JP4361521B2 - Measure method for reaching position of shield machine - Google Patents

Measure method for reaching position of shield machine Download PDF

Info

Publication number
JP4361521B2
JP4361521B2 JP2005250597A JP2005250597A JP4361521B2 JP 4361521 B2 JP4361521 B2 JP 4361521B2 JP 2005250597 A JP2005250597 A JP 2005250597A JP 2005250597 A JP2005250597 A JP 2005250597A JP 4361521 B2 JP4361521 B2 JP 4361521B2
Authority
JP
Japan
Prior art keywords
shield machine
shield
planned excavation
reaching
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005250597A
Other languages
Japanese (ja)
Other versions
JP2007063832A (en
Inventor
和昭 大深
義孝 児玉
照光 川和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2005250597A priority Critical patent/JP4361521B2/en
Publication of JP2007063832A publication Critical patent/JP2007063832A/en
Application granted granted Critical
Publication of JP4361521B2 publication Critical patent/JP4361521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、シールド掘進機の到達位置計測方法に関し、特に到達立坑に到達するシールド掘進機を坑内に進入させるのに先立って、シールド掘進機の位置を計測するシールド掘進機の到達位置計測方法に関する。   The present invention relates to a reaching position measuring method for a shield machine, and more particularly to a reaching position measuring method for a shield machine that measures the position of a shield machine before a shield machine that reaches a reaching shaft is advanced into the mine. .

シールドトンネル工法は、一般に、発進立坑から到達立坑に向けて、後方に順次設置したセグメントから掘進反力を得ながらシールド掘進機による掘進作業を行うことにより、発進立坑と到達立坑との間に連設配置した多数のセグメントによるトンネルを形成する工法である。またシールドトンネル工法を行うためのシールド掘進機は、泥土圧式シールド掘進機、泥水式シールド掘進機等の種々のシールド掘進機が公知である。   In general, the shield tunnel method is connected between the starting shaft and the reaching shaft by performing the excavation work with the shield machine while obtaining the reaction force from the segments that are sequentially installed backward from the starting shaft to the reaching shaft. This is a method of forming a tunnel by a number of installed segments. Various shield machines such as a mud pressure shield machine and a muddy shield machine are known as shield machines for carrying out the shield tunneling method.

シールドトンネル工法においては、シールド掘進機を到達立坑に到達させる際に、到達立坑の周囲に連続壁等によって構築された土留壁に開口形成した坑口を貫通させて、シールド掘進機を坑内に進入させることになるが、例えば坑口の周囲の地盤に地盤改良等を施すことにより、開口形成した坑口や、これを貫通するシールド掘進機の外周面と当該坑口との隙間から土砂や水が坑内に流入しないようにする工夫がなされている。また、坑口が形成される部分の土留壁を例えば貧配合のコンクリート等を用いて切削可能に形成し、シールド掘進機によって坑口部分の土留壁を直接切削させながら到達立坑に進入させる工法が採用される場合もある。   In the shield tunnel construction method, when the shield machine is made to reach the arrival shaft, the shield machine is made to enter the tunnel by passing through a wellhead that is formed in a retaining wall constructed by a continuous wall or the like around the arrival shaft. However, for example, by improving the ground around the wellhead, earth and sand and water will flow into the well from the gap between the wellhead with the opening formed and the outer surface of the shield machine that penetrates the ground. There is a device to avoid it. In addition, a method is adopted in which the earth retaining wall in the part where the wellhead is formed is cut using, for example, poorly-mixed concrete, and the retaining wall is directly cut by the shield machine to enter the reach shaft There is also a case.

そして、シールド掘進機は、到達立坑の坑口に精度良く到達させる必要があり、また坑口の坑内側には、シールド掘進機の外周面と坑口の内周面との間に介在してこれらの隙間をシールするエントランスシール部材を取り付ける坑口リングが設けられることから、シールド掘進機が設計された本来の位置から許容誤差を超えて位置ずれした状態で坑口に到達すると、エントランスシール部材や坑口リングを破損する場合がある。   And it is necessary for the shield machine to reach the wellhead of the reaching shaft with high accuracy, and the gap inside these wells is interposed between the outer peripheral surface of the shield machine and the inner peripheral surface of the wellhead. Since the wellhead ring for attaching the entrance seal member is installed, the entrance seal member and the wellhead ring will be damaged if the shield tunneling machine reaches the wellhead in a state where it exceeds the allowable error from the designed original position. There is a case.

