporator 39 of the heat pipe heat exchanger 38 to the condenser 40 via the heat pipe 41, thereby improving the efficiency.

次に、各エアコンタクタ11から室外機10の循環管路52に戻された吸湿性液体は、点cで20℃(59.4L/min)となり、バルブ53を経て熱交換器21内で逆方向からの吸湿性液体と熱交換して、点dで8℃(59.4L/min)となり、供給管路54を経て蒸発器16の吸熱作用によりさらに点eで3℃(59.4L/min)に降下する。この吸湿性液体は、切り替え弁77を介して再生コンタクタ19におけるコンタクタ筐体23内の噴射ノズル56から充填材24に噴射する。すると、ファン26により吸入された10℃(1900m/h)の再生用空気66と熱交換する。熱交換した再生用空気66は、コンタクタ筐体23内から交換機29を経て−5℃(1812m/h)となって排気される。 Next, the hygroscopic liquid returned from the air conditioner 11 to the circulation pipe 52 of the outdoor unit 10 becomes 20 ° C. (59.4 L / min) at the point c, and reverses in the heat exchanger 21 through the valve 53. Heat exchange with the hygroscopic liquid from the direction reaches 8 ° C. (59.4 L / min) at the point d, and further 3 ° C. (59.4 L / min) at the point e due to the endothermic action of the evaporator 16 through the supply line 54. min). The hygroscopic liquid is sprayed from the spray nozzle 56 in the contactor housing 23 of the regenerative contactor 19 to the filler 24 via the switching valve 77. Then, heat exchange with the regeneration air 66 at 10 ° C. (1900 m 3 / h) sucked by the fan 26 is performed. The heat-regenerated regeneration air 66 is exhausted from the contactor housing 23 through the exchanger 29 to −5 ° C. (1812 m 3 / h).

受液タンク25内に貯まった吸湿性液体は、出口管路57からポンプ58により一部(約15L/min)を戻し管路59へ戻し、バルブ60から噴射ノズル61で噴射する。
吸湿性液体は、外気から吸湿しつつ、−3℃(60.0L/min)まで加熱され、出口管路57に出力しポンプ58で点fから点hを経て熱交換器21へ送られ、ここで、逆方向の吸湿性液体と熱交換し、点iで20℃(60.0L/min)まで加熱されてもとの吸湿液循環管路44へ戻る。
このようにして例えば、駆動源31がエンジンである場合、その排熱などの外部熱が熱交換器20にて吸湿性液体に熱交換されて有効に利用され、かつ、以上の動作を繰り返して、加湿暖房が行なわれる。
なお、吸湿性液体は、再生コンタクタ19にて外気から吸湿するので、補給水導入部64から水を補給することはしない。
A part of the hygroscopic liquid stored in the liquid receiving tank 25 is returned from the outlet pipe 57 to the return pipe 59 by the pump 58 and is jetted from the valve 60 by the jet nozzle 61.
The hygroscopic liquid is heated to −3 ° C. (60.0 L / min) while absorbing moisture from the outside air, and is output to the outlet pipe 57 and sent to the heat exchanger 21 from point f to point h by the pump 58. Here, heat exchange is performed with the hygroscopic liquid in the reverse direction, and the liquid returns to the original hygroscopic liquid circulation line 44 even if heated to 20 ° C. (60.0 L / min) at the point i.
Thus, for example, when the drive source 31 is an engine, the external heat such as exhaust heat is effectively used by exchanging heat with the hygroscopic liquid in the heat exchanger 20, and the above operation is repeated. Humidification heating is performed.
Since the hygroscopic liquid absorbs moisture from the outside air in the regeneration contactor 19, water is not replenished from the makeup water introducing unit 64.

本発明による空調機は、工場用、病院用、列車用、ビル用などの大型の空調システムとしてはもちろんのこと、小型・軽量化が可能であり、民生用、家庭用、車両用などとしても利用できる。特に、ガスエンジンの排熱を利用するのに好適である。   The air conditioner according to the present invention can be reduced in size and weight as well as large-scale air conditioning systems for factories, hospitals, trains, buildings, etc. Available. In particular, it is suitable for utilizing the exhaust heat of the gas engine.

本発明による空調機の一実施例を示す配管図である。It is a piping diagram which shows one Example of the air conditioner by this invention. 本発明による空調機を除湿冷房・外気加湿モードとしたときの配管図である。It is a piping diagram when the air conditioner by this invention is set to dehumidification cooling and external air humidification mode. 本発明による空調機を加湿冷房・補給水ありモードとしたときの配管図である。It is a piping diagram when the air conditioner by this invention is set to humidification cooling and a mode with replenishment water. 本発明による空調機を加湿冷房・外気吸湿・補給水なしモードとしたときの配管図である。It is a piping diagram when the air conditioner by this invention is set to humidification air_conditioning | cooling, external air moisture absorption, and no supplementary water mode.

符号の説明Explanation of symbols

10…室外機、11…室内機としてのエアコンタクタ、12…圧縮機、13…4方弁、14…凝縮器、15…減圧器、16…蒸発器、17…冷媒管路、18…冷凍機、19…室外機用再生コンタクタ、20…熱交換器、21…熱交換器、22…吸湿液リザーバタンク、23…コンタクタ筐体、24…充填材、25…受液タンク、26…ファン、27…通風路、28…底部、29…熱交換器、30…ドレン、31…駆動源、32…外部熱導入部、33…外部熱導入部、34…コンタクタ筐体、35…充填材、36…受液タンク、37…ファン、38…熱交換器、39…蒸発部、40…凝縮部、41…ヒートパイプ、42…吸湿液出入管、43…バルブ、44…吸湿液循環管路、45…ポンプ、46…ポンプ、47…噴射ノズル、48…出口管路、49…戻し管路、50…噴射ノズル、51…ポンプ、52…循環管路、53…バルブ、54…供給管路、55…バルブ、56…噴射ノズル、57…出口管路、58…ポンプ、59…戻し管路、60…バルブ、61…噴射ノズル、62…循環管路、63…バルブ、64…補給水導入部、65…バルブ、66…再生用空気、67…排気、68…吸入空気、69…処理済空気、70…外部熱管路、71…外部熱管路、72…バルブ、73…バルブ、74…排熱供給口、75…ダンパー、76…外部熱源、77…切り替え弁、78…排熱管路。
DESCRIPTION OF SYMBOLS 10 ... Outdoor unit, 11 ... Air conditioner as indoor unit, 12 ... Compressor, 13 ... Four-way valve, 14 ... Condenser, 15 ... Decompressor, 16 ... Evaporator, 17 ... Refrigerant line, 18 ... Refrigerator , 19 ... Regenerative contactor for outdoor unit, 20 ... Heat exchanger, 21 ... Heat exchanger, 22 ... Hygroscopic reservoir tank, 23 ... Contactor housing, 24 ... Filler, 25 ... Liquid receiving tank, 26 ... Fan, 27 DESCRIPTION OF SYMBOLS ... Ventilation path, 28 ... Bottom part, 29 ... Heat exchanger, 30 ... Drain, 31 ... Drive source, 32 ... External heat introduction part, 33 ... External heat introduction part, 34 ... Contactor housing, 35 ... Filler, 36 ... Receiving tank, 37 ... fan, 38 ... heat exchanger, 39 ... evaporating section, 40 ... condensing section, 41 ... heat pipe, 42 ... hygroscopic liquid inlet / outlet pipe, 43 ... valve, 44 ... hygroscopic liquid circulation line, 45 ... Pump, 46 ... pump, 47 ... injection nozzle, 48 ... outlet line 49 ... Return line, 50 ... Injection nozzle, 51 ... Pump, 52 ... Circulation line, 53 ... Valve, 54 ... Supply line, 55 ... Valve, 56 ... Injection nozzle, 57 ... Outlet line, 58 ... Pump, 59 ... Return line, 60 ... Valve, 61 ... Injection nozzle, 62 ... Circulation line, 63 ... Valve, 64 ... Supply water introduction part, 65 ... Valve, 66 ... Regeneration air, 67 ... Exhaust, 68 ... Intake air 69 ... Processed air, 70 ... External heat line, 71 ... External heat line, 72 ... Valve, 73 ... Valve, 74 ... Waste heat supply port, 75 ... Damper, 76 ... External heat source, 77 ... Switching valve, 78 ... Waste heat line.

Claims (6)

蒸発器(16)、圧縮機(12)、凝縮器(14)、減圧器(15)を冷媒管路(17)で連結したヒートポンプからなる室外機(10)と、この室外機(10)で得た熱エネルギーを吸入空気(68)と熱交換して処理済み空気(69)吐出する室内機とを有する空調機において、前記凝縮器(14)に、吸湿性液体を循環する吸湿液循環管路(44)を設け、この吸湿液循環管路(44)の途中に、前記凝縮器(14)での熱交換後の吸湿性液体を噴射して吸入空気(68)と熱交換する室内機としてのエアコンタクタ(11)を設け、この室内機としてのエアコンタクタ(11)の出力側を前記凝縮器(14)の入力側に連結し、かつ、この吸湿液循環管路(44)の途中に、外部からの補給水導入部(64)を設け、前記蒸発器(16)に、吸湿性液体を循環する供給管路(54)を設け、この供給管路(54)の途中に、前記吸湿性液体を噴射して熱交換する室外機用再生コンタクタ(19)を設け、この再生コンタクタ(19)に、排熱を導入して噴射した前記吸湿性液体と熱交換する外部熱管路(70)を設け、この再生コンタクタ(19)における受液タンク(25)を前記蒸発器(16)の入力側の供給管路(54)に連結したことを特徴とする空調機。 An outdoor unit ( 10 ) composed of a heat pump in which an evaporator ( 16 ) , a compressor ( 12 ) , a condenser ( 14 ) , and a decompressor ( 15 ) are connected by a refrigerant pipe ( 17 ) , and the outdoor unit ( 10 ) In an air conditioner having an indoor unit for exchanging heat with the intake air (68) and discharging the processed air (69) , the hygroscopic liquid circulation for circulating the hygroscopic liquid to the condenser ( 14 ) A pipe line ( 44 ) is provided, and the hygroscopic liquid after heat exchange in the condenser ( 14 ) is jetted in the middle of the hygroscopic liquid circulation pipe ( 44 ) to exchange heat with the intake air (68). An air conditioner ( 11 ) as an air conditioner is provided, the output side of the air conditioner ( 11 ) as an indoor unit is connected to the input side of the condenser ( 14 ) , and the hygroscopic liquid circulation line ( 44 ) in the middle, makeup water inlet portion from outside (64) is provided, the evaporator (16) to circulate the hygroscopic liquid Supply line (54) is provided, in the middle of the feed line (54), wherein the hygroscopic liquid jet to the outdoor unit for reproducing contactor (19) provided for heat exchange, in the reproduction contactor (19), An external heat pipe ( 70 ) for exchanging heat with the hygroscopic liquid injected by introducing exhaust heat is provided, and a liquid receiving tank ( 25 ) in the regeneration contactor ( 19 ) is supplied to the input side of the evaporator ( 16 ). An air conditioner characterized by being connected to a pipe line ( 54 ) . 室内機としてのエアコンタクタ(11)に、このエアコンタクタ(11)の空気吸入側に配置した蒸発部(39)と、このエアコンタクタ(11)の空気吐出側に配置した凝縮部(40)と、これら蒸発部(39)と凝縮部(40)を連結するヒートパイプ(41)とからなる熱交換器(38)を設けたことを特徴とする請求項1記載の空調機。 The air contactor (11) as the indoor unit, the evaporation unit arranged on the air intake side of the air contactor (11) and (39), condenser unit arranged on the air discharge side of the air contactor (11) and (40) The air conditioner according to claim 1, further comprising a heat exchanger ( 38 ) comprising a heat pipe (41 ) for connecting the evaporation section ( 39 ) and the condensation section ( 40 ) . 室外機用再生コンタクタ(19)における再生用空気吸入側と空気排出側に、前記再生コンタクタ(19)で吸湿処理された外気と前記再生コンタクタ(19)内に吸入された外気との熱交換をする熱交換器(29)とを設けたことを特徴とする請求項1記載の空調機。 The regeneration air intake side and the air discharge side of the outdoor unit for reproducing contactor (19), the heat exchange of the outside air and sucked into the regeneration contactor (19) in moisture absorption treatment outside air and the regeneration contactor (19) in The air conditioner according to claim 1, further comprising a heat exchanger ( 29 ) . 室外機用再生コンタクタ(19)は、供給管路(54)からの吸湿性液体を噴射する噴射ノズル(56)と、戻し管路(59)からの吸湿性液体を噴射する噴射ノズル(61)と、これらの噴射ノズル(56)及び/又は噴射ノズル(61)から噴射される吸湿性液体と空気の接触面積を増加させる充填材(24)と、液化した吸湿性液体を貯留する受液タンク(25)とからなることを特徴とする請求項1記載の空調機。 Outdoor unit for playback contactor (19), the injection nozzle for injecting the injection nozzle for injecting the hygroscopic liquid from the supply line (54) (56), the hygroscopic liquid from the return line (59) (61) If, receiver tank for storing these injection nozzle (56) and / or the injection nozzle (61) filler to increase the contact area of the intake wet liquid and air that will be ejected from the (24), the liquefied hygroscopic liquid The air conditioner according to claim 1, characterized by comprising ( 25 ) . 室内機としてのエアコンタクタ(11)は、吸湿液循環管路(44)からの吸湿性液体を噴射する噴射ノズル(47)と、戻し管路(49)からの吸湿性液体を噴射する噴射ノズル(50)と、これらの噴射ノズル(47)及び/又は噴射ノズル(50)から噴射される吸湿性液体と内部を通過する空気との接触面積を増加させる充填材(35)と、液化した吸湿性液体を貯留する受液タンク(36)とからなることを特徴とする請求項1記載の空調機。 The air conditioner ( 11 ) as an indoor unit includes an injection nozzle ( 47 ) for injecting hygroscopic liquid from the hygroscopic liquid circulation pipe ( 44 ) and an injection nozzle for injecting hygroscopic liquid from the return pipe ( 49 ). ( 50 ) , a filler ( 35 ) that increases the contact area between the spray nozzle ( 47 ) and / or the hygroscopic liquid sprayed from the spray nozzle ( 50 ) and the air passing through the interior, and the liquefied moisture absorbent The air conditioner according to claim 1, characterized by comprising a liquid receiving tank ( 36 ) for storing a ionic liquid. 房モード時における凝縮器(14)に連結された吸湿液循環管路(44)に、循環する吸湿性液体を貯留する吸湿液リザーバタンク(22)を設けたことを特徴とする請求項1記載の空調機。 Condenser during warm tufts mode hygroscopic-liquid circulation line which is connected to (14) (44), according to claim 1, characterized in that a moisture absorbing liquid reservoir tank for storing the hygroscopic liquid circulating (22) The air conditioner described.
JP2004025892A 2004-02-02 2004-02-02 air conditioner Expired - Lifetime JP4368212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025892A JP4368212B2 (en) 2004-02-02 2004-02-02 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025892A JP4368212B2 (en) 2004-02-02 2004-02-02 air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009076201A Division JP2009145040A (en) 2009-03-26 2009-03-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005214595A JP2005214595A (en) 2005-08-11
JP4368212B2 true JP4368212B2 (en) 2009-11-18

Family

ID=34908129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025892A Expired - Lifetime JP4368212B2 (en) 2004-02-02 2004-02-02 air conditioner

Country Status (1)

Country Link
JP (1) JP4368212B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323958B1 (en) * 2005-03-25 2013-10-31 듀쿨, 엘티디. System and method for managing water content in a fluid
JP2008045803A (en) * 2006-08-14 2008-02-28 Hachiyo Engneering Kk Energy-saving air conditioning system
JP4384699B2 (en) 2008-05-22 2009-12-16 ダイナエアー株式会社 Humidity control device
JP4374393B1 (en) 2008-05-27 2009-12-02 ダイナエアー株式会社 Humidity control device
JP5349077B2 (en) * 2009-02-26 2013-11-20 ダイナエアー株式会社 Humidity control device
JP4647018B2 (en) * 2009-07-10 2011-03-09 ダイナエアー株式会社 House ventilation system and house air conditioning system
JP5089672B2 (en) * 2009-10-27 2012-12-05 ダイナエアー株式会社 Dehumidifier
JP2011179699A (en) * 2010-02-26 2011-09-15 Dyna-Air Co Ltd Air conditioning system and method
CN102667350B (en) * 2010-11-23 2015-03-25 杜酷尔有限公司 Air conditioning system
JP6046294B1 (en) * 2016-04-15 2016-12-14 ダイナエアー株式会社 Processor and regenerator
CN106839145B (en) * 2017-01-10 2022-11-08 美的集团武汉制冷设备有限公司 Mobile air conditioner and control method thereof

Also Published As

Publication number Publication date
JP2005214595A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US6324860B1 (en) Dehumidifying air-conditioning system
CN103502740B (en) Hybrid refrigeration device
CN101240925B (en) Solar energy absorption type liquid dehumidifying air-conditioning system
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
US4287721A (en) Chemical heat pump and method
JP2017537293A (en) Compact split type liquid desiccant air conditioning method and system
KR200443867Y1 (en) Sola Lowtemp Water Absorption cooling System
Cerci A new ideal evaporative freezing cycle
EP1746355B1 (en) Air conditioner system
WO2001018467A1 (en) Refrigerating device
JP4368212B2 (en) air conditioner
CN100334408C (en) Solar energy accumulation type equipment of water chilling unit set, and refrigeration method of evaporation and refrigeration
CN100417865C (en) Thermal-drive solution ventilation processor set by using cooling water as cooling source
CN103940164A (en) Solution spraying type frostless air source heat pump device
CN105910190B (en) A kind of heat of adsorption pond coupled film solution dehumidifying air-conditioning system of Driven by Solar Energy
CN104713266A (en) Heat pump type cold and heat source unit capable of achieving frost-free and evaporative cooling
CN203837360U (en) Solution-spraying-type frostless air source heat pump device
EP1225401B1 (en) Refrigerating device
JP2005233511A (en) Air conditioner
CN100387926C (en) Accumulation dehumidifying air conditioning method for accumulation dehumidifying air conditioner set, and appts. thereof
CN200975755Y (en) Heating drive solution fresh air disposer with cooling water as cold source
JPH11132502A (en) Dehumidifying air conditioner system
CN2916472Y (en) Solution dehumidifying cooling and compression type heat pump composite system
JP2009145040A (en) Air conditioner
JP2001074336A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

R150 Certificate of patent or registration of utility model

Ref document number: 4368212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250