JP4364101B2 - Surface crack growth analysis method and apparatus - Google Patents

Surface crack growth analysis method and apparatus Download PDF

Info

Publication number
JP4364101B2
JP4364101B2 JP2004290164A JP2004290164A JP4364101B2 JP 4364101 B2 JP4364101 B2 JP 4364101B2 JP 2004290164 A JP2004290164 A JP 2004290164A JP 2004290164 A JP2004290164 A JP 2004290164A JP 4364101 B2 JP4364101 B2 JP 4364101B2
Authority
JP
Japan
Prior art keywords
crack
growth
structural member
analysis
crack growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004290164A
Other languages
Japanese (ja)
Other versions
JP2006105673A (en
Inventor
雅雄 板谷
政之 淺野
正明 菊池
利之 斎藤
徳彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004290164A priority Critical patent/JP4364101B2/en
Publication of JP2006105673A publication Critical patent/JP2006105673A/en
Application granted granted Critical
Publication of JP4364101B2 publication Critical patent/JP4364101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、構造部材の表面に発生する表面き裂の進展を解析する表面き裂の進展解析方法および装置に関する。   The present invention relates to a surface crack growth analysis method and apparatus for analyzing the growth of a surface crack generated on the surface of a structural member.

従来の構造部材の表面におけるき裂の進展解析においては、応力拡大係数あるいはその変動範囲とき裂進展速度との間に単一の関係を与え、部材の深さ方向へのき裂進展速度と、部材表面での長さを増す方向へのき裂進展速度は、ともに同一の応力拡大係数とき裂進展速度の関係を用いている(非特許文献1参照)。以下、応力拡大係数あるいはその変動範囲とき裂進展速度との関係をき裂進展特性と称する。
吉川直紀、白鳥正樹、松田宏行、松下久雄、影響関数法による複数表面き裂の応力拡大係数の解析とその応用、日本材料学会第52期学術講演会論文集、2003年5月、pp,321−322.
In the crack growth analysis on the surface of the conventional structural member, a single relationship is given between the stress intensity factor or its fluctuation range and the crack growth rate, and the crack growth rate in the depth direction of the member, The crack growth rate in the direction of increasing the length on the member surface uses the same relationship between the stress intensity factor and the crack growth rate (see Non-Patent Document 1). Hereinafter, the relationship between the stress intensity factor or its variation range and the crack growth rate is referred to as crack growth characteristics.
Yoshikawa Naoki, Shiratori Masaki, Matsuda Hiroyuki, Matsushita Hisao, Analysis of Stress Intensity Factor of Multiple Surface Cracks by Influence Function Method and Its Application, Proceedings of the 52nd Annual Conference of the Society of Materials Science, May 2003, pp, 321 -322.

一方、腐食性環境中に晒される材料のき裂進展速度は、応力腐食割れ(以下、SCCと称する)、腐食疲労のいずれの場合においても、その環境状態、例えば溶存酸素濃度や不純物イオン濃度にも依存するため、応力拡大係数のみによって一義的に定まらない。実際に腐食環境中に晒される構造部材の表面き裂においては、表面き裂内での毛管凝縮現象や腐食液の滞留が生じるため、表面き裂最深部と部材表面とで環境状態が異なることになる。従って、構造部材の深さ方向へのき裂進展速度と、表面上におけるき裂進展速度とは、異なるき裂進展特性を有することになる。   On the other hand, the crack growth rate of a material exposed to a corrosive environment is the same as the environmental state such as dissolved oxygen concentration or impurity ion concentration in both cases of stress corrosion cracking (hereinafter referred to as SCC) and corrosion fatigue. Therefore, it is not uniquely determined only by the stress intensity factor. In surface cracks of structural members that are actually exposed to corrosive environments, capillary condensation and corrosion liquid retention occur in the surface cracks, so that the environmental conditions differ between the deepest surface crack and the member surface. become. Therefore, the crack growth rate in the depth direction of the structural member and the crack growth rate on the surface have different crack growth characteristics.

また、多くの構造部材においては、その製造段階において切削や研削などの加工を受けることにより、部材表面層の材質と内部の材質とで、硬さやき裂進展速度の環境感受性が変化していることがある。その結果、表面き裂の深さ方向への進展特性と、表面上での進展特性が異なる場合がある。   Also, in many structural members, the environmental sensitivity of the hardness and crack growth rate changes depending on the material of the member surface layer and the internal material due to processing such as cutting and grinding in the manufacturing stage. Sometimes. As a result, the propagation characteristics in the depth direction of the surface crack may be different from the propagation characteristics on the surface.

しかしながら、従来の表面き裂の進展解析方法においては、構造部材の深さ方向への進展速度および表面上における進展速度ともに、材質と応力拡大係数のみにより決定できることを仮定しているため、構造部材の深さ方向と表面上でのき裂進展特性の違いを考慮することができなかった。   However, the conventional surface crack growth analysis method assumes that both the growth rate in the depth direction of the structural member and the growth rate on the surface can be determined only by the material and the stress intensity factor. The difference between the depth direction and the crack growth characteristics on the surface could not be considered.

本発明は、上述した課題を解決するためになされたものであり、構造部材の表面き裂の進展解析について、深さ方向と表面上でのき裂進展特性の違いを考慮することが可能な表面き裂の進展解析方法および装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and it is possible to consider the difference in crack propagation characteristics between the depth direction and the surface in the analysis of surface crack propagation of a structural member. It is an object of the present invention to provide a method and apparatus for analyzing surface crack propagation.

本発明の表面き裂の進展解析方法は、上述した課題を解決するために、構造部材の表面き裂の進展を解析する表面き裂の進展解析方法において、表面き裂の進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上におけるき裂進展特性とをそれぞれ独立して設定し、前記構造部材の表面き裂の進展解析を実施する際に、前記構造部材の深さ方向のき裂寸法であるき裂深さおよび部材表面上のき裂寸法であるき裂長さのいずれか一方が、予め定めた寸法に達した際に、前記き裂寸法のうちいずれか一方が前記予め定めた寸法以上増加しないよう一定値に固定して、他方のき裂寸法のみが増加するものとして表面き裂の進展解析を継続することを特徴とする方法である。
また、本発明の表面き裂の進展解析方法は、上述した課題を解決するために、構造部材の表面き裂の進展を解析する表面き裂の進展解析方法において、表面き裂の進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上におけるき裂進展特性とをそれぞれ独立して設定し、前記構造部材の表面き裂の進展解析を実施する際に、前記構造部材の表面上における2点の表面き裂先端のうち、いずれか一方の表面き裂先端が、予め定めた位置に到達した場合に、前記一方の表面き裂先端が前記予め定めた位置以上進展しないよう位置を固定して、他方の表面き裂先端およびき裂最深点の2点のみが増加するものとして表面き裂の進展解析を継続することを特徴とする方法である。
In order to solve the above-described problems , the surface crack growth analysis method of the present invention calculates the surface crack growth rate in the surface crack growth analysis method for analyzing the surface crack growth of a structural member. In this case, the crack propagation characteristics in the depth direction of the structural member and the crack propagation characteristics on the surface of the structural member are set independently, and the surface crack propagation analysis of the structural member is performed. When one of the crack depth, which is the crack dimension in the depth direction of the structural member, and the crack length, which is the crack dimension on the member surface, reaches a predetermined dimension, the crack is The method is characterized in that any one of the crack dimensions is fixed at a constant value so as not to increase more than the predetermined dimension, and the surface crack growth analysis is continued assuming that only the other crack dimension increases. It is.
Further, in order to solve the above-described problem, the surface crack growth analysis method of the present invention is a surface crack growth analysis method for analyzing the surface crack growth of a structural member. When calculating, the crack propagation characteristics in the depth direction of the structural member and the crack propagation characteristics on the surface of the structural member are set independently, and the surface crack propagation analysis of the structural member When one of the two surface crack tips on the surface of the structural member reaches a predetermined position, the one surface crack tip Is fixed so that it does not propagate more than the predetermined position, and the surface crack propagation analysis is continued on the assumption that only two points of the other surface crack tip and the crack deepest point increase. Is the method.

本発明の表面き裂の進展解析装置は、上述した課題を解決するために、構造部材の表面き裂の進展を解析する表面き裂の進展解析装置が、前記構造部材の表面におけるき裂長さと前記構造部材の深さ方向のき裂深さを入力する入力手段と、応力拡大係数を計算する計算手段と、き裂進展速度を算出する算出手段と、き裂進展増分の計算手段と、き裂寸法の更新手段とを備え、前記き裂進展速度を算出する算出手段にてき裂進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上でのき裂進展特性とをそれぞれ独立して設定することが可能な構成とし、前記構造部材の深さ方向のき裂寸法であるき裂深さおよび部材表面上のき裂寸法であるき裂長さのいずれか一方が、予め定めた寸法に達した際に、前記き裂寸法のうちいずれか一方が前記予め定めた寸法以上増加しないよう一定値に固定して、他方のき裂寸法のみが増加するものとして表面き裂の進展解析を継続して前記構造部材の表面き裂の進展解析を実施する構成としたことを特徴とするものである。
さらに、本発明の表面き裂の進展解析装置は、上述した課題を解決するために、構造部材の表面き裂の進展を解析する表面き裂の進展解析装置が、前記構造部材の表面におけるき裂長さと前記構造部材の深さ方向のき裂深さを入力する入力手段と、応力拡大係数を計算する計算手段と、き裂進展速度を算出する算出手段と、き裂進展増分の計算手段と、き裂寸法の更新手段とを備え、前記き裂進展速度を算出する算出手段にてき裂進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上でのき裂進展特性とをそれぞれ独立して設定することが可能な構成とし、前記構造部材の表面上における2点の表面き裂先端のうち、いずれか一方の表面き裂先端が、予め定めた位置に到達した場合に、前記一方の表面き裂先端が前記予め定めた位置以上進展しないよう位置を固定して、他方の表面き裂先端およびき裂最深点の2点のみが増加するものとして表面き裂の進展解析を継続して前記構造部材の表面き裂の進展解析を実施する構成としたことを特徴とするものである。
In order to solve the above-described problems, the surface crack growth analysis apparatus of the present invention is a method for analyzing the surface crack growth of a structural member. An input means for inputting a crack depth in the depth direction of the structural member; a calculation means for calculating a stress intensity factor; a calculation means for calculating a crack growth rate; a crack growth increment calculation means; A crack size update means, and a calculation means for calculating the crack growth rate, when calculating the crack growth rate, the crack growth characteristics in the depth direction of the structural member, and the surface of the structural member The crack growth characteristics above can be set independently, and the crack depth which is the crack dimension in the depth direction of the structural member and the crack length which is the crack dimension on the member surface When one of the above reaches a predetermined dimension, The surface of the structural member is continuously analyzed by assuming that one of the crack dimensions is fixed at a fixed value so as not to increase more than the predetermined dimension, and only the other crack dimension is increased. The present invention is characterized in that a crack propagation analysis is performed.
Furthermore, in order to solve the above-described problems, the surface crack propagation analysis apparatus of the present invention is a surface crack propagation analysis apparatus that analyzes the surface crack propagation of a structural member. Input means for inputting a crack length and a crack depth in the depth direction of the structural member, a calculation means for calculating a stress intensity factor, a calculation means for calculating a crack growth rate, and a calculation means for an increment of crack growth; A crack size update means, and a calculation means for calculating the crack growth rate, when calculating the crack growth rate, the crack growth characteristics in the depth direction of the structural member, and the structural member The crack propagation characteristics on the surface of the structural member can be set independently of each other, and one of the two surface crack tips on the surface of the structural member has one surface crack tip. When the predetermined position is reached, the one table The position of the crack tip is fixed so that it does not progress beyond the predetermined position, and the surface crack growth analysis is continued assuming that only the other surface crack tip and the crack deepest point increase. The present invention is characterized in that the structure crack analysis is performed on the surface crack of the structural member.

本発明の表面き裂の進展解析方法および装置によれば、構造部材の深さ方向と表面におけるき裂進展特性を独立に設定してき裂進展速度を計算し、表面き裂進展解析を行うので、より現実に近い条件により精度の高い表面き裂進展解析を実施することが可能である。   According to the surface crack propagation analysis method and apparatus of the present invention, the crack propagation rate is calculated by setting the crack propagation characteristics in the depth direction and the surface of the structural member independently, and the surface crack propagation analysis is performed. It is possible to perform surface crack growth analysis with high accuracy under conditions that are closer to reality.

本発明に係る表面き裂の進展解析方法および装置の実施例について、図面を参照して以下に詳細に説明する。   Embodiments of a surface crack propagation analysis method and apparatus according to the present invention will be described below in detail with reference to the drawings.

本発明の表面き裂の進展解析装置は、解析対象である構造部材の表面におけるき裂長さと前記構造部材の深さ方向のき裂深さを入力する入力手段と、応力拡大係数を計算する計算手段と、き裂進展速度を算出する算出手段と、き裂進展増分の計算手段と、き裂寸法の更新手段とを備え、き裂進展速度を算出する算出手段にてき裂進展速度を計算する際に、構造部材の深さ方向へのき裂進展特性と、構造部材の表面上でのき裂進展特性とをそれぞれ独立して設定することが可能なように設けた装置である。   The surface crack growth analysis apparatus of the present invention includes an input means for inputting a crack length on the surface of a structural member to be analyzed and a crack depth in the depth direction of the structural member, and a calculation for calculating a stress intensity factor. Means for calculating the crack growth rate, a calculation means for calculating the crack growth rate, a means for calculating the crack growth increment, and a means for updating the crack size. In this case, the apparatus is provided so that the crack propagation characteristic in the depth direction of the structural member and the crack propagation characteristic on the surface of the structural member can be set independently.

なお、本発明の表面き裂の進展解析方法および装置において、表面き裂進展機構は、疲労によるもの、応力腐食割れによるもの、クリープによるもの、あるいはそれらの相互作用下における表面き裂進展のいずれであってもよい。   In the surface crack growth analysis method and apparatus of the present invention, the surface crack propagation mechanism may be any of fatigue, stress corrosion cracking, creep, or surface crack growth under their interaction. It may be.

まず、図1(A)、図1(B)、図2および図3を用いて、表面き裂の進展解析方法の実施例1について説明する。   First, Example 1 of the surface crack propagation analysis method will be described with reference to FIGS. 1 (A), 1 (B), 2 and 3. FIG.

図1(A)に構造部材の表面き裂モデルを示す。この図1(A)に示すように構造部材1の表面に表面き裂2が存在し、例えば軽水炉の炉水のような液体環境に晒されている。この表面き裂2の長さを2cとし、深さをaとする。表面き裂2のき裂表面点4が晒される環境は、炉水の平均的な水質であるが、き裂最深点3が晒される環境は、表面き裂内での炉水の滞留や毛管凝縮などにより、き裂表面点4の水質とは異なっている。この表面き裂2が進展すると、図1(B)に示す構造部材の表面き裂進展後モデルのような成長後の表面き裂5となる。   FIG. 1A shows a surface crack model of a structural member. As shown in FIG. 1A, a surface crack 2 exists on the surface of the structural member 1 and is exposed to a liquid environment such as reactor water of a light water reactor. The length of the surface crack 2 is 2c and the depth is a. The environment to which the crack surface point 4 of the surface crack 2 is exposed is the average water quality of the reactor water, but the environment to which the deepest crack point 3 is exposed is the retention of the reactor water in the surface crack and the capillaries. It differs from the water quality at the crack surface point 4 due to condensation and the like. When this surface crack 2 progresses, it becomes a post-growth surface crack 5 like the post-surface crack growth model of the structural member shown in FIG.

図2に応力拡大係数とSCCき裂進展速度との関係を示す。図2のグラフは、材料のSCCき裂進展特性が材質と環境の組合せにより異なることを示している。   FIG. 2 shows the relationship between the stress intensity factor and the SCC crack growth rate. The graph of FIG. 2 shows that the SCC crack propagation characteristics of the material differ depending on the combination of the material and the environment.

すなわち、図2に模式的に示すように、材質Aの環境xにおけるSCCき裂進展速度6と、材質Aの環境yにおけるSCCき裂進展速度7と、材質Bの環境xにおけるSCCき裂進展速度8は、それぞれ異なる曲線で表される。なお、図2における縦軸のき裂進展速度とは、単位時間あたりの表面き裂成長量である。   That is, as schematically shown in FIG. 2, the SCC crack growth rate 6 in the environment x of the material A, the SCC crack growth rate 7 in the environment y of the material A, and the SCC crack growth rate in the environment x of the material B The speed 8 is represented by a different curve. Note that the crack growth rate on the vertical axis in FIG. 2 is the amount of surface crack growth per unit time.

従って、図1(A)および図1(B)に示す表面き裂2の最深点3とき裂表面点4での水質の差により、き裂進展特性も異なることになる。なお、疲労による表面き裂進展の場合は、図2の応力拡大係数Kを応力拡大係数範囲ΔKに、SCCき裂進展速度da/dtを疲労き裂進展速度da/dN(m/cycle)にそれぞれ読み替えるものとする。ここで、疲労き裂進展速度da/dNとは、1回の荷重変動による表面き裂成長量を表すものである。   Therefore, the crack propagation characteristics are also different due to the difference in water quality at the deepest point 3 and the crack surface point 4 of the surface crack 2 shown in FIGS. 1 (A) and 1 (B). In the case of surface crack growth due to fatigue, the stress intensity factor K in FIG. 2 is set to the stress intensity factor range ΔK, and the SCC crack growth rate da / dt is set to the fatigue crack growth rate da / dN (m / cycle). Each shall be read. Here, the fatigue crack growth rate da / dN represents the amount of surface crack growth due to a single load change.

図3に、本実施例の表面き裂の進展解析方法のフローを示す。図3のフローにおける各ステップは、表面き裂の進展解析装置の各構成手段におけるデータ処理を示している。   FIG. 3 shows a flow of the surface crack propagation analysis method of the present embodiment. Each step in the flow of FIG. 3 shows data processing in each constituent means of the surface crack growth analysis apparatus.

通常、表面き裂2の進展解析は、図3に示すフローにより実施される。まず、ステップ11において、ある時点tにおけるき裂深さをa、き裂長さを2cとし、これに部材の形状や寸法および作用する応力を考慮して、ステップ12においてき裂最深点3とき裂表面点4での応力拡大係数KaおよびKcを求める。 Usually, the growth analysis of the surface crack 2 is performed according to the flow shown in FIG. First, in step 11, the crack depth at a certain time t i is set to a i , the crack length is set to 2c i, and the shape and size of the member and the stress acting on this are taken into consideration. 3 The stress intensity factors Ka and Kc at the crack surface point 4 are obtained.

次に、ステップ13において、最深点3のき裂進展速度da/dtをKaから、き裂表面点4のき裂進展速度dc/dtをKcから、下記の関係を用いて求める。
[数1]
da/dt=f(Ka)
dc/dt=f(Kc)
ここで、関数f,関数fは、き裂進展特性に係る関数であり、図2に示したように、材質と環境の組合せごとに異なるき裂進展速度と応力拡大係数の関係を示す関数である。従来の表面き裂の進展解析方法においては、ある一つの表面き裂2に対して、最深点3とき裂表面点4とで関数fと関数fとして同じ関数を用いていた。
Next, in step 13, the crack growth rate da / dt at the deepest point 3 is obtained from Ka and the crack growth rate dc / dt at the crack surface point 4 is obtained from Kc using the following relationship.
[Equation 1]
da / dt = f 1 (Ka)
dc / dt = f 2 (Kc)
Here, the functions f 1 and f 2 are functions related to the crack growth characteristics, and as shown in FIG. 2, indicate the relationship between the crack growth rate and the stress intensity factor that differ for each combination of material and environment. It is a function. In the conventional surface crack growth analysis method, the same function is used as a function f 1 and a function f 2 at a deepest point 3 and a crack surface point 4 for a certain surface crack 2.

一方、本発明の表面き裂の進展解析方法においては、き裂最深点の水質がき裂表面点の水質と異なるためにき裂進展特性が異なることを考慮して、例えば最深点3に対しては、図2に示す材質Aの環境yにおけるSCCき裂進展速度7を適用する一方、き裂表面点4に対しては、材質Aの環境xにおけるSCCき裂進展速度6を適用する。すなわち、解析対象である構造部材1の深さ方向へのき裂進展特性に対する関数fと、構造部材の表面上でのき裂進展特性に係る関数fとをそれぞれ独立して設定する。 On the other hand, in the surface crack propagation analysis method of the present invention, considering the fact that the crack growth characteristics are different because the water quality at the crack deepest point is different from the water quality at the crack surface point, for example, for the deepest point 3 Applies the SCC crack growth rate 7 in the environment y of the material A shown in FIG. 2, while the SCC crack growth rate 6 in the environment x of the material A is applied to the crack surface point 4. That is, the function f 1 for the crack propagation characteristic in the depth direction of the structural member 1 to be analyzed and the function f 2 for the crack propagation characteristic on the surface of the structural member are set independently.

このようにして構造部材1の深さ方向へのき裂進展特性と表面上でのき裂進展特性について、それぞれ最深点3とき裂表面点4におけるき裂進展速度da/dtおよびdc/dtを求めた後に、ステップ14にて、ある微小時間増分Δtの間におけるき裂深さ3の増分Δaとき裂長さ4の増分Δcを、それぞれ
[数2]
Δa=da/dt・Δt
Δc=dc/dt・Δt
として求め、ステップ15にて、これらの増分を元のき裂寸法に足し合わせることにより、微小時間増分Δt後のき裂寸法を求める。すなわち、この時点をti+1とすると、
[数3]
i+1=t+Δt
i+1=a+Δa
2ci+1=2(c+Δc)
として、時刻ti+1におけるき裂寸法、すなわちき裂深さai+1と長さ2ci+1を決定する。なお、図1に示すように成長後の表面き裂5の形状としては、き裂深さがai+1、長さ2ci+1の半だ円を仮定する。
In this way, with respect to the crack growth characteristics in the depth direction of the structural member 1 and the crack growth characteristics on the surface, the crack growth rates da / dt and dc / dt at the deepest point 3 and the crack surface point 4 are respectively obtained. After the determination, in step 14, the crack depth 3 increment Δa and the crack length 4 increment Δc during a certain minute time increment Δt, respectively, [Equation 2]
Δa = da / dt · Δt
Δc = dc / dt · Δt
In step 15, the crack size after a minute time increment Δt is obtained by adding these increments to the original crack size. That is, if this time is t i + 1 ,
[Equation 3]
t i + 1 = t i + Δt
a i + 1 = a i + Δa
2c i + 1 = 2 (c i + Δc)
As described above, the crack size at time t i + 1 , that is, the crack depth a i + 1 and the length 2c i + 1 are determined. As shown in FIG. 1, the shape of the surface crack 5 after growth is assumed to be a semi-ellipse having a crack depth a i + 1 and a length 2c i + 1 .

本実施例の表面き裂の進展解析方法によれば、表面き裂2の最深点3とき裂表面点4とで、環境が異なることを考慮してき裂進展特性を独立に設定してき裂進展速度を計算して表面き裂進展解析を行うので、より現実の構造部材における表面き裂に近い精度の高い表面き裂進展解析を実施することが可能である。   According to the surface crack growth analysis method of the present embodiment, the crack growth rate is set by setting the crack growth characteristics independently in consideration of the environment at the deepest point 3 and the crack surface point 4 of the surface crack 2. Since the surface crack propagation analysis is performed by calculation, it is possible to carry out a surface crack propagation analysis with high accuracy close to a surface crack in a more actual structural member.

なお、図3において、き裂進展特性である関数fと関数fとは、予めデータベースに保存しておく構成とすることができる。このような構成とすることにより、構造部材1の材料名を入力するか、材料名リストから特定の材料を選択することによって、き裂進展特性を呼び出すことが可能となる。 In FIG. 3, the function f 1 and the function f 2 which are crack propagation characteristics can be stored in advance in a database. With such a configuration, it is possible to call the crack propagation characteristics by inputting the material name of the structural member 1 or selecting a specific material from the material name list.

また、図3のフローに従って計算された解析の計算結果を記憶媒体に記録して、この計算結果を任意に取り出し可能な構成としても良い。さらに、この記憶媒体に記録された入力データの一部を変更して新たに表面き裂進展解析を実施することも可能である。   Further, the calculation result of the analysis calculated according to the flow of FIG. 3 may be recorded in a storage medium, and the calculation result may be arbitrarily extracted. Furthermore, it is possible to newly perform a surface crack propagation analysis by changing a part of the input data recorded in the storage medium.

一方、図3のフローのステップ12における応力拡大係数の計算において、複数の応力拡大係数の計算式が適用可能な場合に、これら複数の応力拡大係数の計算式をデータベースとして備えておき、これらの識別名を入力するか、リストから選択することにより、適合する応力拡大係数の計算式を読み込む構成とすることも可能である。   On the other hand, in the calculation of the stress intensity factor in step 12 of the flow of FIG. 3, when a plurality of stress intensity factor calculation formulas are applicable, the plurality of stress intensity factor calculation formulas are prepared as a database. It is also possible to adopt a configuration in which a calculation formula of a suitable stress intensity factor is read by inputting an identification name or selecting from a list.

次に、本発明に係る表面き裂の進展解析方法の実施例2について、図4および5を用いて説明する。   Next, a second embodiment of the surface crack propagation analysis method according to the present invention will be described with reference to FIGS.

一般に切削や研削などの機械加工により製造した構造部材1の表面には、図4に示すように加工による硬化層である加工層21が存在する。加工層21は、塑性変形を受けたことによる転位密度の増加などが生じているため、化学成分こそ変化しないものの、強度的性質等について材質自体が変化している。このため、図2のグラフにおいて、例えば、加工を受けていない材料は、き裂進展速度が材質Aの環境xにおけるSCC進展速度6を示すとしても、加工層21は、材質Bの環境xにおけるSCC進展速度8となることがある。   Generally, on the surface of the structural member 1 manufactured by machining such as cutting or grinding, there is a processed layer 21 that is a hardened layer by processing as shown in FIG. The processed layer 21 has an increase in dislocation density due to plastic deformation. Therefore, although the chemical component does not change, the material itself changes in terms of strength properties and the like. Therefore, in the graph of FIG. 2, for example, a material that has not undergone processing has a processed layer 21 in the environment x of the material B even though the crack growth rate indicates the SCC growth rate 6 in the environment x of the material A. SCC progress rate may be 8.

このような場合においても、本発明の表面き裂の進展解析方法によれば、図3のフローに従って表面き裂の進展解析を実施することが可能である。   Even in such a case, according to the surface crack growth analysis method of the present invention, it is possible to carry out surface crack growth analysis according to the flow of FIG.

図5に本発明の表面き裂の進展解析方法によるSCC表面き裂進展解析結果の例を示す。図5(A)は、き裂深さの経時変化を示し、図5(B)は、き裂長さの経時変化を示したグラフである。   FIG. 5 shows an example of an SCC surface crack growth analysis result by the surface crack growth analysis method of the present invention. FIG. 5 (A) shows the change over time of the crack depth, and FIG. 5 (B) is a graph showing the change over time of the crack length.

すなわち、最深点3,き裂表面点4ともに低SCC進展速度、例えば、図2に示す材質Aの環境xにおけるSCC進展速度6で表面き裂が進展するとした場合…(ケース1、曲線22)、最深点3,き裂表面点4ともに高SCC進展速度、例えば、図2に示す材質Bの環境xにおけるSCC進展速度8で表面き裂が進展するとした場合…(ケース2、曲線23)、最深点3においては、低SCC進展速度、例えば、図2に示す材質Aの環境xにおけるSCC進展速度6で進展し、き裂表面点4においては、高SCC進展速度、例えば、図2に示す材質Bの環境xにおけるSCC進展速度8で進展するとした場合…(ケース3、曲線24)の3ケースについての表面き裂の進展解析についてのグラフである。   That is, in the case where the surface crack propagates at a low SCC growth rate at the deepest point 3 and the crack surface point 4, for example, the SCC growth rate 6 in the environment x of the material A shown in FIG. When the surface crack propagates at a high SCC propagation speed, for example, the SCC propagation speed 8 in the environment x of the material B shown in FIG. 2 at the deepest point 3 and the crack surface point 4 (case 2, curve 23), At the deepest point 3, it progresses at a low SCC growth rate, for example, the SCC growth rate 6 in the environment x of the material A shown in FIG. 2, and at the crack surface point 4, it shows a high SCC growth rate, for example, as shown in FIG. It is a graph about the progress analysis of the surface crack about three cases of the case where it progresses with the SCC progress speed 8 in the environment x of the material B ... (case 3, curve 24).

ここで、従来の表面き裂の進展解析方法においては、最深点3とき裂表面点4とに同一のき裂進展特性を設定することしかできなかったために、上記(ケース1)、(ケース2)、(ケース3)のケースのうち、(ケース1)および(ケース2)の2ケースの解析のみしか実施できず、実際の表面き裂形状の変化を高精度で予測できなかったが、本発明によれば、最深点3とき裂表面点4とのき裂進展特性を独立に設定してき裂進展速度を計算するので、(ケース3)のケースのように、表面き裂形状の変化をより現実的に解析することが可能である。   Here, in the conventional surface crack growth analysis method, since the same crack growth characteristic can be set at the deepest point 3 and the crack surface point 4, the above (Case 1), (Case 2). ) And (Case 3), only two cases (Case 1) and (Case 2) can be analyzed, and the actual surface crack shape change could not be predicted with high accuracy. According to the invention, since the crack growth rate is calculated by independently setting the crack propagation characteristics with the deepest point 3 and the crack surface point 4, the change in the surface crack shape is more improved as in the case of (Case 3). It is possible to analyze realistically.

本実施例の表面き裂の進展解析方法によれば、表面き裂2の最深点3とき裂表面点4とで、材質が異なることを考慮して、き裂進展特性を独立に設定し、き裂進展速度を計算して表面き裂進展解析を行うので、より現実に近い条件で精度の高い表面き裂進展解析を実施することができる。   According to the surface crack growth analysis method of the present embodiment, the crack propagation characteristics are set independently in consideration of the difference in material between the deepest point 3 and the crack surface point 4 of the surface crack 2, Since the crack growth rate is calculated and the surface crack growth analysis is performed, a highly accurate surface crack growth analysis can be performed under conditions closer to reality.

次に、本発明に係る表面き裂の進展解析方法の実施例3について、図6を用いて説明する。   Next, Example 3 of the surface crack growth analysis method according to the present invention will be described with reference to FIG.

突合せ溶接継手においては、母材31と母材32とを溶接金属33により接合するため、図6に示すように、溶接金属33が母材31と母材32との間に挟まれた構造となっている。ある種の材料の場合、母材31および母材32よりも溶接金属33の方がSCCに対する感受性が極めて高く、溶接金属33に発生したSCC表面き裂は、溶接金属33内のみを進展し、母材31および母材32部においては進展しないと見なせることがある。   In the butt weld joint, since the base material 31 and the base material 32 are joined by the weld metal 33, as shown in FIG. 6, the weld metal 33 is sandwiched between the base material 31 and the base material 32. It has become. In the case of a certain type of material, the weld metal 33 is much more sensitive to SCC than the base material 31 and the base material 32, and the SCC surface crack generated in the weld metal 33 propagates only in the weld metal 33. The base material 31 and the base material 32 may be regarded as not progressing.

このような場合に、本実施例の表面き裂の進展解析方法によれば、き裂最深点3とき裂表面点4とがともに溶接金属33内にある間は、最深点3とき裂表面点4とに同じき裂進展特性を与えて表面き裂進展解析を実施する。次に表面上のき裂長さが溶接金属33の幅に達した後は、き裂表面点のき裂進展速度を応力拡大係数の値に関わらず0として表面き裂進展解析を継続する。この方法により、図6に示す成長後の表面き裂5のような表面き裂形状を得ることができ、深さ方向のみに表面き裂が進展するモデルの解析を実施することが可能である。   In such a case, according to the surface crack growth analysis method of the present embodiment, while the crack deepest point 3 and the crack surface point 4 are both in the weld metal 33, the crack surface point at the deepest point 3. Surface crack growth analysis is performed by giving the same crack growth characteristics to 4. Next, after the crack length on the surface reaches the width of the weld metal 33, the crack growth rate at the crack surface point is set to 0 regardless of the value of the stress intensity factor, and the surface crack growth analysis is continued. By this method, a surface crack shape such as the surface crack 5 after growth shown in FIG. 6 can be obtained, and a model in which the surface crack propagates only in the depth direction can be analyzed. .

本実施例によれば、表面き裂2がき裂進展特性の異なる材質にさしかかった時点で最深点3とき裂表面点4とで独立にき裂進展速度を設定し直して表面き裂進展解析を行うので、SCC感受性の異なる材質で構成される溶接継手における表面き裂進展解析を高精度で実施することが可能である。   According to the present embodiment, when the surface crack 2 reaches a material having different crack growth characteristics, the crack growth rate is independently reset at the deepest point 3 and the crack surface point 4 to perform surface crack growth analysis. Therefore, it is possible to perform surface crack growth analysis on a welded joint made of materials having different SCC sensitivities with high accuracy.

次に、本発明に係る表面き裂の進展解析方法の実施例4について、図7を用いて説明する。   Next, a fourth embodiment of the surface crack growth analysis method according to the present invention will be described with reference to FIG.

本実施例の表面き裂の進展解析方法は、前記実施例3とは反対に、母材41の方が溶接金属42よりもSCC感受性が高い場合について解析する。本実施例は、表面き裂2の進展解析の過程において、表面き裂2の先端であるき裂表面点43とき裂表面点44のうち、き裂表面点43の一端が溶接金属42にさしかかった時点において、き裂表面点43でのき裂進展速度を応力拡大係数の値に関わらず0とおき、表面き裂進展解析を継続する。この方法により、成長後の表面き裂5のような表面き裂形状を得ることができる。   In contrast to the third embodiment, the surface crack propagation analysis method of the present embodiment analyzes the case where the base material 41 is more sensitive to SCC than the weld metal 42. In the present example, one end of the crack surface point 43 reached the weld metal 42 among the crack surface point 43 and the crack surface point 44 that are the tips of the surface crack 2 in the process of the propagation analysis of the surface crack 2. At that time, the crack growth rate at the crack surface point 43 is set to 0 regardless of the value of the stress intensity factor, and the surface crack growth analysis is continued. By this method, a surface crack shape such as a surface crack 5 after growth can be obtained.

本実施例によれば、表面き裂2の2つのき裂表面点43およびき裂表面点44のうち、いずれか一方がき裂進展特性の異なる材質にさしかかった時点で、き裂表面点43と他方のき裂表面点44とき裂最深点3とでそれぞれ独立にき裂進展速度を設定し直して表面き裂進展解析を行うので、SCC感受性の異なる材質で構成される溶接継手の表面き裂進展解析を精度良く実施することができる。   According to the present embodiment, when one of the two crack surface points 43 and the crack surface point 44 of the surface crack 2 approaches a material having different crack propagation characteristics, Since the surface crack growth analysis is performed by independently resetting the crack growth rate at the crack surface point 44 and the deepest crack point 3 on the other side, the surface crack of the welded joint composed of materials having different SCC susceptibility is performed. Progress analysis can be performed with high accuracy.

次に、本発明に係る表面き裂の進展解析方法の実施例5について、図8を用いて説明する。本実施例5の表面き裂の進展解析方法は、表面き裂の成長に従って、解析モデルを変更することを特徴とする方法である。   Next, a fifth embodiment of the surface crack growth analysis method according to the present invention will be described with reference to FIG. The surface crack growth analysis method of the fifth embodiment is a method characterized by changing the analysis model in accordance with the growth of the surface crack.

図1のような構造部材1の表面に表面き裂2が存在する場合に、まず図8(A)に示すような表面き裂51を有する平板モデル52として、表面き裂進展解析を実施する。   When the surface crack 2 exists on the surface of the structural member 1 as shown in FIG. 1, first, a surface crack propagation analysis is performed as a flat plate model 52 having a surface crack 51 as shown in FIG. .

次に、表面き裂51が平板モデル52の端部に到達したと判断された時点で、この表面き裂51を包絡するコーナー表面き裂53に置き換え、図8(B)に示すように、コーナー表面き裂53を有する平板モデル54として、表面き裂進展解析を継続実施する。   Next, when it is determined that the surface crack 51 has reached the end of the flat plate model 52, the surface crack 51 is replaced with an enveloping corner surface crack 53, and as shown in FIG. Surface crack propagation analysis is continued as a flat plate model 54 having a corner surface crack 53.

さらに、このコーナー表面き裂53が成長してき裂深さが平板モデル54の板厚全体に達した時点で、このコーナー表面き裂53を包絡する板厚貫通2次元表面き裂55に置き換え、図8(C)に示すように、板厚貫通2次元表面き裂55を有する平板モデル56として表面き裂進展解析を実施する。この板厚貫通2次元表面き裂55は、図8(D)に示す平板モデル56の平面図のような表面き裂形状となっている。   Further, when the corner surface crack 53 grows and the crack depth reaches the entire plate thickness of the flat plate model 54, the corner surface crack 53 is replaced with an enveloping plate-thickness two-dimensional surface crack 55. As shown in FIG. 8C, surface crack propagation analysis is performed as a flat plate model 56 having a plate thickness penetrating two-dimensional surface crack 55. The plate thickness penetration two-dimensional surface crack 55 has a surface crack shape as shown in the plan view of the flat plate model 56 shown in FIG.

本実施例の表面き裂の進展解析方法によれば、表面き裂の寸法に応じてモデルを順次置き換える表面き裂進展解析を行うので、実機における複雑な形状の構造部材中に存在する表面き裂の進展解析をより高精度で実施することが可能である。   According to the surface crack growth analysis method of the present embodiment, the surface crack growth analysis is performed in which the model is sequentially replaced according to the size of the surface crack. It is possible to perform crack growth analysis with higher accuracy.

(A)は、構造部材の表面き裂を示す模式図、(B)は、進展後の表面き裂を示す模式図。(A) is a schematic diagram which shows the surface crack of a structural member, (B) is a schematic diagram which shows the surface crack after progress. SCCき裂進展速度と応力拡大係数の関係の例を模式的に示す図。The figure which shows typically the example of the relationship between a SCC crack growth rate and a stress intensity factor. 本発明に係る表面き裂の進展解析のフローを示す図。The figure which shows the flow of the growth analysis of the surface crack which concerns on this invention. 実施例2の表面き裂の進展解析の構成を示す図。The figure which shows the structure of the propagation analysis of the surface crack of Example 2. FIG. (A)は、実施例2の表面き裂の進展解析方法によるき裂深さの経時変化を示すグラフ、(B)は、き裂長さの経時変化を示すグラフ。(A) is a graph which shows the time-dependent change of the crack depth by the surface crack growth analysis method of Example 2, (B) is a graph which shows the time-dependent change of the crack length. 実施例3の表面き裂の進展解析方法の構成を示す図。FIG. 10 is a diagram showing a configuration of a surface crack growth analysis method of Example 3. 実施例4の表面き裂の進展解析方法の構成を示す図。The figure which shows the structure of the growth analysis method of the surface crack of Example 4. FIG. (A)は、表面き裂を有する平板モデルの側面図、(B)は、表面き裂がコーナー表面き裂に進展した平板モデルの側面図、(C)は、コーナー表面き裂が板厚貫通2次元表面き裂に進展した平板モデルの側面図、(D)は、(C)の平板モデルの平面図。(A) is a side view of a flat plate model having a surface crack, (B) is a side view of a flat plate model in which the surface crack has progressed to a corner surface crack, and (C) is a thickness of the corner surface crack. The side view of the flat plate model which progressed to the penetration two-dimensional surface crack, (D) is a top view of the flat plate model of (C).

符号の説明Explanation of symbols

1 構造部材
2 表面き裂
3 き裂最深点
4 き裂表面点
5 成長後の表面き裂
6 材質Aの環境xにおけるSCC進展速度
7 材質Aの環境yにおけるSCC進展速度
8 材質Bの環境xにおけるSCC進展速度
11 ステップ
12 ステップ
13 ステップ
14 ステップ
15 ステップ
21 加工層
22 ケース1
23 ケース2
24 ケース3
31 母材
32 母材
33 溶接金属
41 母材
42 溶接金属
43 き裂表面点
44 き裂表面点
51 表面き裂
52 半だ円表面き裂を有する平板モデル
53 コーナー表面き裂
54 コーナー表面き裂を有する平板モデル
55 板厚貫通2次元表面き裂
56 板厚貫通2次元表面き裂を有する平板モデル
DESCRIPTION OF SYMBOLS 1 Structural member 2 Surface crack 3 Crack deepest point 4 Crack surface point 5 Surface crack 6 after growth 6 SCC propagation speed 7 in the environment x of the material A 8 SCC propagation speed 8 in the environment y of the material A 8 Environment x of the material B SCC progress rate in step 11 Step 12 Step 13 Step 14 Step 15 Step 21 Processed layer 22 Case 1
23 Case 2
24 Case 3
31 Base material 32 Base material 33 Weld metal 41 Base material 42 Weld metal 43 Crack surface point 44 Crack surface point 51 Surface crack 52 Flat plate model with semi-ellipse surface crack 53 Corner surface crack 54 Corner surface crack Plate model 55 with plate thickness penetration 2D surface crack 56 plate model with plate thickness penetration 2D surface crack

Claims (10)

構造部材の表面き裂の進展を解析する表面き裂の進展解析方法において、
表面き裂の進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上におけるき裂進展特性とをそれぞれ独立して設定し、
前記構造部材の表面き裂の進展解析を実施する際に、前記構造部材の深さ方向のき裂寸法であるき裂深さおよび部材表面上のき裂寸法であるき裂長さのいずれか一方が、予め定めた寸法に達した際に、前記き裂寸法のうちいずれか一方が前記予め定めた寸法以上増加しないよう一定値に固定して、他方のき裂寸法のみが増加するものとして表面き裂の進展解析を継続することを特徴とする表面き裂の進展解析方法。
In the surface crack growth analysis method to analyze the surface crack growth of structural members,
When calculating the growth rate of the surface crack, the crack propagation characteristics in the depth direction of the structural member and the crack propagation characteristics on the surface of the structural member are set independently ,
When performing the surface crack propagation analysis of the structural member, one of the crack depth which is the crack dimension in the depth direction of the structural member and the crack length which is the crack dimension on the member surface is When a predetermined dimension is reached, one of the crack dimensions is fixed at a fixed value so that it does not increase more than the predetermined dimension, and only the other crack dimension is increased. A method for analyzing the growth of a surface crack, characterized by continuing the analysis of the crack propagation.
構造部材の表面き裂の進展を解析する表面き裂の進展解析方法において、
表面き裂の進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上におけるき裂進展特性とをそれぞれ独立して設定し、
前記構造部材の表面き裂の進展解析を実施する際に、前記構造部材の表面上における2点の表面き裂先端のうち、いずれか一方の表面き裂先端が、予め定めた位置に到達した場合に、前記一方の表面き裂先端が前記予め定めた位置以上進展しないよう位置を固定して、他方の表面き裂先端およびき裂最深点の2点のみが増加するものとして表面き裂の進展解析を継続することを特徴とする表面き裂の進展解析方法。
In the surface crack growth analysis method to analyze the surface crack growth of structural members,
When calculating the growth rate of the surface crack, the crack propagation characteristics in the depth direction of the structural member and the crack propagation characteristics on the surface of the structural member are set independently,
When performing the surface crack propagation analysis of the structural member, one of the two surface crack tips on the surface of the structural member has reached a predetermined position. In this case, it is assumed that the position of the surface crack is fixed so that the one surface crack tip does not advance more than the predetermined position, and only the other surface crack tip and the deepest crack point are increased. A method for analyzing the propagation of a surface crack characterized by continuing the propagation analysis.
前記表面き裂の形状を半だ円形状と想定し、き裂深さとき裂長さの情報のみを用いて半だ円形状の表面き裂形状を決定することを特徴とする請求項1または2に記載の表面き裂の進展解析方法。 Claim 1 or 2, characterized in that determining the surface-out the shape of the crack assumes a semi-elliptical shape, can裂深prudent crack length of only using the information half-elliptical shape surface-out裂形shaped The method for analyzing the growth of a surface crack as described in 1. 前記表面き裂の成長に伴って表面進展解析の解析モデルを変更することを特徴とする請求項1または2に記載の表面き裂の進展解析方法。 3. The surface crack growth analysis method according to claim 1 or 2, wherein an analysis model for surface growth analysis is changed as the surface crack grows. 構造部材の表面き裂の進展を解析する表面き裂の進展解析装置が、
前記構造部材の表面におけるき裂長さと前記構造部材の深さ方向のき裂深さを入力する入力手段と、
応力拡大係数を計算する計算手段と、
き裂進展速度を算出する算出手段と、
き裂進展増分の計算手段と、
き裂寸法の更新手段とを備え、
前記き裂進展速度を算出する算出手段にてき裂進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上でのき裂進展特性とをそれぞれ独立して設定することが可能な構成とし、
前記構造部材の深さ方向のき裂寸法であるき裂深さおよび部材表面上のき裂寸法であるき裂長さのいずれか一方が、予め定めた寸法に達した際に、前記き裂寸法のうちいずれか一方が前記予め定めた寸法以上増加しないよう一定値に固定して、他方のき裂寸法のみが増加するものとして表面き裂の進展解析を継続して前記構造部材の表面き裂の進展解析を実施する構成としたことを特徴とする表面き裂の進展解析装置。
Surface crack growth analyzer that analyzes the progress of surface cracks in structural members
Input means for inputting a crack length on the surface of the structural member and a crack depth in the depth direction of the structural member;
A calculation means for calculating a stress intensity factor;
A calculation means for calculating the crack growth rate;
Means for calculating the crack growth increment;
A crack dimension updating means,
When calculating the crack growth rate in the calculation means for calculating the crack growth rate, the crack growth characteristic in the depth direction of the structural member and the crack propagation characteristic on the surface of the structural member are calculated. A configuration that can be set independently ,
When one of the crack depth, which is a crack dimension in the depth direction of the structural member, and the crack length, which is a crack dimension on the surface of the member, reaches a predetermined dimension, Either one of them is fixed at a constant value so that it does not increase more than the predetermined dimension, and the surface crack growth analysis is continued by assuming that only the other crack size is increased. A surface crack growth analysis device characterized in that the analysis is performed.
構造部材の表面き裂の進展を解析する表面き裂の進展解析装置が、
前記構造部材の表面におけるき裂長さと前記構造部材の深さ方向のき裂深さを入力する入力手段と、
応力拡大係数を計算する計算手段と、
き裂進展速度を算出する算出手段と、
き裂進展増分の計算手段と、
き裂寸法の更新手段とを備え、
前記き裂進展速度を算出する算出手段にてき裂進展速度を計算する際に、前記構造部材の深さ方向へのき裂進展特性と、前記構造部材の表面上でのき裂進展特性とをそれぞれ独立して設定することが可能な構成とし、
前記構造部材の表面上における2点の表面き裂先端のうち、いずれか一方の表面き裂先端が、予め定めた位置に到達した場合に、前記一方の表面き裂先端が前記予め定めた位置以上進展しないよう位置を固定して、他方の表面き裂先端およびき裂最深点の2点のみが増加するものとして表面き裂の進展解析を継続して前記構造部材の表面き裂の進展解析を実施する構成としたことを特徴とする表面き裂の進展解析装置。
Surface crack growth analyzer that analyzes the progress of surface cracks in structural members
Input means for inputting a crack length on the surface of the structural member and a crack depth in the depth direction of the structural member;
A calculation means for calculating a stress intensity factor;
A calculation means for calculating the crack growth rate;
Means for calculating the crack growth increment;
A crack dimension updating means,
When calculating the crack growth rate in the calculation means for calculating the crack growth rate, the crack growth characteristic in the depth direction of the structural member and the crack propagation characteristic on the surface of the structural member are calculated. A configuration that can be set independently,
When one of the two surface crack tips on the surface of the structural member has reached a predetermined position, the one surface crack tip is at the predetermined position. The position is fixed so that it does not progress further, and only the other surface crack tip and the crack deepest point are increased, and the surface crack growth analysis is continued to analyze the surface crack growth of the structural member. A surface crack propagation analysis device characterized by comprising
材料のき裂進展特性のデータを予めデータベースとして備え、材料名を入力するか、または材料名リストから選択することによってき裂進展特性のデータを読み込むことを特徴とする請求項5または6記載の表面き裂の進展解析装置。 The crack growth characteristic data of the material according to claim 5 or 6, wherein the crack growth characteristic data of the material is provided as a database in advance, and the crack growth characteristic data is read by inputting a material name or selecting from a material name list. Surface crack growth analyzer. 表面き裂進展解析の計算結果を記録し、この計算結果を取り出すことが可能な記憶媒体を設けたことを特徴とする請求項5または6記載の表面き裂の進展解析装置。 7. The surface crack growth analysis apparatus according to claim 5 or 6 , further comprising a storage medium that records a calculation result of the surface crack propagation analysis and can extract the calculation result. 前記記憶媒体に記録された過去の入力データを読み出した後、この入力データの一部を変更して表面き裂進展解析を実施することを特徴とする請求項8記載の表面き裂の進展解析装置。 9. The surface crack propagation analysis according to claim 8, wherein after the past input data recorded in the storage medium is read, a part of the input data is changed to perform surface crack propagation analysis. apparatus. 表面き裂の応力拡大係数を計算する際に、複数の応力拡大係数計算式が適用可能な場合に、これら複数の応力拡大係数計算式をデータベースとして備え、識別名を入力するかまたはリストから選択することにより適合する応力拡大係数計算式を読み込むことを特徴とする請求項5または6記載の表面き裂の進展解析装置。 When multiple stress intensity factor formulas are applicable when calculating the stress intensity factor of a surface crack, these multiple stress intensity factor formulas are provided as a database, and an identification name is entered or selected from a list. 7. A surface crack growth analysis apparatus according to claim 5 or 6, wherein a stress intensity factor calculation formula adapted to be read is read.
JP2004290164A 2004-10-01 2004-10-01 Surface crack growth analysis method and apparatus Active JP4364101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004290164A JP4364101B2 (en) 2004-10-01 2004-10-01 Surface crack growth analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004290164A JP4364101B2 (en) 2004-10-01 2004-10-01 Surface crack growth analysis method and apparatus

Publications (2)

Publication Number Publication Date
JP2006105673A JP2006105673A (en) 2006-04-20
JP4364101B2 true JP4364101B2 (en) 2009-11-11

Family

ID=36375603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004290164A Active JP4364101B2 (en) 2004-10-01 2004-10-01 Surface crack growth analysis method and apparatus

Country Status (1)

Country Link
JP (1) JP4364101B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568236B2 (en) * 2006-02-20 2010-10-27 株式会社東芝 Stress corrosion cracking evaluation method and stress corrosion cracking evaluation system
JP4176777B2 (en) * 2006-03-23 2008-11-05 三菱重工業株式会社 Method for predicting crack growth in gas turbine high-temperature parts and crack growth prediction apparatus using this method
JP4979546B2 (en) * 2007-11-13 2012-07-18 株式会社Ihi Weld structure verification method
JP4875639B2 (en) * 2008-01-25 2012-02-15 三菱重工業株式会社 Life evaluation method
JP5152078B2 (en) * 2008-05-09 2013-02-27 新日鐵住金株式会社 Fatigue life estimation device for welded structure, fatigue life estimation method for welded structure, and computer program
JP5087015B2 (en) * 2009-01-07 2012-11-28 株式会社東芝 Fracture strength evaluation method for dissimilar joints
WO2013114603A1 (en) * 2012-02-02 2013-08-08 中国電力株式会社 Method for estimating crack development, and information processing device
WO2013114604A1 (en) * 2012-02-02 2013-08-08 中国電力株式会社 Method for estimating crack growth, and information processing device
MX345386B (en) * 2012-08-31 2017-01-26 Chugoku Electric Power Fissure progress estimation method and information processing device.
JP5567081B2 (en) * 2012-08-31 2014-08-06 中国電力株式会社 Crack growth estimation method and information processing apparatus
JP6323232B2 (en) * 2013-11-01 2018-05-16 ソニー株式会社 Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JP2006105673A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP4364101B2 (en) Surface crack growth analysis method and apparatus
Susmel et al. Two methods for predicting the multiaxial fatigue limits of sharp notches
Pook A 50‐year retrospective review of three‐dimensional effects at cracks and sharp notches
Lazzarin et al. A notch stress intensity approach applied to fatigue life predictions of welded joints with different local toe geometry
Bahaaddini et al. Numerical study of the mechanical behavior of nonpersistent jointed rock masses
Cuesta et al. Determination of the Gurson–Tvergaard damage model parameters for simulating small punch tests
JP4784774B2 (en) Fracture toughness measurement method using continuous press-fitting method
WO2006071001A1 (en) Evaluating method of the residual stress determining method using the continuous indentation method
Hertelé et al. J-integral analysis of heterogeneous mismatched girth welds in clamped single-edge notched tension specimens
US9513200B1 (en) Determination of a threshold crack length
US20050154540A1 (en) Method of determining elastic modulus
Torres et al. Mechanics of the small punch test: a review and qualification of additive manufacturing materials
Chapuis et al. Best practices for the use of simulation in POD curves estimation
WO2020199235A1 (en) Method for calculating fracture toughness using indentation method
Wang et al. Probabilistic analysis of corrosion of reinforcement in RC bridges considering fuzziness and randomness
Livieri et al. Fatigue limit evaluation of notches, small cracks and defects: an engineering approach
Vargiu et al. Implementation of the Theory of Critical Distances using mesh control
Zettlemoyer STRESS CONCENTRATION AND FATIGUE OF WELDED DETAILS.
Citarella et al. Multiple surface crack propagation: numerical simulations and experimental tests
Lloyd Microtopography for ductile fracture process characterization: Part 1: Theory and methodology
Moore et al. CTOD and pipelines: the past, present, and future
Lee et al. Using the instrumented indentation technique for stress characterization of friction stir-welded API X80 steel
Soutsos et al. Estimation of on-site compressive strength of concrete
Olson et al. Assessment of weld residual stress measurement precision: mock-up design and results for the contour method
Slika et al. Probabilistic identification of chloride ingress in reinforced concrete structures: polynomial chaos Kalman filter approach with experimental verification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4364101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4