JP4363828B2 - Relay broadcast wave switching device - Google Patents

Relay broadcast wave switching device Download PDF

Info

Publication number
JP4363828B2
JP4363828B2 JP2002255605A JP2002255605A JP4363828B2 JP 4363828 B2 JP4363828 B2 JP 4363828B2 JP 2002255605 A JP2002255605 A JP 2002255605A JP 2002255605 A JP2002255605 A JP 2002255605A JP 4363828 B2 JP4363828 B2 JP 4363828B2
Authority
JP
Japan
Prior art keywords
signal
switching
digital broadcast
monitoring
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255605A
Other languages
Japanese (ja)
Other versions
JP2004096468A (en
Inventor
国明 大塚
卓 須賀
清治 磯部
喬 浅井
政 宮田
剛 中西
公彦 豊吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002255605A priority Critical patent/JP4363828B2/en
Publication of JP2004096468A publication Critical patent/JP2004096468A/en
Application granted granted Critical
Publication of JP4363828B2 publication Critical patent/JP4363828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、個別に受信した複数系統のデジタル放送信号を品質劣化具合に応じて選択的に切り替えて送出する中継放送波切替装置に関する。
【0002】
【従来の技術】
地上波の放送システムにあっては、放送サービスエリアの拡大及び難視聴地域の解消を目的として、中継局が設置されている。中継局では、放送波を直接受信した信号またはTTL(放送番組中継回線)などの専用回線で受信した放送信号を、再度送信機へ入力して送信している。受信系は通常複数系統あり、使用している系統の受信信号の品質が何らかの原因により劣化して、放送に使用できない状態になった場合には、直ちに他の系統へ切り替わるようになっている。
【0003】
現行のアナログ放送中継局では、使用中の伝送系の受信信号レベルを監視し、そのレベルが下がった場合に、予備の伝送系の受信信号レベルが十分高いことを確認した後、その伝送系へ切り替える手法をとっている。各伝送系の入力信号間の遅延及び位相調整については、おおよそ合わせておくだけで、実際の放送において大きな問題になるような障害は発生していない。
【0004】
ところで、日本の地上放送では、現行のアナログ放送からOFDM変調方式によるデジタル放送への移行が決定され、その実現に向けて種々の開発が進められている。ここで、デジタル放送では、複数の伝送系の中継放送波を選択的に切り替えて送信する際に、以下の問題を改善することが要望されている。
【0005】
まず、OFDM信号は帯域内の周波数特性が平坦であるため、仮に信号を受信していない場合でも、受信部のAGC(自動利得制御)などでノイズ成分が盛り上がり、OFDM信号に見えてしまう場合がある。このため、受信信号のレベルで信号の品質劣化を監視することは困難であり、従来のアナログ放送における中継放送波切り替えのための品質監視技術を利用することはできない。
【0006】
特に、OFDM信号では、伝送系の切り替えの際に一瞬でも無信号の期間が存在すると、切替出力の信号に不連続が生じ、送信信号の品質が大きく劣化してしまう。また、各伝送系の信号間の遅延及び位相が少しでもずれていると、切り替えの前後で信号に不連続が生じてしまい、切替出力の信号品質が劣化してしまう。
【0007】
【発明が解決しようとする課題】
以上述べたように、地上波デジタル放送の開始に向けて、デジタル放送信号の中継局において、中継放送波切替装置で伝送系の切り替えを行う場合に、信号品質を劣化させないようにすることが要望されている。
【0008】
本発明は、上記の課題を解決するためになされたもので、デジタル放送信号の伝送系を切り替える際に、それぞれの伝送系の信号品質を適切に監視し、しかも切替出力の信号品質を良好に維持することのできる中継放送波切替装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、個別に受信した複数系統のデジタル放送信号を選択的に切り替えて送出する中継放送波切替装置において、前記複数系統それぞれに伝送されるデジタル放送信号の受信品質を監視する監視手段と、この監視手段の監視結果に基づいて送出系統の切替時点を判定する切替判定手段と、前記複数系統のデジタル放送信号について互いの遅延差及び位相差を検出する検出手段と、この手段で検出された遅延差及び位相差に基づいて、送出中の系統のデジタル放送信号に他の系統のデジタル放送信号の遅延及び位相を一致させる調整手段と、この手段による調整後の各系統のデジタル放送信号を取り込み、前記品質判定手段の判定結果に基づいて送出系統の切り替えを行う切替手段とを具備し、前記切替手段には、切替時に切替元の信号を減衰させながら切替先の信号を増大させてシームレスに切り替える切替器を用いることを特徴とする。
【0010】
上記構成による中継放送波切替装置では、各系統に入力されたデジタル放送信号の受信品質を監視し、その監視結果に基づいて送出系統の切替時点を判定する。一方で、各系統のデジタル放送信号について互いの遅延差及び位相差を検出し、検出された遅延差及び位相差に基づいて、送出中の系統のデジタル放送信号に他の系統のデジタル放送信号の遅延及び位相を一致させておく。系の切替にはシームレス切替器を用い、切替元の信号を減衰させながら切替先の信号を増大させ、出力の瞬断をなくし、かつ出力レベルを一定に維持させる。このように、瞬断のおそれがなく、また出力レベルも一定に維持されるため、出力信号の品質を良好に維持することが可能となる。
【0011】
上記構成において、前記監視手段は、前記複数系統を分岐させ、その分岐経路にノイズ信号を重畳して受信信号の誤り率を測定し、その測定結果をデジタル放送信号の受信品質を評価値として出力することを特徴とする。
【0012】
また、前記デジタル放送信号はOFDM(直交周波数分割多重)信号であり、前記検出手段及び調整手段は、前記OFDM信号を直交復調後の信号について遅延差及び位相差の検出、調整を行い、再度直交変調して前記切替手段へ送出することを特徴とする。
【0013】
この場合、前記監視手段は、前記OFDM信号の直交復調後の信号について受信品質を監視することを特徴とする。
【0014】
また、前記切替判定手段は、前記監視手段の監視結果から、送出中の系統の受信品質と待機中の系統の受信品質とを比較し、送出中の系統の品質が待機中の系統の品質を下回った時点を切替時点と判定することを特徴とする。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0016】
図1は本発明に係る中継放送波切替装置の構成を示すブロック図である。図1において、1系入力、2系入力には、それぞれ個別に受信した、OFDM方式によるデジタル放送信号が供給される。1系入力のOFDM信号は、直交復調部101で複素形式のベースバンド信号に復調され、遅延・位相調整部102で遅延・位相の調整を受けた後、直交変調部103で再びOFDM信号に戻されてシームレス切替器104に供給される。同様に、2系入力のOFDM信号は、直交復調部105で複素形式のベースバンド信号に復調され、遅延・位相調整部106で遅延・位相の調整を受けた後、直交変調部107で再びOFDM信号に戻されてシームレス切替器104に供給される。
【0017】
一方、1系、2系にそれぞれ入力されたOFDM信号は本線系から分岐され、信号品質監視部108、109に供給される。各信号品質監視部108、109は、入力信号においてある一定の誤り率が得られるノイズの量を指標に品質を監視して、その劣化の度合いを評価するもので、各信号品質監視部108、109から出力される評価値は信号切替判定部110に供給される。
【0018】
上記信号切替判定部110は、1系及び2系の信号品質評価値の比較結果からいずれの系を送出系に接続するかを決定し、信号切替の時点を判定するもので、その結果は切替制御信号としてシームレス切替器104に供給されると共に、遅延・位相検出部111に供給される。
【0019】
また、1系、2系それぞれの直交復調後の信号は、本線系から分岐されて遅延・位相検出部111に供給される。この遅延・位相検出部111は、1系、2系それぞれの直交復調信号の相互相関をとり、信号間の遅延差及び位相差を検出し、検出結果を信号切替判定部110の判定結果に基づいて待機状態にある系の遅延・位相調整部102または106に送出する。これによって、待機状態にある系のデジタル放送信号は、送出状態にある系のデジタル放送信号と遅延・位相が一致するように調整される。
【0020】
上記のシステム構成による切替装置において、各主要部の具体的な構成を説明する。
【0021】
図2は、上記信号品質監視部108、109の具体的な構成を示すブロック図である。これらの信号品質監視部108、109は、図2に示すように、ノイズ信号源201で発生されるノイズ信号を混合器202で分岐経路に乗せ、測定器203で受信信号の誤り率を測定し、その測定結果を信号品質の評価値として出力する構成となっている。すなわち、ここで用いる信号品質監視の手法では、OFDM信号の伝送路にノイズ信号を乗せた状態でC/N比を見ることでOFDM信号においてある一定の誤り率が得られるノイズの量を判別し、その比率から劣化の度合いを検出するようにしている。
【0022】
図3は、上記信号切替判定部110の具体的な処理手順を示すフローチャートである。ここでは、初期状態で1系が選択されているものとする。まず、ステップS1において、信号品質監視部108、109から1系、2系それぞれの品質評価値を取り込み、両者を比較する。このとき、1系の品質評価値が2系の品質評価値を下回った場合には、ステップS2において、2系を選択するように切替制御信号を出力する。次に、ステップS3において、1系、2系それぞれの信号品質評価値を比較し、2系の品質評価値が1系の品質評価値を下回った場合には、ステップS4において、1系を選択するように切替制御信号を出力する。以後、ステップS1からS4を繰り返し実行する。
【0023】
図4は、上記シームレス切替器104の具体的な構成を示すブロック図である。このシームレス切替器104は、図4に示すように、1系直交変調部103、2系直交変調部104からのOFDM信号をそれぞれ可変アッテネータ301、302を介して加算器303に入力し、信号切替判定部110からの切替制御信号をクロスオーバー制御器304に入力する。
【0024】
このクロスオーバー制御器304は、切替制御信号によって1系から2系に切り替えるように指示されたとき、1系の可変アッテネータ301の抵抗値を実質0から無限大に増大させて1系出力を減衰させながら、2系の可変アッテネータ302の抵抗値を実質無限大から0に減少させて2系出力を増大させる。逆に、切替制御信号が2系から1系に切り替えるように指示しているとき、2系の可変アッテネータ302の抵抗値を実質0から無限大に増大させて2系出力を減衰させながら、1系の可変アッテネータ301の抵抗値を実質無限大から0に減少させて1系出力を増大させる。尚、その抵抗値の増減の割合は、直線的でも指数的でもよい。
【0025】
上記加算器303は、1系及び2系の各可変アッテネータ301、302からのOFDM信号を加算して出力する。切替時において、上記可変アッテネータ301、302の増減の割合が互いに同じであるため、加算器303の出力レベルは一定に維持される。
【0026】
すなわち、上記構成による中継放送波切替装置では、1系及び2系それぞれに入力されたOFDM信号を直交復調によるベースバンド領域で遅延差及び位相差が検出され、送出状態にある系統の信号を基準に待機状態にある系統の信号の遅延及び位相が調整され、常時同一タイミングとなるように制御される。一方、各系統の入力OFDM信号においてある一定の誤り率が得られるノイズの量を指標として信号品質を監視し、送出状態の系の品質評価値が待機状態の系の品質評価値を下回ったとき、系の切り替えを実行する。切り替えには、シームレス切替器104を用いて、送出系と待機系を所定の割合で増減してクロスオーバーさせながら加算出力するようにしているので、瞬断のおそれはなく、また出力レベルも一定に維持されるため、出力信号の品質を良好に維持することができる。
【0027】
誤り率の測定は、通常受信した信号を元の信号と比較するか、誤り訂正後のデータを正しいデータと仮定して訂正前後のデータを比較し、誤り数を数えることにより行うが、以下の方法でも判定が可能である。地上デジタル放送では、MPEG2で定義されているTS(トランスポートストリーム)信号が使用されている。そこでは、受信時の誤り訂正の過程で、リードソロモン復号後のデータに誤りが含まれる時に立てられるフラグ(リードソロモンエラーインジケータ)が定義されている。そのフラグを監視することにより、ビット誤り率を測定するよりも容易に、受信信号の誤り率を測定することが可能である。
【0028】
したがって、上記実施形態の構成によれば、個別に受信されたOFDM信号の伝送系を切り替える際に、それぞれの伝送系の信号品質を適切に監視することができ、しかもタイミングを揃えて瞬断することなく一定レベルで切替出力することから、切替出力の信号品質を良好に維持することができる。
【0029】
尚、上記実施形態では、信号品質監視を直交復調前の信号によって行うようにしたが、図5に示すように、直交復調部101、105の出力をそれぞれ信号品質監視部108、109に入力し、ベースバンドのIQ信号によって監視するようにしてもよい。
【0030】
また、上記実施形態は、入力2系統の場合について説明したが、さらに多数の系統を有する場合でも同様に実施可能である。
【0031】
その他、本発明は上記実施形態に限定されるものではなく、種々変形して実施可能である。
【0032】
【発明の効果】
以上説明したように本発明によれば、デジタル放送信号の伝送系を切り替える際に、それぞれの伝送系の信号品質を適切に監視し、しかも切替出力の信号品質を良好に維持することのできる中継放送波切替装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態である中継放送波切替装置の構成を示すブロック図。
【図2】 同実施形態の信号品質監視部の具体的な構成を示すブロック図。
【図3】 同実施形態の信号切替判定部の具体的な処理手順を示すフローチャート。
【図4】 同実施形態のシームレス切替器の具体的な構成を示すブロック図。
【図5】 本発明の他の実施形態である中継放送波切替装置の構成を示すブロック図。
【符号の説明】
101、105…直交復調部
102、106…遅延・位相調整部
103、107…直交変調部
104…シームレス切替器
108、109…信号品質監視部
110…信号切替判定部
111…遅延・位相検出部
201…ノイズ信号源
202…混合器
203…測定器
301、302…可変アッテネータ
303…加算器
304…クロスオーバー制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a relay broadcast wave switching device for selectively switching and transmitting individually received digital broadcast signals of a plurality of systems according to quality degradation.
[0002]
[Prior art]
In the terrestrial broadcasting system, a relay station is installed for the purpose of expanding the broadcasting service area and eliminating difficult viewing areas. In the relay station, a signal directly receiving a broadcast wave or a broadcast signal received on a dedicated line such as TTL (broadcast program relay line) is input to the transmitter again and transmitted. There are usually a plurality of reception systems, and when the quality of the received signal of the system being used deteriorates for some reason and becomes unusable for broadcasting, the system is immediately switched to another system.
[0003]
The current analog broadcasting relay station monitors the reception signal level of the transmission system in use, and if the level drops, confirms that the reception signal level of the standby transmission system is sufficiently high, and then goes to that transmission system. The method of switching is taken. The delay and phase adjustment between the input signals of each transmission system are only roughly adjusted, and there is no problem that causes a big problem in actual broadcasting.
[0004]
By the way, in Japanese terrestrial broadcasting, the transition from the current analog broadcasting to digital broadcasting using the OFDM modulation method has been decided, and various developments are being promoted to realize it. Here, in digital broadcasting, it is desired to improve the following problems when selectively switching and transmitting relay broadcast waves of a plurality of transmission systems.
[0005]
First, since the frequency characteristics in the band of the OFDM signal are flat, even if the signal is not received, the noise component may rise due to AGC (automatic gain control) or the like of the receiving unit, and may appear as an OFDM signal. is there. For this reason, it is difficult to monitor signal quality degradation at the level of the received signal, and it is not possible to use quality monitoring technology for switching relay broadcast waves in conventional analog broadcasting.
[0006]
In particular, in the OFDM signal, when there is a no-signal period even for a moment when switching between transmission systems, discontinuity occurs in the signal of the switching output, and the quality of the transmission signal is greatly degraded. Further, if the delay and phase between the signals in each transmission system are slightly shifted, the signal is discontinuous before and after switching, and the signal quality of the switching output is deteriorated.
[0007]
[Problems to be solved by the invention]
As described above, in order to start digital terrestrial broadcasting, it is desirable that digital broadcast signal relay stations should not degrade signal quality when switching transmission systems with relay broadcast wave switching devices. Has been.
[0008]
The present invention has been made to solve the above-described problems. When switching the transmission system of a digital broadcast signal, the signal quality of each transmission system is appropriately monitored, and the signal quality of the switching output is improved. It is an object to provide a relay broadcast wave switching device that can be maintained.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a reception quality of digital broadcast signals transmitted to each of the plurality of systems in a relay broadcast wave switching apparatus for selectively switching and transmitting digital broadcast signals of a plurality of systems received individually. Monitoring means for monitoring, switching determination means for determining a switching time point of the transmission system based on a monitoring result of the monitoring means, and detection means for detecting a mutual delay difference and phase difference for the digital broadcasting signals of the plurality of systems , Based on the delay difference and the phase difference detected by this means, the adjusting means for matching the delay and phase of the digital broadcast signal of the other system with the digital broadcast signal of the system being transmitted, and each adjusted after this means Switching means for capturing a digital broadcast signal of the system and switching the transmission system based on the determination result of the quality determination means, the switching means While attenuating switching source signal when switching to increase the switching destination of the signal is characterized by using a switch for switching seamlessly.
[0010]
In the relay broadcast wave switching device having the above configuration, the reception quality of the digital broadcast signal input to each system is monitored, and the transmission system switching time point is determined based on the monitoring result. On the other hand, the mutual delay difference and phase difference are detected for the digital broadcast signals of each system, and based on the detected delay difference and phase difference, the digital broadcast signal of the other system is added to the digital broadcast signal of the other system. The delay and phase are matched. A seamless switch is used for system switching to increase the switching destination signal while attenuating the switching source signal to eliminate instantaneous interruption of output and to maintain the output level constant. In this way, there is no fear of instantaneous interruption and the output level is kept constant, so that the quality of the output signal can be maintained satisfactorily.
[0011]
In the above configuration, the monitoring unit branches the plurality of systems, superimposes a noise signal on the branch path, measures the error rate of the received signal, and outputs the measurement result as the evaluation value of the reception quality of the digital broadcast signal It is characterized by doing.
[0012]
Further, the digital broadcast signal is an OFDM (Orthogonal Frequency Division Multiplex) signal, and the detection means and adjustment means detect and adjust the delay difference and phase difference of the OFDM signal after orthogonal demodulation, and are orthogonal again. Modulated and sent to the switching means.
[0013]
In this case, the monitoring means monitors reception quality of the signal after orthogonal demodulation of the OFDM signal.
[0014]
Further, the switching determination means compares the reception quality of the system being sent out with the reception quality of the stand-by system from the monitoring result of the monitoring means, and the quality of the system being sent out is compared with the quality of the stand-by system. It is characterized in that the time point below is determined as the switching time point.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0016]
FIG. 1 is a block diagram showing a configuration of a relay broadcast wave switching device according to the present invention. In FIG. 1, a digital broadcast signal by OFDM system, which is individually received, is supplied to the system 1 input and system 2 input. The 1-system input OFDM signal is demodulated into a complex baseband signal by the orthogonal demodulator 101, subjected to delay / phase adjustment by the delay / phase adjuster 102, and then returned to the OFDM signal by the orthogonal modulator 103 again. And supplied to the seamless switch 104. Similarly, the OFDM signal of the 2-system input is demodulated into a complex baseband signal by the quadrature demodulating unit 105, subjected to delay / phase adjustment by the delay / phase adjusting unit 106, and then again subjected to OFDM by the quadrature modulating unit 107. The signal is returned to the seamless switch 104.
[0017]
On the other hand, the OFDM signals input to the first and second systems are branched from the main line system and supplied to the signal quality monitoring units 108 and 109. Each of the signal quality monitoring units 108 and 109 monitors the quality using the amount of noise that can obtain a certain error rate in the input signal as an index, and evaluates the degree of deterioration. The evaluation value output from 109 is supplied to the signal switching determination unit 110.
[0018]
The signal switching determination unit 110 determines which system is connected to the transmission system from the comparison result of the signal quality evaluation values of the 1st system and the 2nd system, and determines the time of signal switching. The control signal is supplied to the seamless switch 104 and also supplied to the delay / phase detector 111.
[0019]
In addition, the signals after quadrature demodulation of the first and second systems are branched from the main line system and supplied to the delay / phase detection unit 111. The delay / phase detection unit 111 performs cross-correlation between the orthogonally demodulated signals of the first and second systems, detects a delay difference and a phase difference between the signals, and determines the detection result based on the determination result of the signal switching determination unit 110. To the delay / phase adjustment unit 102 or 106 of the system in the standby state. As a result, the digital broadcast signal in the standby state is adjusted so that the delay and phase coincide with those of the digital broadcast signal in the transmission state.
[0020]
In the switching device having the above system configuration, a specific configuration of each main part will be described.
[0021]
FIG. 2 is a block diagram showing a specific configuration of the signal quality monitoring units 108 and 109. As shown in FIG. 2, these signal quality monitoring units 108 and 109 place the noise signal generated by the noise signal source 201 on the branch path by the mixer 202, and measure the error rate of the received signal by the measuring unit 203. The measurement result is output as an evaluation value of signal quality. That is, in the signal quality monitoring method used here, the amount of noise that can obtain a certain error rate in the OFDM signal is determined by looking at the C / N ratio with the noise signal on the OFDM signal transmission line. The degree of deterioration is detected from the ratio.
[0022]
FIG. 3 is a flowchart showing a specific processing procedure of the signal switching determination unit 110. Here, it is assumed that system 1 is selected in the initial state. First, in step S1, quality evaluation values for the first and second systems are taken from the signal quality monitoring units 108 and 109, and the two are compared. At this time, if the quality evaluation value of the first system falls below the quality evaluation value of the second system, a switching control signal is output so as to select the second system in step S2. Next, in step S3, the signal quality evaluation values of system 1 and system 2 are compared. If the quality evaluation value of system 2 falls below the quality evaluation value of system 1, the system 1 is selected in step S4. The switching control signal is output so that Thereafter, steps S1 to S4 are repeatedly executed.
[0023]
FIG. 4 is a block diagram showing a specific configuration of the seamless switch 104. As shown in FIG. 4, the seamless switching unit 104 inputs the OFDM signals from the 1-system quadrature modulation unit 103 and the 2-system quadrature modulation unit 104 to the adder 303 via the variable attenuators 301 and 302, respectively, and performs signal switching. A switching control signal from the determination unit 110 is input to the crossover controller 304.
[0024]
When the crossover controller 304 is instructed to switch from system 1 to system 2 by a switching control signal, the resistance value of system 1 variable attenuator 301 is increased from substantially 0 to infinity to attenuate system 1 output. Then, the resistance value of the second system variable attenuator 302 is decreased from substantially infinity to 0 to increase the second system output. Conversely, when the switching control signal instructs to switch from the 2nd system to the 1st system, the resistance value of the 2nd system variable attenuator 302 is increased from substantially 0 to infinity to attenuate the 2nd system output. The resistance value of the variable attenuator 301 of the system is decreased from substantially infinity to 0 to increase the output of the 1 system. The rate of increase / decrease in the resistance value may be linear or exponential.
[0025]
The adder 303 adds the OFDM signals from the 1-system and 2-system variable attenuators 301 and 302 and outputs the result. At the time of switching, since the rate of increase / decrease of the variable attenuators 301 and 302 is the same, the output level of the adder 303 is kept constant.
[0026]
In other words, in the relay broadcast wave switching device having the above-described configuration, the delay difference and the phase difference are detected in the baseband region by orthogonal demodulation for the OFDM signals input to the first and second systems, and the signal of the system in the transmission state is used as a reference. The delay and phase of the signal of the system in the standby state are adjusted and controlled so as to always have the same timing. On the other hand, when the signal quality is monitored using the amount of noise that can obtain a certain error rate in the input OFDM signal of each system as an index, and the quality evaluation value of the system in the transmission state falls below the quality evaluation value of the system in the standby state Execute system switching. For switching, the seamless switching device 104 is used to increase and decrease the transmission system and standby system at a predetermined rate and add and output while crossover, so there is no risk of instantaneous interruption and the output level is also constant. Therefore, the quality of the output signal can be maintained satisfactorily.
[0027]
The error rate is usually measured by comparing the received signal with the original signal, or by comparing the data before and after correction assuming that the data after error correction is correct and counting the number of errors. It can also be determined by the method. In terrestrial digital broadcasting, TS (transport stream) signals defined in MPEG2 are used. It defines a flag (Reed-Solomon error indicator) that is set when an error is included in the data after Reed-Solomon decoding in the process of error correction at the time of reception. By monitoring the flag, it is possible to measure the error rate of the received signal more easily than measuring the bit error rate.
[0028]
Therefore, according to the configuration of the above embodiment, when switching the transmission system of individually received OFDM signals, the signal quality of each transmission system can be properly monitored, and the timing is matched and instantaneous interruption occurs. Since the switching output is performed at a constant level without any change, the signal quality of the switching output can be maintained satisfactorily.
[0029]
In the above embodiment, the signal quality monitoring is performed by the signal before the quadrature demodulation. However, as shown in FIG. 5, the outputs of the quadrature demodulation units 101 and 105 are input to the signal quality monitoring units 108 and 109, respectively. Alternatively, monitoring may be performed using a baseband IQ signal.
[0030]
Moreover, although the said embodiment demonstrated the case of two input systems, even when it has many more systems, it can implement similarly.
[0031]
In addition, the present invention is not limited to the above embodiment, and can be implemented with various modifications.
[0032]
【The invention's effect】
As described above, according to the present invention, when switching the transmission system of a digital broadcast signal, the relay can appropriately monitor the signal quality of each transmission system and maintain the signal quality of the switching output well. A broadcast wave switching device can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a relay broadcast wave switching device according to an embodiment of the present invention.
FIG. 2 is an exemplary block diagram showing a specific configuration of a signal quality monitoring unit according to the embodiment;
FIG. 3 is an exemplary flowchart illustrating a specific processing procedure of a signal switching determination unit according to the embodiment;
FIG. 4 is an exemplary block diagram illustrating a specific configuration of the seamless switch according to the embodiment;
FIG. 5 is a block diagram showing a configuration of a relay broadcast wave switching device according to another embodiment of the present invention.
[Explanation of symbols]
101, 105 ... quadrature demodulation units 102, 106 ... delay / phase adjustment units 103, 107 ... quadrature modulation unit 104 ... seamless switchers 108, 109 ... signal quality monitoring unit 110 ... signal switch determination unit 111 ... delay / phase detection unit 201 ... Noise signal source 202 ... Mixer 203 ... Measuring instruments 301 and 302 ... Variable attenuator 303 ... Adder 304 ... Crossover controller

Claims (2)

個別に受信した複数系統のOFDM(直交周波数分割多重)信号のデジタル放送信号を選択的に切り替えて送出する中継放送波切替装置において、
前記受信した複数系統それぞれに伝送されるデジタル放送信号の受信品質を監視する監視手段と、
この監視手段の監視結果に基づいて送出系統の切替時点を判定する切替判定手段と、
前記受信した複数系統のデジタル放送信号について直交復調してベースバンド信号に変換する直交復調手段と、
この直交復調手段からのベースバンド信号について互いの遅延差及び位相差を検出する検出手段と、
この検出手段で検出された遅延差及び位相差に基づいて、送出中の系統のデジタル放送のベースバンド信号に他の系統のデジタル放送のベースバンド信号の遅延及び位相を一致させる調整手段と、
この調整手段による調整後の各系統のデジタル放送のベースバンド信号をOFDM(直交周波数分割多重)信号のデジタル放送信号に直交変調する直交変調手段と、
この直交変調手段からのOFDM(直交周波数分割多重)信号のデジタル放送信号を取り込み、前記品質判定手段の判定結果に基づいて送出系統の切り替えを行う切替手段とを具備し、
前記切替判定手段は、前記監視手段の監視結果から、送出中の系統の受信品質と待機中の系統の受信品質とを比較し、送出中の系統の品質が待機中の系統の品質を下回った時点を切替時点と判定してこれを繰り返し、
前記切替手段は、切替時に切替元の信号を減衰させながら切替先の信号を増大させてシームレスに切り替える切替器を備えることを特徴とする中継放送波切替装置。
In a relay broadcast wave switching device for selectively switching and transmitting digital broadcast signals of multiple systems of OFDM (orthogonal frequency division multiplexing) signals received individually,
Monitoring means for monitoring the reception quality of the digital broadcast signal transmitted to each of the received plurality of systems;
A switching determination means for determining a switching point of the transmission system based on the monitoring result of the monitoring means;
Orthogonal demodulation means for orthogonally demodulating and converting into a baseband signal for the received digital broadcast signals of a plurality of systems;
Detection means for detecting a mutual delay difference and phase difference for the baseband signal from the orthogonal demodulation means;
Based on the delay difference and phase difference detected by the detection means, adjustment means for matching the delay and phase of the baseband signal of the digital broadcast of the other system with the baseband signal of the digital broadcast of the system being transmitted,
Orthogonal modulation means for orthogonally modulating the digital broadcast baseband signal of each system after adjustment by this adjustment means to the digital broadcast signal of OFDM (orthogonal frequency division multiplexing) signal;
Switching means for taking in a digital broadcast signal of OFDM (orthogonal frequency division multiplexing) signal from the orthogonal modulation means , and switching the transmission system based on the determination result of the quality determination means,
The switching determination means compares the reception quality of the system being sent out with the reception quality of the stand-by system from the monitoring result of the monitoring means, and the quality of the sending system is lower than the quality of the stand-by system Determine the time as the switching time and repeat this,
The switching means includes a switching device for switching seamlessly by increasing a switching destination signal while attenuating a switching source signal at the time of switching.
前記監視手段は、前記検出手段及び調整手段前の前記OFDM信号の受信品質として、前記OFDM信号が地上デジタル放送のMPEG2(Moving Picture Experts Group phase 2)で定義されているトランスポートストリーム信号であるとき、受信時の誤り訂正の過程で得られるリードソロモンエラーインジケータを監視してビット誤り率を測定することを特徴とする請求項1記載の中継放送波切替装置。When the OFDM signal is a transport stream signal defined in MPEG2 (Moving Picture Experts Group phase 2) of digital terrestrial broadcasting as the reception quality of the OFDM signal before the detection unit and the adjustment unit, the monitoring unit 2. The relay broadcast wave switching device according to claim 1, wherein the bit error rate is measured by monitoring a Reed-Solomon error indicator obtained in the process of error correction at the time of reception .
JP2002255605A 2002-08-30 2002-08-30 Relay broadcast wave switching device Expired - Fee Related JP4363828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255605A JP4363828B2 (en) 2002-08-30 2002-08-30 Relay broadcast wave switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255605A JP4363828B2 (en) 2002-08-30 2002-08-30 Relay broadcast wave switching device

Publications (2)

Publication Number Publication Date
JP2004096468A JP2004096468A (en) 2004-03-25
JP4363828B2 true JP4363828B2 (en) 2009-11-11

Family

ID=32061090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255605A Expired - Fee Related JP4363828B2 (en) 2002-08-30 2002-08-30 Relay broadcast wave switching device

Country Status (1)

Country Link
JP (1) JP4363828B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528656B2 (en) * 2005-03-18 2010-08-18 株式会社東芝 Terrestrial digital broadcasting system and its clock phase determination method
JP7123657B2 (en) * 2018-06-25 2022-08-23 Necプラットフォームズ株式会社 SIGNAL MONITORING DEVICE, TRANSMISSION DEVICE, SIGNAL MONITORING METHOD, AND SIGNAL MONITORING PROGRAM
JP7254485B2 (en) * 2018-11-13 2023-04-10 株式会社東芝 Signal quality monitoring apparatus and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173425A (en) * 1987-01-12 1988-07-18 Fujitsu Ltd Serial-parallel conversion circuit
JPH0389752A (en) * 1989-09-01 1991-04-15 Nec Corp Demodulator
JPH0817410B2 (en) * 1993-02-26 1996-02-21 日本電気株式会社 Bit error rate measuring method and apparatus
JPH0821879B2 (en) * 1993-05-20 1996-03-04 日本電気株式会社 Switching without interruption
JPH08279781A (en) * 1995-04-06 1996-10-22 Fujitsu Ltd Repeater, terminal station equipment and receiver
JPH10173635A (en) * 1996-10-09 1998-06-26 Nec Eng Ltd Switching device without short break
JP2000013315A (en) * 1998-06-23 2000-01-14 Hitachi Ltd Optical transmitter and optical transmission system
JP2000324036A (en) * 1999-05-12 2000-11-24 Toshiba Corp Repeater for television broadcast
JP3696026B2 (en) * 2000-02-09 2005-09-14 三洋電機株式会社 Digital satellite communication equipment
JP2001339344A (en) * 2000-05-29 2001-12-07 Hitachi Ltd Optical signal changeover device

Also Published As

Publication number Publication date
JP2004096468A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US6330293B1 (en) Method for receiving multicarrier digital signals
US9601123B2 (en) Undetectable combining of nonaligned concurrent signals
MX2015000062A (en) Adaptive bandwidth management of iboc audio signals during blending.
MX2015000061A (en) Look ahead metrics to improve blending decision.
KR101228778B1 (en) Receiving apparatus
KR100275708B1 (en) Digital broadcasting signal processing device and method for improving channel interference of analog broadcasting
US7924954B2 (en) Frequency correction
WO2004002013A1 (en) Array antenna receiver device
EP0895388A2 (en) Symbol synchronisation and mode detection for multicarrier signals
JP2007020178A (en) Correction of mismatches between two i and q channels
JP4363828B2 (en) Relay broadcast wave switching device
US20130169881A1 (en) Video/broadcast data receiving system
US6111603A (en) Portable field tester for measuring signal reception of a digitally broadcast signal
US20030115588A1 (en) Broadcasting signal processing apparatus
JP4008804B2 (en) Reception margin detection apparatus and reception margin detection method for digital signal transmission system
JP2001285156A (en) Diversity receiver
JP2002026756A (en) Broadcast receiver
EP2104237A2 (en) Receiving apparatus and method of making channel list in receiving apparatus
US8867677B2 (en) Demodulation device
JPH09224015A (en) Digital broadcasting receiver
JP3661084B2 (en) Digital broadcast receiver
JP3777003B2 (en) Tuning system
JP2010206312A (en) Receiver, and reception method of the same
JP2008219145A (en) Line quality monitoring system for digital broadcast signal, its monitoring method, and line quality monitoring device
JP7123657B2 (en) SIGNAL MONITORING DEVICE, TRANSMISSION DEVICE, SIGNAL MONITORING METHOD, AND SIGNAL MONITORING PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees