JP4364389B2 - Solar power plant - Google Patents

Solar power plant Download PDF

Info

Publication number
JP4364389B2
JP4364389B2 JP2000072822A JP2000072822A JP4364389B2 JP 4364389 B2 JP4364389 B2 JP 4364389B2 JP 2000072822 A JP2000072822 A JP 2000072822A JP 2000072822 A JP2000072822 A JP 2000072822A JP 4364389 B2 JP4364389 B2 JP 4364389B2
Authority
JP
Japan
Prior art keywords
groove
solar cell
horizontal
cell module
frame member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000072822A
Other languages
Japanese (ja)
Other versions
JP2001262800A (en
Inventor
晴彦 伊藤
和成 岩本
一郎 仲嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2000072822A priority Critical patent/JP4364389B2/en
Publication of JP2001262800A publication Critical patent/JP2001262800A/en
Application granted granted Critical
Publication of JP4364389B2 publication Critical patent/JP4364389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • F24S40/44Draining rainwater or condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • F24S25/35Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles by means of profiles with a cross-section defining separate supporting portions for adjacent modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/30Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors
    • F24S25/33Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles
    • F24S25/37Arrangement of stationary mountings or supports for solar heat collector modules using elongate rigid mounting elements extending substantially along the supporting surface, e.g. for covering buildings with solar heat collectors forming substantially planar assemblies, e.g. of coplanar or stacked profiles forming coplanar grids comprising longitudinal and transversal profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/6003Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/80Special profiles
    • F24S2025/801Special profiles having hollow parts with closed cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池モジュール本体の周部にフレームを装着してなる太陽電池モジュールを、傾斜した屋根に複数枚並べて設置し、太陽光発電をなす太陽光発電装置に関する。
【0002】
【従来の技術】
太陽光発電をする発電装置は、互いに平行に配置された複数の金属製架台にわたって太陽電池モジュールを取付けて屋根上等に設置して使用されるものであるが、太陽電池モジュールの絶縁対策が万が一損なわれた場合における漏電の被害を回避するためにアースをとる必要があり、そのために、太陽電池モジュールがその周部に有する金属製枠材と架台とを電気的に接続しなければならない。
【0003】
従来においては、枠材のうち架台に接する上側枠材と下側枠材の夫々に、これらに食い込む爪部を有したアース金具をセットするとともに、この金具が有する圧着端子を架台又はこの架台の長手方向に隣接する他の太陽電池モジュールの枠材にねじ止めした後、架台に枠材を固定するためのカバーを取付けて、このカバーと前記上側枠材又は下側枠材との間にアース金具を挟み込んで固定することにより、太陽電池モジュールの枠材と架台とを電気的に接続している。
【0004】
このように従来の太陽光発電装置は、アース接続のためにそれ専用のアース金具を多数用いており、又、これらアース金具を架台に接続するためのねじ等の接続部品も多数必要としている。そのため、前記電気的接続に必要な部品数が多く、それに応じて施工上の工数も増えるので、施工コストが高く、又、前記電気的接続の構造も複雑である。
【0005】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、アースをとる上での太陽電池モジュールとこれを支持する横架台との電気的接続を、簡単な構成でかつ安価に実現できる太陽光発電装置を得ることにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、屋根上に、この屋根の傾斜方向と交差する方向に延びて固定され、斜め下向きに開放する下向き溝を有した金属製上側横架台と、この上側横架台の下側に離間して前記屋根上に前記上側横架台と平行に配置され、斜め上向きに開放する上向き溝を有した金属製下側横架台と、方形状太陽電池モジュール本体の周部に夫々装着される金属製枠材を連結してなるフレームを有して、けんどん方式により前記枠材のうち上側枠材を前記下向き溝に挿入するとともに前記枠材のうち下側枠材を前記上向き溝に挿入して、前記上側横架台と下側横架台との間に設置される太陽電池モジュールとを具備する太陽光発電装置を前提とする。
【0007】
そして、この請求項1の発明は、前記課題を解決するために、前記枠材のうちの側枠材と前記下側枠材とをこの下側枠材を通って前記側枠材にねじ込まれた前記フレームの組立て用金属製ねじにより連結し、前記上向き溝の溝奥壁の前記ねじの頭部が当る部分の絶縁保護皮膜を除去して金属地肌を露出させ、この地肌面に、前記下側枠材の外面に突出された前記ねじの頭部を前記太陽電池モジュールの自重により当接保持させて、前記太陽電池モジュールと前記下側横架台とを電気的に接続したことを特徴とする。
【0008】
この発明及び以下の各発明において、太陽電池モジュール本体には、その光電変換部が非晶質半導体を有する非晶質系のもの、単結晶半導体又は多結晶半導体を有する結晶系のもの等を使用でき、又、このモジュール本体の周部に装着される金属製枠材には、アルミニューム合金等の押出し成型等により成型して得た型材等を用いることができる。更に、この発明及び以下の発明において、太陽電池モジュールのけんどん方式による設置においては、後述の実施形態で説明するように上側枠材又は下側枠材のうち少なくとも上側枠材にフランジ状の挿入凸部を設けて行ってもよく、或は、上下いずれの枠材にも前記挿入凸部を設けることなく、これら上下枠材を上下横枠材の溝に夫々挿入して実施してもよい。又、この発明及び以下の発明において、上向き溝の溝奥壁に当接するねじの頭部に1以上の小突起を突設し、この突起を前記溝奥壁に食い込ませるように当接させてもよい。又、この発明及び以下の各発明では、屋根の傾斜方向に隣接する横枠材相互において、相対的に上側(棟側)に配置されたものを上側横枠材と称し、かつ、相対的に下側(軒側)に配置されたものを下側横枠材と称する。
【0009】
請求項1の発明において、屋根の傾斜方向に隣接した横架台間にけんどん方式により太陽電池モジュールを設置するには、はじめに、このモジュールの上側枠材を斜め下向きに開放する上側横架台の下向き溝に挿入する。次に、上側横架台を回動支点側として太陽電池モジュール全体を、その下側枠材が下側横架台側に寄るように回動させることにより、前記下側枠材を斜め上向きに開放する下側横架台の上向き溝に近接対向させる。この後、太陽電池モジュール全体をその自重により斜め下方に移動させて、前記下向き溝への上側枠材の挿入を維持したまま下側枠材を上向き溝に挿入させる。以上の手順により、太陽電池モジュールを上下に隔たって隣接した横架台にわたって配置できる。
【0010】
この取付けに伴い太陽電池モジュールの側枠材と下側枠材とを連結し、かつ、下側枠材の外面に頭部を突出させて設けられている金属製ねじの前記頭部が、太陽電池モジュールの自重により前記上向き溝の溝奥壁に当接保持される。それにより、前記ねじを介して太陽電池モジュールと下側横架台とが電気的に接続されて、アース経路の一部を形成する。
【0011】
この請求項1の発明でのアース接続においては、前記溝奥壁の前記ねじの頭部が当る部分の絶縁保護皮膜を除去して金属地肌を露出させ、この地肌面に前記ねじの頭部を当接させている
【0012】
このように太陽電池モジュールの側枠材と下側枠材とを連結しているねじの頭部を、下側横架台の金属地肌に接触させるから、下側横架台の表面に通常設けられている絶縁保護皮膜に妨げられることなく、太陽電池モジュールと下側横架台との電気的接続の信頼性を向上できる。
【0013】
前記請求項1の発明を実施するにあたり、請求項2の発明のように前記上向き溝の溝奥壁にアース凸部を設け、このアース凸部の突出先端部を削り取って前記地肌面を形成するとよい。
この発明においては、確実にアースをとるための前記絶縁保護皮膜の除去を、アース凸部において行うから、平面の一部を削り取って地肌面を露出させる場合よりも、作業がし易い。
【0014】
前記請求項1又は2の発明を実施するにあたり、請求項3の発明のように、前記上側及び下側の横架材が、その長手方向に複数本連続して配置されているとともに、両端部に鳩目状の圧着端子を有したアース金具の前記圧着端子を、長手方向に隣接した前記横架材にねじ止めして、横架材相互を電気的に接続するとよい。
この発明においては、長手方向に隣接する横架台相互をアース金具を介して電気的に接続できる。
【0015】
【発明の実施の形態】
以下、図1〜図8を参照しながら本発明の一実施形態を説明する。
【0016】
図1〜図3中符号21は、金属瓦棒葺きの屋根であり、その上面に突出して傾斜方向(軒棟方向)に延びる瓦棒22を、前記傾斜方向と直角に交差する方向に沿って一定間隔毎に有している。瓦棒22は金属製であり導電性を有している。
【0017】
この屋根21上には太陽光発電をする発電装置25が設置される。この装置25は、複数本の横架台26〜29と、複数枚の太陽電池モジュール30と、1以上の補助レール31と、各横架台26〜29に個別に取付けられる押さえ部材32と、複数のストッパ33とを備えている。なお、補助レール31、押さえ部材32、及び後述の部材受け部は必須ではなく省略してもよい。
【0018】
瓦棒22上に図示しない金属製のねじにより固定されて、瓦棒22と電気的に接続されるレール状の横架台26〜29は、屋根21の傾斜方向と直角に交差する方向に延びて設けられるとともに、屋根21の傾斜方向に沿って太陽電池モジュール30の縦幅に応じた間隔で設けられ、かつ、互いに平行に設置されている。なお、各横架台26〜29の夫々には、発電装置25の大きさに合わせて所定長さのものが1本以上用いられるものであり、複数本用いる場合には長手方向に連続して屋根21上に設けられる。
【0019】
図7は例えば最も軒側に配置される横架台26がその長手方向に複数本連続して配置された場合の連続側端部回りを示す斜視図であって、これら長手方向に隣接する横架台26相互は、アース金具91を介して電気的に接続される。すなわち、アース金具91はその両端部に鳩目状のねじ通し孔を有した圧着端子91aを備え、これら圧着端子91aを夫々隣接する横架台26にねじ92を用いて固定することにより、横架台26相互が電気的に接続される。なお、以上のようなアース接続は、長手方向に隣接する横架台27相互、横架台28相互、横架台29相互についても同様になされる。
【0020】
図8は例えば最も軒側に配置された複数の横架台26のうちの一つに対する2本のアース線95の取付けを示す斜視図である。両アース線95は、その一端部に鳩目状のねじ通し孔を有した圧着端子95aを備えていて、それらの圧着端子95aを重ねた状態で1本のねじ96の共締めにより横架台26に固定される。一方のアース線95の他端は太陽電池モジュール30の図示しないアレイ出力ケーブルとともに接続箱へ接続され、他方のアース線95の他端には図示しないアース棒を取付けて、第3種接地工事に供される。なお、この接地は他の横架台27、28、29のいずれかにおいて行うこともできる。
【0021】
このように配設される各横架台26〜29のうち最も棟側に配置される横架台26と最も軒側に配置される横架台29とは、端部横架台又はエンドレールとも称され、また、これらエンドレール間に配置される各横架台27、28は中間横架台又は中間レールとも称される。そして、これら各横架台26〜29において屋根21の傾斜方向に隣接する横架台同士のうち棟側に配置される横架台を上側横架台と称し、軒側に配置される横架台を下側横架台と称する。
【0022】
横架台26、29はアルミニューム合金を押出し成型して得た型材であり、その表面は絶縁性の保護皮膜(図示しない)でコーテングされている。棟側横架台26は、屋根21に設置された状態で斜め下向きに開放する下向き溝41と、この溝41の下側に一体成型された一対のねじ止めフランジ42と、下向き溝41の上側に一体成型された一対の部材受け部43とを有している。これら下向き溝41、ねじ止めフランジ42、及び部材受け部43はいずれも横架台26の長手方向に連続して延びている。
【0023】
下向き溝41は、互いに平行な溝上壁41aと溝底壁41bとの間に形成されている。この溝41の高さ寸法は太陽電池モジュール30の厚みよりも小さい。溝上壁41aは溝底壁41bよりも出幅が短く形成されていて、それにより下向き溝41の開口の大きさを、溝上壁41a及び溝底壁41bの出幅を同じとした場合よりも大きくしている。
【0024】
一対のねじ止めフランジ42は横架台26の下端から幅方向に一体に張出して設けられており、これらのフランジ42を通って瓦棒22に螺挿される図示しない金属製ねじを介して屋根21上に横架台26が固定されている。この固定により前記金属製ねじを通して横架台26と瓦棒22とは電気的に接続される。一対の部材受け部43は夫々倒立L字状の断面を有しており、それら相対向する起立片部には夫々図示しないが例えば凸部からなる爪受け部が設けられている。これら爪受け部は図4で代表して示す後述の中間横架台27、28の爪受け部と同様な構成である。
【0025】
軒側横架台29は、屋根21に設置された状態で斜め上向きに開放する上向き溝45と、この溝45の下側に一体成型された一対のねじ止めフランジ46と、上向き溝45の上側に一体成型された一対の部材受け部47とを有している。これら上向き溝45、ねじ止めフランジ46、及び部材受け部47はいずれも横架台29の長手方向に連続して延びている。
【0026】
上向き溝45は互いに平行な溝上壁45aと溝底壁45bと溝奥壁45cとで3方を囲まれて形成されている。この溝45の高さ寸法は太陽電池モジュール30の厚みよりも小さい。溝上壁45aは溝底壁45bよりも出幅が短く形成されていて、それにより上向き溝45の開口の大きさを、溝上壁45a及び溝底壁45bの出幅を同じとした場合よりも大きくしている。
【0027】
溝奥壁45cの下部側は上部側よりも開口側にせり出すせり出し段部状になっていて、このせり出し段部の表面には図5を用いて後述する横架台で代表するように例えば一対のアース凸部44が一体に形成されている。これらアース凸部44は横架台26の長手方向に連続して延びていて、その突出先端部は図5中2点鎖線で示す切断線40に沿って削り取られて絶縁保護皮膜が除去されている。それによって、これらアース凸部44の先端面は横架台26の金属地肌が露出する地肌面44aとなっている。
【0028】
一対のねじ止めフランジ46は横架台29の下端から幅方向に一体に張出して設けられており、これらのフランジ46を通って瓦棒22に螺挿される図示しない金属製ねじを介して屋根21上に横架台29が固定されている。この固定により前記金属製ねじを通して横架台29と瓦棒22とは電気的に接続される。一対の部材受け部47は夫々倒立L字状の断面を有しており、それら相対向する起立片部には夫々図示しないが例えば凸部からなる爪受け部が設けられている。これら爪受け部は図4で代表して示す後述の中間横架台27、28の爪受け部と同様な構成である。
【0029】
中間横架台27、28は、同一の成型型を用いてアルミニューム合金を押出し成型して得た同一構造の型材であり、その表面は絶縁性の保護皮膜(図示しない)でコーテングされている。これら横架台27、28は、図4及び図5に示すように屋根21に設置された状態で軒側に向けて斜め下向きに開放する下向き溝51と、棟側に向けて斜め上向きに開放する上向き溝52と、これらの溝51、52の下側に一体成型された一対のねじ止めフランジ53と、両溝51、52の上側に一体成型された一対の部材受け部54とを有している。両溝51、52、ねじ止めフランジ53、及び部材受け部54はいずれも横架台27、28の長手方向に連続して延びている。
【0030】
下向き溝51は互いに平行な溝上壁51aと溝底壁51bとの間に形成されている。この溝51の高さ寸法は太陽電池モジュール30の厚みよりも小さい。溝上壁51aは溝底壁51bよりも出幅が短く形成されていて、それにより下向き溝51の開口の大きさを、溝上壁51a及び溝底壁51bの出幅と同じとした場合よりも大きくしている。
【0031】
上向き溝52は互いに平行な溝上壁52aと溝底壁52bと溝奥壁52cとで3方を囲まれて形成されているとともに、この溝52の高さ寸法は太陽電池モジュール30の厚みよりも小さい。溝上壁52aは溝底壁52bよりも出幅が短く形成されていて、それにより上向き溝52の開口の大きさを、溝上壁52a及び溝底壁52bの出幅と同じとした場合よりも大きくしている。
【0032】
図4及び図5に示すように溝奥壁52cの下部側は上部側よりも開口側にせり出すせり出し段部状になっていて、このせり出し段部の表面には例えば一対のアース凸部44が一体に形成されている。これらアース凸部44は横架台26の長手方向に連続して延びていて、その突出先端部は図5中2点鎖線で示す切断線40に沿って削り取られて絶縁保護皮膜が除去されている。それによって、これらアース凸部44の先端面は横架台27、28の金属地肌が露出する地肌面44aとなっている。
【0033】
一対のねじ止めフランジ53は横架台27、28の下端から幅方向に一体に張出して設けられており、これらのフランジ53を通って瓦棒22に螺挿される図示しない金属製ねじを介して屋根21上に横架台27、28が固定されている。この固定により前記金属製ねじを通して横架台27、28と瓦棒22とは電気的に接続される。一対の部材受け部54は夫々倒立L字状の断面を有しており、それら相対向する起立片部には図4に示すように例えば凸部からなる爪受け部54aが夫々設けられている。これら爪受け部54aは段差により形成することもできる。
【0034】
図6に示すように太陽電池モジュール30は、方形状の太陽電池モジュール本体61の周部に金属製フレームを取付けるとともに、本体61の裏面に端子箱62を取付けて形成されている。フレームは、太陽電池モジュール本体61の上縁に嵌合して装着された上側枠材63と、本体61の下縁に嵌合して装着された下側枠材64と、本体61の左右両側の側縁に個別に嵌合して装着された左右の側枠材65、66とを、互いに金属製ねじ67、68により連結して枠組みして形成されている。各枠材63〜66はいずれもアルミニューム合金の押出し型材からなる。なお、図2〜図4中69はガスケットである。
【0035】
上側のねじ67は、上側枠材63をその外面から挿通して側枠材65、66の内面にその長手方向に延びて一体に形成されたタッピングホール65c、66c(図3参照)にねじ込んで設けられ、上側枠材63と左右の側枠材65、66とを連結している。なお、上側枠材63がタッピングホールを有する場合は、このタッピングホールに側枠材65、66をその外面から挿通するねじ67をねじ込んで連結することもでき、又、L形状のねじ受け用連結金具を用いる場合には、側枠材65、66及び上側枠材63をその外面から挿通するねじ67を前記ねじ受け用連結金具に夫々ねじ込んで連結することもできる。
【0036】
下側のねじ68は、下側枠材64をその外面から挿通して側枠材65、66の前記タッピングホール65c、66cにねじ込んで設けられ、下側枠材64と左右の側枠材65、66とを連結している。したがって、これらのねじ68の頭部は下側枠材64の外面に突出されている。これらのねじ68は、その頭部を前記アース凸部44の地肌面44aに当接して、下側枠材64を有しているフレームと下側横枠材との電気的接続を担うアース用導電部材を兼ねている。
【0037】
以上のように枠組みされる前記フレームにおいては、図6(A)に示すように下側枠材64の太陽電池モジュール本体61の下縁部上面に重なった部分の両端64bと、左右の側枠材65、66の太陽電池モジュール本体61の下縁部上面に重なった端部分65b、66bとの間に、排水用の隙間70を夫々設けている。これらの隙間70を形成することにより、太陽電池モジュール本体61の周部にフレームを組付ける際に、前記端64bと端部分65b、66bとが干渉することを防止して、フレームの組付けを容易に行えるようにしてある。なお、この点は図6(A)に示すように上側枠材63と左右の側枠材65、66との関係においても同様に実施されている。
【0038】
図6(D)に示すように下側枠材64には、その下端部に位置して排水穴71が開けられている。この穴71は前記隙間70と連通されている。したがって、この構成によれば、後述のように屋根21にその傾斜に倣って設置された状態において、下側枠材64の太陽電池モジュール本体61の下縁部上面に重なった部分により塞き止められる雨水を、左右の隙間70を通して下側枠材64内に円滑に導いて、そこから排水穴71を通して外部に排出できる。そのため、太陽電池モジュール本体61上を流下した雨水が、この本体61の下縁部側に何時までも溜まって残ることが防止されることにより、雨水が太陽電池モジュール本体61の寿命に悪影響を及ぼす恐れを極力少なくできる。
【0039】
太陽電池モジュール本体61は、長方形の透明ガラス基板の裏面に薄膜太陽電池を設け、この電池を裏面側から封止材料により封止してなる。太陽電池は、透明ガラス基板の前記裏面に透明電極層を形成しこれを複数の光起電力領域に分離した後、この透明電極層上にアモルファスシリコン等の光起電力薄膜半導体層を形成して、この半導体層を複数個の領域に分割してなる光起電力素子を、これら素子上に形成される裏面電極層により電気的に直列に接続するとともに、その接続の終端として電力を集めるための一対のバス領域を有し、かつ、両バス領域に電極としてのバスバーを個別に半田付けして、形成されている。両バスバーには個別に出力取出し線の一端部が半田付けされ、これら取出し線は前記封止材料を貫通して前記端子箱62に接続されている。又、端子箱62には正負2本のアレイ出力ケーブルが接続されて、これらケーブルに更に接続される他の電線を介して太陽電池モジュール本体61に発生した電力が屋外等に引込まれるようになっている。
【0040】
各枠材63〜66の高さ(厚み)寸法はいずれも同じであって、その高さによって太陽電池モジュール30の厚みを規定している。上下の両枠材63、64は横架台26〜29の溝底壁41b、45b、51b、52bのいずれかに支持される下辺部63a、64aを有しており、同様に左右の両枠材65、66は補助レール31に支持される下辺部65a、66aを有している。図2で代表して示すように左右の側枠材65、66の下辺部65a、66aの長手方向中央部下面にも夫々ゴム板77が接着されている。
【0041】
図2及び図6に示されるように上側枠材63の外側面には、この枠材63の厚み方向の中間の高さ位置において挿入凸部72が一体に突設されている。この凸部72は、前記溝上壁41a、51aのいずれかに引っ掛るものであって、上側枠材63の厚みよりも遥かに薄いフランジ状であり、上側枠材63の長手方向に連続して延びている。挿入凸部72の長手方向両端部上面にはゴム板73が接着されている。又、上側枠材63の下辺部63aの下面にもその長手方向両端部に位置してゴム板74が接着されている。
【0042】
同様に、下側枠材64の外側面にも、この枠材64の厚み方向の中間の高さ位置において挿入凸部75が一体に突設されている。この凸部75は、前記溝上壁45a、52aのいずれかに引っ掛るものであって、下側枠材64の厚みよりも遥かに薄いフランジ状であり、下側枠材64の長手方向に連続して延びている。挿入凸部75の長手方向両端部上面にはゴム板76が接着されている。又、下側枠材64の下辺部64aの下面にもその長手方向両端部に位置してゴム板77が接着されている。
【0043】
図1に示すように屋根21の軒棟方向に隣接する上側横架台と下側横架台との間に配置される前記補助レール31は、いずれもアルミニューム合金の押出し型材からなり、図2で代表して示すように中空部の両側に幅方向に一体に張出すねじ止めフランジを通って瓦棒22に螺挿される図示しないねじを介して屋根21上に固定されている。
【0044】
前記押さえ部材32は、アルミニューム合金の押出し型材からなるもので、太陽電池モジュール30の横幅正数倍の長さで、図示のものは太陽電池モジュール30の横幅と同じである。これらの押さえ部材32は、図4で代表して示すように幅方向両側部に枠材押さえ部81を有しているとともに、これらの間に前記爪受け部54aに引っ掛けられる一対の係止爪82を一体に有している。各押さえ部材32は、横架台26〜29の部材受け部54に被せて上方から押圧して、その係止爪82を爪受け部54aに引っ掛けることにより、横架台26〜29の夫々にこれらを覆い隠して取付けられている。
【0045】
又、アルミニューム合金の押出し成型品からなる一対のストッパ33は図3に示すように断面L字形状をなす棒材であり、これらは図1に示すように屋根21の傾斜方向と直交して並んだ太陽電池モジュール30群をその並び方向両側から挟んで屋根21に取付けられている。すなわち、本実施形態において、ストッパ33は夫々ねじ84により各補助レール31に個別に連結されることにより、屋根21の傾斜方向と直交して並んだ太陽電池モジュール30群のうちの前記並び方向両端に位置した太陽電池モジュール30を動き止めしている。
【0046】
次に、太陽光発電装置25を屋根21に取付け施工する手順を説明する。
【0047】
まず、屋根21上に複数の横架台、つまり、棟側及び軒側のエンドレールとなる横架台26、29及び中間レールとなる横架台27、28を、夫々屋根21の傾斜方向に沿って互いに所定間隔を置いて平行に配置し固定するとともに、屋根21の傾斜方向に沿って隣接する横架台相互間に夫々補助レール31を、各横架台26〜29と平行な姿勢に配置して、それらを屋根21に固定する。これら横架台26〜29及び補助レール31の固定は屋根21の傾斜方向と直角に交差して夫々瓦棒22にねじ止めして行う。
【0048】
次に、屋根21の傾斜方向に隣接する上側横架台と下側横架台とにわたって太陽電池モジュール30を次々にけんどん方式により設置する。すなわち、軒側エンドレールをなす下側横架台29と中間レールをなして下側横架台29に隣接した上側横架台28との間に太陽電池モジュール30を設置する場合について代表して以下説明する。
【0049】
はじめに、図2中2点鎖線に示すように太陽電池モジュール30を屋根21の傾斜方向とは逆に傾けて、その上側枠材63に一体に突設された挿入凸部72を斜め下向きに開放する上側横架台28の下向き溝51に挿入する。この挿入方向を図2中矢印Cで示す。次に、上側横架台28を回動支点側として太陽電池モジュール30を、その下側枠材64が下側横架台29側に寄るように回動させる。この回動方向を図2中矢印Dで示す。この回動操作により、下側枠材64が斜め上向きに開放する下側横架台29の上向き溝45に近接対向される。この後、太陽電池モジュール30全体をその自重により屋根21の傾斜に沿って斜め下方に移動させて、挿入凸部72の下向き溝51への挿入を維持したまま下側枠材66の挿入凸部75を上向き溝45に挿入させる。この場合の太陽電池モジュール30の移動は手で補助しても差し支えないとともに、その移動方向を図2中矢印Eで示す。以上の手順により太陽電池モジュール30が上下に隔たって隣接した横架台28、29にわたって配置される。
【0050】
全ての太陽電池モジュール30が以上のようなけんどん方式での取付けにより次々に屋根21上に配置される。そして、こうして配置された各太陽電池モジュール30はその裏側から夫々補助レール31により支持される。つまり、各太陽電池モジュール30の両側枠材64、65の長手方向略中央部が補助レール31上に載置される。又、屋根21の傾斜方向と交差して隣接する太陽電池モジュール30同士はその側枠材64、65を互いに接触させて屋根21の横方向に並べられる(図3参照)。
【0051】
以上のように各太陽電池モジュール30を配置した後には、屋根21の傾斜方向と交差して横方向に並んだ太陽電池モジュール30群の並び方向両側に夫々ストッパ33を配置するとともに、これらストッパ33を補助レール31に夫々ねじ止めする。それにより、太陽電池モジュール30群を屋根21の横方向に動き止めする。
【0052】
最後に、各横架台26〜29の夫々にそれらを隠すように押さえ部材32を被着する。これら押さえ部材32は、各横架台26〜29の夫々に対して適正位置に被せた後、上方から手で加圧すると同時にその係止爪82を横架台の爪受け部54aに係止させることにより行う。なお、これら押さえ部材32の各横架台26〜29への装着は前記ストッパ33の装着に先行して行うこともできる。
【0053】
以上の手順で発電装置25が屋根21上に設置され、この設置状態において各太陽電池モジュール30の上側枠材63は、その挿入凸部72が上側横枠材の下向き溝41の溝上壁41a又は下向き溝51の溝上壁51aに引っ掛るように位置されているとともに、下辺部63aが下向き溝41の溝底壁41b又は下向き溝51の溝底壁51bに載置されているので、上側枠材63はその厚み方向の動きを拘束される。この場合に、上側枠材63と下向き溝41又51との間にはゴム板73、74が挟み込まれているので、太陽電池モジュール30がその厚み方向にがたつくことも防止できる。同様に、下側枠材64は、その挿入凸部75が下側横架台の上向き溝45の溝上壁45a又は上向き溝52の溝上壁52aに引っ掛るように位置されているとともに、下辺部64aが上向き溝45の溝底壁45b又は上向き溝52の溝底壁52bに載置されているので、下側枠材64はその厚み方向の動きを拘束される。この場合にも下側枠材64と上向き溝45又52との間にはゴム板76、77が挟み込まれているので、太陽電池モジュール30がその厚み方向にがたつくことも防止できる。
【0054】
しかも、太陽電池モジュール30の上側枠材63と下側枠材64とは、各横架台26〜29の夫々に被着された押さえ部材32の枠材押さえ部81で上側から押さえられているから、これら押さえ部材32により軒棟方向に隣接した横架台にわたって取付けられた太陽電池モジュール30が外れることをより確実に防止でき、太陽電池モジュール30の設置強度を向上できる。
【0055】
そして、屋根21上に前記手順で発電装置25を設置することによって、この発電装置25の太陽電池モジュール30とその下側枠材64を支持する下側横枠材27〜29とは、以下のように容易に電気的に接続される。
【0056】
すなわち、既述のけんどん方式による太陽電池モジュール30の取付けの際の図2中矢印E方向の移動により、太陽電池モジュール30の自重によって、その下側枠材64の外面に頭部を突出させて設けられている金属製ねじ68の前記頭部が、夫々対応する下側横枠材27〜29の上向き溝45、52の溝奥壁45c、52cに個別に当接保持される。それにより、ねじ68を介して太陽電池モジュール30の金属製フレームと下側横架台27〜29とが電気的に接続されて、アース経路の一部が形成される。
【0057】
なお、本実施形態では下側枠材64に挿入凸部75が突設されており、この凸部75の突出長さよりもねじ68の頭部の突出長さが短いにも拘らず、前記溝奥壁45c、52cにせり出し段部を設けたので、挿入凸部75が邪魔になることがなく、ねじ68の頭部を前記せり出し段部表面のアース凸部44に確実に当接させることができる。
【0058】
しかも、この場合に溝奥壁45c、52cのねじ68の頭部が当る部分、つまりアース凸部44の絶縁保護皮膜は予め除去されており、その部分に露出された金属地肌面44aにねじ68の頭部が当接される。そのため、下側横架台27〜29の表面に通常設けられている絶縁保護皮膜に妨げられることなく、太陽電池モジュールと下側横架台27〜29との電気的の接続性が向上され、確実にアースをとることができる。又、前記絶縁保護皮膜の除去は、アース凸部44において行うから、平面の一部を削りとって地肌面を露出させる場合よりも、作業がし易い。
【0059】
又、以上のように太陽電池モジュール30とアース接続された下側横架台27〜29及びその他の横架台26は、いずれも金属製の瓦棒22に金属製ねじを介して連結されているので、屋根21への発電装置24の設置に従い、瓦棒22の導電性により各横架台26〜29同士を必然的に電気的に接続することができ、又、こうした電気的接続を行うために特別な部品や手間を要することがない。そして、例えば図1に示す一群の太陽電池モジュール30と各横架台26〜29とをいずれもアース接続することができる。そして、以上のようにアースがとられた発電装置25において万が一漏電を生じた場合に、その漏電電流は、図7に示したアース金具91を介して順次送られてから、図8に示したアース線95を介して地落されるものである。
【0060】
なお、瓦棒22が非金属製である場合には、その上面に沿って金属帯板を取付けて、この帯板の一部を各横架台26〜29との間に夫々挟み込んで発電装置25を屋根21上に金属製ねじを用いて既述のように設置することにより、前記金属帯板をアースをとるための部材として各横架台26〜29同士を電気的に接続して実施することもできる。
【0061】
又、前記発電装置25の構成においては、太陽電池モジュール30の上側枠材63がその厚み全体を上側横架台の下向き溝41、51に挿入する必要がないとともに、下側枠材64についてもその厚み全体を下側横架台の上向き溝45、52に挿入する必要がないので、下向き溝41、51及び上向き溝45、52の上下方向の幅寸法を太陽電池モジュール30の厚みより小さくできる。加えて、発電装置25の設置に必要とするねじ等の固定部品の数及び作業数も大幅に削減できる。しかも、補助レール31で太陽電池モジュール30の軒棟方向中央部を支持し、強風時に太陽電池モジュール30に下向きに加えられる風圧に対する耐圧性能を向上しているため、太陽電池モジュール30の側枠材65、66自体で前記耐圧性能を得る必要がなく、それに伴い、側枠材65、66とともに上下両枠材63、64の高さ(上下方向の厚み)を小さくすることが可能であり、太陽電池モジュール30を薄型化できる。よって、この太陽光発電装置25のコストを低減できるとともに、発電装置25の屋根21への設置高さを低くでき、屋根21の外観向上に大きく貢献できる。
【0062】
【発明の効果】
本発明は以上説明したような形態で実施され以下に記載される効果を奏する。
【0063】
請求項1に係る発明によれば、太陽電池モジュールの側枠材と下側枠材とを連結している金属製ねじを利用して、太陽電池モジュールとその下側枠材を支持する下側横架台とを電気的に接続でき、この接続のために特別なアース金具を用いなくて済むので、構成が簡単であり、かつ、アースをとる上で必要な部品数及び施工上の手間を削減でき、それにより施工コストを低減できるとともに、アースをとる上での太陽電池モジュールと下側横架台との電気的接続の信頼性を向上できる
【0064】
請求項2に係る発明によれば、確実にアースをとるための前記絶縁保護皮膜の除去を、アース凸部において行うから、平面の一部を削り取って地肌面を露出させる場合よりも、作業がし易い。
【0065】
請求項3に係る発明によれば、長手方向に隣接する横架台相互をアース金具を介して電気的に接続できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る太陽光発電装置の屋根への設置情況を示す斜視図。
【図2】図1の発電装置を屋根に設置された状態で示す断面図。
【図3】図2中V−V線に沿って示す断面図。
【図4】図1の発電装置が備える中間の横架台とこれに支持された太陽電池モジュールの下側枠材回りと前記中間横架台上にこれに取付けられる押さえ部材とを示す断面図。
【図5】図4の中間横架台の上向き溝回りを拡大して示す断面図。
【図6】(A)は図1の発電装置が備える太陽電池モジュールの平面図。
(B)は図6(A)中Z方向から見た太陽電池モジュールの上面図。
(C)は図6(A)中Y−Y線方向から見た太陽電池モジュールの上部の側面図。
(D)は図6(A)中X方向から見た太陽電池モジュールの下面図。
(E)は図6(A)中W−W線方向から見た太陽電池モジュールの下部の側面図。
【図7】図1の発電装置における軒側の横架台がその長手方向に複数本連続して配置された場合の連続側端部回りを示す斜視図。
【図8】図1の発電装置における軒側の横架台に対するアース線の取付けを示す斜視図。
【符号の説明】
21…屋根
25…発電装置
26〜28…横架台
30…太陽電池モジュール
41、51…上側横架台の下向き溝
44…アース凸部
44a…地肌面
45、52…下側横架台の上向き溝
45c、52c…上向き溝の溝奥壁
61…太陽電池モジュール本体
63…上側枠材(フレーム)
64…下側枠材(フレーム)
65、66…側枠材(フレーム)
68…フレーム組立用のねじ
91…アース金具
91a…圧着端子
92…ねじ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar power generation apparatus that installs a plurality of solar cell modules, each having a frame attached to a peripheral portion of a solar cell module main body, on a sloped roof to perform solar power generation.
[0002]
[Prior art]
A power generation apparatus that performs solar power generation is used by mounting a solar cell module on a plurality of metal mounts arranged in parallel to each other and installing the solar cell module on a roof or the like. In order to avoid the damage of electric leakage in the case of damage, it is necessary to ground, and for that purpose, the metal frame member and the frame that the solar cell module has on the periphery thereof must be electrically connected.
[0003]
Conventionally, ground metal fittings having claw portions that bite into the upper frame material and the lower frame material in contact with the frame among the frame materials are set, and the crimp terminal that the metal fitting has is attached to the frame or the frame. After screwing to the frame material of another solar cell module adjacent in the longitudinal direction, a cover for fixing the frame material is attached to the mount, and grounding is provided between this cover and the upper frame material or the lower frame material. By sandwiching and fixing the metal fittings, the frame material of the solar cell module and the pedestal are electrically connected.
[0004]
As described above, the conventional solar power generation apparatus uses a large number of dedicated earth metal fittings for ground connection, and also requires a large number of connecting parts such as screws for connecting these earth metal fittings to the gantry. For this reason, the number of parts necessary for the electrical connection is large, and the number of man-hours required for construction increases accordingly. Therefore, the construction cost is high, and the structure of the electrical connection is complicated.
[0005]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to obtain a photovoltaic power generation apparatus that can realize electrical connection between a solar cell module for grounding and a horizontal stand that supports the module with a simple configuration at low cost. is there.
[0006]
[Means for Solving the Problems]
  The invention according to claim 1 is a metal upper horizontal stand that has a downward groove that extends and is fixed on the roof in a direction crossing the inclination direction of the roof and opens obliquely downward, and below the upper horizontal stand. A metal lower horizontal stand having an upward groove that is disposed on the roof in parallel with the upper horizontal stand and opened obliquely upward, and a peripheral portion of the rectangular solar cell module body, respectively.FittedMetal frame materialConnect the frameThe upper frame member of the frame member is inserted into the downward groove and the lower frame member of the frame member is inserted into the upward groove by the tendon method. A solar power generation apparatus including a solar cell module installed between the gantry is assumed.
[0007]
  In order to solve the above-described problem, the invention according to claim 1 is configured such that the side frame member and the lower frame member of the frame member are screwed into the side frame member through the lower frame member. TheFor assembling the frameConnected by metal screws,The metal protective layer was exposed by removing the insulating protective film of the portion of the groove deep wall of the upward groove where the head of the screw hits, and the outer surface of the lower frame member was projected on the ground surface.The head of the screwAbutting and holding by the weight of the solar cell moduleThe solar cell module and the lower horizontal base are electrically connected.
[0008]
  In this invention and each of the following inventions, the solar cell module body uses an amorphous type whose photoelectric conversion part has an amorphous semiconductor, a crystalline type having a single crystal semiconductor or a polycrystalline semiconductor, etc. In addition, a mold material obtained by molding by extrusion molding of an aluminum alloy or the like can be used for the metal frame member mounted on the peripheral portion of the module body. Further, in the present invention and the following invention, in the installation of the solar cell module by the rapid method, the flange-like insertion is inserted into at least the upper frame member of the upper frame member or the lower frame member as will be described in the following embodiments. Protruding portions may be provided, or the upper and lower frame members may be inserted into the grooves of the upper and lower horizontal frame members without providing the insertion protruding portions on any of the upper and lower frame members. . Further, in the present invention and the following invention, one or more small protrusions are provided on the head of the screw that contacts the groove inner wall of the upward groove, and the protrusion is in contact with the groove inner wall.You may let them.Moreover, in this invention and each following invention, what is arrange | positioned relatively upper (building side) in the horizontal frame materials adjacent to the inclination direction of a roof is called an upper horizontal frame material, and relatively What is arranged on the lower side (eave side) is referred to as a lower lateral frame member.
[0009]
In the invention of claim 1, in order to install the solar cell module between the horizontal bases adjacent to the inclined direction of the roof, first of all, the upper side frame material of the module is opened downward and opens downward. Insert into the groove. Next, the lower horizontal frame member is opened obliquely upward by rotating the entire solar cell module with the upper horizontal frame serving as the rotation fulcrum side so that the lower frame member approaches the lower horizontal frame side. Closely face the upward groove on the lower horizontal stand. Thereafter, the entire solar cell module is moved obliquely downward by its own weight, and the lower frame member is inserted into the upward groove while maintaining the insertion of the upper frame member into the downward groove. By the above procedure, the solar cell modules can be arranged over the adjacent horizontal bases separated vertically.
[0010]
With this attachment, the head of the metal screw that connects the side frame material and the lower frame material of the solar cell module and projects the head from the outer surface of the lower frame material The battery module is held in contact with the groove inner wall of the upward groove by its own weight. Thereby, the solar cell module and the lower horizontal base are electrically connected via the screw to form a part of the ground path.
[0011]
  thisInvention of Claim 1In the ground connection atRemoving the insulating protective film from the portion of the back wall of the groove where the head of the screw hits to expose the metal surface, and abut the head of the screw against this surfaceLet.
[0012]
  in this wayInsulation protection usually provided on the surface of the lower horizontal stand because the head of the screw connecting the side frame material and lower frame member of the solar cell module is brought into contact with the metal ground of the lower horizontal stand. The reliability of electrical connection between the solar cell module and the lower horizontal base can be improved without being hindered by the coating.
[0013]
  SaidInvention of Claim 1In carrying out, Claim 2Like the invention ofAn earth convex portion is provided on the groove inner wall of the upward groove, and the ground surface is formed by scraping off the projecting tip of the earth convex portion.Good.
In the present invention, since the insulation protective film is removed from the ground convex portion for reliably grounding, it is easier to work than a case where a portion of the flat surface is scraped to expose the ground surface.
[0014]
  In carrying out the invention of claim 1 or 2, as in the invention of claim 3,A plurality of the upper and lower horizontal members are continuously arranged in the longitudinal direction, and the crimp terminal of the grounding metal fitting having a dovetail-shaped crimp terminal at both ends is adjacent to the longitudinal direction. The horizontal members may be electrically connected to each other by screwing to the horizontal members.
In this invention, the horizontal bases adjacent to each other in the longitudinal direction can be electrically connected to each other via the grounding metal fitting.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0016]
In FIG. 1 to FIG. 3, reference numeral 21 denotes a roof of a metal tile bar, and a tile bar 22 that protrudes from the upper surface and extends in the inclined direction (eave ridge direction) extends along a direction perpendicular to the inclined direction. Have it at regular intervals. The rod 22 is made of metal and has conductivity.
[0017]
On this roof 21, a power generation device 25 that performs solar power generation is installed. The device 25 includes a plurality of horizontal stands 26 to 29, a plurality of solar cell modules 30, one or more auxiliary rails 31, a pressing member 32 that is individually attached to each horizontal stand 26 to 29, and a plurality of A stopper 33 is provided. The auxiliary rail 31, the pressing member 32, and a member receiving portion described later are not essential and may be omitted.
[0018]
Rail-like horizontal mounts 26 to 29 that are fixed on the metal rod 22 with metal screws (not shown) and are electrically connected to the glass rod 22 extend in a direction perpendicular to the inclination direction of the roof 21. The solar cell modules 30 are provided in parallel with each other along the inclination direction of the roof 21 at intervals corresponding to the vertical width of the solar cell module 30. In addition, each of the horizontal mounts 26 to 29 has one or more pieces having a predetermined length according to the size of the power generation device 25. When a plurality of pieces are used, a roof is continuously formed in the longitudinal direction. 21 is provided.
[0019]
FIG. 7 is a perspective view showing the periphery of the continuous side end when a plurality of horizontal stands 26 arranged in the longitudinal direction are continuously arranged in the longitudinal direction, for example. 26 are electrically connected to each other through a ground metal fitting 91. That is, the grounding metal 91 is provided with crimp terminals 91a having eyelet-like screw through holes at both ends thereof, and these crimp terminals 91a are fixed to the adjacent horizontal racks 26 with screws 92, whereby the horizontal rack 26 They are electrically connected to each other. The ground connection as described above is similarly performed for the horizontal stands 27, the horizontal stands 28, and the horizontal stands 29 adjacent to each other in the longitudinal direction.
[0020]
FIG. 8 is a perspective view showing attachment of two ground wires 95 to one of a plurality of horizontal stands 26 arranged on the most eaves side, for example. Both ground wires 95 are provided with crimp terminals 95a having eyelet-like screw-through holes at one end thereof, and are attached to the horizontal base 26 by tightening one screw 96 in a state where the crimp terminals 95a are overlapped. Fixed. The other end of one ground wire 95 is connected to a junction box together with an array output cable (not shown) of the solar cell module 30, and a ground rod (not shown) is attached to the other end of the other ground wire 95 for the third type grounding work. Provided. This grounding can also be performed on any of the other horizontal stands 27, 28, and 29.
[0021]
Of the horizontal mounts 26 to 29 arranged in this way, the horizontal mount 26 arranged closest to the ridge and the horizontal mount 29 positioned closest to the eaves are also referred to as end horizontal mounts or end rails. Moreover, each horizontal stand 27 and 28 arrange | positioned between these end rails is also called an intermediate horizontal stand or an intermediate rail. And in each of these horizontal mounts 26-29, the horizontal mount placed on the ridge side among the horizontal mounts adjacent in the inclination direction of the roof 21 is referred to as the upper horizontal stand, and the horizontal stand placed on the eaves side is the lower horizontal stand. It is called a gantry.
[0022]
The horizontal stands 26 and 29 are mold materials obtained by extrusion molding of an aluminum alloy, and the surfaces thereof are coated with an insulating protective film (not shown). The ridge-side horizontal mount 26 has a downward groove 41 that opens obliquely downward when installed on the roof 21, a pair of screwed flanges 42 that are integrally formed below the groove 41, and an upper side of the downward groove 41. It has a pair of integrally formed member receiving portions 43. The downward groove 41, the screwing flange 42, and the member receiving portion 43 all extend continuously in the longitudinal direction of the horizontal base 26.
[0023]
The downward groove 41 is formed between the groove upper wall 41a and the groove bottom wall 41b which are parallel to each other. The height of the groove 41 is smaller than the thickness of the solar cell module 30. The groove upper wall 41a is formed to have a shorter protruding width than the groove bottom wall 41b, so that the size of the opening of the downward groove 41 is larger than when the groove upper wall 41a and the groove bottom wall 41b have the same protruding width. is doing.
[0024]
A pair of screwing flanges 42 are provided so as to project integrally from the lower end of the horizontal base 26 in the width direction, and on the roof 21 through metal screws (not shown) that are screwed into the tile rod 22 through these flanges 42. A horizontal base 26 is fixed to the frame. By this fixing, the horizontal base 26 and the roof bar 22 are electrically connected through the metal screw. Each of the pair of member receiving portions 43 has an inverted L-shaped cross section, and each of the opposed standing piece portions is provided with a claw receiving portion made of, for example, a convex portion (not shown). These claw receiving portions have the same configuration as the claw receiving portions of intermediate horizontal stands 27 and 28, which will be described later, as shown in FIG.
[0025]
  The eaves-side horizontal mount 29 has an upward groove 45 that opens obliquely upward when installed on the roof 21, and a pair of screwed flanges 46 that are integrally molded below the groove 45.Upward groove 45And a pair of member receiving portions 47 integrally formed on the upper side. theseUpward groove 45The screwing flange 46 and the member receiving portion 47 all extend continuously in the longitudinal direction of the horizontal base 29.
[0026]
The upward groove 45 is formed so as to be surrounded on three sides by a groove upper wall 45a, a groove bottom wall 45b and a groove back wall 45c which are parallel to each other. The height dimension of the groove 45 is smaller than the thickness of the solar cell module 30. The groove upper wall 45a is formed with a shorter width than the groove bottom wall 45b, so that the size of the opening of the upward groove 45 is larger than when the groove upper wall 45a and the groove bottom wall 45b have the same width. is doing.
[0027]
The lower side of the groove back wall 45c has a protruding stepped shape protruding to the opening side from the upper side, and a surface of this protruding stepped portion is, for example, a pair of horizontal stands as described later with reference to FIG. The ground convex portion 44 is integrally formed. These ground protrusions 44 extend continuously in the longitudinal direction of the horizontal base 26, and the projecting tip portions are scraped along a cutting line 40 shown by a two-dot chain line in FIG. 5 to remove the insulating protective film. . Thereby, the front end surfaces of these ground convex portions 44 are ground surfaces 44a from which the metal ground surface of the horizontal base 26 is exposed.
[0028]
A pair of screw flanges 46 are provided so as to extend integrally from the lower end of the horizontal base 29 in the width direction, and on the roof 21 via metal screws (not shown) that are screwed into the tile rod 22 through these flanges 46. A horizontal base 29 is fixed to the frame. By this fixing, the horizontal base 29 and the rod 22 are electrically connected through the metal screw. Each of the pair of member receiving portions 47 has an inverted L-shaped cross section, and each of the opposed standing piece portions is provided with a claw receiving portion made of a convex portion, for example, although not shown. These claw receiving portions have the same configuration as the claw receiving portions of intermediate horizontal stands 27 and 28, which will be described later, as shown in FIG.
[0029]
The intermediate horizontal stands 27 and 28 are mold materials having the same structure obtained by extruding an aluminum alloy using the same mold, and the surfaces thereof are coated with an insulating protective film (not shown). As shown in FIGS. 4 and 5, these horizontal mounts 27 and 28 open downward obliquely 51 toward the eave side while being installed on the roof 21, and obliquely upward toward the ridge side. An upward groove 52, a pair of screw flanges 53 integrally formed below the grooves 51, 52, and a pair of member receiving portions 54 integrally formed above the grooves 51, 52. Yes. Both the grooves 51, 52, the screwing flange 53, and the member receiving portion 54 all extend continuously in the longitudinal direction of the horizontal mounts 27, 28.
[0030]
The downward groove 51 is formed between the groove upper wall 51a and the groove bottom wall 51b which are parallel to each other. The height dimension of the groove 51 is smaller than the thickness of the solar cell module 30. The groove upper wall 51a is formed with a shorter width than the groove bottom wall 51b, so that the size of the opening of the downward groove 51 is larger than that of the groove upper wall 51a and the groove bottom wall 51b. is doing.
[0031]
The upward groove 52 is formed to be surrounded by a groove upper wall 52a, a groove bottom wall 52b, and a groove back wall 52c that are parallel to each other, and the height dimension of the groove 52 is larger than the thickness of the solar cell module 30. small. The groove upper wall 52a is formed with a shorter width than the groove bottom wall 52b, so that the size of the opening of the upward groove 52 is larger than that of the groove upper wall 52a and the groove bottom wall 52b. is doing.
[0032]
  As shown in FIGS. 4 and 5, the lower side of the groove inner wall 52 c has a protruding stepped shape protruding to the opening side from the upper side, and a pair of ground convex portions 44 are formed on the surface of the protruding stepped portion, for example. It is integrally formed. These ground protrusions 44 extend continuously in the longitudinal direction of the horizontal base 26, and the projecting tip portions are scraped along a cutting line 40 shown by a two-dot chain line in FIG. 5 to remove the insulating protective film. . As a result, the tip surfaces of the ground projections 44 are horizontally mounted.27, 28It becomes the ground surface 44a from which the metal ground surface is exposed.
[0033]
The pair of screw flanges 53 are provided so as to extend integrally from the lower ends of the horizontal bases 27, 28 in the width direction, and are roofed through metal screws (not shown) that are screwed into the tile rod 22 through these flanges 53. Horizontal mounts 27 and 28 are fixed on 21. By this fixing, the horizontal bases 27 and 28 and the roof bar 22 are electrically connected through the metal screw. Each of the pair of member receiving portions 54 has an inverted L-shaped cross section, and each of the opposed standing piece portions is provided with a claw receiving portion 54a made of, for example, a convex portion as shown in FIG. . These claw receiving portions 54a can also be formed by steps.
[0034]
As shown in FIG. 6, the solar cell module 30 is formed by attaching a metal frame to the periphery of a rectangular solar cell module main body 61 and attaching a terminal box 62 to the back surface of the main body 61. The frame includes an upper frame member 63 fitted and attached to the upper edge of the solar cell module body 61, a lower frame member 64 fitted and attached to the lower edge of the main body 61, and both left and right sides of the main body 61. The left and right side frame members 65 and 66, which are individually fitted and attached to the side edges, are connected to each other by metal screws 67 and 68 to form a frame. Each of the frame members 63 to 66 is made of an extruded material of an aluminum alloy. 2 to 4, reference numeral 69 denotes a gasket.
[0035]
The upper screw 67 is screwed into tapping holes 65c and 66c (see FIG. 3) integrally formed extending through the inner surface of the side frame members 65 and 66 in the longitudinal direction through the upper frame member 63 from the outer surface. The upper frame member 63 and the left and right side frame members 65 and 66 are connected. When the upper frame member 63 has a tapping hole, a screw 67 through which the side frame members 65 and 66 are inserted from the outer surface can be screwed and connected to the tapping hole. When using metal fittings, the screws 67 for inserting the side frame members 65 and 66 and the upper frame material 63 from the outer surface thereof can be screwed into the screw receiving connection metal fittings.
[0036]
  The lower screw 68 is inserted through the lower frame member 64 from the outer surface thereof, and the side frame members 65 and 66 areTapping holes 65c, 66cThe lower frame member 64 and the left and right side frame members 65 and 66 are connected to each other. Therefore, the heads of these screws 68 protrude from the outer surface of the lower frame member 64. These screws 68 have their heads in contact with the ground surface 44a of the ground projection 44, and are used for grounding to electrically connect the frame having the lower frame member 64 and the lower lateral frame member. Also serves as a conductive member.
[0037]
In the frame framed as described above, as shown in FIG. 6A, both ends 64b of the portion of the lower frame member 64 that overlaps the upper surface of the lower edge portion of the solar cell module body 61, and the left and right side frames. A gap 70 for drainage is provided between the end portions 65b and 66b of the members 65 and 66 that overlap the upper surface of the lower edge portion of the solar cell module main body 61, respectively. By forming these gaps 70, when the frame is assembled to the periphery of the solar cell module body 61, the end 64b and the end portions 65b and 66b are prevented from interfering with each other, and the frame is assembled. It can be easily done. This point is similarly implemented in the relationship between the upper frame member 63 and the left and right side frame members 65 and 66 as shown in FIG.
[0038]
As shown in FIG. 6D, the lower frame member 64 has a drain hole 71 located at the lower end thereof. The hole 71 communicates with the gap 70. Therefore, according to this configuration, in a state where the roof 21 is installed following the inclination as described later, the lower frame member 64 is blocked by a portion overlapping the upper surface of the lower edge portion of the solar cell module body 61. The rainwater to be generated can be smoothly guided into the lower frame member 64 through the left and right gaps 70 and discharged from there through the drain holes 71. Therefore, rainwater that has flowed down on the solar cell module body 61 is prevented from remaining on the lower edge side of the main body 61 at all times, so that the rainwater adversely affects the life of the solar cell module body 61. Fear can be reduced as much as possible.
[0039]
The solar cell module body 61 is formed by providing a thin-film solar cell on the back surface of a rectangular transparent glass substrate and sealing the battery from the back surface side with a sealing material. The solar cell is formed by forming a transparent electrode layer on the back surface of the transparent glass substrate and separating it into a plurality of photovoltaic regions, and then forming a photovoltaic thin film semiconductor layer such as amorphous silicon on the transparent electrode layer. A photovoltaic device formed by dividing this semiconductor layer into a plurality of regions is electrically connected in series by a back electrode layer formed on these devices, and power is collected as an end of the connection. It has a pair of bus areas and is formed by soldering bus bars as electrodes to both bus areas individually. Both bus bars are individually soldered with one end portion of an output lead-out line, and these lead-out lines are connected to the terminal box 62 through the sealing material. In addition, two positive and negative array output cables are connected to the terminal box 62 so that the electric power generated in the solar cell module body 61 is drawn to the outside via other electric wires connected to these cables. It has become.
[0040]
  The height (thickness) dimensions of the frame members 63 to 66 are the same, and the thickness of the solar cell module 30 is defined by the height. Both the upper and lower frame members 63 and 64 have lower side portions 63a and 64a supported on any of the groove bottom walls 41b, 45b, 51b and 52b of the horizontal mounts 26 to 29, and similarly, both the left and right frame members. 65 and 66 are supported by the auxiliary rail 31.Lower side65a, 66a. As representatively shown in FIG. 2, the left and right side frame members 65 and 66Lower sideA rubber plate 77 is also bonded to the lower surfaces of the central portions in the longitudinal direction of 65a and 66a.
[0041]
  As shown in FIGS. 2 and 6, on the outer surface of the upper frame member 63, an insertion convex portion 72 is integrally protruded at an intermediate height position in the thickness direction of the frame member 63. The convex portion 72 is hooked on any one of the groove upper walls 41 a and 51 a, has a flange shape that is much thinner than the thickness of the upper frame member 63, and continues in the longitudinal direction of the upper frame member 63. It extends. Rubber plates 73 are bonded to the upper surfaces of both ends in the longitudinal direction of the insertion protrusion 72. Also, the upper frame material 63Lower side 63aThe rubber plate 74 is bonded to the lower surface of the metal plate at both ends in the longitudinal direction.
[0042]
  Similarly, on the outer surface of the lower frame member 64, an insertion convex portion 75 is integrally protruded at an intermediate height position in the thickness direction of the frame member 64. The convex portion 75 is hooked on one of the groove upper walls 45a and 52a, has a flange shape that is much thinner than the thickness of the lower frame member 64, and is continuous in the longitudinal direction of the lower frame member 64. And extended. Rubber plates 76 are bonded to the upper surfaces of both ends in the longitudinal direction of the insertion convex portion 75. Also, the lower frame member 64Lower side 64aThe rubber plate located at both ends in the longitudinal direction also on the lower surface of the77Is glued.
[0043]
As shown in FIG. 1, the auxiliary rails 31 arranged between the upper horizontal frame and the lower horizontal frame adjacent to each other in the direction of the eaves of the roof 21 are both made of an extruded material of aluminum alloy. As representatively shown, it is fixed on the roof 21 via screws (not shown) that are screwed into the tile rod 22 through screw fastening flanges that are integrally extended in the width direction on both sides of the hollow portion.
[0044]
The pressing member 32 is made of an extruded material of an aluminum alloy, has a length that is a multiple of the horizontal width of the solar cell module 30, and the illustrated one is the same as the horizontal width of the solar cell module 30. As shown in FIG. 4, these holding members 32 have frame material holding portions 81 on both sides in the width direction, and a pair of locking claws hooked on the claw receiving portion 54a therebetween. 82 is integrally formed. Each pressing member 32 covers the member receiving portions 54 of the horizontal mounts 26 to 29 and presses them from above, and hooks the latching claws 82 on the nail receiving portions 54a, so that these are respectively applied to the horizontal mounts 26 to 29. It is installed concealed.
[0045]
  Further, the pair of stoppers 33 made of an extruded product of an aluminum alloy is a bar having an L-shaped cross section as shown in FIG. 3, and these are orthogonal to the inclination direction of the roof 21 as shown in FIG. The solar cell modules 30 arranged side by side are attached to the roof 21 with both sides thereof arranged from both sides. That is, in the present embodiment, the stopper 33 is respectively connected by the screw 84.Auxiliary rail 31By being individually connected to each other, the solar cell modules 30 positioned at both ends in the arrangement direction of the group of solar cell modules 30 arranged orthogonal to the inclination direction of the roof 21 are stopped.
[0046]
Next, a procedure for installing the solar power generation device 25 on the roof 21 will be described.
[0047]
First, a plurality of horizontal mounts on the roof 21, that is, the horizontal mounts 26 and 29 serving as the end rails on the ridge side and the eaves side, and the horizontal mounts 27 and 28 serving as the intermediate rails are respectively arranged along the inclination direction of the roof 21. They are arranged and fixed in parallel with a predetermined interval, and auxiliary rails 31 are arranged between the horizontal stands adjacent to each other along the inclination direction of the roof 21 in a posture parallel to the horizontal stands 26 to 29. Is fixed to the roof 21. The horizontal bases 26 to 29 and the auxiliary rails 31 are fixed by screwing them to the tile rods 22 so as to intersect with the inclination direction of the roof 21 at right angles.
[0048]
Next, the solar cell modules 30 are installed one after another over the upper horizontal frame and the lower horizontal frame adjacent to each other in the inclination direction of the roof 21. That is, the case where the solar cell module 30 is installed between the lower horizontal base 29 that forms the eaves side end rail and the upper horizontal base 28 that forms the intermediate rail and is adjacent to the lower horizontal base 29 will be described as a representative. .
[0049]
  First, as shown by a two-dot chain line in FIG. 2, the solar cell module 30 is tilted in the direction opposite to the inclination direction of the roof 21, and the insertion convex portion integrally provided on the upper frame member 63 is provided.72Is inserted into the downward groove 51 of the upper horizontal base 28 that opens obliquely downward. This insertion direction is indicated by an arrow C in FIG. Next, the solar cell module 30 is rotated so that the lower frame member 64 approaches the lower horizontal frame 29 side with the upper horizontal frame 28 as the rotation fulcrum side. This rotation direction is indicated by an arrow D in FIG. By this turning operation, the lower frame member 64 is brought close to and opposed to the upward groove 45 of the lower horizontal base 29 that opens obliquely upward. Thereafter, the entire solar cell module 30 is moved obliquely downward along the inclination of the roof 21 by its own weight, and the insertion convex portion72The insertion convex portion 75 of the lower frame member 66 is inserted into the upward groove 45 while the insertion into the downward groove 51 is maintained. The movement of the solar cell module 30 in this case may be assisted by hand, and the movement direction is indicated by an arrow E in FIG. Through the above procedure, the solar cell module 30 is arranged over the horizontal bases 28 and 29 adjacent to each other while being vertically separated.
[0050]
All the solar cell modules 30 are arranged on the roof 21 one after another by mounting in the above-described manner. And each solar cell module 30 arrange | positioned in this way is each supported by the auxiliary rail 31 from the back side. That is, the substantially central part in the longitudinal direction of the side frame members 64 and 65 of each solar cell module 30 is placed on the auxiliary rail 31. Further, the solar cell modules 30 adjacent to each other crossing the inclination direction of the roof 21 are arranged in the lateral direction of the roof 21 with their side frame members 64 and 65 in contact with each other (see FIG. 3).
[0051]
After the solar cell modules 30 are arranged as described above, the stoppers 33 are arranged on both sides of the arrangement direction of the solar cell modules 30 grouped in the horizontal direction so as to intersect the inclination direction of the roof 21, and the stoppers 33. Are screwed to the auxiliary rails 31 respectively. Thereby, the solar cell module 30 group is stopped in the lateral direction of the roof 21.
[0052]
Finally, the pressing member 32 is attached to each of the horizontal bases 26 to 29 so as to hide them. These presser members 32 are placed on appropriate positions with respect to each of the horizontal stands 26 to 29, and then manually pressed from above, and at the same time, the locking claws 82 are locked to the claw receiving portions 54a of the horizontal base. To do. The pressing members 32 can be mounted on the horizontal platforms 26 to 29 prior to the mounting of the stopper 33.
[0053]
  The power generation device 25 is installed on the roof 21 by the above procedure, and in this installed state, the upper frame member 63 of each solar cell module 30 has its insertion convex portion.72Is positioned so as to be hooked on the groove upper wall 41a of the downward groove 41 of the upper lateral frame member or the groove upper wall 51a of the downward groove 51, and the lower side portion 63a is the groove bottom wall 41b of the downward groove 41 or the groove of the downward groove 51 Since it is mounted on the bottom wall 51b, the upper frame member 63 is restrained from moving in the thickness direction. In this case, since the rubber plates 73 and 74 are sandwiched between the upper frame member 63 and the downward groove 41 or 51, it is possible to prevent the solar cell module 30 from rattling in the thickness direction. Similarly, the lower frame member 64 is positioned such that the insertion convex portion 75 is caught by the groove upper wall 45a of the upward groove 45 of the lower horizontal base or the groove upper wall 52a of the upward groove 52, and the lower side portion 64a. Is the groove bottom wall 45b of the upward groove 45 orUpward groove 52Therefore, the lower frame member 64 is restrained from moving in the thickness direction. Also in this case, since the rubber plates 76 and 77 are sandwiched between the lower frame member 64 and the upward groove 45 or 52, it is possible to prevent the solar cell module 30 from rattling in the thickness direction.
[0054]
  Moreover,Solar cell moduleSince the upper frame member 63 and the lower frame member 30 are pressed from the upper side by the frame member pressing portion 81 of the pressing member 32 attached to each of the horizontal mounts 26 to 29, these pressing members 32. Thus, it is possible to more reliably prevent the solar cell module 30 attached across the horizontal base adjacent in the eaves-ridge direction from being detached, and to improve the installation strength of the solar cell module 30.
[0055]
And by installing the power generation device 25 on the roof 21 according to the above procedure, the lower horizontal frame members 27 to 29 supporting the solar cell module 30 and the lower frame member 64 of the power generation device 25 are as follows. So as to be electrically connected.
[0056]
That is, when the solar cell module 30 is attached by the above-described tendon system, the head is protruded from the outer surface of the lower frame member 64 by the weight of the solar cell module 30 due to the movement in the direction of arrow E in FIG. The heads of the metal screws 68 provided individually are held in contact with and held by the groove inner walls 45c and 52c of the upward grooves 45 and 52 of the corresponding lower lateral frame members 27 to 29, respectively. Thereby, the metal frame of the solar cell module 30 and the lower horizontal mounts 27 to 29 are electrically connected via the screws 68, and a part of the ground path is formed.
[0057]
  In the present embodiment, an insertion convex portion 75 is protruded from the lower frame member 64.Convex part 75Although the projecting length of the head portion of the screw 68 is shorter than the projecting length of the screw 68, the protruding stepped portion is provided on the groove rear walls 45c, 52c, so that the insertion convex portion 75 does not interfere with the screw. The 68 heads can be reliably brought into contact with the ground projection 44 on the surface of the protruding step.
[0058]
In addition, in this case, the portion of the groove inner wall 45c, 52c where the head portion of the screw 68 hits, that is, the insulating protective film of the ground convex portion 44 is removed in advance, and the screw 68 is applied to the metal ground surface 44a exposed at the portion. The head is abutted. Therefore, the electrical connectivity between the solar cell module and the lower horizontal mounts 27 to 29 is improved without being obstructed by the insulating protective film normally provided on the surfaces of the lower horizontal mounts 27 to 29, and reliably. Can be grounded. Further, since the insulation protective film is removed at the ground projection 44, the work is easier than when the ground surface is exposed by scraping a part of the plane.
[0059]
Further, as described above, the lower horizontal bases 27 to 29 and the other horizontal bases 26 that are grounded to the solar cell module 30 are all connected to the metal roof bar 22 via metal screws. According to the installation of the power generation device 24 on the roof 21, the horizontal bases 26 to 29 can be inevitably electrically connected to each other due to the conductivity of the tile rod 22, and specially designed to make such an electrical connection. There is no need for complicated parts and labor. For example, the group of solar cell modules 30 shown in FIG. 1 and the horizontal mounts 26 to 29 can all be grounded. And in the unlikely event that an electric leakage occurs in the power generating device 25 that is grounded as described above, the electric leakage current is sequentially sent through the grounding metal fitting 91 shown in FIG. 7, and then shown in FIG. It is grounded through the ground wire 95.
[0060]
When the roof bar 22 is made of non-metal, a metal strip is attached along the upper surface thereof, and a part of the strip is sandwiched between the horizontal mounts 26 to 29, respectively, and the power generator 25. Is installed on the roof 21 using a metal screw as described above, and the horizontal strips 26 to 29 are electrically connected to each other as a member for grounding the metal strip. You can also.
[0061]
In the configuration of the power generation device 25, the upper frame member 63 of the solar cell module 30 does not need to be inserted into the downward grooves 41 and 51 of the upper horizontal base in the entire thickness, and the lower frame member 64 also has the Since it is not necessary to insert the entire thickness into the upward grooves 45, 52 of the lower horizontal base, the vertical width dimensions of the downward grooves 41, 51 and the upward grooves 45, 52 can be made smaller than the thickness of the solar cell module 30. In addition, the number of fixed parts such as screws and the number of operations required for installing the power generation device 25 can be greatly reduced. Moreover, since the auxiliary rail 31 supports the central portion of the solar cell module 30 in the eaves-ridge direction and improves the pressure resistance performance against the wind pressure applied downward to the solar cell module 30 in a strong wind, the side frame material of the solar cell module 30 65, 66 itself does not need to obtain the pressure resistance performance, and accordingly, the height (vertical thickness) of the upper and lower frame members 63, 64 can be reduced together with the side frame members 65, 66. The battery module 30 can be thinned. Therefore, the cost of the solar power generation device 25 can be reduced, the installation height of the power generation device 25 on the roof 21 can be lowered, and the appearance of the roof 21 can be greatly improved.
[0062]
【The invention's effect】
The present invention is implemented in the form as described above and has the effects described below.
[0063]
  According to the invention which concerns on Claim 1, the lower side which supports a solar cell module and its lower frame material using the metal screw which has connected the side frame material and lower frame material of the solar cell module. Since it can be electrically connected to the horizontal base and no special grounding hardware is required for this connection, the configuration is simple, and the number of parts and work required for grounding are reduced. That can reduce the construction costAt the same time, the reliability of the electrical connection between the solar cell module and the lower horizontal stand for grounding can be improved..
[0064]
  According to the invention of claim 2,Since the removal of the insulating protective film for reliably grounding is performed at the ground convex portion, it is easier to work than when part of the plane is scraped to expose the ground surface.
[0065]
  According to the invention of claim 3,The horizontal bases adjacent to each other in the longitudinal direction can be electrically connected to each other through a grounding metal fitting.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an installation situation on a roof of a photovoltaic power generation apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the power generation device of FIG. 1 installed on a roof.
3 is a cross-sectional view taken along line VV in FIG.
4 is a cross-sectional view showing an intermediate horizontal base provided in the power generation device of FIG. 1, the lower frame member around the solar cell module supported by the intermediate horizontal base, and a pressing member attached to the intermediate horizontal base. FIG.
5 is an enlarged cross-sectional view showing an area around an upward groove of the intermediate horizontal base in FIG. 4;
6A is a plan view of a solar cell module included in the power generation device of FIG. 1. FIG.
FIG. 6B is a top view of the solar cell module viewed from the Z direction in FIG.
(C) is the side view of the upper part of the solar cell module seen from the YY line direction in FIG. 6 (A).
(D) is the bottom view of the solar cell module seen from the X direction in FIG. 6 (A).
(E) is the side view of the lower part of the solar cell module seen from the WW line direction in FIG. 6 (A).
7 is a perspective view showing the periphery of the continuous side end when a plurality of eaves-side horizontal stands are continuously arranged in the longitudinal direction in the power generation device of FIG. 1. FIG.
8 is a perspective view showing attachment of the ground wire to the eaves-side horizontal base in the power generation device of FIG. 1; FIG.
[Explanation of symbols]
  21 ... Roof
  25 ... Power generation device
  26-28 ... Horizontal stand
  30 ... Solar cell module
  41, 51 ... Downward groove on the upper horizontal base
  44 ... Earth convex
  44a ... Surface
  45, 52 ... Upward groove on the lower horizontal base
  45c, 52c ... Groove inner wall of upward groove
  61 ... Solar cell module body
  63 ... Upper frame material (frame)
  64 ... lower frame material (frame)
  65, 66 ... side frame material (frame)
  68 ...For frame assemblyscrew
91 ... Earth bracket
91a ... Crimp terminal
92 ... Screw

Claims (3)

屋根上に、この屋根の傾斜方向と交差する方向に延びて固定され、斜め下向きに開放する下向き溝を有した金属製上側横架台と、この上側横架台の下側に離間して前記屋根上に前記上側横架台と平行に配置され、斜め上向きに開放する上向き溝を有した金属製下側横架台と、方形状太陽電池モジュール本体の周部に夫々装着される金属製枠材を連結してなるフレームを有して、けんどん方式により前記枠材のうち上側枠材を前記下向き溝に挿入するとともに前記枠材のうち下側枠材を前記上向き溝に挿入して、前記上側横架台と下側横架台との間に設置される太陽電池モジュールとを具備する太陽光発電装置において、
前記枠材のうちの側枠材と前記下側枠材とをこの下側枠材を通って前記側枠材にねじ込まれた前記フレームの組立て用金属製ねじにより連結し、前記上向き溝の溝奥壁の前記ねじの頭部が当る部分の絶縁保護皮膜を除去して金属地肌を露出させ、この地肌面に、前記下側枠材の外面に突出された前記ねじの頭部を前記太陽電池モジュールの自重により当接保持させて、前記太陽電池モジュールと前記下側横架台とを電気的に接続したことを特徴とする太陽光発電装置。
A metal upper horizontal stand having a downward groove extending obliquely downward and extending in a direction crossing the inclination direction of the roof on the roof, and spaced above the upper horizontal stand and spaced above the roof Are connected in parallel to the upper horizontal platform, and a metal lower horizontal platform having an upward groove that opens obliquely upward is connected to a metal frame member mounted on the periphery of the rectangular solar cell module body. The upper frame member is inserted into the downward groove and the lower frame member of the frame member is inserted into the upward groove by the quick method. And a solar cell module installed between the lower horizontal stand and
The side frame material of the frame material and the lower frame material are connected by a metal screw for assembling the frame screwed into the side frame material through the lower frame material, and the groove of the upward groove removing the insulating protection film of the head strikes the portion of the screw of the back wall to expose the metal ground and, on the background surface, the solar cell to the head of the screw the protruded on the outer surface of the lower frame member A solar power generation apparatus characterized in that the solar cell module and the lower horizontal base are electrically connected by abutting and holding the module by its own weight .
前記上向き溝の溝奥壁にアース凸部を設け、このアース凸部の突出先端部を削り取って前記地肌面を形成したことを特徴とする請求項1に記載の太陽光発電装置。The solar power generation device according to claim 1, wherein a ground convex portion is provided on a groove inner wall of the upward groove, and the ground surface is formed by scraping a protruding tip portion of the ground convex portion . 前記上側及び下側の横架材が、その長手方向に複数本連続して配置されているとともに、両端部に鳩目状の圧着端子を有したアース金具の前記圧着端子を、長手方向に隣接した前記横架材にねじ止めして、横架材相互を電気的に接続したことを特徴とする請求項1又は2に記載の太陽光発電装置。 A plurality of the upper and lower horizontal members are continuously arranged in the longitudinal direction, and the crimp terminal of the grounding metal fitting having a dovetail-shaped crimp terminal at both ends is adjacent to the longitudinal direction. The photovoltaic power generator according to claim 1 or 2, wherein the horizontal members are screwed to each other and the horizontal members are electrically connected to each other .
JP2000072822A 2000-03-15 2000-03-15 Solar power plant Expired - Lifetime JP4364389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000072822A JP4364389B2 (en) 2000-03-15 2000-03-15 Solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000072822A JP4364389B2 (en) 2000-03-15 2000-03-15 Solar power plant

Publications (2)

Publication Number Publication Date
JP2001262800A JP2001262800A (en) 2001-09-26
JP4364389B2 true JP4364389B2 (en) 2009-11-18

Family

ID=18591169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000072822A Expired - Lifetime JP4364389B2 (en) 2000-03-15 2000-03-15 Solar power plant

Country Status (1)

Country Link
JP (1) JP4364389B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344239B2 (en) 2004-02-13 2013-01-01 Pvt Solar, Inc. Mechanism for mounting solar modules
US7856769B2 (en) 2004-02-13 2010-12-28 Pvt Solar, Inc. Rack assembly for mounting solar modules
WO2007137199A2 (en) 2006-05-18 2007-11-29 Pvt Solar, Inc. Interconnected solar module design and system
WO2008028151A2 (en) * 2006-08-31 2008-03-06 Pvt Solar, Inc. Technique for electrically bonding solar modules and mounting assemblies
US7721492B2 (en) 2006-09-06 2010-05-25 Pvt Solar, Inc. Strut runner member and assembly using same for mounting arrays on rooftops and other structures
US7857269B2 (en) 2006-11-29 2010-12-28 Pvt Solar, Inc. Mounting assembly for arrays and other surface-mounted equipment
KR101202474B1 (en) 2008-08-28 2012-11-16 (주)엘지하우시스 Solar cell module assembly
JP2013076304A (en) * 2011-09-30 2013-04-25 Lixil Corp Photovoltaic power generation device and installation method thereof
CN116591401B (en) * 2023-07-17 2023-10-20 天合光能股份有限公司 photovoltaic roof

Also Published As

Publication number Publication date
JP2001262800A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
JP4414569B2 (en) Solar power plant
JP4576089B2 (en) SOLAR CELL MODULE, SOLAR POWER GENERATOR, AND SOLAR POWER GENERATOR INSTALLATION METHOD
JP5058402B2 (en) Solar power plant
US6914182B2 (en) Method of installing solar cell modules, and solar cell module
US6242685B1 (en) Structure and method of installing photovoltaic module
US9441376B2 (en) Base sheet integrated photovolatic roofing assemblies
US20110210085A1 (en) Interconnected solar module design and system
JP2002141544A (en) Solar cell module, solar cell module connecting method, solar cell module installing method and solar cell module ground connecting method
JPS6089986A (en) Solar panel module and its support
US8946539B2 (en) Junction cover for photovoltaic panel modules
JP4364389B2 (en) Solar power plant
JPH1140835A (en) Solar cell module and roof mounted therewith
JP5273909B2 (en) Solar power plant
JP2001135848A (en) Solar cell panel and roof structure by use of solar cell panel
JP2001329664A (en) Solar cell module, generating set, installing method for generating set, and intermediate horizontal pedestal
JP2002115372A (en) Solar cell module roof tile
JP2001065120A (en) Solar cell module fixing device and solar cell generator
JP2002364136A (en) Construction method of solar battery panel, and construction equipment and material for solar battery panel
JP2000297509A (en) Solar battery module, mounting method thereof, and mounting structure thereof
JP5899439B2 (en) Solar cell module and solar power generation device
JP6511269B2 (en) Roof structure
JP4247963B2 (en) Solar power plant
JP3942322B2 (en) Solar cell module and roof
JP2000345672A (en) Support member for solar cell module, and solar cell power generating device
JP3327848B2 (en) Mounting structure of solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4364389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term