JP4366924B2 - Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same - Google Patents

Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same Download PDF

Info

Publication number
JP4366924B2
JP4366924B2 JP2002353745A JP2002353745A JP4366924B2 JP 4366924 B2 JP4366924 B2 JP 4366924B2 JP 2002353745 A JP2002353745 A JP 2002353745A JP 2002353745 A JP2002353745 A JP 2002353745A JP 4366924 B2 JP4366924 B2 JP 4366924B2
Authority
JP
Japan
Prior art keywords
psium
soil
antagonistic
bacteria
ferm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002353745A
Other languages
Japanese (ja)
Other versions
JP2004180626A (en
Inventor
浩一 大志万
裕隆 佐藤
一美 青木
俊行 宇佐見
雅宏 宍戸
良幹 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2002353745A priority Critical patent/JP4366924B2/en
Publication of JP2004180626A publication Critical patent/JP2004180626A/en
Application granted granted Critical
Publication of JP4366924B2 publication Critical patent/JP4366924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ピシウム属菌による病害の生物的防除に効果を示す拮抗微生物の検出方法、該拮抗微生物およびそれを用いた土壌病害防除剤に関する。
本発明により、播種直後の種子を腐敗させ発芽不良や、幼苗の立枯病を引き起こす病原性糸状菌として、特に育苗の現場で問題となっているピシウム属菌に対する拮抗微生物を取得できる。本発明によって得られた拮抗微生物を用いて、ピシウム属菌による病害の生物的防除剤を提供することができる。
【0002】
【従来の技術】
ピシウム属菌による苗立枯病の生物的防除については、これまで多くの研究がなされている(非特許文献1および非特許文献2)。ピシウム属菌以外の病害についても、拮抗微生物を用いた植物病害の生物的防除は、環境負荷の少ない防除法として研究が盛んである(非特許文献3)。
しかし、拮抗微生物を用いて、生物農薬や微生物資材の開発まで至った例は、わずかしかない。この原因は、圃場環境で効果を示す拮抗微生物を検定できる実験系の確立が難しいからである。
【0003】
拮抗微生物の病害抑制メカニズムとしては、一般的に以下のような機構によるものと考えられている。
1)抗生物質生産により他の微生物の生育を阻害する抗生
2)微生物間で栄養分、侵入部位などを奪い合う競合
3)他の微生物に接触または侵入し溶菌させる寄生
4)植物の生態防御機構を引き出す抵抗性誘導
具体的にピシウム属菌の病害に対する拮抗微生物の例を以下に記す。上記1)の抗生では、シュードモナス・フルオレセンス(Pseudomonas fluorescens)Pf−5株は、この菌株が生産する抗生物質ピヨルテオリン(pyoluteorin)が関与し、ピシウム・ウルティマムによるワタの苗立枯れ病を抑制した報告がある(非特許文献4)。上記2)の競合では、シュードモナス属菌(Pseudomonas sp.)が、播種後の種子表面をすばやく覆い、種子からの浸出物を優先的に利用することで、ピシウム属菌による苗立枯れ病を抑制した報告がある(非特許文献5)。上記3)の寄生では、非病原性のリゾクトニア属菌がピシウム・ウルティマムに寄生することが、病害抑制のメカニズムの一つとして挙げられている(非特許文献6)。上記4)の抵抗性誘導では、シュードモナス属菌が、キュウリに抵抗性を誘導し、ピシウム・アファニデルマータムによる茎腐れを抑制した報告がある(非特許文献7)。
【0004】
従来、新規拮抗微生物の検出には、検定菌と病原菌との培地上での対峙培養が、一般に行われてきた。これは主に上記1)の抗生に基づく選抜法であり、この手法によりこれまで数多くの拮抗微生物が得られた報告があるが、実験室レベルでは病害抑制効果を示すが、圃場レベルでは効果を示すものは非常に少なく、生物農薬として製品化まで至ったものは、ほとんどない。
【0005】
ピシウム属菌以外の植物病原菌による病害を対象とし、生物農薬の登録がされているものとして、以下のものがある。
バチルス・ズブチリス水和剤中の拮抗菌は、生育場所及び栄養分の競合により、灰色カビ病菌に拮抗作用を示すとされる(非特許文献8)。また、非病原性エルビニア・カロトボーラ水和剤中の拮抗菌は、葉面上での栄養面での競合と、抗菌作用によって軟腐病に拮抗作用を示すとされている(非特許文献9)。
【0006】
これら実用化まで至った拮抗微生物の発病抑制メカニズムは、抗生だけによらず、また複合して効果を示すものである。これら成功事例では、従来用いられてきた対峙培養によるスクリーニングではなく、実際の圃場環境に近いスクリーニング系を用いるなどの工夫している。しかし、重要病害であるピシウム属菌に対する拮抗菌を選抜するための検出系は、これまで詳しく検討されていなかった。ピシウム属菌は藻菌類に属し、植物に種々の病害を引き起こす。本菌による植物の症状は、幼苗の苗立枯れ、地際部や地下部の腐敗及び果実の腐敗に大別される。いずれも、多湿時に被害部に白色、綿毛状の菌糸を生ずるのが特徴である。本菌の器官としては、菌糸、遊走子嚢、遊走子、分生胞子、卵胞子がある。卵胞子は土壌中の耐久器官である。ピシウム属菌の代表的なものとして、ピシウム・アファニデルマータム(Pythium aphanidermatum)およびピシウム・ウルティマム(Pythium ultimum)が挙げられる。両者の形態的特徴の違いは、前者は卵胞子を形成するが、後者は卵胞子を形成せず主に分生胞子で増殖する。宿主植物も前者は幼苗の段階で侵すが、後者はある程度生育した植物を侵す。また、前者の方が湿った環境で多く発生し、後者は比較的乾燥している条件でも発病するという違いがある。
【0007】
【非特許文献1】
渡辺恒夫、植物土壌病害の事典、朝倉書店、p.244-245,1998
【非特許文献2】
Martinn and Loper. Critical Reviews in Plant Science, 18(2):p.111-181,1999
【非特許文献3】
農業有用微生物−その利用と展望−、梅谷献二・加藤肇、養賢堂、p.95-200,1990
【非特許文献4】
Howell and Stipanovic, Phytpathology 70: 712-715,1980
【非特許文献5】
Nelson and Craft. Phytopathology,79,1009-1013
【非特許文献6】
Siwek et. al., Phytopathology,145,417-423
【非特許文献7】
Zhou and Paulitz, J. Phytopathology, 142: 51-63,1994
【非特許文献8】
生物農薬ガイドブック、日本植物防疫協会、p.26-33,1999
【非特許文献9】
生物農薬ガイドブック、日本植物防疫協会、p.20-25,1999
【0008】
【発明が解決しようとする課題】
ピシウム属菌に対する拮抗菌の検出方法を確立するために、より圃場環境に近い条件でありながら、接種したピシウム属菌が安定して発病し、なおかつ圃場環境で効果を示す拮抗菌を見逃すことなく効率的にスクリーニングできる条件を確立することが求められていた。
【0009】
【課題を解決するための手段】
上記課題を解決するための手段を見出すことを目的として鋭意研究した結果、ピシウム属菌に対する拮抗菌を見逃すことなく効率的にスクリーニングできる条件を確立することに成功した。更にそのような検出方法により新たにピシウム属菌に対する拮抗微生物が見出された。本発明は、これらの知見に基き完成されたものである。
即ち、本発明は、ピシウム属菌による病害の生物的防除効果を示す拮抗微生物を検出する方法において、
ピシウム属菌汚染土を作成し、該汚染土に検定菌を接種混合した後、植物種子を播種し培養して、ピシウム属菌による植物病害に対する検定菌の抑制効果を評価することにより拮抗微生物を検出する、ポット試験による検出方法であって、該汚染土におけるピシウム属菌の菌数が播種培養した植物全てを発病させるに必要な最小の菌数となるように調製したピシウム属菌汚染土を用いる、
ことを特徴とする、拮抗微生物の検出方法である。
更に本発明は、アースロバクター属(Arthrobacter sp.)、パエシロマイセス(Paecilomyces)属、マルブランキア(Malbranchea)属またはクンニングハメラ(Cunninghamella)属に属する、ピシウム属菌に対する拮抗微生物である。
更に本発明は、上記拮抗微生物を有効成分として含有するピシウム属菌による土壌病害に対する生物的防除剤である。
【0010】
【発明の実施の形態】
本発明では、ピシウム属菌汚染土を作成し、そこに検定菌を接種混合した後、植物種子を播種し培養することにより、検定菌の発病抑制効果を評価し、拮抗微生物の検出をポット試験により行なう。
【0011】
本発明の検出方法で用いるピシウム属菌汚染土を作成するための土壌は、植物種子の発芽を妨げない物理性、理化学性を持つものが好ましい。また、未熟な有機物が多く含まれる土壌は、ピシウム属菌の増殖を助長するので避けるのが好ましい。また、極端に微生物数が多い土壌も避けるのが好ましい。浄水場発生土(浄水ケーキ)は、以上の条件を満たしており、ピシウム属菌汚染土を作成するための土壌に適している。浄水場発生土としては、いずれの浄水場発生土でもよく、通常、浄水処理過程で発生する沈積泥土(浄水汚泥)を濃縮脱水した浄水ケーキが使用される。より具体的には、浄水場発生土としては、浄水処理過程で発生する沈積泥土(浄水汚泥)に、凝集剤としてポリ塩化アルミニウムや硫酸アルミニウムを添加して沈殿処理し、無石灰処理により脱水したものが通常使用される。ピシウム属菌汚染土を作成するための土壌は、拮抗微生物の検出の際に、土着の微生物の影響も考慮した条件で検出するために、滅菌しないのが好ましい。また、あらかじめ供試植物に対して病害が発生しないことを確認しておくのが望ましい。
また、本発明の検出方法では、ピシウム属菌汚染土の作成に用いる土壌は、出来るだけ圃場環境に近い条件の土壌は好ましく、従って、通常の土壌中に含まれる微生物が同じ程度に含まれる土壌が望ましい。より具体的には、例えば、糸状菌数が100〜10,000cfu/g乾土および細菌数が100,000〜10,000,000cfu/g乾土の土壌を用いるのが好ましく、このような土壌を用いることにより、圃場環境に近い条件でピシウム属菌に対する拮抗微生物の検出をポットレベルで行なうことができる。
【0012】
検定菌から拮抗微生物を検出するための土壌となるピシウム属菌汚染土作成には、上記した土壌に、通常、ピシウム属菌の卵胞子あるいは胞子のうを混入し適当な菌数となるよう混合する。卵胞子あるいは胞子のうは、植物体上で形成させたものが好ましい。例えば、あらかじめピシウム属菌を発芽直後の植物体に罹病させ、植物体を取り除き風乾、粉砕した土壌を接種源とする。ピシウム属菌は土壌中では、卵胞子あるいは胞子のうを形成し耐久生存しているが、種子や根からの滲出物中の特定物質に反応して感染行動を開始することが示唆されている。しかし、合成培地中で形成させた胞子のうは、特定の物質ではなく、糖やアミノ酸などの物質にも反応することが報告されている。このように、合成培地中で形成させたものは、感染に対する性質が異なる(Nelson and Craft. Phytopathology,79,1009-1013)ので好ましくない。
ピシウム属菌汚染土におけるピシウム属菌の菌数は、汚染土に播種し培養した植物の全てを発病させるに必要な最小の菌数となるように汚染土を調製する。ここで菌数とは、汚染土中に含まれるピシウム属菌の菌体全体、卵胞子および胞子のうの総数を指し、発病させるに必要な最小の菌数とは、植物種子を汚染土に播種して生育させる際に植物の発病においてお互いの植物個体に影響を与えない程度の距離を保って種子を播種して培養した場合において、植物固体の全てを発病させ且つ全てを枯死させるに必要な最小の菌数を意味する。通常、ピシウム属菌汚染土中に含まれるピシウム属菌数は土壌1g当り10〜1,000cfu、好ましくは、50〜500cfu、より好ましくは、100〜200cfuとなるよう調製する。菌数は、VP培地(Ali-Shitayeh et al. Trans.Br.mycol.Soc.86: 39-47,1986)等のピシウム属菌の選択培地を用い、希釈平板法等で測定する。対象とするピシウム属菌は、例えばピシウム・アファニデルマータム(Pythium aphanidermatum FERM P−19018)や、ピシウム・ウルティマム(Pythium ultimum FERM P−19017)を用いることができるが、他のピシウム属菌についても同様に用いることが出来る。
【0013】
以上により作成した汚染土は、ポット、好ましくはミニポットに充填する。ポットは検定菌の流出を防ぐため、排水孔のないものを使用するのが好ましい。汚染土の下層には、土壌水分を保持するための土壌改良材を設けるのが好ましい。このような土壌改良材としては、例えば、パーライト、バーミュキュライト、ゼオライト、木炭などが挙げられ、特にパーライト、バーミュキュライトが好ましい。具体的には、例えば、85mm(縦)×85mm(横)×140mm(深)のカイワレダイコン用のプラスチック容器を使用し、パーライト75mlの上に汚染土100mlを詰めると最適な形態となる。
ポットへの潅水は、下部のパーライトなどの土壌改良材層に液面が存在する程度に行うのが好ましい。パーライトなどの土壌改良材層の存在によりアッセイ中の土壌水分が、適度に保たれる。上記の最適形態の場合、50mlの潅水が適量となる。
【0014】
供試する検定菌は、収集の容易さおよび増殖能力の高さから、一般的には、糸状菌ないしは細菌を用いるのがよい。検定菌を培地中で一定期間培養し増殖させた後、その菌体を汚染土壌に混合する。例えば、細菌は液体培地中で振とう培養後、遠心分離によって培地成分を取り除き、滅菌蒸留水に懸濁したものを接種源とする。糸状菌は、土壌フスマ培地などで培養したものを接種源とする。検定菌を培養する培地中の糖類などは、ピシウム属菌を活性化させるので、接種時には培地成分は除去することが好ましい。
【0015】
汚染土と検定菌を混合したポットに植物種子を通常3〜10粒程度播種する。播種は、検定菌の土壌への定着を考慮し、25℃から30℃で一晩静置した後が好ましい。植物種子は使用するピシウム属菌の宿主範囲内であればいずれでもよいが、供試するピシウム属菌の感染適温と種子の発芽適温が一致する必要がある。例えば、ピシウム・アファニデルマータムは、好高温性(27℃〜31℃)の種であるので、用いる種子もこの温度域が発芽適温の種子を用いるのがよい。また、発芽率が高い種子を用いるほうが、未発芽の場合に発病による種子腐敗と区別しやすいため好ましい。ウリ科植物の種子は、種子の状態を観察するのに適度な大きさであり、また発芽率が比較的高く、発芽適温もアッセイに向いている。特にキュウリ種子は、発芽率がほぼ100%と高く、供試植物として最適である。また、あらかじめ同条件で非汚染土での供試植物種子の発芽率を調査しておき、アッセイ時の未発芽が発病によるものかどうかの判別に用いるのが好ましい。
【0016】
播種後は、ビニール等で被覆し乾燥を防ぎ、グロースチャンバー、あるいは温室で栽培する。この時、ピシウム属菌の感染適温を保つよう注意する。種子が発芽し、子葉が完全に展開するのに要する十分な期間栽培した後に、植物の状態を観察する。検定菌非接種ポットと比較し、種子の腐敗や苗の立枯れが見られない健全な苗の数が有意に多かったポットは、接種した検定菌に発病抑制効果があるものと考えられる。同様の試験を2〜5回繰り返し、継続して効果が見られた検定菌を、ピシウム属菌による病害を抑制する拮抗微生物として選抜する。
本発明により、最適なピシウム属菌数、ピシウム属菌種、植物種、環境条件を確立することにより、ピシウム病菌に対する拮抗菌のスクリーニング系を確立することができる。即ち、ピシウム属菌の汚染土に検定菌を混入後、植物種子を播種し、検定菌の病害抑制効果を評価することで、ピシウム属菌による病害の生物的防除に有用と思われる拮抗微生物を取得できる。本発明は圃場環境に近い条件での、ピシウム属菌に対する拮抗微生物の検出ならびに取得に最適な方法である。
【0017】
以上に説明した本発明の検出方法により、後述する実施例で詳細に説明するように、アースロバクター属(Arthrobacter sp.)、パエシロマイセス(Paecilomyces)属、マルブランキア(Malbranchea)属またはクンニングハメラ(Cunninghamella)属に属する、ピシウム属菌に対する拮抗微生物が得られた。より具体的には、アースロバクター属菌(Arthrobacter sp.)Gb4a(FERM P−19020)、アースロバクター属菌(Arthrobacter sp.)Ib2a(FERMP−19022)、アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)Rb5a(FERM P−19023)、アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)Rb5b(FERM P−19024)、パエシロマイセス属菌(Paecilomyces sp.)If2(FERM P−19016)、マルブランキア属菌(Malbaranchea sp.)Mf2(FERM P−19019)およびクンニングハメラ属菌(Cunninghamella sp.)Uf2(FERM P−19020)が得られた。
【0018】
これらの拮抗微生物は、ピシウム属菌による植物の病害に対して抑制効果を発揮するため、ピシウム属菌による土壌病害に対する生物的防除剤として有効である。拮抗微生物を植物に適用するには、通常、拮抗微生物をタンク培養、振とう培養などによって培養し、その培養液をそのまま噴霧散布する方法が採用される。また、培養液を適当に希釈しその希釈液を噴霧散布してもよい。必要に応じて、通常用いられる農業用の添加剤などをこれらの培養液に添加してもよい。拮抗微生物の適用量は、培養液として、通常1〜1,000ml/m2、好ましくは、10〜100ml/m2の量である。また、本発明の拮抗微生物を他の適当な農業用の添加剤などと組み合わせた防除剤として用いることもできる。これらの添加剤は、通常用いられものをそのまま用いることができる。
【0019】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
目的
植物アッセイにより、効率的に拮抗微生物を検出するために、確実に発病し、かつ出来るだけ少ないピシウム属菌菌数でアッセイを行うことを目的とし、ピシウム属菌としてピシウム・アファニデルマータム(Pythium aphanidermatum OPU431:FERM P−19018)とピシウム・ウルティマム(Pythium ultimum UOP407: FERM P−19017)を用い、本菌の土壌中の菌数と発病との関係を調査し、非滅菌土壌における発病下限の菌数を求めるため以下の実験を行った。
【0020】
方法
i)6mmに篩った浄水ケーキ(糸状菌数が2,500cfu/g乾土および細菌数が5,000,000cfu/g乾土の浄水ケーキを用いた)を苗箱に敷き詰め、キュウリ(品種:鈴生四葉)を多量に播種し発芽させた。そこに、あらかじめ液体培地で培養したピシウム・アファニデルマータムあるいはピシウム・ウルティマムの菌体を接種し、キュウリを罹病させた。植物体が枯死したら、植物体を取り除き風乾、粉砕した。これをピシウム汚染土の接種源とした。
ii)汚染土は、ピシウム接種源と非汚染土壌との混合割合を変えて、異なる菌数の汚染土を5処理区作成した。汚染土のピシウム属菌数の測定は、汚染土の作成後ピシウム属菌の選択培地であるVP3培地を用いた希釈平板法にて測定した。
iii)85mm(縦)×85mm(横)×140mm(深)のカイワレダイコン用のプラスチック容器に、土壌水分調整のためのパーライト75ml、上記ii)で作成した汚染土壌100mlを充填し、水道水を50ml注いだ。1ポットにつきキュウリ種子5粒を播種し、ビニールでプラスチック容器を被覆し、12時間照明のグロースチャンバー内で培養した。培養温度は、ピシウム・アファニデルマータム汚染土区は30℃、ピシウム・ウルティマム汚染土区は26℃とした。
iv)子葉の展開及びピシウム属菌の感染に要する十分な期間である7日間の培養後、植物の状態を観察し、ピシウム属菌による種子腐敗や苗立枯れなどの発病率を調査した。
【0021】
結果
調製した各汚染土中の菌数を測定した結果、ピシウム・アファニデルマータム汚染土は土壌1g当りそれぞれ、0、5、22、80、133cfuであった。ピシウム・ウルティマム汚染土は土壌1g当りそれぞれ、0、25、53、77、105cfuであった。植物アッセイによるキュウリの苗立枯病発生の程度を表1および2に示す。発病率は、3回行なった実験の平均値で示した。
ピシウム・アファニデルマータム汚染土の場合には、80cfu/g soilでは、不安定な発病であったが、133cfu/g soilでは発病率は100%になった。ピシウム・ウルティマム汚染土では、77cfu/g soil以上で、100%の発病率であった。従って、ピシウム属菌は、汚染土中に100〜200cfu/g soil存在すれば、確実に発病することが明らかになった。本菌数が検定菌の選抜に用いる最も良い条件であると考えられる。
【0022】
【表1】

Figure 0004366924
【0023】
【表2】
Figure 0004366924
【0024】
実施例2
目的
土壌より分離された糸状菌および細菌を実施例1の検出方法に供試し、ピシウム属菌に対する拮抗微生物を取得するため、以下の実験を行った。
【0025】
方法
i)数ヵ所の任意の土壌から希釈平板法により微生物を分離し、培地上に現れた視覚的に形態の異なる細菌及び糸状菌を単離した。得られた細菌224菌株、糸状菌46菌株を供試した。
ii)実施例1に示した方法でピシウム・アファニデルマータム汚染土を作成し、菌数が土壌1g当り1×102〜2×102cfuとなるように調製した。この汚染土を、あらかじめパーライト75mlが入ったプラスチック容器〔85mm(縦)×85mm(横)×140mm(深)〕に100ml入れた。
iii)検定菌の接種は以下のように行った。検定菌が糸状菌の場合は、土壌フスマ培地(土壌:フスマ=4:1)で25℃、7日間培養後、上記汚染土に10g混合し、容器に蒸留水50mlを注いだ。検定菌が細菌の場合は、MYPG液体培地で30℃、48時間振とう培養後、遠心分離にて培地成分(上清)を除去し、得られた菌体(沈殿)を50mlの滅菌蒸留水に懸濁し、上記汚染土と均一に散布した。
iv)検定菌の接種後27〜30℃で一晩静置した後、薬剤で粉衣された市販品のキュウリ種子の薬剤を流水で落としたキュウリ種子5粒を播種し、ビニールでプラスチック容器を被覆した。30℃、12時間照明のグロースチャンバー内で7日間培養後、植物の状態を観察し、検定菌の発病抑制効果を評価した。発病抑制効果の認められた検定菌株については、同様の試験を3回繰り返し、安定して効果の認められた拮抗菌を選抜した。
【0026】
結果
結果を、図1および2に示す。ピシウム・アファニデルマータムに対して、細菌はGb4a、Ib2a、Rb5a、Rb5bの4菌株、糸状菌はIf2、Mf2、Uf2の3菌株に発病抑制効果が認められた。
【0027】
実施例3
目的
本発明により検出された拮抗微生物7菌株(細菌はGb4a、Ib2a、Rb5a、Rb5bの4菌株、糸状菌はIf2、Mf2、Uf2の3菌株)の、ピシウム・アファニデルマータムに対する抗菌作用機作を調査するために、以下の実験を行った。
【0028】
方法
i)実施例2において拮抗力が認められた糸状菌をPDA平板上で前培養し、直径8mmのコルクボーラーで菌叢を打ち抜いたディスクを作成した。これを新たにPDA平板の一端に置床し、菌層が2〜3cmに拡大するまで培養した。その平板のもう一端に、ピシウム・アファニデルマータムの菌叢ディスクを同様にして置床し28℃で培養した。
ii)拮抗力が認められた菌が細菌の場合は、MYPG平板の一端に画線し、2日間培養後、ピシウム・アファニデルマータムの菌叢ディスクをシャーレのもう一端に置床し30℃で培養した。
iii)2から3日後、ピシウム・アファニデルマータム菌叢の状態を観察し、生育抑制の有無を観察した。
【0029】
結果
実験に供した糸状菌3菌株、細菌4菌株のうち、生育抑制が認められたものはなく、抗菌物質生産でない発病抑制メカニズムが示唆された。
【0030】
実施例4
目的
本発明により検出された拮抗微生物7菌株(細菌はGb4a、Ib2a、Rb5a、Rb5bの4菌株、糸状菌はIf2、Mf2、Uf2の3菌株)の同定を行った。
【0031】
方法
菌株の同定は、細菌の場合は、16SrDNAの部分塩基配列約500bpを解析し、相同性検索によって、その菌株の帰属分類群を推定した。糸状菌の同定は、巨視的および微視的な形態観察によって行った。
【0032】
結果
Gb4a株、Ib2a株、Rb5aおよびRb5bの部分塩基配列は、それぞれ配列表の配列番号1、2、3および4に示した通りであった。
Gb4a株及びIb2a株の部分塩基配列より、MicroSeqTM Microbial Identification System software Ver1.4.1およびMicroSeqTM Bacteral 500Library v.0023により相同性検索を行ったところ、相同性96.42%でアースロバクター・オキシダンス(Arthrobacter oxydans)に対して最も高い相同性を有しており、分子系統樹上ではアースロバクター・パセンス(A. pascens)とクラスターを形成した。ブラスト(BLAST)相同性検索では、相同率99.0%でアースロバクター属菌(Arthrobacter sp.)SMCC ZAT262株に対して最も高い相同性を示した。従って、これら2株はアースロバクター属に属しアースロバクター・パセンス(A. pascens)に近縁な菌株と推定できる。
Rb5a及びRb5bの部分塩基配列より、MicroSeqTM Microbial Identification System software Ver1.4.1およびMicroSeqTM Bacteral 500Library v.0023により相同性検索を行ったところ、相同性100%でアースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)と一致した。分子系統樹上でもアースロバクター・ヒスチディノロボランス(A. histidinolovorans)と同じ場所に位置した。従って、これら2株はアースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)に帰属することが示唆された。
【0033】
If2株の巨視的観察結果は、コロニーは低凸上を示し乾燥性であった。綿毛状でwhite(A1)であり、基底菌糸は寒天内に中程度のもぐりこみを示し、生育は中程度で25℃で1週間培養後の検体では26mm−28mm程度の生育であった。培養開始3日後から分生子を形成し、表面色調はpinkish white-grayish rose(12A-B2-3)へ変化した。長期培養検体でも可溶性色素および滲出液の産生は示さなかった。微視的観察結果については、フィアロ型でペニシラス様の分生子柄の形成が確認され、多くの分生子柄はペニシリウム属と類似したが多様であった。フィアライドは首が長細く伸びた針状で、柄、メトレ、フィアライドともに平滑からやや粗面であり、分生子は1細胞性で表面は平滑であって、大きさは多様で、形状は卵円形から紡錘形であった。分生子は鎖状に連なり、若干の接続部が認められた。長期培養検体からも厚壁胞子およびテレオモルフの形成は確認できなかった。
以上の観察結果より、If2株はパエシロマイセス属菌(Paecilomyces sp.)と帰属された。
【0034】
Mf2株の巨視的観察結果は、コロニーは乾燥性で、ビロード状から綿毛状を示した。コロニー表面色調はwhite(A1)、裏面色調もほぼ同様であった。菌糸は寒天内にほとんどもぐりこまなかった。生育は速く、25℃で1週間培養後の検体ではPDAプレートで直径66mm、MEAプレートで59mm、OAプレートで54mm程度の生育であった。高倍率の顕微鏡観察では、湾曲に連鎖した分生子を形成した。長期培養検体でも可溶性色素および滲出液の産生は示さなかった。 微視的観察結果については、分節型の分生子形成構造のみが観察された。分節型分生子はすべて気中菌糸より形成された。菌糸表面はやや粗面で、菌糸は直線的に生育し、分枝も比較的多かった。隔壁は疎で菌糸幅は比較的細く、分節型分生子は気中菌糸先端より湾曲した構造で生じ、菌糸部との明瞭な境界は観察されなかった。分生子は1細胞性で円筒形を示し、表面はやや粗面であった。長期培養検体からも厚壁胞子およびテレオモルフの形成は確認できなかった。
以上の観察結果より、Mf2株はマルブランキア属菌(Malbaranchea sp.)と帰属された。
【0035】
Uf2株の巨視的観察結果は、菌糸は羊毛状で白色で、色の変化はなかった。生育速度は極めて速く25℃培養下のすべてのプレートにおいて培養5日目までに直径85mmのシャーレ全面に達した。臭気および可溶性色素は無く、胞子嚢柄が観察され、コロニーがpale grey(B1)に呈色した。微視的観察結果は、クンニングハメラ(Cunninghamella)様の胞子嚢柄が観察された。菌糸に隔壁は極めて少なく、ほふく枝、仮根が形成された。胞子嚢柄先端に頂嚢を形成し、その下方に不規則ないしは輪生した分枝が観察された。分枝の先端にも小型の頂嚢が認められた。頂嚢は球形から洋梨形であった。頂嚢表面より一胞子性の小胞子嚢を形成した。小胞子嚢は球形から楕円形で褐色であり、表面は短い針状であった。長期培養検体からも接合子は形成されなかった。
以上より、Uf2株はクンニングハメラ属菌(Cunninghamella sp.)と帰属された。
【0036】
これら取得した9菌株を平成14年9月17日付けで独立行政法人産業技術総合研究所特許生物寄託センターに寄託し、それぞれ以下の受託番号が付与された。
パエシロマイセス属菌(Paecilomyces sp.)If2
FERM P−19016
マルブランキア属菌(Malbaranchea sp.)Mf2
FERM P−19019
クンニングハメラ属菌(Cunninghamella sp.)Uf2
FERM P−19020
アースロバクター属菌(Arthrobacter sp.)Gb4a
FERM P−19021
アースロバクター属菌(Arthrobacter sp.)Ib2a
FERM P−19022
アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovora ns)Rb5a
FERM P−19023
アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovora ns)Rb5b
FERM P−19024
【0037】
【発明の効果】
本発明では、汚染土中のピシウム属菌の菌数を出来るだけ少なくし、安定した発病が認められる条件を確立することにより、病原菌と拮抗微生物だけでなく、植物や土壌との相互関係も考慮した、より圃場環境に近いスクリーニング系を開発することに成功した。即ち、本発明の検出方法では、植物、土壌および土着の微生物との相互関係を考慮した、より自然環境に近い条件でありながら、接種するピシウム属菌の菌数が最低限に絞られているため、効率よくピシウム属菌に対する拮抗菌を選抜することが可能になった。本発明の検出方法で取得したピシウム属菌に対する拮抗菌は、ピシウム属菌による苗立枯病等の生物的防除に効果を示すことができる。
【0038】
【配列表】
Figure 0004366924
Figure 0004366924
Figure 0004366924

【図面の簡単な説明】
【図1】本発明の方法によって検出された拮抗細菌の、ピシウム・アファニデルマータムによる立枯病に対する抑制効果を示したグラフである。図1において、無処理は検定菌なし、無処理・無接種は検定菌もピシウム属菌もない場合を示す。
【図2】本発明の方法によって取得した拮抗糸状菌の、ピシウム・アファニデルマータムによる立枯病に対する抑制効果を示したグラフである。図1において、無処理は検定菌なし、無処理・無接種は検定菌もピシウム属菌もない場合を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting antagonistic microorganisms that are effective in biological control of diseases caused by Pycesium, the antagonistic microorganisms, and a soil disease control agent using the same.
According to the present invention, as a pathogenic filamentous fungus that causes spoilage of seeds immediately after sowing and causes germination failure or withering of young seedlings, it is possible to obtain an antagonistic microorganism against Pisium spp. The antagonistic microorganism obtained by the present invention can be used to provide a biological control agent for diseases caused by the genus Psium.
[0002]
[Prior art]
Many studies have been made on the biological control of seedling blight by Pythium spp. (Non-Patent Document 1 and Non-Patent Document 2). Regarding diseases other than the genus Psium, biological control of plant diseases using antagonistic microorganisms has been actively studied as a control method with a low environmental load (Non-patent Document 3).
However, there are only a few examples of the development of biopesticides and microbial materials using antagonistic microorganisms. This is because it is difficult to establish an experimental system that can test antagonistic microorganisms that are effective in a field environment.
[0003]
As a disease suppression mechanism of antagonistic microorganisms, it is generally considered that the mechanism is as follows.
1) Antibiotics that inhibit the growth of other microorganisms through the production of antibiotics 2) Competition that competes for nutrients and invasion sites among microorganisms 3) Parasitism that contacts or invades other microorganisms and lyses them 4) Elicits an ecological defense mechanism for plants Resistance induction Specifically, examples of antagonistic microorganisms against diseases of the genus Psium are described below. In the antibiotic of 1) above, Pseudomonas fluorescens Pf-5 strain is related to the antibiotic pyoluteorin produced by this strain. There is a suppressed report (Non-Patent Document 4). In the competition of 2) above, Pseudomonas sp. Quickly covers the seed surface after sowing and preferentially uses the exudate from the seed to suppress seedling blight caused by Psium (Non-Patent Document 5). In the parasitism of the above 3), it is mentioned as one of the mechanisms of disease control that non-pathogenic Rhizoctonia spp. Parasitize Pythium Ultimum (Non-patent Document 6). In the resistance induction of 4) above, there is a report that Pseudomonas sp. Induces resistance to cucumber and suppresses stem rot caused by Pycium aphanidermartam (Non-patent Document 7).
[0004]
Conventionally, for the detection of novel antagonistic microorganisms, counter-culture on a culture medium of a test bacterium and a pathogenic bacterium has generally been performed. This is mainly a selection method based on the antibiotic of 1) above, and there have been reports that many antagonistic microorganisms have been obtained by this method. However, although it shows a disease suppression effect at the laboratory level, it is effective at the field level. There is very little to show, and there are few things that have been commercialized as biological pesticides.
[0005]
The following are registered as biological pesticides for diseases caused by plant pathogens other than Psium.
The antagonistic bacteria in the Bacillus subtilis wettable powder are said to exhibit an antagonistic action against gray mold fungus due to the competition of the growing place and nutrients (Non-patent Document 8). Moreover, it is said that the antagonistic bacteria in the non-pathogenic Erbinia carotobola wettable powder show an antagonistic action against soft rot due to nutritional competition on the leaf surface and antibacterial action (Non-patent Document 9).
[0006]
The pathogenesis suppression mechanism of these antagonistic microorganisms that have been put to practical use is not limited to antibiotics, but also exhibits a combined effect. In these successful cases, instead of the conventional screening method using anti-cultivation, a screening system close to the actual field environment is used. However, a detection system for selecting an antagonistic bacterium against the important disease Pisium spp. Has not been studied in detail so far. The genus Psium belongs to algae and causes various diseases in plants. Symptoms of plants caused by this bacterium are roughly classified into seedling wilt, seedling and underground rot, and fruit rot. All of them are characterized by producing white and fluffy hyphae in the damaged part when wet. Organs of this fungus include hyphae, zoospores, zoospores, conidia, and spore. Oospores are durable organs in the soil. Typical examples of the genus Psium include Pythium aphanidermatum and Pythium ultimum. The difference in morphological characteristics between the two is that the former forms follicular spores, but the latter does not form follicular spores and mainly grows on conidia. The host plant also invades the former at the seedling stage, while the latter invades plants that have grown to some extent. In addition, the former occurs more frequently in a moist environment, and the latter is different in that the disease occurs even under relatively dry conditions.
[0007]
[Non-Patent Document 1]
Tsuneo Watanabe, Encyclopedia of Plant Soil Diseases, Asakura Shoten, p.244-245,1998
[Non-Patent Document 2]
Martinn and Loper. Critical Reviews in Plant Science, 18 (2): p.111-181,1999
[Non-Patent Document 3]
Useful microorganisms for agriculture-utilization and prospects-, Seiji Umeya, Kaoru Kato, Yokendo, p. 95-200, 1990
[Non-Patent Document 4]
Howell and Stipanovic, Phytpathology 70: 712-715,1980
[Non-Patent Document 5]
Nelson and Craft. Phytopathology, 79,1009-1013
[Non-Patent Document 6]
Siwek et.al., Phytopathology, 145,417-423
[Non-Patent Document 7]
Zhou and Paulitz, J. Phytopathology, 142: 51-63,1994
[Non-Patent Document 8]
Biological pesticide guidebook, Japan Plant Protection Association, p.26-33,1999
[Non-patent document 9]
Biopesticide guidebook, Japan Plant Protection Association, p.20-25,1999
[0008]
[Problems to be solved by the invention]
In order to establish a method for detecting antagonistic bacteria against the genus Pythium, the inoculated Psium genus stably develops disease under conditions that are closer to the field environment, and without overlooking the antagonistic bacteria that are effective in the field environment. It has been required to establish conditions for efficient screening.
[0009]
[Means for Solving the Problems]
As a result of intensive research aimed at finding a means for solving the above-mentioned problems, the present inventors have succeeded in establishing conditions for efficient screening without overlooking antagonists to the genus Psium. Furthermore, a novel antagonistic microorganism against Pythium was found by such a detection method. The present invention has been completed based on these findings.
That is, the present invention relates to a method for detecting an antagonistic microorganism that exhibits a biological control effect of a disease caused by Psium,
After creating a Psium-contaminated soil, inoculating and mixing the test bacteria in the contaminated soil, seeding and cultivating plant seeds, and evaluating the inhibitory effect of the test bacteria on plant diseases caused by Psium, A detection method based on a pot test for detecting Pisium-contaminated soil prepared so that the number of Psium species in the contaminated soil is a minimum number of bacteria necessary for causing all the seeded plants to become diseased. Use
This is a method for detecting an antagonistic microorganism.
Furthermore, the present invention is an antagonistic microorganism against the genus Psium belonging to the genus Arthrobacter sp., Paecilomyces, Malbranchea or Cunninghamella.
Furthermore, this invention is a biological control agent with respect to the soil disease by the genus Psium which contains the said antagonistic microorganism as an active ingredient.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, after preparing Pisium-contaminated soil, inoculating and mixing the test bacteria therein, seeding and cultivating the plant seeds to evaluate the disease inhibitory effect of the test bacteria, pot detection of antagonistic microorganisms To do.
[0011]
The soil for preparing the Psium-contaminated soil used in the detection method of the present invention preferably has physical and physicochemical properties that do not prevent germination of plant seeds. Moreover, it is preferable to avoid soil containing a large amount of immature organic matter because it promotes the growth of Psium. It is also preferable to avoid soil with an extremely large number of microorganisms. The water purification plant generated soil (water purification cake) satisfies the above conditions and is suitable for soil for creating Psium-contaminated soil. As the water purification plant generated soil, any water purification plant generated soil may be used, and a water purification cake obtained by concentrating and dewatering sedimentary mud (purified sludge) generated in the water purification process is usually used. More specifically, as the soil generated from the water purification plant, it was precipitated by adding polyaluminum chloride or aluminum sulfate as a coagulant to the sedimentary mud (purified water sludge) generated in the water purification process, and dehydrated by limeless treatment. Things are usually used. It is preferable not to sterilize the soil for preparing Psium-contaminated soil in order to detect the influence of the indigenous microorganisms when detecting the antagonistic microorganisms. In addition, it is desirable to confirm in advance that no disease will occur in the test plant.
Further, in the detection method of the present invention, the soil used for the preparation of the Psium-contaminated soil is preferably a soil that is as close to the field environment as possible, and therefore, the soil contains the same level of microorganisms contained in normal soil. Is desirable. More specifically, for example, it is preferable to use soil having a filamentous fungus count of 100 to 10,000 cfu / g and a bacterial count of 100,000 to 10,000,000 cfu / g dry soil. By using this, it is possible to detect antagonistic microorganisms against Pythium bacteria at a pot level under conditions close to the field environment.
[0012]
To create Psium-contaminated soil, which is the soil for detecting antagonistic microorganisms from the test bacteria, usually mix the above-mentioned soil with the spore or spore cage of Psium so that the appropriate number of bacteria is obtained. To do. Oospores or spores are preferably formed on a plant body. For example, a plant body immediately after germination is affected with Pythium spp., And then the plant body is removed and air-dried and pulverized is used as an inoculation source. Pisium spp. Form spore or spore spore in the soil and survive the endurance, but it is suggested that they start infectious behavior in response to specific substances in exudates from seeds and roots . However, it has been reported that spores formed in a synthetic medium react not only with specific substances but also with substances such as sugars and amino acids. Thus, what was formed in the synthetic medium is unpreferable since the property with respect to infection differs (Nelson and Craft. Phytopathology, 79,1009-1013).
The contaminated soil is prepared so that the number of Pisium spp. In the Psium spoiled soil becomes the minimum number of bacteria necessary for causing all of the plants sowed and cultured in the contaminated soil. Here, the number of bacteria refers to the total number of Psium bacteria contained in the contaminated soil, the total number of oospores and spores, and the minimum number of bacteria required to cause disease refers to the plant seeds in the contaminated soil. Necessary to cause all plant solids to die and all to die when seeds are sown and cultured at a distance that does not affect each other's individual plants in plant disease when seeded and grown. Means the smallest number of bacteria. Usually, the number of Psium species contained in Psium-contaminated soil is 10 to 1,000 cfu, preferably 50 to 500 cfu, and more preferably 100 to 200 cfu per 1 g of soil. The number of bacteria is measured by a dilution plate method or the like using a selective medium of a genus Pisium such as VP 3 medium (Ali-Shitayeh et al. Trans. Br. Mycol. Soc. 86: 39-47, 1986). For example, Pythium aphanidermatum (Pythium aphanidermatum FERM P-19018) and Pythium ultimum FERM P-19017 can be used as the target Picium spp. Can be used similarly.
[0013]
The contaminated soil prepared as described above is filled in a pot, preferably a minipot. In order to prevent the outflow of assay bacteria, it is preferable to use a pot without a drain hole. It is preferable to provide a soil conditioner for retaining soil moisture below the contaminated soil. Examples of such a soil conditioner include pearlite, vermiculite, zeolite, charcoal and the like, and pearlite and vermiculite are particularly preferable. Specifically, for example, a plastic container for silkworm radish of 85 mm (length) x 85 mm (width) x 140 mm (depth) is used, and 100 ml of contaminated soil is packed on 75 ml of pearlite.
It is preferable to irrigate the pot to such an extent that the liquid level exists in the soil improvement material layer such as pearlite in the lower part. The presence of a soil amendment layer such as pearlite keeps the soil moisture during the assay moderate. In the case of the above optimum form, 50 ml of irrigation is an appropriate amount.
[0014]
In general, filamentous fungi or bacteria are preferably used as the test bacteria to be tested because of their easy collection and high growth ability. After culturing the test bacteria in a medium for a certain period and growing them, the cells are mixed with contaminated soil. For example, after inoculating bacteria in a liquid medium after shaking culture, the medium components are removed by centrifugation and suspended in sterile distilled water. Filamentous fungi are cultured in soil bran medium or the like as an inoculum. Since saccharides and the like in the culture medium for cultivating the test bacteria activate the genus Psium, it is preferable to remove the medium components at the time of inoculation.
[0015]
About 3 to 10 plant seeds are usually sown in a pot in which contaminated soil and test bacteria are mixed. The sowing is preferably performed after standing overnight at 25 ° C. to 30 ° C. in consideration of colonization of the test bacteria on the soil. The plant seeds may be any as long as they are within the host range of the genus Psium to be used, but it is necessary that the optimal temperature for infection of the genus Psium to be tested matches the optimal temperature for germination of the seed. For example, since Pisium aphanidermartam is a thermophilic (27 ° C. to 31 ° C.) seed, it is preferable to use a seed having a temperature suitable for germination in this temperature range. In addition, it is preferable to use seeds having a high germination rate because they can be easily distinguished from seed rot due to disease when they have not germinated. The seeds of Cucurbitaceae plants are moderately sized for observing the state of the seeds, have a relatively high germination rate, and are suitable for assaying suitable germination temperatures. In particular, cucumber seeds have a high germination rate of almost 100% and are optimal as test plants. Further, it is preferable to investigate the germination rate of the test plant seed in the non-contaminated soil under the same conditions in advance and use it to determine whether the ungerminated seed at the time of the assay is due to germination.
[0016]
After sowing, coat with vinyl or the like to prevent drying and grow in a growth chamber or greenhouse. At this time, care should be taken to maintain an appropriate temperature for infection with Psium. After the seeds germinate and are cultivated for a sufficient period of time for the cotyledons to fully develop, the state of the plant is observed. Compared with the non-inoculated test pot, the pot in which the number of healthy seedlings in which seed rot and seedling wilt did not appear was significantly large is considered that the inoculated test bacteria have a disease control effect. The same test is repeated 2 to 5 times, and the test bacteria that have been continuously effective are selected as antagonistic microorganisms that suppress diseases caused by Pythium spp.
According to the present invention, a screening system for antagonistic bacteria against Psium disease can be established by establishing an optimal number of Psium species, Psium species, plant species, and environmental conditions. In other words, after mixing the test bacteria in the contaminated soil of the genus Psium, plant seeds are sown and the disease control effect of the test bacterium is evaluated, so that antagonistic microorganisms that may be useful for biological control of the disease caused by the genus Psium You can get it. The present invention is an optimal method for detection and acquisition of antagonistic microorganisms against Pythium under conditions close to the field environment.
[0017]
According to the detection method of the present invention described above, the Arthrobacter sp., Paecilomyces genus, Malbranchea genus, or Cunninghamella genus, as will be described in detail in Examples described later. An antagonistic microorganism against the genus Psium was obtained. More specifically, Arthrobacter sp. Gb4a (FERM P-19020), Arthrobacter sp. Ib2a (FERMP-19022), Arthrobacter histodinovololans (Arthrobacter histidinolovorans) Rb5a (FERM P-19023), Arthrobacter histidinolovorans (Arthrobacter histidinolovorans) Rb5b (FERM P-19024), Paecilomyces sp. If2 (FERM P-19016) Malbaranchea sp. Mf2 (FERM P-19019) and Cunninghamella sp. Uf2 (FERM P-19020) were obtained.
[0018]
These antagonistic microorganisms are effective as biological control agents for soil diseases caused by Psium genus because they exhibit an inhibitory effect on plant diseases caused by Psium species. In order to apply an antagonistic microorganism to a plant, a method is generally employed in which the antagonistic microorganism is cultured by tank culture, shaking culture, or the like, and the culture solution is sprayed as it is. Alternatively, the culture solution may be diluted appropriately and sprayed with the diluted solution. If necessary, commonly used agricultural additives and the like may be added to these culture solutions. Application of antagonistic microorganisms, as the culture liquid, usually 1~1,000ml / m 2, preferably in an amount of 10 to 100 ml / m 2. The antagonistic microorganism of the present invention can also be used as a control agent in combination with other suitable agricultural additives. As these additives, commonly used ones can be used as they are.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
Example 1
Purpose To detect antagonistic microorganisms efficiently by plant assay, the aim is to conduct an assay with as few Pisium spp. As possible, and as Psium spp. Investigating the relationship between the number of bacteria in the soil and the pathogenesis of the fungus using Pythium aphanidermatum OPU431 (FERM P-19018) and Pythium ultimum UOP407 (FERM P-19017) The following experiment was conducted to determine the minimum number of bacteria in the soil.
[0020]
Method i) A water-purified cake sieved to 6 mm (using a water-purified cake having a fungal count of 2,500 cfu / g dry soil and a bacterial count of 5,000,000 cfu / g dry soil) was spread on a seedling box and cucumber ( Variety: Yotsuba Suzui) was sown and germinated. The cells of Psium aphanidermatum or Psium Ultimum previously cultured in a liquid medium were inoculated there to cause cucumber disease. When the plant body died, the plant body was removed and air-dried and crushed. This was used as an inoculation source for the psium-contaminated soil.
ii) Contaminated soil was prepared in 5 treatment zones by changing the mixing ratio of psium inoculation source and non-contaminated soil. The number of Psium species in the contaminated soil was measured by a dilution plate method using a VP 3 medium, which is a selective medium for Psium species, after the contaminated soil was created.
iii) A 85 mm (vertical) x 85 mm (horizontal) x 140 mm (depth) plastic container for silkworm radish is filled with 75 ml of pearlite for soil moisture adjustment, 100 ml of contaminated soil prepared in ii) above, and 50 ml of tap water Poured. Five cucumber seeds were sown per pot, and a plastic container was covered with vinyl and cultured in a growth chamber with illumination for 12 hours. The culture temperature was 30 ° C. for the Psium-Afanidelmartam contaminated soil and 26 ° C. for the Psium Ultimum contaminated soil.
iv) After culturing for 7 days, which is a sufficient period required for the development of cotyledons and infection with the genus Psium, the state of the plant was observed, and the incidence rate of seed rot and seedling wilt caused by Psium was investigated.
[0021]
Results As a result of measuring the number of bacteria in each prepared contaminated soil, the amount of Psium aphanidermartam contaminated soil was 0, 5, 22, 80, and 133 cfu, respectively, per 1 g of soil. The amount of Psium Ultimum contaminated soil was 0, 25, 53, 77, and 105 cfu, respectively, per 1 g of soil. Tables 1 and 2 show the degree of occurrence of seedling blight of cucumber by plant assay. The incidence was shown as the average of three experiments.
In the case of Psium afanidelmartam contaminated soil, the disease was unstable at 80 cfu / g soil, but the disease incidence was 100% at 133 cfu / g soil. In the Psium Ultimum contaminated soil, the disease incidence was 100% at 77 cfu / g soil or higher. Therefore, it was clarified that the genus Psium is surely diseased when 100 to 200 cfu / g soil exists in the contaminated soil. This number of bacteria is considered to be the best condition used for selection of test bacteria.
[0022]
[Table 1]
Figure 0004366924
[0023]
[Table 2]
Figure 0004366924
[0024]
Example 2
Purpose Filamentous fungi and bacteria isolated from soil were subjected to the detection method of Example 1, and the following experiment was conducted to obtain antagonistic microorganisms against Pythium spp.
[0025]
Method i) Microorganisms were separated from several arbitrary soils by a dilution plate method, and bacteria and filamentous fungi that appeared visually on the medium were isolated. The obtained 224 bacterial strains and 46 fungal strains were used.
ii) Pisium aphanidermatum contaminated soil was prepared by the method shown in Example 1 and prepared so that the number of bacteria was 1 × 10 2 to 2 × 10 2 cfu per gram of soil. 100 ml of this contaminated soil was put in a plastic container [85 mm (length) × 85 mm (width) × 140 mm (depth)] containing 75 ml of pearlite in advance.
iii) The test bacteria were inoculated as follows. When the test bacteria were filamentous fungi, they were cultured for 7 days at 25 ° C. in a soil bran medium (soil: brass = 4: 1), mixed with 10 g of the contaminated soil, and 50 ml of distilled water was poured into the container. When the test bacterium is a bacterium, after shaking culture at 30 ° C. for 48 hours in a MYPG liquid medium, the medium component (supernatant) is removed by centrifugation, and the resulting microbial cell (precipitate) is diluted with 50 ml of sterile distilled water. And uniformly sprayed with the contaminated soil.
iv) After inoculating the test bacteria overnight at 27-30 ° C., seeded with 5 cucumber seeds dropped with running water from commercial cucumber seeds powdered with drugs, and plastic containers with vinyl Covered. After culturing for 7 days in a growth chamber illuminated at 30 ° C. for 12 hours, the state of the plant was observed, and the disease inhibition effect of the test bacteria was evaluated. For the test strains that were confirmed to have a disease-suppressing effect, the same test was repeated three times, and antagonistic bacteria that were stably recognized were selected.
[0026]
Results The results are shown in Figures 1 and 2. In contrast to P. aphanidumartam, 4 bacterial strains, Gb4a, Ib2a, Rb5a, and Rb5b, and 3 fungal strains, If2, Mf2, and Uf2, were found to have disease-inhibiting effects.
[0027]
Example 3
[Purpose ] 7 antagonistic microorganisms detected by the present invention (4 bacteria: Gb4a, Ib2a, Rb5a, Rb5b, and 3 fungi: If2, Mf2, Uf2) against Psium aphanide martam The following experiment was conducted to investigate the mechanism of antibacterial action.
[0028]
Method i) Filamentous fungi in which antagonistic force was recognized in Example 2 were pre-cultured on a PDA plate, and a disc in which the bacterial flora was punched out with a cork borer having a diameter of 8 mm was prepared. This was newly placed on one end of the PDA plate and cultured until the fungus layer expanded to 2-3 cm. On the other end of the flat plate, a Pichia aphanidermatum flora disk was placed in the same manner and cultured at 28 ° C.
ii) If the bacterium with antagonistic activity is a bacterium, streak at one end of the MYPG plate, and after culturing for 2 days, place a Pichium aphanidermatam flora disc on the other end of the petri dish at 30 ° C Cultured.
iii) After 2 to 3 days, the state of the Psium aphanidermartam flora was observed and the presence or absence of growth suppression was observed.
[0029]
Results None of the 3 filamentous fungi strains and 4 bacterial strains subjected to the experiment showed growth inhibition, suggesting a pathogenesis suppression mechanism that does not produce antibacterial substances.
[0030]
Example 4
Objectives The identification of 7 antagonistic microorganisms (4 bacteria, Gb4a, Ib2a, Rb5a, Rb5b and 3 fungi, If2, Mf2, Uf2) detected by the present invention was carried out.
[0031]
Method For bacterial identification, in the case of bacteria, the partial base sequence of about 500 bp of 16S rDNA was analyzed, and the taxonomic group of the bacterial strain was estimated by homology search. Filamentous fungi were identified by macroscopic and microscopic morphological observation.
[0032]
Results The partial base sequences of Gb4a strain, Ib2a strain, Rb5a, and Rb5b were as shown in SEQ ID NOs: 1, 2, 3, and 4, respectively.
A homology search was carried out using MicroSeq Microbial Identification System software Ver1.4.1 and MicroSeq Bacteral 500 Library v.0023 from the partial base sequences of Gb4a and Ib2a strains. It has the highest homology to (Arthrobacter oxydans) and formed a cluster with Arthrobacter passens (A. pascens) on the molecular phylogenetic tree. The BLAST homology search showed the highest homology to the Arthrobacter sp. SMCC ZAT262 strain with a homology rate of 99.0%. Therefore, these two strains can be presumed to belong to the genus Arthrobacter and to be closely related to A. pascens.
When a homology search was performed from the partial base sequences of Rb5a and Rb5b using MicroSeq Microbial Identification System software Ver1.4.1 and MicroSeq Bacteral 500 Library v.0023, it was found that Arthrobacter histodinovololans (100% homology) Arthrobacter histidinolovorans). In the molecular phylogenetic tree, it was located at the same place as A. histidinolovorans. Therefore, it was suggested that these two strains belong to Arthrobacter histidinolovorans.
[0033]
As a result of macroscopic observation of the If2 strain, the colonies showed low convexity and were dry. It was fluffy and white (A1), the basal mycelium showed moderate stagnation in the agar, and the growth was moderate, and the growth after growth for 1 week at 25 ° C. was about 26 mm-28 mm. Conidia were formed 3 days after the start of the culture, and the surface color changed to pinkish white-grayish rose (12A-B2-3). Even long-term culture specimens showed no production of soluble pigment or exudate. As for the microscopic observation results, formation of a fiaro-type penicillus-like conidia pattern was confirmed, and many conidia patterns were similar to the genus Penicillium but varied. The phialide is a needle with an elongated neck, and the handle, metre, and phialide are smooth to slightly rough, the conidia are single-celled, the surface is smooth, the size varies, and the shape is oval. It was spindle-shaped. Conidia were chained and some connections were observed. The formation of thick-wall spores and teleomorphs could not be confirmed from long-term culture specimens.
From the above observation results, the If2 strain was assigned as Paecilomyces sp.
[0034]
From the macroscopic observation of the Mf2 strain, the colonies were dry and showed velvety to fluffy. The colony surface color tone was white (A1), and the back side color tone was almost the same. The mycelium hardly penetrated into the agar. Growth was fast, and the specimens cultured at 25 ° C. for 1 week had a diameter of 66 mm on the PDA plate, 59 mm on the MEA plate, and about 54 mm on the OA plate. In microscopic observation at high magnification, conidia linked to the curvature were formed. Even long-term culture specimens showed no production of soluble pigment or exudate. As for the microscopic observation results, only segmental conidia formation structures were observed. All segmented conidia were formed from aerial hyphae. The mycelium surface was slightly rough, the mycelium grew linearly, and there were relatively many branches. The septum was sparse and the hypha width was relatively narrow. The segmental conidia were formed with a curved structure from the tip of the aerial hyphae, and no clear boundary with the hyphae was observed. The conidia were unicellular and cylindrical, and the surface was slightly rough. The formation of thick-wall spores and teleomorphs could not be confirmed from long-term culture specimens.
From the above observation results, the Mf2 strain was assigned to the genus Malbaranchea sp.
[0035]
As a result of macroscopic observation of the Uf2 strain, the mycelium was wooly and white, and there was no color change. The growth rate was extremely fast, and reached the entire surface of a petri dish having a diameter of 85 mm by the fifth day of culture in all plates cultured at 25 ° C. There was no odor or soluble pigment, a spore sac was observed, and the colony was colored pale gray (B1). As a result of microscopic observation, a Cunninghamella-like spore sac was observed. The mycelium had very few partition walls, and fluff branches and temporary roots were formed. An apical sac was formed at the tip of the spore sac, and irregular or ring-like branches were observed below it. A small apical sac was also found at the tip of the branch. The apical sac was spherical to pear shaped. A monospore microspore sac was formed from the apical surface. The microspore sac was spherical to elliptical and brown, and the surface was short needle-like. No zygote was formed from the long-term culture specimen.
From the above, the Uf2 strain was assigned as Cunninghamella sp.
[0036]
These acquired nine strains were deposited at the National Institute of Advanced Industrial Science and Technology patent biological deposit center on September 17, 2002, and the following deposit numbers were assigned respectively.
Paecilomyces sp. If2
FERM P-19016
Malbaranchea sp. Mf2
FERM P-19019
Cunninghamella sp. Uf2
FERM P-19020
Arthrobacter sp. Gb4a
FERM P-19021
Arthrobacter sp. Ib2a
FERM P-19022
Arthrobacter histidinolovora ns Rb5a
FERM P-19023
Arthrobacter histidinolovora ns Rb5b
FERM P-19024
[0037]
【The invention's effect】
In the present invention, by reducing the number of Psium bacteria in the contaminated soil as much as possible and establishing conditions under which stable pathogenesis is recognized, not only pathogenic bacteria and antagonistic microorganisms but also the interrelationships between plants and soil are considered. We succeeded in developing a screening system closer to the field environment. That is, in the detection method of the present invention, the number of Pisium spp. To be inoculated is reduced to a minimum while considering the mutual relationship with plants, soil, and indigenous microorganisms, under conditions closer to the natural environment. Therefore, it has become possible to efficiently select antagonistic bacteria against the genus Psium. The antagonistic bacterium against the genus Psium obtained by the detection method of the present invention can be effective for biological control of seedling blight caused by the genus Psium.
[0038]
[Sequence Listing]
Figure 0004366924
Figure 0004366924
Figure 0004366924

[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the inhibitory effect of antagonistic bacteria detected by the method of the present invention against blight disease caused by Psium aphanidermartam. In FIG. 1, no treatment indicates no test bacteria, and no treatment / no inoculation indicates a case where neither the test bacteria nor the Psium species are present.
FIG. 2 is a graph showing the inhibitory effect of antagonistic filamentous fungi obtained by the method of the present invention against the blight of Pycium aphanidermartam. In FIG. 1, no treatment indicates no test bacteria, and no treatment / no inoculation indicates a case where neither the test bacteria nor the Psium species are present.

Claims (2)

アースロバクター属菌(Arthrobacter sp.)Gb4a(FERM P−1902)、アースロバクター属菌(Arthrobacter sp.)Ib2a(FERM P−19022)、アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)Rb5a(FERM P−19023)、アースロバクター・ヒスチディノロボランス(Arthrobacter histidinolovorans)Rb5b(FERM P−19024)、パエシロマイセス属菌(Paecilomyces sp.)If2(FERM P−19016)、マルブランキア属菌(Malbaranchea sp.)Mf2(FERM P−19019)またはクンニングハメラ属菌(Cunninghamella sp.)Uf2(FERM P−19020)である、拮抗微生物。Arthrobacter sp. Gb4a (FERM P-1902 1 ), Arthrobacter sp. Ib2a (FERM P-19022), Arthrobacter histidinolovorans (Arthrobacter histidinolovorans) Rb5a (FERM P-19023), Arthrobacter histidinolovorans Rb5b (FERM P-19024), Paecilomyces sp. If2 (FERM P-19016), Malbaranchea sp.) An antagonistic microorganism which is Mf2 (FERM P-19019) or Cunninghamella sp. Uf2 (FERM P-19020). 請求項1の拮抗微生物を有効成分として含有するピシウム属菌による土壌病害に対する生物的防除剤。  The biological control agent with respect to the soil disease by the genus Pycium which contains the antagonistic microorganism of Claim 1 as an active ingredient.
JP2002353745A 2002-12-05 2002-12-05 Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same Expired - Fee Related JP4366924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353745A JP4366924B2 (en) 2002-12-05 2002-12-05 Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353745A JP4366924B2 (en) 2002-12-05 2002-12-05 Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009090661A Division JP4892583B2 (en) 2009-04-03 2009-04-03 Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same

Publications (2)

Publication Number Publication Date
JP2004180626A JP2004180626A (en) 2004-07-02
JP4366924B2 true JP4366924B2 (en) 2009-11-18

Family

ID=32754956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353745A Expired - Fee Related JP4366924B2 (en) 2002-12-05 2002-12-05 Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same

Country Status (1)

Country Link
JP (1) JP4366924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381472A1 (en) * 2018-02-28 2020-12-03 Japan Display Inc. Optical sensor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033158A (en) * 2005-07-25 2007-02-08 Matsushita Electric Works Ltd Object detection device
BR112021007905A2 (en) 2018-11-02 2021-08-03 Nihon Nohyaku Co., Ltd. harmful organism control composition and method of use thereof
CN114342948B (en) * 2022-01-05 2023-07-18 安徽丰乐农化有限责任公司 Sterilization composition and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200381472A1 (en) * 2018-02-28 2020-12-03 Japan Display Inc. Optical sensor device
US11581358B2 (en) * 2018-02-28 2023-02-14 Japan Display Inc. Optical sensor device

Also Published As

Publication number Publication date
JP2004180626A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
KR101334742B1 (en) A novel Bacillus subtilis strain and use thereof for protecting the rust of plant roots
Andrade et al. Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea
CN106148232B (en) The bacterium bacterial strain and its application of one plant of antagonism plant pathogenetic bacteria
Andargie et al. Identification and evaluation of potential bio-control fungal endophytes against Ustilagonoidea virens on rice plants
CN107189950A (en) A kind of bacterial strain GFDZ1 of weed removal mulch film of degrading and bacterial preparation process and application
KR100411185B1 (en) A new Streptomyces sp. AG-P(KCTC 8965P), and an agent for control of plant diseases using this strain
Mahalakshmi et al. Biocontrol potential of Trichoderma species against wilt disease of carnation (Dianthus caryophyllus L.) caused by Fusarium oxysporum f. sp. dianthi
KR101005484B1 (en) Streptomyces sporoclivatus CJS-49 KCTC 11109BP active against plant fungal pathogens
Abdelzaher Biological control of root rot of cauliflower (caused by Pythium ultimumvar. ultimum) using selected antagonistic rhizospheric strains of Bacillus subtilis
KR101279040B1 (en) Exiguobacterium acetylicum WCU292 strain, composition for control plant disease and control method of plant disease with same
JP4366924B2 (en) Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same
CN108998395B (en) Bacillus amyloliquefaciens and application thereof
JP4892583B2 (en) Method for detecting antagonistic microorganism against genus Psium, antagonistic microorganism and soil disease control agent using the same
KR20130016917A (en) Serratia nematodiphila wcu338 strain, composition for control plant disease and control method of plant disease with same
CN104152372A (en) Biocontrol strain G68 for preventing and treating plant diseases, and preparation method and application of microbial inoculant thereof
Gravel et al. Pythium root rot and growth responses of organically grown geranium plants to beneficial microorganisms
KR101535893B1 (en) New microorganism Bacillus amyloliquefaciens CC110 and Microbial agent biopesticide containing the same
Bakli et al. Isolation of fluorescent Pseudomonas spp. strains from rhizosphere agricultural soils and assessment of their role in plant growth and phytopathogen biocontrol
CN112646757A (en) Streptomyces syringae and application thereof in plant disease control
KR101027082B1 (en) Streptomyces misonensis CJS-70 with antibacterial activity to plant pathogens and microbial agent for controlling plant pathogens using the same
KR100732910B1 (en) 2 A novel Bacillus subtilis FBS-2 active against plant fungal pathogens and preparation of microbial pesticide
Sen et al. Biological control of pathogens causing the Cymbidium Pseudobulb rot complex using fluorescent Pseudomonas strain BRL-1
KR20060021162A (en) Antifungal plant growth promoting rhizobacterium, bacillus amyloliquefaciens mj-3 and microbial bed soil using hereof
RU2783426C1 (en) Bacterial strain bacillus subtilis bs2017 vkpm b-13389, growth inhibitor of phytopathogenic fungi
CN115044512B (en) Predatory primordium strain and application thereof in biological control of plant diseases

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090403

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090618

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD17 Notification of extinguishment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7437

Effective date: 20090814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150904

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees