JP4364754B2 - Electrode capacitor deterioration prediction method - Google Patents

Electrode capacitor deterioration prediction method Download PDF

Info

Publication number
JP4364754B2
JP4364754B2 JP2004259742A JP2004259742A JP4364754B2 JP 4364754 B2 JP4364754 B2 JP 4364754B2 JP 2004259742 A JP2004259742 A JP 2004259742A JP 2004259742 A JP2004259742 A JP 2004259742A JP 4364754 B2 JP4364754 B2 JP 4364754B2
Authority
JP
Japan
Prior art keywords
esr
electrolytic capacitor
series resistance
equivalent series
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004259742A
Other languages
Japanese (ja)
Other versions
JP2006078215A (en
Inventor
元孝 坪内
俊明 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2004259742A priority Critical patent/JP4364754B2/en
Publication of JP2006078215A publication Critical patent/JP2006078215A/en
Application granted granted Critical
Publication of JP4364754B2 publication Critical patent/JP4364754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、例えばスイッチングレギュレータ等の電源回路に使用されているこの電源回路の出力電圧の平滑用の電解コンデンサの劣化予測方法に関し、特に簡便で実用的な電解コンデンサの劣化予測方法に関するものである。   The present invention relates to a method for predicting deterioration of an electrolytic capacitor for smoothing the output voltage of the power supply circuit used in a power supply circuit such as a switching regulator, and more particularly to a simple and practical method for predicting deterioration of an electrolytic capacitor. .

従来、スイッチングレギュレータ等の電源回路にその出力電圧中のリップル電圧を減少させるために平滑用の電解コンデンサが使用されている。この電解コンデンサは通常電源回路の他の抵抗、インダクタンス、トランス、能動部品等に比べて寿命が短い。このため、ほとんどの場合電解コンデンサの寿命が電源回路の寿命を決定することになる。したがって、電源回路の電解コンデンサの寿命を予測することは重要なことである。
電解コンデンサの寿命を予測する方法として、電解コンデンサの電解液の減少率の二乗に反比例して電解コンデンサの等価直列抵抗が増加するという関係を利用する方法がある(たとえば非特許文献1参照)。
具体的には、まず上記関係から20℃における電解コンデンサの等価直列抵抗ESRを算出する(ステップ101)。つぎに、この等価直列抵抗は温度依存性があるので、予め実験的に温度と等価直列抵抗との関係式を求める。そして、この関係式により電解コンデンサの使用による発熱により電解コンデンサの温度が上昇したときの等価直列抵抗ESRhotを算出し(ステップ102)、算出した等価直列抵抗ESRhotとこの等価直列抵抗ESRhotを流れる電流による発熱量と電解コンデンサの熱抵抗とから電解コンデンサの温度上昇分ΔTを算出する(ステップ103)。つぎに、算出した温度上昇分ΔTと周囲温度とから電解コンデンサの内部温度Tを算出する(ステップ104)。つぎに、算出した内部温度Tを使用して電解コンデンサの電解液の蒸気圧P(前記内部温度Tの関数である。)を算出し(ステップ105)、算出した蒸気圧Pを使用して一定期間(たとえば100時間)における電解液の損失量Vl(蒸気圧Pの関数である。)を算出する(ステップ106)。
つぎに、算出した電解液の損失量Vlを使用して電解コンデンサの電解液の残量Vを算出する。つぎに、前記電解コンデンサの電解液の減少率の二乗に反比例して電解コンデンサの等価直列抵抗が増加するという関係により決まる電解コンデンサの電解液の残量Vに相当する電解コンデンサの等価直列抵抗ESRが一定の限度(初めの値の3倍の値)を超えているときには(ステップ107)、電解コンデンサの寿命がつきているので、この寿命予測を終了し、超えていないときには、超えるまで前記ステップ101からステップ107までを繰り返す。このようにして、前記電解コンデンサの劣化を予測する。
アルミ電解コンデンサの寿命予測モデル マイケル・ガスペリ ロックウェル先端技術研究所 1996 IAS Conf.Rec.Vol3.pp1347−1351
Conventionally, a smoothing electrolytic capacitor is used in a power supply circuit such as a switching regulator in order to reduce a ripple voltage in the output voltage. This electrolytic capacitor usually has a shorter life than other resistors, inductances, transformers, active components, etc. of the power supply circuit. For this reason, in most cases, the life of the electrolytic capacitor determines the life of the power supply circuit. Therefore, it is important to predict the life of the electrolytic capacitor of the power supply circuit.
As a method for predicting the life of the electrolytic capacitor, there is a method using a relationship in which the equivalent series resistance of the electrolytic capacitor increases in inverse proportion to the square of the decrease rate of the electrolytic solution of the electrolytic capacitor (see, for example, Non-Patent Document 1).
Specifically, first, the equivalent series resistance ESR of the electrolytic capacitor at 20 ° C. is calculated from the above relationship (step 101). Next, since this equivalent series resistance has temperature dependence, a relational expression between temperature and equivalent series resistance is obtained in advance experimentally. Then, from this relational expression, an equivalent series resistance ESR hot when the temperature of the electrolytic capacitor rises due to heat generated by the use of the electrolytic capacitor is calculated (step 102), and the calculated equivalent series resistance ESR hot and the equivalent series resistance ESR hot are calculated. A temperature rise ΔT of the electrolytic capacitor is calculated from the amount of heat generated by the flowing current and the thermal resistance of the electrolytic capacitor (step 103). Next, the internal temperature T of the electrolytic capacitor is calculated from the calculated temperature rise ΔT and the ambient temperature (step 104). Next, the vapor pressure P (which is a function of the internal temperature T) of the electrolytic solution of the electrolytic capacitor is calculated using the calculated internal temperature T (step 105), and is constant using the calculated vapor pressure P. The amount of electrolyte loss V l (which is a function of vapor pressure P) in a period (for example, 100 hours) is calculated (step 106).
Next, the remaining amount V of the electrolytic solution of the electrolytic capacitor is calculated using the calculated electrolytic solution loss amount Vl . Next, the equivalent series resistance ESR of the electrolytic capacitor corresponding to the remaining amount V of the electrolytic solution of the electrolytic capacitor determined by the relationship that the equivalent series resistance of the electrolytic capacitor increases in inverse proportion to the square of the decrease rate of the electrolytic solution of the electrolytic capacitor. Is over a certain limit (three times the initial value) (step 107), the life of the electrolytic capacitor has been reached, so this life prediction is terminated. Steps 101 to 107 are repeated. In this way, the deterioration of the electrolytic capacitor is predicted.
Life prediction model of aluminum electrolytic capacitor Michael Gasperi Rockwell Advanced Technology Laboratory 1996 IAS Conf. Rec. Vol3. pp 1374-1351

しかし、上述の従来例では、電解コンデンサの等価直列抵抗と温度との関係式を予め実験的に求めること、電解コンデンサの使用時の発熱量の計算、電解コンデンサの温度上昇分の算出、電解コンデンサの内部温度の算出、電解液の蒸気圧の算出、電解液の損失量の算出、電解液の残量の算出、電解液の残量に対応する等価直列抵抗の予測という複雑な手順が必要となるという問題があった。
そこで、本発明が解決しようとする課題は、簡便で実用的な手順で電源回路の出力電圧の平滑用の電解コンデンサの等価直列抵抗を予測してこの電解コンデンサの劣化を予測できるようにすることである。
However, in the above-described conventional example, the relational expression between the equivalent series resistance of the electrolytic capacitor and the temperature is experimentally obtained in advance, the calorific value when the electrolytic capacitor is used, the calculation of the temperature rise of the electrolytic capacitor, the electrolytic capacitor Complex procedures such as calculating the internal temperature of the electrolyte, calculating the vapor pressure of the electrolyte, calculating the amount of electrolyte loss, calculating the remaining amount of electrolyte, and predicting the equivalent series resistance corresponding to the remaining amount of electrolyte. There was a problem of becoming.
Therefore, the problem to be solved by the present invention is to predict the equivalent series resistance of the electrolytic capacitor for smoothing the output voltage of the power supply circuit by a simple and practical procedure so that the deterioration of the electrolytic capacitor can be predicted. It is.

上記課題を解決するため、請求項1記載の発明は、電解コンデンサの劣化予測方法であって、基準となる時点に測定した前記電解コンデンサの等価直列抵抗の値ESRoと、前記基準となる時点からN年等のN単位時間経過後に測定した前記電解コンデンサの等価直列抵抗の値ESRnとを測定し、前記測定したESRoおよびESRnと、前記基準となる時点での前記電解コンデンサの電解液量Voおよび前記基準となる時点からN単位時間経過後の電解コンデンサの電解液量Vnとの関係式
ESRn/ESRo=(Vo/Vn2 (1)
から、前記基準となる時点からN単位時間経過後の電解コンデンサの電解液の残存率νn
νn=Vn/Vo
を算出し、さらに、前記単位時間当たりの前記電解コンデンサの電解液の減少率δを
δ=(1−νn)/N (2)
として算出し、前記ESRnとESRoとの平均値Rを求め、さらに、前記電解液の減少の加速因子Kとして
K=ESRn/R (3)
を定義し、このKを用いて前記基準となる時点からN+1単位時間経過後の前記電解液の残存率νn+1
νn+1=νn−δK (4)
として予測し、予測したνn+1を用いて前記基準となる時点からN+1単位時間経過後の前記電解コンデンサの等価直列抵抗ESRn+1
ESRn+1=ESRo(1/νn+12 (5)
として求め、該ESRn+1に基づいて電解コンデンサの劣化を予測することを特徴とする電解コンデンサの劣化予測方法である。
これにより、前記電解液の減少の加速因子Kとして
K=ESRn/R
を定義し、前記基準となる時点からN単位時間経過後の電解コンデンサの電解液の残存率νn、前記単位時間当たりの前記電解コンデンサの電解液の減少率δおよび前記Kを用いて前記基準となる時点からN+1単位時間経過後の前記電解液の残存率νn+1
νn+1=νn−δK
として予測し、予測した電解液の残存率νn+1に対応する等価直列抵抗の値ESRn+1を予測しているので、簡便で実用的な手順により前記等価直列抵抗の値ESRn+1を予測することができる。そして、前記N単位時間経過時を現時点とすれば、現時点から1単位時間経過後の前記等価直列抵抗の値を予測することができる。ここで、等価直列抵抗の値は電解液の減少割合に従って増加するので、等価直列抵抗の値を予測することにより電解コンデンサの劣化を予測することができる。
In order to solve the above problem, the invention according to claim 1 is a method for predicting deterioration of an electrolytic capacitor, wherein the value ESR o of the equivalent series resistance of the electrolytic capacitor measured at a reference time point and the reference time point The equivalent series resistance value ESR n of the electrolytic capacitor measured after the elapse of N unit time such as N years is measured, and the measured ESR o and ESR n and the electrolytic capacitance of the electrolytic capacitor at the reference time point are measured. ESR n / ESR o = (V o / V n ) 2 (1) Relationship between the amount of liquid V o and the amount of electrolytic solution V n after N unit time has elapsed from the reference time point
To the remaining ratio ν n of the electrolytic solution of the electrolytic capacitor after a lapse of N unit time from the reference time point
ν n = V n / V o
Further, the decrease rate δ of the electrolytic solution of the electrolytic capacitor per unit time is calculated as δ = (1−ν n ) / N (2)
And an average value R of the ESR n and ESR o is obtained, and further, K = ESR n / R (3)
Using this K, the remaining rate ν n + 1 of the electrolytic solution after elapse of N + 1 unit time from the reference time point is expressed as ν n + 1 = ν n −δK (4)
Was predicted as the equivalent series resistance ESR n + 1 of the electrolytic capacitor after N + 1 unit time from the time when the said reference with [nu n + 1 predicted ESR n + 1 = ESR o ( 1 / ν n + 1 ) 2 (5)
And predicting deterioration of the electrolytic capacitor based on the ESR n + 1 .
As a result, K = ESR n / R as an acceleration factor K for the decrease in the electrolyte
And the remaining rate ν n of the electrolytic solution of the electrolytic capacitor after elapse of N unit time from the reference time, the decreasing rate δ of the electrolytic solution per unit time, and the K The remaining ratio ν n + 1 of the electrolytic solution after elapse of N + 1 unit time from the point of time becomes ν n + 1 = ν n −δK
Predicted as, since the predicted value ESR n + 1 of the corresponding equivalent series resistance in the residual ratio [nu n + 1 of the predicted electrolyte, the value of the equivalent series resistance by practical procedure simple ESR n + 1 can be predicted. If the N unit time has elapsed, the value of the equivalent series resistance after 1 unit time has elapsed can be predicted. Here, since the value of the equivalent series resistance increases according to the decreasing rate of the electrolytic solution, it is possible to predict the deterioration of the electrolytic capacitor by predicting the value of the equivalent series resistance.

さらに、請求項2記載の発明は、請求項1記載のESRn+1の算出方法を少なくとも2回繰り返して、Mを2以上の整数として、請求項1記載の前記基準となる時点からN+M単位時間経過後の電解コンデンサの等価直列抵抗の値ESRn+mを求め、該ESRn+mに基づいて電解コンデンサの劣化を予測する電解コンデンサの劣化予測方法であって、1単位時間毎の等価直列抵抗の値を順次予測し、その際、先に予測した等価直列抵抗の値と前記基準となる時点の等価直列抵抗の値を使用して先に等価直列抵抗を予測した時点から1単位時間経過した時点の等価直列抵抗の値を予測することにより、請求項1記載の前記基準となる時点からN+M単位時間経過後の電解コンデンサの等価直列抵抗の値ESRn+mを求め、該ESRn+mに基づいて電解コンデンサの劣化を予測することを特徴とする電解コンデンサの劣化予測方法である。
これにより、請求項1記載の電解コンデンサのESRn+1の算出方法を使用して、請求項1記載の前記基準となる時点からN+M単位時間経過後の電解コンデンサの等価直列抵抗の値ESRn+mを求め、該ESRn+mに基づいて電解コンデンサの劣化を予測することができる。そして、前記N単位時間経過時を現時点とすれば、現時点からM単位時間経過後の電解コンデンサの劣化を予測することができる。
Furthermore, the invention according to claim 2 repeats the ESR n + 1 calculation method according to claim 1 at least twice, and M is an integer equal to or greater than 2, and N + M units from the reference time point according to claim 1 An electrolytic capacitor deterioration prediction method for determining an equivalent series resistance value ESR n + m of an electrolytic capacitor after elapse of time and predicting the deterioration of the electrolytic capacitor based on the ESR n + m. The series resistance value is predicted sequentially, and at that time, the equivalent series resistance value predicted in advance and the equivalent series resistance value at the reference time are used to estimate the equivalent series resistance for one unit time. The equivalent series resistance value ESR n + m of the electrolytic capacitor after elapse of N + M unit time from the reference time point according to claim 1 is obtained by predicting the equivalent series resistance value at the elapsed time, and the ESR n electrolysis based on the + m A degradation prediction method of an electrolytic capacitor, characterized by predicting the deterioration of the capacitor.
Thus, using the method for calculating ESR n + 1 of the electrolytic capacitor according to claim 1, the value ESR n of the equivalent series resistance of the electrolytic capacitor after elapse of N + M unit time from the reference time point according to claim 1. + m is obtained, and deterioration of the electrolytic capacitor can be predicted based on the ESR n + m . Then, if the time when the N unit time has elapsed is the current time, the deterioration of the electrolytic capacitor after the M unit time has elapsed can be predicted from the current time.

さらに、請求項3記載の発明は、請求項1または2記載の電解コンデンサの劣化予測方法において、さらに、前記等価直列抵抗の値ESRoが未使用時の電解コンデンサの等価直列抵抗の値であるとき、前記等価直列抵抗の値ESRn+1またはESRn+mの前記等価直列抵抗の値ESRoに対する比が3以上になる時点を予測し、この予測を基に前記電解コンデンサの交換時期を計画することを特徴とする電解コンデンサの劣化予測方法である。
これにより、前記等価直列抵抗の値ESRn+1またはESRn+mの前記等価直列抵抗ESRoに対する比が3以上になる時点においては電解コンデンサの寿命が尽きていると判断できる。
Furthermore, the invention described in claim 3 is the electrolytic capacitor deterioration prediction method according to claim 1 or 2, wherein the equivalent series resistance value ESR o is a value of the equivalent series resistance of the electrolytic capacitor when not in use. When the ratio of the equivalent series resistance value ESR n + 1 or ESR n + m to the equivalent series resistance value ESR o is predicted to be 3 or more, the replacement time of the electrolytic capacitor is determined based on this prediction. This is a method for predicting deterioration of an electrolytic capacitor characterized by planning.
Thus, it can be determined that the life of the electrolytic capacitor is exhausted when the ratio of the equivalent series resistance value ESR n + 1 or ESR n + m to the equivalent series resistance ESR o becomes 3 or more.

請求項1記載の発明によれば、簡便で実用的な手順により、現時点から1単位時間経過後の電解コンデンサの劣化の程度を予測することができる。
さらに、請求項2記載の発明によれば、請求項1記載の発明の効果とともに、簡便で実用的な手順により、現時点からM単位時間経過後の前記電解コンデンサの劣化の程度を予測することができる。
さらに、請求項3記載の発明によれば、請求項1または2記載の発明の効果とともに、前記電解コンデンサの劣化による交換時期の予測が容易になる。
According to the first aspect of the present invention, it is possible to predict the degree of deterioration of the electrolytic capacitor after the elapse of one unit time from the present time by a simple and practical procedure.
Furthermore, according to the invention described in claim 2, together with the effect of the invention described in claim 1, it is possible to predict the degree of deterioration of the electrolytic capacitor after elapse of M unit time from the present time by a simple and practical procedure. it can.
Furthermore, according to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, it is easy to predict the replacement time due to deterioration of the electrolytic capacitor.

以下、本発明における実施の形態を図面に基づいて説明する。
図1は、電解コンデンサを組み込んだスイッチングレギュレータを示し、図2は前記電解コンデンサの劣化予測方法を説明し、図3は本発明による予測データと実測データとの比較を示し、図4は本発明の応用例のフローチャートを示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a switching regulator incorporating an electrolytic capacitor, FIG. 2 explains a method for predicting deterioration of the electrolytic capacitor, FIG. 3 shows a comparison between predicted data and measured data according to the present invention, and FIG. 4 shows the present invention. The flowchart of the application example of is shown.

図1に示すように、電源回路の一種のスイッチングレギュレータ10は、直流の一対の入力端子11a、11b、入力端子11a、11b間に加えられた直流電圧を交流電圧に変換するDC/ACスイッチ回路12、DC/ACスイッチ回路12の出力を1次側入力とするトランス13、トランス13の2次側出力を整流するダイオード14、ダイオード14の出力を平滑する平滑回路15および平滑回路15の出力側に接続された一対の出力端子18a、18bを備えている。そして、平滑回路15は、コイル16(ダイオード14の出力側と出力端子18aとの間に接続されている。)および電解コンデンサ17(出力端子18a、18b間に接続されている。)からなり、電解コンデンサ17の等価回路はキャパシタンス17aと等価直列抵抗17bとの直列回路である。
出力端子18a、18b間には電子計測制御装置等の一定の負荷20が接続されている。なお、一定の負荷20の電力消費量は通常経年により変化しないので、電解コンデンサ17の充放電電流の平均実効値も一定である。
As shown in FIG. 1, a switching regulator 10 as a kind of power supply circuit includes a DC / AC switch circuit that converts a DC voltage applied between a pair of DC input terminals 11a and 11b and input terminals 11a and 11b into an AC voltage. 12, a transformer 13 having the output of the DC / AC switch circuit 12 as a primary side input, a diode 14 for rectifying the secondary side output of the transformer 13, a smoothing circuit 15 for smoothing the output of the diode 14, and an output side of the smoothing circuit 15 A pair of output terminals 18a and 18b connected to the. The smoothing circuit 15 includes a coil 16 (connected between the output side of the diode 14 and the output terminal 18a) and an electrolytic capacitor 17 (connected between the output terminals 18a and 18b). The equivalent circuit of the electrolytic capacitor 17 is a series circuit of a capacitance 17a and an equivalent series resistance 17b.
A constant load 20 such as an electronic measurement control device is connected between the output terminals 18a and 18b. In addition, since the power consumption of the fixed load 20 does not normally change with aging, the average effective value of the charge / discharge current of the electrolytic capacitor 17 is also constant.

ESR測定器30は、交流電圧源31、抵抗32および交流電流計33を直列に接続した部分回路、この部分回路に並列に接続された交流電圧計34および交流電圧計34の両端に接続された一対の測定端子35a、35bを備えている。   The ESR measuring instrument 30 is connected to both ends of a partial circuit in which an AC voltage source 31, a resistor 32, and an AC ammeter 33 are connected in series, an AC voltmeter 34 connected in parallel to the partial circuit, and the AC voltmeter 34. A pair of measurement terminals 35a and 35b is provided.

このとき、交流電圧源31の周波数をfとし、キャパシタンス17aの値をCとし、等価直列抵抗17bの抵抗値をESRとし、1/2πfCがESRより著しく小さいようにfを設定すると、電解コンデンサ17のインピーダンスは実質的にESRとなる。また、コイル16のインダクタンスをLとし、2πfLがESRより著しく大きくなるようにfを設定する。また、一定の負荷20は、たとえば5V(出力端子18a、18b間の電圧)、10A程度であるので、このときは一定の負荷20のインピーダンスは0.5Ωとなる。そして、たとえば、Cが1000μFのときにfを100kHzとすると、1/2πfCが約0.0016Ωになる。このときESRがたとえば0.05Ω程度であるので、ESRが1/2πfCより著しく大きくなる。
また、コイル16のインダクタンスはたとえば100μHであるので、このときは2πfLは約63Ωになる。このため、コイル16のインピーダンスはESRより著しく大きくなる。さらに、コイル16のインピーダンスと一定の負荷20のインピーダンスを並列に接続したインピーダンスの値は、約0.5Ωとなる。
このため、前記周波数fでは、電解コンデンサ17のインピーダンスはほぼESRに等しくなり、かつ、電解コンデンサ17に並列に接続されている一定の負荷20およびコイル16のインピーダンスの合成値は電解コンデンサ17のインピーダンスより著しく大きくなる。
At this time, if the frequency of the AC voltage source 31 is f, the value of the capacitance 17a is C, the resistance value of the equivalent series resistance 17b is ESR, and f is set so that 1 / 2πfC is significantly smaller than ESR, the electrolytic capacitor 17 Is substantially ESR. Further, the inductance of the coil 16 is L, and f is set so that 2πfL is significantly larger than ESR. In addition, the constant load 20 is, for example, about 5 V (voltage between the output terminals 18a and 18b) and about 10A. At this time, the impedance of the constant load 20 is 0.5Ω. For example, if f is 100 kHz when C is 1000 μF, 1 / 2πfC is about 0.0016Ω. At this time, since the ESR is, for example, about 0.05Ω, the ESR becomes remarkably larger than 1 / 2πfC.
Further, since the inductance of the coil 16 is 100 μH, for example, 2πfL is about 63Ω at this time. For this reason, the impedance of the coil 16 is significantly larger than the ESR. Furthermore, the impedance value obtained by connecting the impedance of the coil 16 and the impedance of the constant load 20 in parallel is about 0.5Ω.
Therefore, at the frequency f, the impedance of the electrolytic capacitor 17 is substantially equal to ESR, and the combined value of the impedance of the constant load 20 and the coil 16 connected in parallel to the electrolytic capacitor 17 is the impedance of the electrolytic capacitor 17. It becomes significantly larger.

したがって、電解コンデンサ17の等価直列抵抗17bの値ESRを測定するときには、入力端子11a、11bを前記直流電源から切り離し、電解コンデンサ17の電荷を完全に放電させた状態で、ESR測定器30の一対の測定端子35a、35bを出力端子18a、18bに接続する。そして、交流電圧計34の測定値を交流電流計33の測定値で除すると、等価直列抵抗17bの値ESRを求めることができる。   Therefore, when measuring the value ESR of the equivalent series resistance 17 b of the electrolytic capacitor 17, the input terminals 11 a and 11 b are disconnected from the DC power supply, and the electric charge of the electrolytic capacitor 17 is completely discharged. The measurement terminals 35a and 35b are connected to the output terminals 18a and 18b. Then, by dividing the measurement value of the AC voltmeter 34 by the measurement value of the AC ammeter 33, the value ESR of the equivalent series resistance 17b can be obtained.

具体的には、以下のような劣化予測プログラムを実行して、等価直列抵抗17bの値ESRの増加を予測して、電解コンデンサ17の劣化を予測することになる。
スイッチングレギュレータ10により一定の負荷20に電力を供給した場合に、図2に示すように、基準となる時点に測定した電解コンデンサ17の等価直列抵抗17bの値ESRoと、前記基準となる時点からN単位時間(たとえばN年、N月等)経過後に測定した等価直列抵抗17bの値ESRnとを測定し、前記測定したESRoおよびESRnと、前記基準となる時点での電解コンデンサ17の電解液量Voおよび前記基準となる時点からN単位時間経過後の電解コンデンサ17の電解液量Vnとの関係式
ESRn/ESRo=(Vo/Vn2 (1)
によって、前記基準となる時点からN単位時間経過後の電解コンデンサ17の電解液の残存率をνnとして
νn=Vn/Vo
を算出し、さらに、前記単位時間当たりの電解コンデンサ17の電解液の減少率δを
δ=(1−νn)/N (2)
として算出し、さらに、上述のように等価直列抵抗17bの値ESRよりも等価直列抵抗17bに直列に接続されているコイル16のインピーダンスが著しく大きいので、等価直列抵抗17bの値ESRの増加による等価直列抵抗17bを流れる電流値の減少が僅かであるため、等価直列抵抗17bの値ESRの増加により、等価直列抵抗17bによる発熱量が増加し、前記電解液の減少が加速される。このため、前記電解液の減少の加速因子Kとして
K=ESRn/R (3)
を定義する。なお、Rは前記ESRnとESRoとの平均値であり、前記ESRnはESRoより大きいので、Kは1より大きい。そして、このKを用いて前記基準となる時点からN+1単位時間経過後の前記電解液の残存率νn+1
νn+1=νn−δK (4)
として予測する。そして、予測したνn+1を用いて前記基準となる時点からN+1単位時間経過後の等価直列抵抗17bの値ESRn+1
ESRn+1=ESRo(1/νn+12 (5)
として予測する。
なお、上記加速因子Kを導入したことにより、図2において、前記基準となる時点からN+1単位時間経過後の電解コンデンサの電解液の量Vn+1は、V0とVnとを結ぶ直線より下側の点線で示す直線上に位置する。
Specifically, the following deterioration prediction program is executed to predict an increase in the value ESR of the equivalent series resistance 17b, thereby predicting the deterioration of the electrolytic capacitor 17.
When power is supplied to the constant load 20 by the switching regulator 10, as shown in FIG. 2, the value ESR o of the equivalent series resistance 17b of the electrolytic capacitor 17 measured at the reference time point and the reference time point n unit time (e.g. n year, n month, etc.) to measure the value ESR n the equivalent series resistance 17b measured after lapse of a ESR o and ESR n said measured, the electrolytic capacitor 17 at the time serving as the reference ESR n / ESR o = (V o / V n ) 2 (1) Relation between electrolyte amount V o and electrolyte amount V n of electrolytic capacitor 17 after N unit time has elapsed from the reference time point
Ν n = V n / V o, where ν n is the remaining ratio of the electrolytic solution of the electrolytic capacitor 17 after elapse of N unit time from the reference time point
Further, the decrease rate δ of the electrolytic solution of the electrolytic capacitor 17 per unit time is calculated as δ = (1−ν n ) / N (2)
Further, as described above, since the impedance of the coil 16 connected in series to the equivalent series resistance 17b is significantly larger than the value ESR of the equivalent series resistance 17b, the equivalent due to the increase in the value ESR of the equivalent series resistance 17b is calculated. Since the decrease in the value of the current flowing through the series resistor 17b is slight, the amount of heat generated by the equivalent series resistor 17b increases due to the increase in the value ESR of the equivalent series resistor 17b, and the decrease in the electrolyte is accelerated. Therefore, K = ESR n / R (3)
Define Note that R is an average value of ESR n and ESR o, and K is larger than 1 because ESR n is larger than ESR o . Then, using this K, the remaining rate ν n + 1 of the electrolytic solution after elapse of N + 1 unit time from the reference time point is expressed as ν n + 1 = ν n −δK (4)
To predict. Then, using the predicted ν n + 1 , the value ESR n + 1 of the equivalent series resistance 17b after the elapse of N + 1 unit time from the reference time point is obtained as ESR n + 1 = ESR o (1 / ν n + 1 ) 2 (5)
To predict.
In addition, by introducing the acceleration factor K in FIG. 2, the amount V n + 1 of the electrolytic solution of the electrolytic capacitor after the elapse of N + 1 unit time from the reference time point is a straight line connecting V 0 and V n. It lies on a straight line indicated by a lower dotted line.

これにより、前記電解液の減少の加速因子Kとして
K=ESRn/R
を定義し、このKを用いて前記基準となる時点からN+1単位時間経過後の前記電解液の残存率νn+1を簡単な代数式である式(4)により
νn+1=νn−δK (4)
として予測し、予測した電解液の残存率νn+1に対応する等価直列抵抗17bの値ESRn+1を予測しているので、簡便で実用的な手順により等価直列抵抗17bの値ESRn+1を予測することができる。これにより、ESRn+1の値が劣化判定レベル(例えば図3に示すように未使用時の等価直列抵抗の3倍)を超えるか否かにより電解コンデンサの劣化を予測することができる。
As a result, K = ESR n / R as an acceleration factor K for the decrease in the electrolyte
Using this K, the remaining ratio ν n + 1 of the electrolytic solution after the elapse of N + 1 unit time from the reference time point is expressed by ν n + 1 = ν n − according to the simple algebraic equation (4). δK (4)
Predicted as, since the predicted value ESR n + 1 of the equivalent series resistance 17b corresponding to the remaining rate [nu n + 1 of the predicted electrolyte, the value ESR n the equivalent series resistance 17b by practical procedures in a convenient +1 can be predicted. Thereby, it is possible to predict the deterioration of the electrolytic capacitor depending on whether or not the value of ESR n + 1 exceeds the deterioration determination level (for example, three times the equivalent series resistance when not used as shown in FIG. 3).

さらに、上述の電解コンデンサ17の劣化予測方法を少なくとも2回繰り返して、Mを2以上の整数として、前記基準となる時点からN+M単位時間経過後の等価直列抵抗17bの値ESRn+mを予測する。その際、1単位時間毎の等価直列抵抗17bの値を順次予測し、先に予測した等価直列抵抗17bの値と前記基準となる時点の等価直列抵抗17bの値ESR0を使用して先に等価直列抵抗17bの値を予測した時点から1単位時間経過した時点の等価直列抵抗17bの値を予測することにより、前記基準となる時点からN+M単位時間経過後の等価直列抵抗17bの値ESRn+mを予測する。
これにより、上述の電解コンデンサ17の劣化予測方法を使用して、前記基準となる時点からN+M単位時間経過後の等価直列抵抗17bの値ESRn+mを予測することができる。そして、前記N単位時間経過時を現時点とすれば、現時点からM単位時間経過後の等価直列抵抗17bの値ESRn+mを予測することができる。
図3において、横軸の経年では5年目の時点を基準時とし、12年目をN年とし、前記基準時のESR0および前記12年目のESRnにより等価直列抵抗17bの値ESRを予測した場合が示されている。このようにして予測した等価直列抵抗17bの値ESRは、経年により増加している。なお、前記ESRの予測データはESRの実測データとよく近似している。
Further, the above-described method for predicting deterioration of the electrolytic capacitor 17 is repeated at least twice, and the value ESR n + m of the equivalent series resistance 17b after N + M unit time has elapsed from the reference time, with M being an integer of 2 or more. To do. At this time, the value of the equivalent series resistance 17b for each unit time is sequentially predicted, and the previously estimated value of the equivalent series resistance 17b and the value ESR 0 of the equivalent series resistance 17b at the reference time are used first. By predicting the value of the equivalent series resistance 17b when 1 unit time has elapsed from the time when the value of the equivalent series resistance 17b is predicted, the value ESR n of the equivalent series resistance 17b after N + M unit time has elapsed from the reference time Predict + m .
Accordingly, the value ESR n + m of the equivalent series resistance 17b after the lapse of N + M unit time from the reference time point can be predicted using the above-described deterioration prediction method for the electrolytic capacitor 17. If the time when the N unit time has elapsed is the current time, the value ESR n + m of the equivalent series resistance 17b after the M unit time has elapsed can be predicted from the current time.
In FIG. 3, in the lapse of time on the horizontal axis, the time point of the fifth year is set as the reference time, the twelfth year is set as the N year, and the value ESR of the equivalent series resistance 17b is calculated by ESR 0 at the reference time and the ESR n of the twelfth year. The predicted case is shown. The value ESR of the equivalent series resistance 17b predicted in this way increases with time. The predicted ESR data is close to the measured ESR data.

さらに、上述の電解コンデンサの劣化予測方法において、さらに、等価直列抵抗17bの値ESRoが未使用時の電解コンデンサ17の等価直列抵抗17bの値であるとき、等価直列抵抗の値ESRn+1またはESRn+mの等価直列抵抗17bの値ESRoに対する比が3以上になる時点を予測し、この予測を基に電解コンデンサ17の交換時期を計画する。
ここで、経験的に電解液が未使用時の状態から約40%低下するときが電解コンデンサの寿命と言われており、これを前述の式(1)に当てはめると等価直列抵抗の比がほぼ3となることから、等価直列抵抗17bの値ESRn+1またはESRn+mの等価直列抵抗17bの値ESRoに対する比が3以上になる時点を予測することにより、電解コンデンサ17の交換時期を計画することができる。
Further, in the above-described electrolytic capacitor deterioration prediction method, when the value ESR o of the equivalent series resistance 17b is the value of the equivalent series resistance 17b of the electrolytic capacitor 17 when not in use, the value ESR n + 1 of the equivalent series resistance is obtained. Alternatively, a point in time when the ratio of ESR n + m to the value ESR o of the equivalent series resistance 17b becomes 3 or more is predicted, and the replacement time of the electrolytic capacitor 17 is planned based on this prediction.
Here, empirically, when the electrolytic solution is reduced by about 40% from the unused state, it is said that the lifetime of the electrolytic capacitor is applied. When this is applied to the above equation (1), the ratio of the equivalent series resistance is almost equal. Therefore, when the ratio ESR n + 1 of the equivalent series resistance 17b or the ratio ESR n + m of the equivalent series resistance 17b to the value ESR o of the equivalent series resistance 17b is predicted to be 3 or more, the replacement time of the electrolytic capacitor 17 is estimated. Can be planned.

(本発明の応用例)
図4に示すフローチャートにおいて、まず、スイッチングレギュレータ10の設置時に電解コンデンサ17の初期ESR0を測定する(ステップS1)。つぎに、6年目の定期点検にてESR6を測定する(ステップS2)。つぎに、12年目の定期点検にてESR12を測定する(ステップS3)。
つぎに、測定したESR6およびESR12を用いて上述の劣化予測プログラムを実行する(ステップS4)。
なお、図3に示すように、電解コンデンサ17の未使用時の等価直列抵抗17bの値と電解コンデンサ17を5年間使用した時点の電解コンデンサ17の使用直前の時点の等価直列抵抗17bの値との差が僅かであるので、経年5年および経年12年のデータを使用した劣化予測結果にて、電解コンデンサ17の寿命の予測が可能であることが判明した。また、通常定期点検の周期が6年・12年であることから、6年目および12年目のデータを使用することにする。ここで、劣化予測プログラムは、請求項1に対応する計算プログラムであるので、上記式(1)から式(5)までの計算をして18年目のESR18を予測することになる。
つぎに、予測したESR18が初期値ESR0の3倍を超えている場合には(ステップS5)、15年目のESR15を測定する(ステップS6)。一方、予測したESR18が初期値ESR0の3倍を超えていない場合には、18年目のESR18を測定する(ステップS7)。そして、測定したESR15またはESR18がESR0の3倍を超えているときは(ステップS8)、スイッチングレギュレータ10の修理、即ち電解コンデンサ17の交換を計画する(ステップS9)。
一方、ESR15またはESR18の測定値がESR0の3倍を超えていないときは、劣化判定プログラムを実行する(ステップS10)。このときの条件は、基準となる時点の等価直列抵抗17bの値をESR6とし、N単位時間経過後の等価直列抵抗17bの値をESR15またはESR18の測定値とするものである。そして、ESR0の3倍を超える時点を予測する。
最後に、予測した等価直列抵抗17bの値がESR0の3倍を超える時点の前年に、スイッチングレギュレータ10の修理、即ち電解コンデンサ17の交換をするように計画する(ステップS11)。
このため、スイッチングレギュレータ10を電源とする電子計測制御装置の稼動の信頼度の向上が期待でき、前記電子計測制御装置を含むプラントシステム全体の稼動の信頼度を向上させることができる。
(Application example of the present invention)
In the flowchart shown in FIG. 4, first, the initial ESR 0 of the electrolytic capacitor 17 is measured when the switching regulator 10 is installed (step S1). Next, ESR 6 is measured at a regular inspection in the sixth year (step S2). Next, ESR 12 is measured in a periodic inspection in the 12th year (step S3).
Next, the above-described deterioration prediction program is executed using the measured ESR 6 and ESR 12 (step S4).
As shown in FIG. 3, the value of the equivalent series resistance 17b when the electrolytic capacitor 17 is not used and the value of the equivalent series resistance 17b immediately before use of the electrolytic capacitor 17 when the electrolytic capacitor 17 has been used for five years. Therefore, it has been found that the life of the electrolytic capacitor 17 can be predicted based on the deterioration prediction result using the data of 5 years and 12 years. In addition, since the period of the regular periodic inspection is 6 years and 12 years, the data of the 6th and 12th years are used. Here, since the deterioration prediction program is a calculation program corresponding to claim 1, the ESR 18 in the 18th year is predicted by calculating from the above equations (1) to (5).
Next, when the predicted ESR 18 exceeds three times the initial value ESR 0 (step S5), the ESR 15 in the 15th year is measured (step S6). On the other hand, when the predicted ESR 18 does not exceed three times the initial value ESR 0 , the ESR 18 in the 18th year is measured (step S7). When the measured ESR 15 or ESR 18 exceeds three times ESR 0 (step S8), the switching regulator 10 is repaired, that is, the electrolytic capacitor 17 is replaced (step S9).
On the other hand, when the measured value of ESR 15 or ESR 18 does not exceed three times ESR 0 , the deterioration determination program is executed (step S10). The conditions at this time are such that the value of the equivalent series resistance 17b at the reference time is ESR 6 and the value of the equivalent series resistance 17b after the elapse of N unit time is the measured value of ESR 15 or ESR 18 . A time point exceeding 3 times ESR 0 is predicted.
Finally, it is planned that the switching regulator 10 is repaired, that is, the electrolytic capacitor 17 is replaced in the previous year when the predicted value of the equivalent series resistance 17b exceeds three times ESR 0 (step S11).
For this reason, an improvement in the reliability of operation of the electronic measurement control device using the switching regulator 10 as a power source can be expected, and the reliability of the operation of the entire plant system including the electronic measurement control device can be improved.

なお、上記実施の形態において、電解コンデンサ17はスイッチングレギュレータ10に使用されているが、これに限定されず、本発明はスイッチングレギュレータ10を含む電源回路に使用されているその出力電圧の平滑用の電解コンデンサに適用される。   In the above embodiment, the electrolytic capacitor 17 is used in the switching regulator 10, but the present invention is not limited to this, and the present invention is for smoothing the output voltage used in the power supply circuit including the switching regulator 10. Applies to electrolytic capacitors.

電解コンデンサを組み込んだスイッチングレギュレータである。A switching regulator incorporating an electrolytic capacitor. 前記電解コンデンサの劣化予測方法を説明するグラフである。It is a graph explaining the deterioration prediction method of the said electrolytic capacitor. 本発明による予測データと実測データとの比較を示すグラフである。It is a graph which shows the comparison with the prediction data by this invention, and measurement data. 本発明の応用例のフローチャートである。It is a flowchart of the application example of this invention.

符号の説明Explanation of symbols

10 スイッチングレギュレータ
17 電解コンデンサ
17a キャパシタンス
17b 等価直列抵抗
20 一定の負荷
30 ESR測定器
DESCRIPTION OF SYMBOLS 10 Switching regulator 17 Electrolytic capacitor 17a Capacitance 17b Equivalent series resistance 20 Constant load 30 ESR measuring device

Claims (3)

電解コンデンサの劣化予測方法であって、基準となる時点に測定した前記電解コンデンサの等価直列抵抗の値ESRoと、前記基準となる時点からN年等のN単位時間経過後に測定した前記電解コンデンサの等価直列抵抗の値ESRnとを測定し、
前記測定したESRoおよびESRnと、前記基準となる時点での前記電解コンデンサの電解液量Voおよび前記基準となる時点からN単位時間経過後の電解コンデンサの電解液量Vnとの関係式
ESRn/ESRo=(Vo/Vn2
から、前記基準となる時点からN単位時間経過後の電解コンデンサの電解液の残存率νn
νn=Vn/Vo
を算出し、さらに、前記単位時間当たりの前記電解コンデンサの電解液の減少率δを
δ=(1−νn)/N
として算出し、前記ESRnとESRoとの平均値Rを求め、さらに、前記電解液の減少の加速因子Kとして
K=ESRn/R
を定義し、このKを用いて前記基準となる時点からN+1単位時間経過後の前記電解液の残存率νn+1
νn+1=νn−δK
として予測し、予測したνn+1を用いて前記基準となる時点からN+1単位時間経過後の前記電解コンデンサの等価直列抵抗の値ESRn+1
ESRn+1=ESRo(1/νn+12
として求め、該ESRn+1に基づいて電解コンデンサの劣化を予測することを特徴とする電解コンデンサの劣化予測方法。
A method for predicting deterioration of an electrolytic capacitor, wherein the equivalent series resistance value ESR o measured at a reference time point and the electrolytic capacitor measured after N unit time such as N years has elapsed from the reference time point Measure the equivalent series resistance value ESR n of
Relationship between the measured ESR o and ESR n , the electrolytic solution volume V o of the electrolytic capacitor at the reference time point, and the electrolytic solution amount V n of the electrolytic capacitor after N unit time has elapsed from the reference time point Formula ESR n / ESR o = (V o / V n ) 2
To the remaining ratio ν n of the electrolytic solution of the electrolytic capacitor after a lapse of N unit time from the reference time point
ν n = V n / V o
Further, the decrease rate δ of the electrolytic solution of the electrolytic capacitor per unit time is calculated as δ = (1−ν n ) / N
And calculating an average value R of the ESR n and ESR o, and further, K = ESR n / R as an accelerating factor K of the decrease in the electrolyte
Using this K, the remaining ratio ν n + 1 of the electrolytic solution after the elapse of N + 1 unit time from the reference time point is expressed as ν n + 1 = ν n −δK.
Predicted as a value ESR n + 1 of the equivalent series resistance of the electrolytic capacitor after N + 1 unit time from the time when the said reference with the predicted ν n + 1 ESR n + 1 = ESR o (1 / ν n + 1 ) 2
And predicting deterioration of the electrolytic capacitor based on the ESR n + 1 .
請求項1記載のESRn+1の算出方法を少なくとも2回繰り返して、Mを2以上の整数として、請求項1記載の前記基準となる時点からN+M単位時間経過後の電解コンデンサの等価直列抵抗の値ESRn+mを求め、該ESRn+mに基づいて電解コンデンサの劣化を予測する電解コンデンサの劣化予測方法であって、
1単位時間毎の等価直列抵抗の値を順次予測し、その際、先に予測した等価直列抵抗の値と前記基準となる時点の等価直列抵抗の値を使用して先に等価直列抵抗の値を予測した時点から1単位時間経過した時点の等価直列抵抗の値を予測することにより、請求項1記載の前記基準となる時点からN+M単位時間経過後の電解コンデンサの等価直列抵抗の値ESRn+mを求め、該ESRn+mに基づいて電解コンデンサの劣化を予測することを特徴とする電解コンデンサの劣化予測方法。
The ESR n + 1 calculation method according to claim 1 is repeated at least twice so that M is an integer equal to or greater than 2, and the equivalent series resistance of the electrolytic capacitor after elapse of N + M unit time from the reference time point according to claim 1 A method for predicting deterioration of an electrolytic capacitor that calculates a value ESR n + m of the capacitor and predicting deterioration of the electrolytic capacitor based on the ESR n + m ,
The value of the equivalent series resistance for each unit time is predicted sequentially, and the value of the equivalent series resistance is calculated using the value of the equivalent series resistance previously predicted and the value of the equivalent series resistance at the reference time point. 2. The equivalent series resistance value ESR n of the electrolytic capacitor after a lapse of N + M unit time from the reference time point according to claim 1, by predicting an equivalent series resistance value at a time point when 1 unit time has elapsed from a predicted time point of A method for predicting deterioration of an electrolytic capacitor, wherein + m is obtained and deterioration of the electrolytic capacitor is predicted based on the ESR n + m .
請求項1または2記載の電解コンデンサの劣化予測方法において、
さらに、前記等価直列抵抗の値ESRoが未使用時の電解コンデンサの等価直列抵抗の値であるとき、前記等価直列抵抗の値ESRn+1またはESRn+mの前記等価直列抵抗の値ESRoに対する比が3以上になる時点を予測し、この予測を基に前記電解コンデンサの交換時期を計画することを特徴とする電解コンデンサの劣化予測方法。
In the electrolytic capacitor deterioration prediction method according to claim 1 or 2,
Further, when the equivalent series resistance value ESR o is an equivalent series resistance value of the electrolytic capacitor when not in use, the equivalent series resistance value ESR of the equivalent series resistance value ESR n + 1 or ESR n + m is used. A method for predicting deterioration of an electrolytic capacitor, wherein a point in time when the ratio to o is 3 or more is predicted, and a replacement time of the electrolytic capacitor is planned based on the prediction.
JP2004259742A 2004-09-07 2004-09-07 Electrode capacitor deterioration prediction method Expired - Fee Related JP4364754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259742A JP4364754B2 (en) 2004-09-07 2004-09-07 Electrode capacitor deterioration prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259742A JP4364754B2 (en) 2004-09-07 2004-09-07 Electrode capacitor deterioration prediction method

Publications (2)

Publication Number Publication Date
JP2006078215A JP2006078215A (en) 2006-03-23
JP4364754B2 true JP4364754B2 (en) 2009-11-18

Family

ID=36157812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259742A Expired - Fee Related JP4364754B2 (en) 2004-09-07 2004-09-07 Electrode capacitor deterioration prediction method

Country Status (1)

Country Link
JP (1) JP4364754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062504A (en) * 2014-06-13 2014-09-24 华为技术有限公司 Super-capacitor detecting circuit

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946278B2 (en) * 2006-09-04 2012-06-06 日産自動車株式会社 Power converter
JP5597363B2 (en) * 2009-06-15 2014-10-01 三菱電機株式会社 Life prediction apparatus, power supply apparatus and life prediction method
EP2637030A1 (en) * 2012-03-05 2013-09-11 ebm-papst Mulfingen GmbH & Co. KG Method for life-cycle monitoring of an electrolyte condenser and device with a monitored electrolyte condenser
CN104836445A (en) * 2015-04-29 2015-08-12 南京理工大学 Device and method for monitoring ESR and C of output capacitor of flyback PFC converter
CN108241129B (en) * 2018-01-09 2020-09-29 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Device and method for monitoring output filter capacitor of switching power supply
JP7206758B2 (en) 2018-09-28 2023-01-18 日本ケミコン株式会社 Method for estimating lifetime of capacitor, program for estimating lifetime thereof, information processing device, and capacitor
KR102653583B1 (en) * 2023-07-31 2024-04-03 주식회사 에스엠전자 Apparatus for diagnosing deterioration of solar inverter and compensating efficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062504A (en) * 2014-06-13 2014-09-24 华为技术有限公司 Super-capacitor detecting circuit
CN104062504B (en) * 2014-06-13 2017-02-22 华为技术有限公司 Super-capacitor detecting circuit

Also Published As

Publication number Publication date
JP2006078215A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US11346893B2 (en) Method and assessment unit for determining the remaining service life of a capacitor, and system
JP4042917B1 (en) Capacitor power supply abnormality determination method and abnormality determination apparatus
JP5840850B2 (en) INVERTER DEVICE AND ELECTROLYTIC CAPACITOR LIFETIME ESTIMATION METHOD
JP5104892B2 (en) Switching power supply
CN111095765B (en) Power supply system, method for displaying operation state of power supply device, and recording medium
JP5822304B2 (en) Charger
JP6253137B2 (en) Battery state estimation device for secondary battery
JP4364754B2 (en) Electrode capacitor deterioration prediction method
EP3591802B1 (en) Power device with electrolytic capacitors
CN112534699A (en) Power supply device and power supply system
JP5184911B2 (en) Power supply device and electrolytic capacitor life warning method
KR20120034451A (en) A simple capacitance estimation system for failure diagnosis of dc link electrolytic capacitor in power converters
JP2010259165A (en) Power supply device, electronic device, and capacitor capacitance estimation method
JP2018072346A (en) Battery state estimation apparatus of secondary battery
Prasanth et al. Condition monitoring of electrolytic capacitor based on ESR estimation and thermal impedance model using improved power loss computation
JP5829412B2 (en) Inverter device and smoothing capacitor capacity estimation method
CN114325119B (en) New energy automobile high-voltage system capacitance health degree prediction method and system and automobile
Chen et al. Electrolytic capacitor failure prediction of LC filter for switching-mode power converters
CN115508634A (en) Lifetime estimation of electrolytic capacitors
JP7188222B2 (en) monitoring module
FI125602B (en) Determination of aging of output capacitor in dc to dc converters
JP2009131125A (en) Control unit for electric vehicle
JP3235134B2 (en) Converter device failure display method
JP2009236962A (en) Image forming apparatus and method of measuring capacitance of capacitor thereof
JP2002323522A (en) Life monitoring device of element having electrostatic capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees