JP4367761B2 - Torque limiter - Google Patents

Torque limiter Download PDF

Info

Publication number
JP4367761B2
JP4367761B2 JP2004022942A JP2004022942A JP4367761B2 JP 4367761 B2 JP4367761 B2 JP 4367761B2 JP 2004022942 A JP2004022942 A JP 2004022942A JP 2004022942 A JP2004022942 A JP 2004022942A JP 4367761 B2 JP4367761 B2 JP 4367761B2
Authority
JP
Japan
Prior art keywords
cylindrical body
shaft
peripheral surface
torque limiter
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004022942A
Other languages
Japanese (ja)
Other versions
JP2005214325A (en
Inventor
高志 堀口
秀樹 沼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2004022942A priority Critical patent/JP4367761B2/en
Publication of JP2005214325A publication Critical patent/JP2005214325A/en
Application granted granted Critical
Publication of JP4367761B2 publication Critical patent/JP4367761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Description

本発明はトルクリミッタに関する。   The present invention relates to a torque limiter.

トルクリミッタは、例えば、動力伝達機構中に配設されて過大トルクの伝達を防止するため、あるいは、揺動扉のヒンジに組込んで揺動扉を任意の開度で保持するためなど様々な用途に広く用いられている。
従来のトルクリミッタとしては、例えば、回転入力体と、回転入力体と同心に回転する回転出力体と、回転入力体と回転出力体との間に配置された摩擦板と、摩擦板を回転入力体と回転出力体との間で圧接させ回転入力体と回転出力体との間にトルクを伝達するコイルスプリングで構成されたものなどがある(例えば、特許文献1参照)。
しかしながら、このようなトルクリミッタは、摩擦板が外部に露出するものが殆どで、摩擦板と回転入力体と回転出力体との圧接箇所に塵埃が侵入しやすく、耐久性を高める上で不利があった。
そこでこのような不具合を解消するため、本出願人は耐久性に優れるトルクリミッタを既に出願している(特許文献2参照)。
特開平7−127656号公報 特開平10−213151号公報
The torque limiter is installed in a power transmission mechanism to prevent transmission of excessive torque, or is incorporated in the hinge of the swing door to hold the swing door at an arbitrary opening degree. Widely used in applications.
Conventional torque limiters include, for example, a rotation input body, a rotation output body that rotates concentrically with the rotation input body, a friction plate that is disposed between the rotation input body and the rotation output body, and a friction plate that is rotated. For example, there is a coil spring configured to press contact between the body and the rotation output body and transmit torque between the rotation input body and the rotation output body (see, for example, Patent Document 1).
However, most of the torque limiters have a friction plate exposed to the outside, and dust is likely to enter the pressure contact area between the friction plate, the rotary input body, and the rotary output body, which is disadvantageous in improving durability. there were.
Therefore, in order to solve such a problem, the present applicant has already applied for a torque limiter having excellent durability (see Patent Document 2).
JP-A-7-127656 JP-A-10-213151

この先の出願は、外側部材と、この外側部材の内部に収容された軸状の内側部材、摩擦板などで構成されており、外側部材と内側部材と摩擦板との圧接箇所に塵埃が侵入しにくく耐久性を高めることができるものの、外側部材と内側部材と摩擦板とを圧接させるためにコイルスプリングを用いており、コイルスプリングは内側部材と同軸上で内側部材の外側に配設されるので、コイルスプリングを配設するために、内側部材と同軸上で内側部材の外側に筒状のスペースを確保しなければならず、トルクリミッタの小型化を図る上で不利があった。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、耐久性を高めることができ、しかも小型化、コストダウンを図ることができるトルクリミッタを提供することにある。
This earlier application is composed of an outer member, a shaft-shaped inner member housed in the outer member, a friction plate, and the like, and dust enters the press contact portion between the outer member, the inner member, and the friction plate. Although it is difficult to improve durability, a coil spring is used to press-contact the outer member, the inner member, and the friction plate, and the coil spring is disposed coaxially with the inner member and outside the inner member. In order to arrange the coil spring, a cylindrical space must be ensured coaxially with the inner member and outside the inner member, which is disadvantageous in reducing the size of the torque limiter.
The present invention has been devised in view of the above circumstances, and an object of the present invention is to provide a torque limiter that can enhance durability, and that can achieve downsizing and cost reduction.

前記目的を達成するため本発明は、軸とこの軸を支持する部材との間、または、軸とこの軸に支持される部材との間で伝達されるトルクを所定の上限値までに限定するトルクリミッタであって、軸を支持する部材または軸に支持される部材に形成された孔部に挿入される筒体と、無端環状弾性部材とを備えている。前記筒体は合成樹脂製であり、前記筒体の内周面には前記軸の外周面に当接する軸受面が形成され、前記筒体の外周面には該筒体の周方向に延在する凹溝が形成されている。前記筒体には該筒体の長手方向に延在するスリットが該筒体の周方向に間隔をおいて複数形成され、これにより前記筒体の長手方向に延在する複数の片体が形成され、隣り合う片体どうしはそれらの端部において相互連結している。前記軸受面は前記複数のスリットによって前記筒体の周方向に分割されており、分割された前記軸受面の個々の部分は前記複数の片体のそれぞれに形成されており、これにより前記軸が前記筒体に挿入されることで前記軸受面が拡径するように構成されている。前記無端環状弾性部材は記筒体の前記凹溝の中に嵌装され前記凹溝の底面と前記孔部の内周面とにより該筒体の半径方向に潰されており、その潰し代は、潰された前記無端環状弾性部材により前記凹溝が完全に埋まらないような潰し代とされており、この潰された無端環状弾性部材により発揮される弾性力により互いに押付けられる前記筒体の前記軸受面と前記軸の前記外周面との間に働く摩擦力によって、前記軸と前記筒体との間で伝達されるトルクの上限値が定まるように構成されている。 In order to achieve the above object, the present invention limits the torque transmitted between the shaft and the member supporting the shaft or between the shaft and the member supported by the shaft to a predetermined upper limit value. A torque limiter, which includes a cylindrical body inserted into a hole formed in a member supporting the shaft or a member supported by the shaft, and an endless annular elastic member. The cylindrical body is made of synthetic resin, and a bearing surface that abuts the outer peripheral surface of the shaft is formed on the inner peripheral surface of the cylindrical body, and the outer peripheral surface of the cylindrical body extends in the circumferential direction of the cylindrical body. A concave groove is formed. A plurality of slits extending in the longitudinal direction of the cylindrical body are formed at intervals in the circumferential direction of the cylindrical body, thereby forming a plurality of pieces extending in the longitudinal direction of the cylindrical body. Adjacent pieces are interconnected at their ends. The bearing surface is divided in the circumferential direction of the cylindrical body by the plurality of slits, and individual portions of the divided bearing surface are formed in the plurality of pieces, respectively, whereby the shaft is The bearing surface is configured to expand in diameter by being inserted into the cylindrical body. The endless annular elastic member is fitted into the groove of the serial cylinder, are crushed in the radial direction of the tubular member by the inner peripheral surface of the hole and the bottom surface of the groove, the crushed The cylinder is crushed so that the groove is not completely filled with the crushed endless annular elastic member, and the cylinders pressed against each other by the elastic force exerted by the crushed endless annular elastic member The upper limit value of the torque transmitted between the shaft and the cylindrical body is determined by the frictional force acting between the bearing surface of the shaft and the outer peripheral surface of the shaft.

本発明では、従来のように軸方向に大きなスペースを確保しなければ配設できないコイルスプリングを要せず、合成樹脂製の筒体と無端環状弾性部材とで構成されており、これら筒体と無端環状弾性部材とは構造簡易で小さなスペースに配設できるので、トルクリミッタの耐久性を高めることができ、小型化、コストダウンを図ることが可能となる。
また、無端環状弾性部材の潰し代を簡単に変更でき、伝達トルクの上限値を所望の値に簡単に設定できる。
The present invention does not require a coil spring that cannot be disposed unless a large space is secured in the axial direction as in the prior art, and is composed of a cylindrical body made of synthetic resin and an endless annular elastic member. Since the endless annular elastic member has a simple structure and can be disposed in a small space, the durability of the torque limiter can be increased, and the size and cost can be reduced.
Further, the crushing margin of the endless annular elastic member can be easily changed, and the upper limit value of the transmission torque can be easily set to a desired value.

本発明では、内周部に軸受面を有する筒体を設け、この筒体の外周部に嵌装された無端環状弾性部材を潰すことで発揮される無端環状弾性部材の弾性力により軸受面を介して軸を挟持することで上記の目的を達成した。   In the present invention, a cylindrical body having a bearing surface is provided on the inner circumferential portion, and the bearing surface is formed by the elastic force of the endless annular elastic member exerted by crushing the endless annular elastic member fitted on the outer circumferential portion of the cylindrical body. The above-mentioned object was achieved by pinching the shaft through the gap.

以下、本発明の実施例について図面を参照して説明する。
図1(A)は実施例1のトルクリミッタの正面図、(B)はトルクリミッタの断面側面図、図2(A)は筒体の正面図、(B)は筒体の断面側面図、(C)は筒体の側面図を示している。
実施例1のトルクリミッタ10は、軸12と、軸12が挿通されるケース14の孔部16との間に介設されて軸12を回転不能に支持し、所定値以上のトルクが軸12からケース14へあるいはケース14から軸12へ作用した際に軸12とケース14との間に滑りを生じさせ軸12とケース14との間の相対回転を許容するものであり、言い換えると、軸12とケース14との間で伝達されるトルクの上限値を定めるものである。
トルクリミッタ10は、ケース14の孔部16に挿入される筒体(ブッシュ)20と無端環状弾性部材30とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
1A is a front view of the torque limiter of the first embodiment, FIG. 1B is a sectional side view of the torque limiter, FIG. 2A is a front view of the cylinder, and FIG. 1B is a sectional side view of the cylinder. (C) has shown the side view of a cylinder.
The torque limiter 10 according to the first embodiment is interposed between the shaft 12 and the hole 16 of the case 14 through which the shaft 12 is inserted to support the shaft 12 in a non-rotatable manner. Slips between the shaft 12 and the case 14 when acting from the case 14 to the case 14 or from the case 14 to the shaft 12, allowing relative rotation between the shaft 12 and the case 14. The upper limit value of the torque transmitted between the case 12 and the case 14 is determined.
The torque limiter 10 includes a cylinder (bush) 20 inserted into the hole 16 of the case 14 and an endless annular elastic member 30.

筒体20は合成樹脂製であり、耐摩耗性に優れ、所望のトルク特性が得られるように軸12に対する適切な摩擦係数を有し、しかも、所定の撓み性と剛性とを有すると共に熱伸縮の少ないものが好ましく、具体的には、軸12の材料が例えばステンレス鋼などの金属である場合には、ポリアミド樹脂、ポリオレフィン樹脂、フッ素樹脂、ポリアセタール樹脂の少なくとも一つを含む合成樹脂が挙げられる。
筒体20は内周面に形成された軸受面22を有し、この軸受面22は筒体20の半径方向に拡縮可能に形成されており、この軸受面22が軸12の外周面に当接するようにして軸12に嵌合されている。
The cylindrical body 20 is made of synthetic resin, has excellent wear resistance, has an appropriate coefficient of friction with respect to the shaft 12 so as to obtain a desired torque characteristic, and has a predetermined flexibility and rigidity and thermal expansion and contraction. Specifically, when the material of the shaft 12 is a metal such as stainless steel, a synthetic resin containing at least one of a polyamide resin, a polyolefin resin, a fluororesin, and a polyacetal resin can be used. .
The cylindrical body 20 has a bearing surface 22 formed on the inner peripheral surface. The bearing surface 22 is formed so as to be able to expand and contract in the radial direction of the cylindrical body 20, and the bearing surface 22 contacts the outer peripheral surface of the shaft 12. The shaft 12 is fitted so as to be in contact.

より詳細に説明すると、図2に示すように、筒体20の長手方向の中間部(中央部)箇所を除く外周面は均一径の小径外周面2001として形成され、筒体20の外周面で筒体20の長手方向の中間部(中央部)箇所には、筒体20の長手方向に間隔をおいて2つの鍔部2002が膨出形成されている。そして、2つの鍔部2002の間に凹溝2004が形成され、2つの鍔部2002の間に位置する筒体20の外周面部分が凹溝2004の底面2006となっている。従って、筒体20はその外周面に、この筒体20の周方向に延在する凹溝2004が形成されている。
無端環状弾性部材30は凹溝2004に嵌装され、後述するように、無端環状弾性部材30が凹溝2004の底面2006と孔部16の小径内周面1404との間で筒体20の半径方向に圧縮されその断面が筒体20の長手方向に偏平な形状に潰されても無端環状弾性部材30により凹溝2004が完全に埋まらないようになっている。
また、筒体20の内周面で筒体20の長手方向の端部寄りの箇所には、軸12の外径よりも大きな寸法の等しい内径を有する大径内周面2012がそれぞれ形成され、さらに、各大径内周面2012の奥端から筒体20の長手方向の中央部に至るにつれて次第に内径が小さくなる円錐面状のテーパ面2014が形成され、軸受面22はこれら両側のテーパ面2014の間に形成されている。本実施例では、凹溝2004の底面の半径方向内側に位置する筒体20の内周面部分が軸受面22となっている。
軸受面22は図1(A)および図2(A)に示すように、筒体20の長手方向から見て正六角柱の側面をなす6つの平坦面で形成され、軸12の外周面に各平坦面の中央部分が接触する寸法で形成されている。
More specifically, as shown in FIG. 2, the outer peripheral surface excluding the middle portion (center portion) in the longitudinal direction of the cylindrical body 20 is formed as a small-diameter outer peripheral surface 2001 having a uniform diameter. Two flange portions 2002 are bulged and formed at an intermediate portion (central portion) in the longitudinal direction of the cylindrical body 20 with an interval in the longitudinal direction of the cylindrical body 20. A concave groove 2004 is formed between the two flange portions 2002, and an outer peripheral surface portion of the cylindrical body 20 located between the two flange portions 2002 is a bottom surface 2006 of the concave groove 2004. Accordingly, the cylindrical body 20 is formed with a concave groove 2004 extending on the outer peripheral surface thereof in the circumferential direction of the cylindrical body 20.
The endless annular elastic member 30 is fitted in the concave groove 2004. As will be described later, the endless annular elastic member 30 has a radius of the cylindrical body 20 between the bottom surface 2006 of the concave groove 2004 and the small-diameter inner peripheral surface 1404 of the hole 16. The endless annular elastic member 30 does not completely fill the concave groove 2004 even if the cross section is crushed into a flat shape in the longitudinal direction of the cylindrical body 20.
In addition, a large-diameter inner peripheral surface 2012 having an equal inner diameter larger than the outer diameter of the shaft 12 is formed at a location near the end in the longitudinal direction of the cylindrical body 20 on the inner peripheral surface of the cylindrical body 20, Furthermore, a conical tapered surface 2014 whose inner diameter gradually decreases from the back end of each large-diameter inner peripheral surface 2012 to the longitudinal center of the cylindrical body 20, and the bearing surface 22 has tapered surfaces on both sides thereof. It is formed between 2014. In the present embodiment, the inner peripheral surface portion of the cylindrical body 20 located on the radially inner side of the bottom surface of the concave groove 2004 is the bearing surface 22.
As shown in FIGS. 1 (A) and 2 (A), the bearing surface 22 is formed of six flat surfaces that form the sides of a regular hexagonal column when viewed from the longitudinal direction of the cylindrical body 20, and each of the bearing surfaces 22 is formed on the outer peripheral surface of the shaft 12. It is formed with a dimension that the central portion of the flat surface comes into contact with.

さらに、筒体20には周方向に等間隔をおいて同一形状のスリット2030が6つ形成されている。
これらスリット2030により筒体20には、該筒体20の長手方向に延在する片体2040が6つ形成され、各片体2040に、スリット2030により周方向に等間隔をおいて分離された2つの鍔部2002と凹溝2004と大径内周面2012とテーパ面2014と軸受面22とがそれぞれ形成されることになる。従って筒体20の軸受面22は、スリット2030によって筒体20の周方向に分割されており、分割された軸受面22の個々の部分は複数の片体2040のそれぞれに形成されている。
これらスリット2030は、筒体20の長手方向の一端から長手方向の他端の手前まで延在し、隣り合う片体2040どうしはそれらの端部において相互連結しており、特にこの実施例では、各片体2040は筒体20の長手方向の他端の連結部2008において相互に連結され、6つの片体2040は連結部2008が位置する他端を除く部分が筒体20の半径方向に拡縮可能となっており、したがって、軸受面22は筒体20の半径方向に拡縮可能となっている。
Further, six slits 2030 having the same shape are formed in the cylindrical body 20 at equal intervals in the circumferential direction.
Six pieces 2040 extending in the longitudinal direction of the cylindrical body 20 are formed in the cylindrical body 20 by the slits 2030, and each piece 2040 is separated at equal intervals in the circumferential direction by the slits 2030. Two flange portions 2002, a concave groove 2004, a large-diameter inner peripheral surface 2012, a tapered surface 2014, and a bearing surface 22 are formed. Therefore, the bearing surface 22 of the cylindrical body 20 is divided by the slit 2030 in the circumferential direction of the cylindrical body 20, and individual portions of the divided bearing surface 22 are formed in the plurality of pieces 2040, respectively.
These slits 2030 extend from one end in the longitudinal direction of the cylindrical body 20 to the front of the other end in the longitudinal direction, and adjacent ones 2040 are interconnected at their ends, particularly in this embodiment, The individual pieces 2040 are connected to each other at the connecting portion 2008 at the other end in the longitudinal direction of the cylindrical body 20, and the six pieces 2040 are expanded and contracted in the radial direction of the cylindrical body 20 except for the other end where the connecting portion 2008 is located. Therefore, the bearing surface 22 can be expanded and contracted in the radial direction of the cylindrical body 20.

無端環状弾性部材30は、例えば天然ゴムや合成ゴムなどのように、弾性を有し、比較的大きな摩擦力を呈する材料で形成されていることが好ましく、その断面形状は、円形、楕円形、偏平形状な長円形などとするのがよいが、その他の断面形状とすることも可能である。無端環状弾性部材30として市販のOリングが使用可能である。
無端環状弾性部材30は凹溝2004に嵌装されることで筒体20の外周に巻回されている。
本実施例では、無端環状弾性部材30の内径は凹溝2004の底面2006の外径よりも小さく形成されている。
また、無端環状弾性部材30は、凹溝2004に嵌装された状態でその外径が鍔部2002の外径よりも大きい寸法で形成されている。
The endless annular elastic member 30 is preferably formed of a material having elasticity and exhibiting a relatively large frictional force, such as natural rubber or synthetic rubber, and the cross-sectional shape thereof is circular, elliptical, A flat oval shape is preferable, but other cross-sectional shapes are also possible. A commercially available O-ring can be used as the endless annular elastic member 30.
The endless annular elastic member 30 is wound around the outer periphery of the cylindrical body 20 by being fitted into the concave groove 2004.
In this embodiment, the inner diameter of the endless annular elastic member 30 is smaller than the outer diameter of the bottom surface 2006 of the concave groove 2004.
In addition, the endless annular elastic member 30 is formed with a larger outer diameter than the outer diameter of the flange 2002 when fitted in the concave groove 2004.

ケース14は、本実施例では円筒状を呈し、金属あるいは合成樹脂製である。
ケース14の内周部には、大径内周面1402と、大径内周面1402よりも内径が小さい小径内周面1404と、小径内周面1404よりも内径が小さい端部内周面1406とがケース14の長手方向にこれらの順に並べられて形成され、孔部16はこれら内周面1402,1404,1406により構成されている。
小径内周面1404は、その内径が鍔部2002の外径よりも大きい寸法で、かつ、凹溝2004に嵌装された無端環状弾性部材30の外径よりも小さい寸法で形成され、無端環状弾性部材30が嵌装された筒体20が孔部16に挿入された際に小径内周面1404により無端環状弾性部材30を小径内周面1404の半径方向内方に圧縮するように形成されている。
端部内周面1406は、その内径が筒体20の小径外周面2001よりも大きい寸法で形成されている。
In this embodiment, the case 14 has a cylindrical shape and is made of metal or synthetic resin.
The inner peripheral portion of the case 14 includes a large-diameter inner peripheral surface 1402, a small-diameter inner peripheral surface 1404 having a smaller inner diameter than the large-diameter inner peripheral surface 1402, and an end inner peripheral surface 1406 having a smaller inner diameter than the small-diameter inner peripheral surface 1404. Are arranged in this order in the longitudinal direction of the case 14, and the hole 16 is constituted by these inner peripheral surfaces 1402, 1404, 1406.
The small-diameter inner peripheral surface 1404 has an inner diameter that is larger than the outer diameter of the flange portion 2002 and is smaller than the outer diameter of the endless annular elastic member 30 fitted in the concave groove 2004. When the cylindrical body 20 fitted with the elastic member 30 is inserted into the hole 16, the endless annular elastic member 30 is compressed by the small diameter inner peripheral surface 1404 radially inward of the small diameter inner peripheral surface 1404. ing.
The inner circumferential surface 1406 of the end is formed with a size that the inner diameter is larger than the small-diameter outer circumferential surface 2001 of the cylindrical body 20.

筒体20の凹溝2004に無端環状弾性部材30が嵌装された筒体20は、筒体20の一端が端部内周面1406の内側に、2つの鍔部2002および無端環状弾性部材30が小径内周面1404の内側に、筒体20の他端が大径内周面1402の内側に位置するように孔部16に挿入され、その後、筒状のキャップ部材40が大径内周面1402に嵌め込まれる。そして、小径内周面1404と端部内周面1406との境をなす端面と、キャップ部材40の内端面とが2つの鍔部2002の各外側に臨むことで、ケース12からの筒体20の抜落が阻止されている。なお、キャップ部材40は合成樹脂製で、キャップ部材40の内周面は、筒体20の小径外周面2001よりも大きい寸法で形成されている。
軸12が筒体20の軸受面22を通ってケース14の孔部16に挿入されると、軸12は軸受面22を拡径させつつ筒体20に挿通され、無端環状弾性部材30は小径内周面1404と凹溝2004の底面2006との間で筒体20の半径方向に圧縮されその断面が筒体20の長手方向に偏平な形状に潰される。
The cylindrical body 20 in which the endless annular elastic member 30 is fitted in the concave groove 2004 of the cylindrical body 20 has one end of the cylindrical body 20 on the inner side of the end inner peripheral surface 1406, and the two flanges 2002 and the endless annular elastic member 30. The cylindrical body 20 is inserted into the hole 16 so that the other end of the cylinder 20 is positioned inside the large-diameter inner peripheral surface 1402 inside the small-diameter inner peripheral surface 1404, and then the cylindrical cap member 40 is inserted into the large-diameter inner peripheral surface. 1402 is fitted. And the end surface which makes the boundary of the small diameter inner peripheral surface 1404 and the edge part inner peripheral surface 1406, and the inner end surface of the cap member 40 face each outer side of the two collar parts 2002, Therefore Dropout is prevented. The cap member 40 is made of synthetic resin, and the inner peripheral surface of the cap member 40 is formed with a size larger than the small-diameter outer peripheral surface 2001 of the cylindrical body 20.
When the shaft 12 is inserted into the hole 16 of the case 14 through the bearing surface 22 of the cylindrical body 20, the shaft 12 is inserted into the cylindrical body 20 while expanding the diameter of the bearing surface 22, and the endless annular elastic member 30 has a small diameter. The tube 20 is compressed in the radial direction between the inner peripheral surface 1404 and the bottom surface 2006 of the concave groove 2004, and the cross section thereof is crushed into a flat shape in the longitudinal direction of the tube 20.

無端環状弾性部材30として比較的大きな摩擦力を呈する材料を使用している。そのため、無端環状弾性部材30が潰された状態にあるとき、無端環状弾性部材30とケース14の孔部16との間に作用する摩擦力により、無端環状弾性部材30はケース14に対して回転しないように固定され、また、無端環状弾性部材30と筒体20の凹溝2004との間に作用する摩擦力により、筒体20は無端環状弾性部材30に対して回転しないように固定される。
一方、それら摩擦力と比べれば、筒体20の軸受面22と軸12の外周面との間に働く摩擦力は比較的小さい。そのため、この潰された無端環状弾性部材30により発揮される弾性力により互いに押付けられる筒体20の軸受面22と軸12の外周面との間に働く摩擦力によって、軸12と筒体20との間で伝達されるトルクの上限値が定まる。
従って、無端環状弾性部材20の潰し代は、軸12と筒体20との間に働く摩擦力の大きさが所望の大きさとなるような、適切な大きさの潰し代とし、トルクリミッタ10の各部の寸法は、その適切な潰し代が得られるように設計される。
A material exhibiting a relatively large frictional force is used as the endless annular elastic member 30. Therefore, when the endless annular elastic member 30 is in a crushed state, the endless annular elastic member 30 rotates with respect to the case 14 by the frictional force acting between the endless annular elastic member 30 and the hole 16 of the case 14. The cylindrical body 20 is fixed so as not to rotate with respect to the endless annular elastic member 30 by a frictional force acting between the endless annular elastic member 30 and the concave groove 2004 of the cylindrical body 20. .
On the other hand, compared with these frictional forces, the frictional force acting between the bearing surface 22 of the cylindrical body 20 and the outer peripheral surface of the shaft 12 is relatively small. Therefore, the shaft 12 and the cylindrical body 20 are caused by the frictional force that acts between the bearing surface 22 of the cylindrical body 20 and the outer peripheral surface of the shaft 12 that are pressed against each other by the elastic force exerted by the crushed endless annular elastic member 30. The upper limit value of torque transmitted between the two is determined.
Accordingly, the crushing margin of the endless annular elastic member 20 is a crushing margin of an appropriate size such that the frictional force acting between the shaft 12 and the cylindrical body 20 becomes a desired size. The dimension of each part is designed so that the appropriate crushing allowance is obtained.

実施例1によれば、従来のように軸方向に大きなスペースを確保しなければ配設できないコイルスプリングを要せず、ケース14の内部に配設される筒体20と無端環状弾性部材30とで構成され、これら筒体20と無端環状弾性部材30とは構造簡易で小さなスペースに配設できるので、トルクリミッタ10の耐久性を高めることができることは無論のこと、小型化、コストダウンを図る上で極めて有利となる。
また、凹溝2004の底面2006の外径を変えずに無端環状弾性部材30の内径を変えることで、あるいは、無端環状弾性部材30の内径を変えずに凹溝2004の底面2006の外径を変えることで、あるいは、凹溝2004の底面2006の外径および無端環状弾性部材30の内径の双方を変えることで、あるいは、小径内周面1404の内径を変えずに無端環状弾性部材30の外径を変えることで、あるいは、無端環状弾性部材30の外径を変えずに小径内周面1404の内径を変えることで、あるいは、小径内周面1404の内径および無端環状弾性部材30の外径を変えることで、無端環状弾性部材20の潰し代を簡単に変更でき、伝達トルクの上限値を所望の値に簡単に設定できる。
According to the first embodiment, the coil spring 20 and the endless annular elastic member 30 that are disposed inside the case 14 are not required without using a coil spring that cannot be disposed unless a large space is ensured in the axial direction as in the prior art. Since the cylindrical body 20 and the endless annular elastic member 30 are simple in structure and can be arranged in a small space, it is a matter of course that the durability of the torque limiter 10 can be improved, and the size and cost can be reduced. This is extremely advantageous.
Further, by changing the inner diameter of the endless annular elastic member 30 without changing the outer diameter of the bottom surface 2006 of the concave groove 2004, or by changing the outer diameter of the bottom surface 2006 of the concave groove 2004 without changing the inner diameter of the endless annular elastic member 30. By changing both the outer diameter of the bottom surface 2006 of the concave groove 2004 and the inner diameter of the endless annular elastic member 30, or without changing the inner diameter of the small-diameter inner peripheral surface 1404, By changing the diameter, or by changing the inner diameter of the small-diameter inner peripheral surface 1404 without changing the outer diameter of the endless annular elastic member 30, or by the inner diameter of the small-diameter inner peripheral surface 1404 and the outer diameter of the endless annular elastic member 30 By changing, the crushing margin of the endless annular elastic member 20 can be easily changed, and the upper limit value of the transmission torque can be easily set to a desired value.

また、凹溝2004の底面2006の半径方向内側に位置する筒体20の内周面部分が軸受面22となっているので、無端環状弾性部材30の弾性力が軸受面22を介して軸12に直接伝わり、無端環状弾性部材30による挟持力を効率良く得る上で有利となっている。
また、軸受面22の両側にテーパ面2014を設けているので、軸受面22への軸12の挿入を円滑に行なう上で有利となっている。
また、軸12の外周面が円筒面であるのに対して、軸受面22を既述のごとく正六角柱の側面をなす6つの平坦面で形成し、軸12の外周面に各平坦面の中央部分が接触するようにしているため、軸12の外周面と軸受面22との間の接触状態が安定することから、伝達トルクの上限値を大きなバラツキを発生させることなく所望の値に設定する上で極めて有利となっている。
Further, since the inner peripheral surface portion of the cylindrical body 20 located on the radially inner side of the bottom surface 2006 of the concave groove 2004 is the bearing surface 22, the elastic force of the endless annular elastic member 30 is transmitted through the bearing surface 22 to the shaft 12. It is advantageous for efficiently obtaining the clamping force by the endless annular elastic member 30.
Further, since the tapered surfaces 2014 are provided on both sides of the bearing surface 22, it is advantageous in smoothly inserting the shaft 12 into the bearing surface 22.
Further, while the outer peripheral surface of the shaft 12 is a cylindrical surface, the bearing surface 22 is formed of six flat surfaces forming the side faces of regular hexagonal columns as described above, and the center of each flat surface is formed on the outer peripheral surface of the shaft 12. Since the portions are in contact with each other, the contact state between the outer peripheral surface of the shaft 12 and the bearing surface 22 is stabilized, so the upper limit value of the transmission torque is set to a desired value without causing large variations. This is extremely advantageous.

なお、実施例1では、無端環状弾性部材30により軸12は小径内周面1404と同軸上で支持されることになり、軸12の半径方向に大きな力が作用した場合には、無端環状弾性部材30が更に弾性変形したのち鍔部2002の外周面が小径内周面1404に当り、軸12の半径方向への変位を剛性的に規制する。この場合、筒体20の小径外周面2001を孔部16の端部内周面1406に当てることで、あるいは、筒体20の小径外周面2001をキャップ部材40の内周面に当てることで軸12の半径方向への変位を剛性的に規制するようにしてもよい。
また、実施例1では、小径内周面1404と端部内周面1406との境をなす端面と、キャップ部材40の内端面とが2つの鍔部2002の各外側に臨むことで、軸方向におけるケース12からの筒体20の抜落を阻止するようしたが、このような軸方向におけるケース12からの筒体20の抜落を阻止する構成には従来公知の様々な構造が採用可能である。
In the first embodiment, the shaft 12 is supported coaxially with the small-diameter inner peripheral surface 1404 by the endless annular elastic member 30. When a large force is applied in the radial direction of the shaft 12, the endless annular elastic member 30 is used. After the member 30 is further elastically deformed, the outer peripheral surface of the flange portion 2002 hits the small-diameter inner peripheral surface 1404 and rigidly restricts the displacement of the shaft 12 in the radial direction. In this case, the shaft 12 can be obtained by applying the small-diameter outer peripheral surface 2001 of the cylindrical body 20 to the end inner peripheral surface 1406 of the hole 16, or by applying the small-diameter outer peripheral surface 2001 of the cylindrical body 20 to the inner peripheral surface of the cap member 40. The displacement in the radial direction may be rigidly restricted.
Further, in the first embodiment, the end surface that forms the boundary between the small-diameter inner peripheral surface 1404 and the end inner peripheral surface 1406 and the inner end surface of the cap member 40 face the outer sides of the two flange portions 2002, so that Although the cylindrical body 20 is prevented from dropping out of the case 12, various configurations known in the art can be adopted for such a configuration that prevents the cylindrical body 20 from dropping out of the case 12 in the axial direction. .

実施例1のトルクリミッタ10の実験結果を表1に示す。
この実験では、外径が18.7mmのステンレス鋼製の軸12を用い、筒体20の材料はポリアセタール樹脂とした。そして、円形断面の直径が2.4mmの無端環状弾性部材30を用い、無端環状弾性部材30の潰し代と滑りが生じる際の回転トルクとの関係を調べた。ここで潰し代とは、潰し代をΔtとした場合、無端環状弾性部材30がその全周にわたりΔt潰されるもので、無端環状弾性部材30の外径が2×Δtぶんだけ縮径されるもの(あるいは無端環状弾性部材30の内径が2×Δtぶんだけ拡径されるもの)である。
無端環状弾性部材30としてNBR(ニトリルブタジエンラバー)製のものとシリコンゴム製のものとの2種類について行なった。
表1から明らかなように、無端環状弾性部材30の潰し代を変えることにより、あるいは無端環状弾性部材30の材料を選択することにより、滑りを生じさせる際のトルクすなわち伝達トルクの上限値を所望値に設定できることが明らかである。
Table 1 shows the experimental results of the torque limiter 10 of Example 1.
In this experiment, a stainless steel shaft 12 having an outer diameter of 18.7 mm was used, and the material of the cylindrical body 20 was a polyacetal resin. Then, using an endless annular elastic member 30 having a circular cross-sectional diameter of 2.4 mm, the relationship between the crushing margin of the endless annular elastic member 30 and the rotational torque when slipping occurred was examined. Here, the crushing allowance means that when the crushing allowance is Δt, the endless annular elastic member 30 is crushed by Δt over the entire circumference, and the outer diameter of the endless annular elastic member 30 is reduced by 2 × Δt. (Or the inner diameter of the endless annular elastic member 30 is increased by 2 × Δt).
The endless annular elastic member 30 was made of two types, one made of NBR (nitrile butadiene rubber) and the other made of silicon rubber.
As is apparent from Table 1, the upper limit value of torque at the time of causing slippage, that is, the transmission torque is desired by changing the crushing margin of the endless annular elastic member 30 or by selecting the material of the endless annular elastic member 30. It is clear that the value can be set.

Figure 0004367761
Figure 0004367761

次に、実施例2について説明する。
図3は実施例2のトルクリミッタの断面側面図、図4(A)は筒体の正面図、(B)は筒体の断面側面図を示している。
実施例2では、無端環状弾性部材30を2つ用いている点、およびスリット2030が交互に逆向きに延在形成されている点が実施例1と異なっており、実施例1と同様な箇所、部材に同一の符号を付して異なっている点を重点的に説明する。
実施例2のトルクリミッタ10Aは、実施例1と同様に、軸12とケース14Aとの間で伝達されるトルクの上限値を定めるものであり、トルクリミッタ10Aは、ケース14Aの孔部16に挿入される合成樹脂製の筒体20Aと2つの無端環状弾性部材30とを備えている。
筒体20Aは内周面に形成された軸受面22を有し、この軸受面22は筒体20Aの半径方向に拡縮可能に形成されており、この軸受面22が軸12の外周面に当接するようにして軸12に嵌合されている。
Next, Example 2 will be described.
3 is a cross-sectional side view of the torque limiter according to the second embodiment, FIG. 4A is a front view of the cylindrical body, and FIG. 3B is a cross-sectional side view of the cylindrical body.
The second embodiment is different from the first embodiment in that two endless annular elastic members 30 are used and the slits 2030 are alternately extended in opposite directions. The different points will be described mainly with the same reference numerals.
Similar to the first embodiment, the torque limiter 10A according to the second embodiment determines an upper limit value of the torque transmitted between the shaft 12 and the case 14A. The torque limiter 10A is disposed in the hole 16 of the case 14A. A cylindrical body 20A made of synthetic resin and two endless annular elastic members 30 are provided.
The cylindrical body 20A has a bearing surface 22 formed on the inner peripheral surface. The bearing surface 22 is formed so as to be expandable / contractable in the radial direction of the cylindrical body 20A, and the bearing surface 22 contacts the outer peripheral surface of the shaft 12. The shaft 12 is fitted so as to be in contact.

図4に示すように、筒体20Aの外周面は、その長手方向の中間部(中央部)箇所を除く箇所が均一径の小径外周面2001として形成され、筒体20Aの長手方向の中間部(中央部)箇所には、筒体20Aの長手方向に間隔をおいて3つの鍔部2002が膨出形成されている。そして、3つの鍔部2002の間に2つの凹溝2004が形成され、3つの鍔部2002の間に位置する筒体20Aの外周面部分が凹溝2004の底面2006となっている。なお、3つの鍔部2002のうち中央に位置する鍔部2002の外径は、両側に位置する鍔部2002の外径よりも小さい寸法で形成されている。従って、筒体20Aはその外周面に、この筒体20Aの周方向に延在する2つの凹溝2004が形成されている。
2つの無端環状弾性部材30は各凹溝2004に嵌装され、無端環状弾性部材30が凹溝2004の底面2006と孔部16の小径内周面1404との間で筒体20Aの半径方向に圧縮されその断面が筒体20Aの長手方向に偏平な形状に潰されても無端環状弾性部材30により凹溝2004が完全に埋まらないようになっている。
また、筒体20Aの内周面は、その長手方向の端部寄りの箇所に、軸12の外径よりも大きな寸法の等しい内径を有する大径内周面2012がそれぞれ形成され、さらに、各大径内周面2012の奥端から筒体20Aの長手方向の中央部に至るにつれて次第に内径が小さくなる円錐面状のテーパ面2014が形成され、軸受面22はこれら両側のテーパ面2014の間に形成されている。本実施例では、各凹溝2004の底面の半径方向内側に位置する筒体20Aの内周面部分が軸受面22となっている。
軸受面22は図4(A)に示すように、筒体20Aの長手方向から見て正六角柱の側面をなす6つの平坦面で形成され、軸12の外周面に各平坦面の中央部分が接触する寸法で形成されている。
As shown in FIG. 4, the outer peripheral surface of the cylindrical body 20 </ b> A is formed as a small-diameter outer peripheral surface 2001 having a uniform diameter except for the intermediate portion (central portion) in the longitudinal direction, and the longitudinal intermediate portion of the cylindrical body 20 </ b> A. At the (center) portion, three flanges 2002 are bulged and formed at intervals in the longitudinal direction of the cylindrical body 20A. Two concave grooves 2004 are formed between the three flange portions 2002, and an outer peripheral surface portion of the cylindrical body 20 </ b> A located between the three flange portions 2002 is a bottom surface 2006 of the concave groove 2004. In addition, the outer diameter of the collar part 2002 located in the center among the three collar parts 2002 is smaller than the outer diameter of the collar part 2002 located on both sides. Accordingly, the cylindrical body 20A is formed with two concave grooves 2004 extending on the outer peripheral surface thereof in the circumferential direction of the cylindrical body 20A.
The two endless annular elastic members 30 are fitted in the respective concave grooves 2004, and the endless annular elastic member 30 is disposed between the bottom surface 2006 of the concave groove 2004 and the small-diameter inner peripheral surface 1404 of the hole portion 16 in the radial direction of the cylindrical body 20A. The endless annular elastic member 30 does not completely fill the concave groove 2004 even if the cross section is compressed and flattened into a flat shape in the longitudinal direction of the cylindrical body 20A.
Further, the inner peripheral surface of the cylindrical body 20A is formed with a large-diameter inner peripheral surface 2012 having an equal inner diameter larger than the outer diameter of the shaft 12 at a location near the end in the longitudinal direction. A conical tapered surface 2014 whose inner diameter gradually decreases from the back end of the large-diameter inner peripheral surface 2012 to the central portion in the longitudinal direction of the cylindrical body 20A is formed, and the bearing surface 22 is between the tapered surfaces 2014 on both sides. Is formed. In the present embodiment, the inner peripheral surface portion of the cylindrical body 20 </ b> A located on the radially inner side of the bottom surface of each concave groove 2004 is the bearing surface 22.
As shown in FIG. 4A, the bearing surface 22 is formed of six flat surfaces that form the side surfaces of a regular hexagonal column when viewed from the longitudinal direction of the cylinder 20A, and the central portion of each flat surface is formed on the outer peripheral surface of the shaft 12. It is formed with the dimension which contacts.

さらに、筒体20Aには周方向に等間隔をおいて同一形状のスリット2030が6つ形成されている。
これらスリット2030は、筒体20Aの長手方向の一端から長手方向の他端の手前まで延在するものと、筒体20の長手方向の他端から長手方向の一端の手前まで延在するものとが周方向に交互に設けられており、これらスリット2030により筒体20Aには、該筒体20Aの長手方向に延在する片体2040が6つ形成され、各片体2040に、スリット2030により周方向に等間隔で分離された2つの鍔部2002と2つの凹溝2004と大径内周面2012とテーパ面2014と軸受面22とがそれぞれ形成されることになり、軸受面22は筒体20Aの半径方向に拡縮可能となっている。従って筒体20Aの軸受面22は、スリット2030によって筒体20Aの周方向に分割されており、分割された軸受面22の個々の部分は複数の片体2040のそれぞれに形成されている。そして、隣り合う片体2040どうしはそれらの端部において相互連結しており、特にこの実施例では、複数の片体2040は、筒体20Aの長手方向の一端と他端とにおいて交互に相互連結している。
Further, six slits 2030 having the same shape are formed in the cylindrical body 20A at equal intervals in the circumferential direction.
The slits 2030 extend from one end in the longitudinal direction of the cylinder 20A to the front of the other end in the longitudinal direction, and extend from the other end in the longitudinal direction of the cylinder 20 to the front of one end in the longitudinal direction. Are provided alternately in the circumferential direction, and six pieces 2040 extending in the longitudinal direction of the cylinder 20A are formed in the cylinder 20A by the slits 2030, and each piece 2040 is provided by the slit 2030. Two flange portions 2002, two concave grooves 2004, a large-diameter inner peripheral surface 2012, a tapered surface 2014, and a bearing surface 22 that are separated at equal intervals in the circumferential direction are formed, respectively. The body 20A can be enlarged or reduced in the radial direction. Accordingly, the bearing surface 22 of the cylindrical body 20A is divided in the circumferential direction of the cylindrical body 20A by the slits 2030, and individual portions of the divided bearing surface 22 are formed in the plurality of pieces 2040, respectively. Adjacent pieces 2040 are interconnected at their ends, and particularly in this embodiment, the plurality of pieces 2040 are alternately interconnected at one end and the other end in the longitudinal direction of the cylinder 20A. is doing.

2つの無端環状弾性部材30は同一のものであり、それぞれ各凹溝2004に嵌装されることで筒体20Aの外周に巻回されている。
本実施例では、無端環状弾性部材30の内径は凹溝2004の底面2006の外径よりも小さく形成されている。
また、無端環状弾性部材30は、凹溝2004に嵌装された状態でその外径が鍔部2002の外径よりも大きい寸法で形成されている。
The two endless annular elastic members 30 are the same, and are wound around the outer circumference of the cylindrical body 20A by being fitted into the respective concave grooves 2004.
In this embodiment, the inner diameter of the endless annular elastic member 30 is smaller than the outer diameter of the bottom surface 2006 of the concave groove 2004.
In addition, the endless annular elastic member 30 is formed with a larger outer diameter than the outer diameter of the flange 2002 when fitted in the concave groove 2004.

ケース14Aは円筒状を呈し、その内周部には、大径内周面1402と、大径内周面1402よりも内径が小さい小径内周面1404と、小径内周面1404よりも内径が小さい端部内周面1406とがケース14Aの長手方向にこれらの順に並べられて形成され、孔部16はこれら内周面1402,1404,1406により構成されている。
小径内周面1404は、その内径が鍔部2002の外径よりも大きい寸法で、かつ、各凹溝2004にそれぞれ嵌装された無端環状弾性部材30の外径よりも小さい寸法で形成され、2つの無端環状弾性部材30が嵌装された筒体20Aが孔部16に挿入された際に小径内周面1404により各無端環状弾性部材30を小径内周面1404の半径方向内方に圧縮するように形成されている。
端部内周面1406は、その内径が筒体20Aの小径外周面2001よりも大きい寸法で形成されている。
The case 14 </ b> A has a cylindrical shape, and an inner peripheral portion thereof has a large-diameter inner peripheral surface 1402, a small-diameter inner peripheral surface 1404 having an inner diameter smaller than that of the large-diameter inner peripheral surface 1402, and an inner diameter larger than that of the small-diameter inner peripheral surface 1404. A small end inner peripheral surface 1406 is formed by being arranged in this order in the longitudinal direction of the case 14 </ b> A, and the hole 16 is constituted by these inner peripheral surfaces 1402, 1404, 1406.
The small-diameter inner peripheral surface 1404 is formed with a size whose inner diameter is larger than the outer diameter of the flange portion 2002 and smaller than the outer diameter of the endless annular elastic member 30 fitted in each concave groove 2004, When the cylindrical body 20A fitted with the two endless annular elastic members 30 is inserted into the holes 16, the endless annular elastic members 30 are compressed radially inward of the small diameter inner peripheral surface 1404 by the small diameter inner peripheral surface 1404. It is formed to do.
The end inner peripheral surface 1406 has an inner diameter larger than that of the small-diameter outer peripheral surface 2001 of the cylindrical body 20A.

筒体20Aの凹溝2004に無端環状弾性部材30が嵌装された筒体20Aは孔部16に挿入され、その後、キャップ部材40Aが大径内周面1402に嵌め込まれる。このキャップ部材40Aは、大径内周面1402の端面を閉塞する環板部4002と、大径内周面1402に嵌合される筒部4004とを有している。そして、小径内周面1404と端部内周面1406との境をなす端面と、キャップ部材40Aの筒部4004の端面とが両側の鍔部2002の各外側に臨むことで、ケース12からの筒体20Aの抜落が阻止されている。
軸12が筒体20Aの軸受面22を通ってケース14Aの孔部16に挿入されると、軸12は軸受面22を拡径させつつ筒体20Aに挿通され、2つの無端環状弾性部材30は小径内周面1404と各凹溝2004の底面2006との間で筒体20Aの半径方向に圧縮されその断面が筒体20Aの長手方向に偏平な形状に潰される。
The cylindrical body 20A in which the endless annular elastic member 30 is fitted in the concave groove 2004 of the cylindrical body 20A is inserted into the hole 16, and then the cap member 40A is fitted into the large-diameter inner peripheral surface 1402. The cap member 40 </ b> A includes an annular plate portion 4002 that closes an end surface of the large-diameter inner peripheral surface 1402 and a cylindrical portion 4004 that is fitted to the large-diameter inner peripheral surface 1402. Then, the end surface that forms the boundary between the small-diameter inner peripheral surface 1404 and the end inner peripheral surface 1406 and the end surface of the cylindrical portion 4004 of the cap member 40A face the outer sides of the flange portions 2002 on both sides. The dropout of the body 20A is prevented.
When the shaft 12 is inserted into the hole 16 of the case 14A through the bearing surface 22 of the cylindrical body 20A, the shaft 12 is inserted into the cylindrical body 20A while expanding the diameter of the bearing surface 22, and the two endless annular elastic members 30 are inserted. Is compressed in the radial direction of the cylindrical body 20A between the small-diameter inner peripheral surface 1404 and the bottom surface 2006 of each concave groove 2004, and the cross section thereof is crushed into a flat shape in the longitudinal direction of the cylindrical body 20A.

実施例2によれば、実施例1と同様に、トルクリミッタ10の耐久性を高めることができることは無論のこと、小型化、コストダウンを図る上でも極めて有利となる。また、無端環状弾性部材20の潰し代を簡単に変更でき、伝達トルクの上限値を所望の値に簡単に設定できる。また、2つの凹溝2004の底面2006の半径方向内側に位置する筒体20の内周面部分が軸受面22となっているので、無端環状弾性部材30の弾性力が軸受面22を介して軸12に直接伝わり、無端環状弾性部材30による挟持力を効率良く得る上で有利となる。また、軸受面22の両側にテーパ面2014を設けているので軸受面22への軸12の挿入を円滑に行なう上で有利となる。また、軸12の円筒面である外周面に、平坦面である各軸受面22の中央部分が接触するため、軸12の外周面と軸受面22との間の接触状態が安定し、伝達トルクの上限値を大きなバラツキを発生させることなく所望の値に設定する上で極めて有利となる。
さらに、実施例2では、軸12Aの長手方向に沿った軸受面22の両側の半径方向外側に位置するように2つの無端環状弾性部材20を配置したので、2つの無端環状弾性部材20の弾性力が軸受面22に対して軸12Aの長手方向に沿って均一に伝わり、したがって、軸12Aをより安定して挟持でき、伝達トルクの安定した上限値を得る上で有利となる。
According to the second embodiment, as in the first embodiment, it is obvious that the durability of the torque limiter 10 can be increased, which is extremely advantageous in terms of downsizing and cost reduction. Further, the crushing allowance of the endless annular elastic member 20 can be easily changed, and the upper limit value of the transmission torque can be easily set to a desired value. Further, since the inner peripheral surface portion of the cylindrical body 20 located on the inner side in the radial direction of the bottom surface 2006 of the two concave grooves 2004 is the bearing surface 22, the elastic force of the endless annular elastic member 30 is passed through the bearing surface 22. This is directly transmitted to the shaft 12 and is advantageous in efficiently obtaining the clamping force by the endless annular elastic member 30. Further, since the tapered surfaces 2014 are provided on both sides of the bearing surface 22, it is advantageous in smoothly inserting the shaft 12 into the bearing surface 22. Further, since the central portion of each bearing surface 22 that is a flat surface comes into contact with the outer peripheral surface that is the cylindrical surface of the shaft 12, the contact state between the outer peripheral surface of the shaft 12 and the bearing surface 22 is stabilized, and the transmission torque This is extremely advantageous in setting the upper limit value to a desired value without causing a large variation.
Further, in the second embodiment, since the two endless annular elastic members 20 are disposed so as to be located radially outward on both sides of the bearing surface 22 along the longitudinal direction of the shaft 12A, the elasticity of the two endless annular elastic members 20 is determined. The force is uniformly transmitted along the longitudinal direction of the shaft 12A with respect to the bearing surface 22. Therefore, the shaft 12A can be clamped more stably, which is advantageous in obtaining a stable upper limit value of the transmission torque.

次に、実施例3について説明する。
図5(A)は実施例3のトルクリミッタを構成する筒体の正面図を示している。
実施例3では、筒体20Bにおける軸受面22Bの形状のみが実施例2と異なっている。
実施例2では軸受面22が平坦面であるのに対して、実施例3では軸受面22Bが筒体20Bの半径方向内側に凸状の円筒面で形成されている。
このような円筒面状の軸受面22Bによっても、軸12の外周面と軸受面22Bとの間の接触状態が安定し、伝達トルクの上限値を大きなバラツキを発生させることなく所望の値に設定する上で極めて有利となる。
Next, Example 3 will be described.
FIG. 5A shows a front view of a cylindrical body constituting the torque limiter of the third embodiment.
In the third embodiment, only the shape of the bearing surface 22B in the cylindrical body 20B is different from the second embodiment.
In the second embodiment, the bearing surface 22 is a flat surface, whereas in the third embodiment, the bearing surface 22B is formed as a convex cylindrical surface on the radially inner side of the cylindrical body 20B.
Even with such a cylindrical bearing surface 22B, the contact state between the outer peripheral surface of the shaft 12 and the bearing surface 22B is stable, and the upper limit value of the transmission torque is set to a desired value without causing large variations. This is extremely advantageous.

次に、実施例4について説明する。
図5(B)は実施例4のトルクリミッタを構成する筒体の正面図を示している。
実施例4でも、筒体20Cにおける軸受面22Cの形状のみが実施例2と異なっている。
実施例4では軸受面22Cが筒体20Cの半径方向外側に凸状の円筒面で形成され、この円筒面の半径は軸12の半径よりも大きな寸法で形成されている。
このような円筒面状の軸受面22Cによっても、軸12の外周面と軸受面22Cとの間の接触状態が安定し、伝達トルクの上限値を大きなバラツキを発生させることなく所望の値に設定する上で極めて有利となる。
Next, Example 4 will be described.
FIG. 5B shows a front view of a cylinder constituting the torque limiter of the fourth embodiment.
Also in the fourth embodiment, only the shape of the bearing surface 22C in the cylindrical body 20C is different from the second embodiment.
In the fourth embodiment, the bearing surface 22 </ b> C is formed as a cylindrical surface convex outward in the radial direction of the cylindrical body 20 </ b> C, and the radius of the cylindrical surface is larger than the radius of the shaft 12.
Even with such a cylindrical bearing surface 22C, the contact state between the outer peripheral surface of the shaft 12 and the bearing surface 22C is stable, and the upper limit value of the transmission torque is set to a desired value without causing large variations. This is extremely advantageous.

次に、実施例5について説明する。
図5(C)は実施例5のトルクリミッタを構成する筒体の正面図を示している。
実施例5でも、筒体20Dにおける軸受面22Dの形状のみが実施例2と異なっている。
実施例5では軸受面22Dが筒体20Dの半径方向外側に凸状の円筒面で形成され、この円筒面の半径は軸12の半径と実質的に同一な寸法で形成されている。
このような円筒面状の軸受面22Dによっても、伝達トルクの上限値を所望の値に設定することが可能となる。
Next, Example 5 will be described.
FIG. 5C shows a front view of a cylinder constituting the torque limiter of the fifth embodiment.
Also in the fifth embodiment, only the shape of the bearing surface 22D in the cylindrical body 20D is different from the second embodiment.
In the fifth embodiment, the bearing surface 22D is formed as a cylindrical surface convex outward in the radial direction of the cylindrical body 20D, and the radius of this cylindrical surface is formed with a dimension substantially the same as the radius of the shaft 12.
Also with such a cylindrical bearing surface 22D, the upper limit value of the transmission torque can be set to a desired value.

なお、以上の実施例では、筒体20の長手方向の中央部のみに軸受面22を形成した場合について説明したが、軸受面22の形成箇所は、筒体20の内周面で筒体20の長手方向における端部でもよく、あるいは、軸受面22を筒体20の内周部で筒体20の長手方向の全長にわたって形成するようにしてもよい。この場合に、筒体20の長手方向の中央部における筒体20の軸受面22箇所に、周方向に連続する凹部を設け、軸受面22を筒体20の長手方向に分割するようにしてもよい
In addition, although the above example demonstrated the case where the bearing surface 22 was formed only in the center part of the longitudinal direction of the cylinder 20, the formation location of the bearing surface 22 is the cylinder 20 on the internal peripheral surface of the cylinder 20. The bearing surface 22 may be formed over the entire length in the longitudinal direction of the cylindrical body 20 at the inner peripheral portion of the cylindrical body 20. In this case, a concave portion that is continuous in the circumferential direction is provided at 22 locations on the bearing surface 22 of the cylindrical body 20 at the center in the longitudinal direction of the cylindrical body 20 so that the bearing surface 22 is divided in the longitudinal direction of the cylindrical body 20. Good .

実施例1のトルクリミッタの説明図である。It is explanatory drawing of the torque limiter of Example 1. FIG. 実施例1のトルクリミッタを構成する筒体の説明図である。It is explanatory drawing of the cylinder which comprises the torque limiter of Example 1. FIG. 実施例2のトルクリミッタの断面側面図である。It is a cross-sectional side view of the torque limiter of the second embodiment. 実施例2のトルクリミッタを構成する筒体の説明図である。It is explanatory drawing of the cylinder which comprises the torque limiter of Example 2. FIG. 実施例3,4,5のトルクリミッタを構成する筒体の説明図である。It is explanatory drawing of the cylinder which comprises the torque limiter of Example 3,4,5.

符号の説明Explanation of symbols

10、10A……トルクリミッタ、12……軸、14、14A……ケース、20、20A、20B、20C、20D……筒体、22……軸受面、30……無端環状弾性部材。
DESCRIPTION OF SYMBOLS 10, 10A ... Torque limiter, 12 ... Shaft, 14, 14A ... Case, 20, 20A, 20B, 20C, 20D ... Cylindrical body, 22 ... Bearing surface, 30 ... Endless annular elastic member.

Claims (9)

軸とこの軸を支持する部材との間、または、軸とこの軸に支持される部材との間で伝達されるトルクを所定の上限値までに限定するトルクリミッタであって、
軸を支持する部材または軸に支持される部材に形成された孔部に挿入される筒体と、無端環状弾性部材とを備え、
前記筒体は合成樹脂製であり、前記筒体の内周面には前記軸の外周面に当接する軸受面が形成され、前記筒体の外周面には該筒体の周方向に延在する凹溝が形成されており、
前記筒体には該筒体の長手方向に延在するスリットが該筒体の周方向に間隔をおいて複数形成され、これにより前記筒体の長手方向に延在する複数の片体が形成され、隣り合う片体どうしはそれらの端部において相互連結しており、
前記軸受面は前記複数のスリットによって前記筒体の周方向に分割されており、分割された前記軸受面の個々の部分は前記複数の片体のそれぞれに形成されており、これにより前記軸が前記筒体に挿入されることで前記軸受面が拡径するように構成されており、
前記無端環状弾性部材は前記筒体の前記凹溝の中に嵌装され前記凹溝の底面と前記孔部の内周面とにより該筒体の半径方向に潰されており、その潰し代は、潰された前記無端環状弾性部材により前記凹溝が完全に埋まらないような潰し代とされており、この潰された無端環状弾性部材により発揮される弾性力により互いに押付けられる前記筒体の前記軸受面と前記軸の前記外周面との間に働く摩擦力によって、前記軸と前記筒体との間で伝達されるトルクの上限値が定まるようにした、
ことを特徴とするトルクリミッタ。
A torque limiter for limiting a torque transmitted between a shaft and a member supporting the shaft or between a shaft and a member supported by the shaft to a predetermined upper limit;
A cylindrical body inserted into a hole formed in a member that supports the shaft or a member supported by the shaft, and an endless annular elastic member;
The cylindrical body is made of synthetic resin, and a bearing surface that abuts the outer peripheral surface of the shaft is formed on the inner peripheral surface of the cylindrical body, and the outer peripheral surface of the cylindrical body extends in the circumferential direction of the cylindrical body. A concave groove is formed,
A plurality of slits extending in the longitudinal direction of the cylindrical body are formed at intervals in the circumferential direction of the cylindrical body, thereby forming a plurality of pieces extending in the longitudinal direction of the cylindrical body. The adjacent halves are interconnected at their ends,
The bearing surface is divided in the circumferential direction of the cylindrical body by the plurality of slits, and individual portions of the divided bearing surface are formed in the plurality of pieces, respectively, whereby the shaft is The bearing surface is configured to expand in diameter by being inserted into the cylindrical body,
The endless annular elastic member is fitted into the groove of the cylindrical body, are crushed in the radial direction of the tubular member by the inner peripheral surface of the hole and the bottom surface of the groove, the crushed The cylinder is crushed so that the groove is not completely filled with the crushed endless annular elastic member, and the cylinders pressed against each other by the elastic force exerted by the crushed endless annular elastic member The upper limit value of the torque transmitted between the shaft and the cylindrical body is determined by the frictional force acting between the bearing surface of the shaft and the outer peripheral surface of the shaft.
Torque limiter characterized by that.
前記筒体の前記複数のスリットは、該筒体の長手方向の一端から他端の手前まで延在するように形成されており、前記筒体の前記複数の片体は、該筒体の長手方向の他端において相互連結していることを特徴とする請求項1記載のトルクリミッタ。The plurality of slits of the cylindrical body are formed so as to extend from one end in the longitudinal direction of the cylindrical body to the front of the other end, and the plurality of pieces of the cylindrical body are formed in a longitudinal direction of the cylindrical body. The torque limiter according to claim 1, wherein the torque limiter is interconnected at the other end in the direction. 前記筒体の前記複数のスリットは、該筒体の長手方向の一端から他端の手前まで延在するスリットと、該筒体の長手方向の他端から一端の手前まで延在するスリットとが交互に形成されており、前記筒体の前記複数の片体は、該筒体の長手方向の一端と他端とにおいて交互に相互連結していることを特徴とする請求項1記載のトルクリミッタ。The plurality of slits of the cylindrical body include a slit extending from one end in the longitudinal direction of the cylindrical body to the front of the other end, and a slit extending from the other end in the longitudinal direction of the cylindrical body to the front of the one end. 2. The torque limiter according to claim 1, wherein the plurality of pieces of the cylindrical body are alternately formed and are interconnected alternately at one end and the other end in the longitudinal direction of the cylindrical body. . 前記複数のスリットにより分割された前記軸受面の個々の部分は、平坦面または前記筒体の半径方向内方に凸状の円筒面または前記軸の半径よりも大きな寸法の半径で前記筒体の半径方向外方に凸状の円筒面で形成されていることを特徴とする請求項1乃至3の何れか1項記載のトルクリミッタ。 Individual parts of the bearing surface which is divided by the plurality of slits, flat surface, or a convex cylindrical surface radially inwardly of the cylindrical body, or, in a radius of a dimension greater than the radius of said shaft The torque limiter according to any one of claims 1 to 3, wherein the torque limiter is formed of a cylindrical surface convex outward in the radial direction of the cylindrical body. 前記軸受面は、前記筒体の内周面の、該筒体の長手方向における中間部に設けられていることを特徴とする請求項記載のトルクリミッタ。 The bearing surface of the inner peripheral surface of the cylindrical body, the torque limiter according to claim 4, wherein it has been found provided in an intermediate portion in the longitudinal direction of the tubular member. 前記筒体の内周面の、該筒体の長手方向における前記軸受面の両には、前記軸受面から離れるにつれて次第に内径が大きくなるテーパ面がそれぞれ形成されていることを特徴とする請求項記載のトルクリミッタ。 The inner peripheral surface of the cylindrical body, on both sides of the bearing surface in the longitudinal direction of the tubular body, wherein, wherein the gradually tapered surface whose inner diameter increases with increasing distance from the bearing surface are formed Item 6. The torque limiter according to Item 5 . 前記筒体の内周面の、該筒体の長手方向における前記テーパ面より更に外側には、前記軸の外径の寸法よりも大きな寸法の内径を有する大径内周面がそれぞれ形成されていることを特徴とする請求項記載のトルクリミッタ。 A large-diameter inner peripheral surface having an inner diameter larger than the outer diameter of the shaft is formed on the inner peripheral surface of the cylindrical body on the outer side of the tapered surface in the longitudinal direction of the cylindrical body. The torque limiter according to claim 6 . 前記無端環状弾性部材及び前記凹溝は複数設けられていることを特徴とする請求項1乃至7の何れか1項記載のトルクリミッタ。 The endless annular elastic member and any one torque limiter according to claims 1 to 7 wherein the groove is characterized by being plurality et al. 前記軸は金属から成り、前記筒体は、ポリアミド樹脂、ポリオレフィン樹脂、フッ素樹脂、及びポリアセタール樹脂から成る部類中から選択された合成樹脂から成ることを特徴とする請求項1乃至8の何れか1項記載のトルクリミッタ。9. The shaft according to claim 1, wherein the shaft is made of metal, and the cylindrical body is made of a synthetic resin selected from the group consisting of polyamide resin, polyolefin resin, fluororesin, and polyacetal resin. The torque limiter described in the item.
JP2004022942A 2004-01-30 2004-01-30 Torque limiter Expired - Lifetime JP4367761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022942A JP4367761B2 (en) 2004-01-30 2004-01-30 Torque limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022942A JP4367761B2 (en) 2004-01-30 2004-01-30 Torque limiter

Publications (2)

Publication Number Publication Date
JP2005214325A JP2005214325A (en) 2005-08-11
JP4367761B2 true JP4367761B2 (en) 2009-11-18

Family

ID=34906124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022942A Expired - Lifetime JP4367761B2 (en) 2004-01-30 2004-01-30 Torque limiter

Country Status (1)

Country Link
JP (1) JP4367761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994811B2 (en) * 2006-12-04 2012-08-08 キヤノン株式会社 Torque limiter and sheet feeding device
JP6990489B2 (en) * 2017-09-29 2022-01-12 タカノ株式会社 Rotating structure of chair structure
CN111089153A (en) * 2018-10-22 2020-05-01 伊利诺斯工具制品有限公司 Transmission device

Also Published As

Publication number Publication date
JP2005214325A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US5018244A (en) Hinge device for coupling a member rotatable to another
CN102016337B (en) Mounting assembly
US6290038B1 (en) Elastomer damper
JP4526789B2 (en) Longitudinal moving unit with braking roller
WO2004031601A1 (en) Sliding bearing
JP2007187285A (en) Bush bearing and rack-pinion type steering device of automobile using the same
CN110030260A (en) Combined elastic body and cylindrical slid bearing
JPH05215126A (en) Joint for supporting connecting link in automobile
US20080196468A1 (en) I/O endforming tool for forming tubes and method of manufacture thereof
JP4367761B2 (en) Torque limiter
JP2003322165A (en) Bush bearing
JP2008248920A (en) One-way clutch
US7811175B2 (en) Torque transmission device
JP2016056893A (en) Damper
ES2271023T3 (en) SPRING ELEMENT, ESPECIALLY FOR TORSION VIBRATION SHOCK ABSORBERS.
IT9022040U1 (en) EXPANSION DEVICE FOR THE SUPPORT OF PARTICULARLY EMERALD CANVAS SLEEVES.
KR950029621A (en) Torsion Damper for Clutch Disc
JP5850540B2 (en) Device for dampening drive train vibration
KR880011488A (en) Vibration-damping coupling for compound shift lever
JP5619292B2 (en) Tightening roller type freewheel for automobile adjustment device
US6098986A (en) Seal
JP6434056B2 (en) Torsional vibration damper
JP2016020074A (en) Writing instrument
GB2446817A (en) Paint roller and paint roller sleeve support
KR100972759B1 (en) Apparatus for transferring torque between telescopic shafts of automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

R150 Certificate of patent or registration of utility model

Ref document number: 4367761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term