一方、シールド掘進機による掘進方向の測量は、一般に、発進立坑側からトンネルの坑内を通して行われ、先端のシールド掘進機の位置や姿勢を検出する方法が採用されているが、掘進距離が長くなると到達直前での測量誤差も大きくなるおそれがある。特にトンネル内に二次覆工コンクリートを形成しない場合や、到達側に場所的な制約を受ける場合等、到達時における高い到達精度を要求される場合には、例えば測量を回数を増やす等、より厳格な測量の管理が行われてきたが、その信頼性については限界がある。   On the other hand, surveying in the direction of digging by the shield machine is generally performed from the start shaft side through the tunnel tunnel, and a method of detecting the position and orientation of the shield machine at the tip is adopted, but when the digging distance becomes long Surveying errors immediately before arrival may also increase. In particular, when secondary lining concrete is not formed in the tunnel, or when high arrival accuracy is required at the time of arrival, such as when the destination side is subject to location restrictions, for example, increasing the number of surveys, etc. Strict surveying has been managed, but its reliability is limited.

このため、到達立坑に接近してきたシールド掘進機の位置を、到達立坑側から計測する方法も開発されている(例えば、特許文献1参照)。特許文献1の到達位置計測方法は、到達立坑からシールド掘進機に向けてボーリング孔を形成して、このボーリング孔の先端に受信センサーを取り付けると共に、シールド掘進機の回転カッターに発信コイルを取り付けておき、受信センサーによって回転カッターの発信コイルからの電磁波を検知して、到達立坑とシールド掘進機との相対位置を計測するものである。
特開平3−246483号公報
For this reason, the method of measuring the position of the shield machine which has approached the reaching shaft from the reaching shaft side has also been developed (see, for example, Patent Document 1). In the arrival position measuring method of Patent Document 1, a boring hole is formed from the reaching shaft toward the shield machine, a receiving sensor is attached to the tip of the bore hole, and a transmission coil is attached to the rotary cutter of the shield machine. The electromagnetic wave from the transmission coil of the rotary cutter is detected by the receiving sensor, and the relative position between the reaching shaft and the shield machine is measured.
JP-A-3-246383

しかしながら、特許文献1に記載の到達位置計測方法では、受信センサーと発信コイルとは地山を介在させた非接触の状態で配置されるため、掘削地盤の状態によっては誤差を生じることがあり、その信頼性も十分ではない。したがって、到達立坑側から物理的にシールド掘進機の位置ずれを確認することができる、精度の良い確実な計測方法の新たに開発することが望まれている。   However, in the arrival position measurement method described in Patent Document 1, the receiving sensor and the transmission coil are arranged in a non-contact state with a natural ground interposed, so an error may occur depending on the state of the excavated ground. Its reliability is not enough. Therefore, it is desired to newly develop a reliable and accurate measurement method that can physically confirm the positional deviation of the shield machine from the reach shaft side.

本発明は、到達立坑側からシールド掘進機の位置ずれを物理的に確認することで、到達立坑の坑内に進入させる際のシールド掘進機の位置を、精度良く確実に計測することのできるシールド掘進機の到達位置計測方法を提供することを目的とする。   The present invention is a shield drilling machine that can accurately and accurately measure the position of the shield tunneling machine when entering the tunnel of the reaching shaft by physically confirming the positional deviation of the shield tunneling machine from the reaching shaft side. It aims at providing the arrival position measurement method of a machine.

本発明は、到達立坑に到達するシールド掘進機を前記到達立坑の坑内に進入させるのに先立って、シールド掘進機の位置を前記到達立坑側から計測するシールド掘進機の到達位置計測方法であって、前記到達立坑の壁面から地中に向けて、シールド掘進機の掘削予定外周線上及び/又は該掘削予定外周線から径方向に所定間隔離れた位置に、シールド掘進機による到達掘進方向に沿って導電用電線を所定の長さで埋設配線しておき、該導電用電線がシールド掘進機の回転カッターにより切断されて通電が遮断されるのを、該導電用電線と接続する通電確認手段によって確認することにより、前記シールド掘進機の前記掘削予定外周線からのずれを計測するシールド掘進機の到達位置計測方法を提供することにより、上記目的を達成したものである。   The present invention is a reaching position measuring method for a shield machine that measures the position of the shield machine from the side of the reach shaft before the shield machine that reaches the reach shaft enters the tunnel of the reach shaft. The shield tunneling machine has a predetermined excavation line and / or a predetermined distance in the radial direction from the planned drilling line along the reaching direction of the shield tunneling machine from the wall of the reaching shaft to the ground. Conductive wiring is buried in a predetermined length, and it is confirmed by the energization confirmation means connected to the conductive wire that the conductive wire is cut by the rotary cutter of the shield machine and cuts off current. By achieving a method for measuring the arrival position of the shield machine that measures the deviation of the shield machine from the planned excavation peripheral line, the above object is achieved. That.

また、本発明のシールド掘進機の到達位置計測方法は、複数の前記導電用電線が、前記掘削予定外周線の径方向に間隔をおいて一列に配置される電線群を構成していることが好ましい。   Further, the arrival position measuring method of the shield machine according to the present invention may be configured such that a plurality of the conductive wires constitute a group of wires arranged in a row at intervals in the radial direction of the planned excavation outer circumferential line. preferable.

さらに、本発明のシールド掘進機の到達位置計測方法は、前記電線群を構成する複数の前記導電用電線が、少なくとも1つの前記導電用電線を前記掘削予定外周線の内方に配置して、前記掘削予定外周線を挟んだ径方向両側に亘って一列に配置されていることが好ましい。   Furthermore, in the reaching position measuring method of the shield machine of the present invention, the plurality of conductive wires constituting the wire group are arranged at least one of the conductive wires inside the planned excavation outer peripheral line, It is preferable that they are arranged in a row across both radial sides across the planned excavation outer circumference.

さらにまた、本発明のシールド掘進機の到達位置計測方法は、前記電線群が、前記掘削予定外周線の周方向に間隔をおいて少なくとも3箇所に配置されていることが好ましい。   Furthermore, in the reaching position measuring method of the shield machine according to the present invention, it is preferable that the wire group is arranged at least at three positions with a spacing in the circumferential direction of the planned excavation outer circumferential line.

そして、本発明のシールド掘進機の到達位置計測方法は、地中への埋設配線長さの異なる導電用電線からなる複数組の前記電線群が、前記掘削予定外周線の周方向に間隔をおいて配置されていることが好ましい。   And, the arrival position measuring method of the shield machine according to the present invention is a method in which a plurality of sets of electric wires having different wiring lengths embedded in the ground are spaced apart in the circumferential direction of the planned excavation outer circumference. Are preferably arranged.

また、本発明のシールド掘進機の到達位置計測方法は、前記電線群を構成する前記導電用電線の少なくとも1つを前記回転カッターにより切断した後に、前記回転カッターからコピーカッターを突出させながら前記回転カッターを回転させて、次の径方向外方に位置する導電用電線を切断させることもできる。   Further, the shield position machine measuring method of the shield machine according to the present invention is characterized in that after rotating at least one of the conductive wires constituting the wire group by the rotary cutter, the rotation is performed while projecting a copy cutter from the rotary cutter. The electric wire for electric conduction located in the next radial outside can also be cut by rotating the cutter.

さらに、本発明のシールド掘進機の到達位置計測方法では、前記通電確認手段は、前記導電用電線を含んだ配線経路に繋がれる電球からなり、該電球を前記到達立坑側の作業ヤードに設けた位置表示板において点灯させて、電球の光が消えることにより前記導電用電線の切断を確認するようにすることもできる。   Furthermore, in the reaching position measuring method of the shield machine according to the present invention, the energization confirmation means is composed of a light bulb connected to a wiring path including the conductive wire, and the light bulb is provided in a work yard on the reach vertical shaft side. It is also possible to check the cutting of the conductive wire by turning on the position display board and extinguishing the light from the light bulb.

本発明のシールド掘進機の到達位置計測方法によれば、到達立坑側からシールド掘進機の位置ずれを物理的に確認することで、到達立坑の坑内に進入させる際のシールド掘進機の位置を、精度良く確実に計測することができる。   According to the arrival position measuring method of the shield machine of the present invention, by physically confirming the positional deviation of the shield machine from the arrival shaft side, the position of the shield machine when entering the tunnel of the arrival shaft, Accurate and reliable measurement is possible.

本発明の好ましい一実施形態に係るシールド掘進機の到達位置計測方法は、例えば泥土圧式シールド掘進機によるシールドトンネル工法において、図1に示すように、到達立坑12に向かってトンネル掘進するシールド掘進機11を、坑口14を介して到達立坑12に到達させるべく、到達立坑12に接近したシールド掘進機11の位置を精度良く計測し、必要に応じてシールド掘進機11の位置を修正しながら到達立坑12の坑内に進入させることにより、坑口14の周縁部分に取り付けた坑口リング13やこれに支持されるエントランスシール部材(図示せず)の破損等を効果的に回避できるようにするために採用されたものである。   A shield tunneling machine according to a preferred embodiment of the present invention includes a shield tunneling machine that tunnels toward a tunnel shaft 12 as shown in FIG. 1 in a shield tunnel construction method using a mud pressure shield tunneling machine, for example. 11, the position of the shield machine 11 approaching the reach shaft 12 is measured with high accuracy so as to reach the reach shaft 12 through the wellhead 14, while the position of the shield machine 11 is corrected as necessary. It is adopted in order to effectively avoid breakage of the wellhead ring 13 attached to the peripheral portion of the wellhead 14 and the entrance seal member (not shown) supported by this by entering the inside of the 12 wells. It is a thing.

そして、本実施形態のシールド掘進機11の到達位置計測方法は、到達立坑12に到達するシールド掘進機11を到達立坑12の坑内に進入させるのに先立って、シールド掘進機11の位置を到達立坑12側から計測する計測方法であって、到達立坑12の壁面12aから地中に向けて、シールド掘進機11の掘削予定外周線15(図2参照)上及び/又はこの掘削予定外周線15から径方向に所定間隔離れた位置に、シールド掘進機15による到達掘進方向Xに沿って導電用電線10を所定の長さで埋設配線しておき、この導電用電線10がシールド掘進機11の回転カッター11aにより切断されて通電が遮断されるのを、導電用電線10と接続する通電確認手段としての例えば電球16によって確認することにより、シールド掘進機11の掘削予定外周線15からのずれを計測するものである。   And the arrival position measuring method of the shield machine 11 of this embodiment makes the position of the shield machine 11 reach | attain the reach shaft prior to making the shield machine 11 reaching the reach shaft 12 enter the inside of the reach shaft 12. 12 from the side wall 12a of the reach shaft 12 and into the ground, on the planned excavation outer periphery 15 (see FIG. 2) of the shield machine 11 and / or from the planned excavation outer periphery 15 The conductive wire 10 is buried and wired in a predetermined length along the arrival direction X by the shield machine 15 at positions spaced apart by a predetermined distance in the radial direction, and the conductive wire 10 is rotated by the shield machine 11. By checking, for example, with a light bulb 16 as an energization confirmation means connected to the conductive wire 10, the shield machine 1 is cut off by the cutter 11 a. Deviation from expected excavation peripheral line 15 of and measures the.

また、本実施形態では、図2に示すように、複数の導電用電線10が、掘削予定外周線15の径方向Yに間隔をおいて一列に配置されることにより、電線群20を構成している。   Further, in the present embodiment, as shown in FIG. 2, a plurality of conductive wires 10 are arranged in a line at intervals in the radial direction Y of the planned excavation outer peripheral line 15, thereby configuring the wire group 20. ing.

さらに、本実施形態では、電線群20を構成する複数の導電用電線10が、少なくとも1つ(本実施形態では2つ)の導電用電線10を掘削予定外周線15の内方に配置して、掘削予定外周線15を挟んだ径方向Y両側に亘って一列に配置されている。   Further, in the present embodiment, the plurality of conductive wires 10 constituting the wire group 20 are arranged such that at least one (two in the present embodiment) conductive wires 10 are disposed inside the planned excavation outer peripheral line 15. In addition, they are arranged in a line over both sides in the radial direction Y across the planned excavation outer circumferential line 15.

さらにまた、本実施形態では、電線群20が、掘削予定外周線15の周方向に間隔をおいて少なくとも3箇所(本実施形態では4箇所)に配置されている。   Furthermore, in this embodiment, the electric wire group 20 is arrange | positioned at at least 3 places (4 places in this embodiment) at intervals in the circumferential direction of the excavation planned outer circumference line 15.

本実施形態では、シールド掘進機11は、例えば泥土圧式シールド掘進機として公知のものであり、図1に示すように、外郭体11bの内部で組み立てられて後方に順次設置されるセグメント17から掘進反力を得ながら、シールドジャッキ11cを伸縮させ、カッターモータ11dを駆動して回転カッター11aを回転することにより、地山の切羽面を切削しつつ掘進作業を行い、発進立坑と到達立坑12との間に連設配置した多数のセグメント17によるトンネルを形成してゆく工法である。また、本実施形態では、シールド掘進機11は、回転カッター11aの周面からその突出量を制御可能に進退突出するコピーカッター21を備えており、このコピーカッター21によって、回転カッター11aによるカッター面の外側に、その突出長さに応じた深さの余堀を行うことができるようになっている。   In the present embodiment, the shield machine 11 is known as, for example, a mud pressure shield machine, and as shown in FIG. 1, the shield machine 11 is assembled from the segment 17 that is assembled inside the outer body 11b and sequentially installed rearward. While obtaining the reaction force, the shield jack 11c is expanded and contracted, and the cutter motor 11d is driven to rotate the rotary cutter 11a, so that the excavation work is performed while cutting the face of the natural ground, and the starting shaft and the reaching shaft 12 are In this method, a tunnel is formed by a large number of segments 17 arranged in series. Moreover, in this embodiment, the shield machine 11 is provided with a copy cutter 21 that protrudes and retreats from the peripheral surface of the rotary cutter 11a so that the protrusion amount can be controlled, and the cutter surface by the rotary cutter 11a is provided by this copy cutter 21. The outer surface of the outer wall can be deepened according to the protruding length.

到達立坑12は、例えばSMW(セメント・ミキシング・ウォール)工法による連続壁によって構築された土留壁18により周囲を囲まれて形成されるものであり、その側壁面には、シールド掘進機11による円形断面の掘削予定外周線15の延長上に、当該掘削予定外周線15よりも僅かに径の大きな坑口14が形成され、この坑口14を貫通させて、シールド掘進機11が到達立坑12の坑内に進入することになる。   The reach shaft 12 is formed so as to be surrounded by a retaining wall 18 constructed by a continuous wall by, for example, an SMW (cement mixing wall) method, and the side wall surface has a circular shape by the shield machine 11. A well opening 14 having a slightly larger diameter than the planned excavation outer peripheral line 15 is formed on the extension of the cross section of the planned excavation outer peripheral line 15, and the shield excavator 11 is inserted into the shaft of the reaching vertical shaft 12 through the well opening 14. To enter.

ここで、到達立坑12の坑口14は、シールド掘進機11が到達立坑12に到達するのに先立って、例えば坑口14の周囲の地盤に地盤改良を施して改良地盤19を形成した後、土留壁18による到達立坑12の壁面12aに鏡切りを施すことによって開口形成される。また、坑口14は、鏡切りを行った後に、ハツリ取った開口部分の内周面に沿って坑口コンクリート14aを打設することにより、シールド掘進機11による掘削予定外周線15の形状に沿ったこれと同心状の円形開口として形成されることになる。また、坑口14の坑内側の周縁部分に沿って坑口リング13を取り付けると共に、例えば坑口リング13の坑内側を坑口蓋22によって覆うと共に、坑口蓋22と改良地盤19との間の空間に、例えばシールド掘進機11によって切削可能な硬化性流動化処理土を充填材23として充填しておくことにより、改良地盤19を強固に安定させ、シールド掘進機11が到達立坑12に到達するまでの待機状態となる。   Here, before the shield machine 11 reaches the reaching shaft 12, the well port 14 of the reaching shaft 12 is subjected to, for example, ground improvement on the ground around the shaft 14 to form the improved ground 19, and then the retaining wall An opening is formed by applying a mirror cut to the wall surface 12 a of the reaching shaft 12 by 18. In addition, the wellhead 14 has been cut in the mirror, and then the concrete well 14a is placed along the inner peripheral surface of the opened opening portion, so that the shape of the outer peripheral line 15 scheduled for excavation by the shield machine 11 is met. It is formed as a concentric circular opening. Moreover, while attaching the wellhead ring 13 along the inner peripheral edge part of the wellhead 14, for example, the inside of the wellhead ring 13 is covered with the wellhead cover 22, and in the space between the wellhead cover 22 and the improved ground 19, for example, By filling curable fluidized soil that can be cut by the shield machine 11 as the filler 23, the improved ground 19 is firmly stabilized, and the standby state until the shield machine 11 reaches the arrival shaft 12 It becomes.

そして、本実施形態では、各導電用電線10は、例えば到達立坑12の壁面12aに鏡切りを行ってから、坑口蓋22と改良地盤19との間の空間に充填材23が充填されるまでの間に、土留壁18が撤去された後の坑口14部分の壁面12aから改良地盤19に向けて、例えば2.0mの長さLで、シールド掘進機11による到達掘進方向Xに沿って、これと平行になるように各々地中に埋設設置されることになる。   And in this embodiment, after each conductive wire 10 performs mirror cutting on the wall surface 12a of the reaching shaft 12, for example, until the filler 23 is filled in the space between the well cover 22 and the improved ground 19 In the meantime, from the wall surface 12a of the wellhead portion 14 after the retaining wall 18 is removed to the improved ground 19, for example, with a length L of 2.0 m, along the reaching excavation direction X by the shield machine 11, Each will be buried in the ground so as to be parallel to this.

各導電用電線10を地中に埋設設置するには、例えば導電用電線10として、好ましくは6芯ケーブルの3対の電線を2芯づつ先端で結んで所定の長さで往復するように形成した電線10aを用い、この導電用電線10を、図3(a)に示すように、例えば幅30mm、厚さ8mmの断面形状を備え、2.0m以上の長さを有する桟木24の両側の端面24aに沿って、例えば桟木24の先端から2.0m以上の長さに渡って接合配置する。一方、例えば到達立坑12の壁面12aから改良地盤19に向けて、掘削予定外周線15の周方向に90度の等角度間隔で上下及び左右の4箇所に配置された各電線群20(図2参照)毎に、図3(b)に示すように、桟木24を挿入するための穿孔25を、例えば孔径が42mmのボーリング装置を用いて、例えば60mmのピッチP1で、掘削予定外周線15を挟んだ径方向Yの両側に各々1箇所づつ2.0m以上の深さで並べて形成する。   In order to embed and install each conductive wire 10 in the ground, for example, the conductive wire 10 is preferably formed by reciprocating a predetermined length by connecting three pairs of 6-core cables with two cores at the tip. As shown in FIG. 3 (a), the conductive wire 10a has a cross-sectional shape having a width of 30 mm and a thickness of 8 mm, for example, on both sides of the pier 24 having a length of 2.0 m or more. Along the end face 24 a, for example, a joint is disposed over a length of 2.0 m or more from the tip of the pier 24. On the other hand, for example, from the wall surface 12a of the reaching shaft 12 toward the improved ground 19, the electric wire groups 20 arranged at four positions on the upper and lower sides and the right and left sides at equal angular intervals of 90 degrees in the circumferential direction of the planned excavation outer circumferential line 15 (FIG. 2). As shown in FIG. 3 (b), the perforation 25 for inserting the crosspiece 24 is drilled at a pitch P1 of 60 mm, for example, using a boring device having a hole diameter of 42 mm, for example. They are formed side by side at a depth of 2.0 m or more on each side of the sandwiched radial direction Y.

そして、桟木24の長手方向を掘削予定外周線15の径方向Yに沿わせつつ、各桟木24の両端面24aに接合された導電用電線10が穿孔25の内周面に当接するように片側に寄せた状態として、桟木24を、各穿孔25に導電用電線10の先端が2.0mの深さに配置されるように挿入する。これによって、各桟木24の両側の端面24aに各々接合された導電用電線10が、上下左右の各々の電線群20において、掘削予定外周線15を挟んだ両側に2箇所づつ、径方向Yに直線状に並べられら状態で、例えば30mmピッチで各々配置されることになる。   Then, while the longitudinal direction of the pier 24 is aligned with the radial direction Y of the outer circumferential line 15 to be excavated, one side so that the conductive wire 10 joined to the both end faces 24a of each pier 24 contacts the inner peripheral surface of the perforation 25 In this state, the crosspiece 24 is inserted into each perforation 25 so that the tip of the conductive wire 10 is disposed at a depth of 2.0 m. As a result, the conductive wires 10 respectively joined to the end surfaces 24a on both sides of each pier 24 are arranged in the radial direction Y at two locations on both sides of the planned outer excavation line 15 in each of the upper, lower, left and right electric wire groups 20. For example, they are arranged at a pitch of 30 mm while being arranged in a straight line.

また、このように桟木24を介して各穿孔25に導電用電線10を挿入配置したら、各穿孔25に例えば貧配合モルタル26を充填して硬化させることにより、各導電用電線10は、穿孔25に固定された状態で各々埋設配線されることになる。さらに、本実施形態では、各導電用電線10の穿孔25に挿入された側と反対側の端部は、到達立坑12の坑内まで延設されると共に、好ましくは、坑内の作業ヤードに設けられた管理用の位置表示板27(図1参照)において導電用電線10の埋設位置に対応させて配設された電球16に各々接続される。これによって、図4に示すように、導電用電線10及び電球16を含む各配線経路28に電圧が負荷されて、シールド掘進機11が導電用電線10の埋設位置に至るまでの間、各電球16は、点灯された状態を保持することが可能になる。   Further, when the conductive wires 10 are inserted and arranged in the respective perforations 25 through the piers 24 in this way, the respective conductive wires 10 are formed in the perforated 25 by filling the perforated 25 with, for example, the poor blended mortar 26 and curing it. Each embedded wiring is fixed in a state where it is fixed to the wiring. Furthermore, in this embodiment, the end of the conductive wire 10 opposite to the side inserted in the perforation 25 extends to the inside of the reaching shaft 12, and is preferably provided in a work yard in the inside of the shaft. Further, the control position display board 27 (see FIG. 1) is connected to each of the light bulbs 16 arranged corresponding to the embedded positions of the conductive wires 10. As a result, as shown in FIG. 4, each light bulb is subjected to a period in which voltage is applied to each wiring path 28 including the conductive wire 10 and the light bulb 16 until the shield machine 11 reaches the buried position of the conductive wire 10. 16 can hold the lighted state.

そして、本実施形態によれば、シールド掘進機11を到達立坑12に到達させるべく、シールド掘進機11が到達立坑12まで例えば2.0m以内の距離に接近した際に、導電用電線10がシールド掘進機11の回転カッター11aにより切断されて通電が遮断されるのを、導電用電線10と接続する電球16の消灯によって確認することにより、シールド掘進機11の掘削予定外周線15からの位置ずれを容易に計測することができる。すなわち、本実施形態では、掘削予定外周線15から径方向Yの内方及び外方に所定間隔離れた位置に、シールド掘進機11による到達掘進方向Xに沿って導電用電線10が埋設配線されているので、例えば図5に示すように、到達立坑12の坑内の位置表示板27において、掘削予定外周線15の右側に配置された電線群20を構成する導電用電線10と連通する電球16のうち、掘削予定外周線15の外側に配置された電球16が消灯されることにより、掘削予定外周線15の外側に配置された導電用電線10が回転カッター11aによって物理的に直接切断されたことを確認することができ、これによって導電用電線10が配設された例えば30mmのピッチの誤差の範囲で、シールド掘進機11の位置ずれを計測することが可能になる。   And according to this embodiment, when the shield machine 11 approaches the reach shaft 12, for example, within a distance of 2.0 m or less, the conductive wire 10 is shielded so that the shield machine 11 reaches the reach shaft 12. By confirming that the energization is cut off by the rotary cutter 11a of the excavator 11 by turning off the light bulb 16 connected to the conductive wire 10, the shield excavator 11 is displaced from the planned excavation outer peripheral line 15. Can be easily measured. In other words, in the present embodiment, the conductive wire 10 is embedded and wired along the ultimate excavation direction X by the shield excavator 11 at positions spaced apart from the planned excavation outer circumferential line 15 inward and outward in the radial direction Y by a predetermined distance. Therefore, for example, as shown in FIG. 5, in the position display plate 27 in the underground shaft 12, the light bulb 16 communicated with the conductive wire 10 constituting the wire group 20 arranged on the right side of the planned excavation outer peripheral line 15. Among them, the light bulb 16 disposed outside the planned excavation outer peripheral line 15 is turned off, so that the conductive wire 10 disposed outside the planned excavation outer peripheral line 15 is physically cut directly by the rotary cutter 11a. As a result, it is possible to measure the positional deviation of the shield machine 11 within an error range of a pitch of, for example, 30 mm where the conductive wire 10 is disposed. .

したがって、本実施形態によれば、到達立坑12側からシールド掘進機11の位置ずれを物理的に確認することで、到達立坑12の坑内に進入させる際のシールド掘進機の位置を、精度良く確実に計測することが可能になる。   Therefore, according to the present embodiment, the positional displacement of the shield machine 11 from the arrival shaft 12 side is physically confirmed, so that the position of the shield machine when entering the shaft of the arrival shaft 12 can be accurately and reliably determined. It becomes possible to measure.

また、本実施形態では、電線群20を構成する複数の導電用電線10のうちの少なくとも1つが掘削予定外周線15の内方に配置されているので、シールド掘進機11が到達立坑12まで例えば2.0m以内の距離に接近した際に、内方に配置されたいずれかの導電用電線10が確実に切断されることになり、これによってシールド掘進機11の接近を確実に検知することが可能になる。   Moreover, in this embodiment, since at least one of the plurality of conductive wires 10 constituting the wire group 20 is disposed inside the planned excavation outer peripheral line 15, the shield machine 11 extends to the reaching shaft 12, for example. When approaching a distance of 2.0 m or less, any one of the conductive wires 10 arranged inward is surely cut, and thus the approach of the shield machine 11 can be reliably detected. It becomes possible.

さらに、本実施形態では、掘削予定外周線15の径方向Yに導電用電線10が一列に配置された電線群20が、掘削予定外周線15の周方向に少なくとも3箇所に配置されているので、シールド掘進機11の上下方向、及び左右方向の位置ずれを、確実に検知することが可能になる。   Furthermore, in the present embodiment, the electric wire groups 20 in which the conductive wires 10 are arranged in a row in the radial direction Y of the planned excavation outer circumferential line 15 are arranged in at least three locations in the circumferential direction of the planned excavation outer circumferential line 15. Thus, it is possible to reliably detect the positional deviation of the shield machine 11 in the vertical direction and the horizontal direction.

さらにまた、本実施形態では、電線群20を構成する導電用電線10の少なくとも1つを回転カッター11aにより切断した後に、回転カッター11aからコピーカッター21を突出させながら回転カッター11aを回転させて、次の径方向外方に位置する導電用電線10を切断させ、この間のコピーカッター21の突出量を検出することのより、例えば30mmピッチで配置された導電用電線10による位置ずれの計測よりもさらに細かいシールド掘進機11の位置ずれを計測することが可能になる。   Furthermore, in this embodiment, after cutting at least one of the conductive wires 10 constituting the wire group 20 with the rotary cutter 11a, the rotary cutter 11a is rotated while the copy cutter 21 is projected from the rotary cutter 11a. By cutting the conductive wire 10 located outside the next radial direction and detecting the protruding amount of the copy cutter 21 during this time, for example, rather than measuring the displacement by the conductive wire 10 arranged at a pitch of 30 mm. Furthermore, it becomes possible to measure the positional deviation of the fine shield machine 11.

そして、本実施形態では、地中への埋設配線長さLの異なる導電用電線10からなる複数組の電線群20として、例えば埋設配線長さLが、2.0m、1.5m、1.0m、0.5mの長さの導電用電線10からなる複数組20を、例えば各々4箇所づつ、掘削予定外周線15の周方向に間隔をおいて配置しておくことにもでる。これによって、シールド掘進機11が到達立坑12に近づくのに従って、シールド掘進機11の位置ずれを計測しつつ、シールド掘進機の方向修正を行い、位置ずれの戻り具合を確認しながら、さらに精度良く到達立坑12に到達させることが可能になる。   In the present embodiment, as a plurality of sets of electric wire groups 20 composed of conductive wires 10 having different embedded wiring length L to the ground, for example, the embedded wiring length L is 2.0 m, 1.5 m, 1.m. It is also possible to arrange a plurality of sets 20 of the conductive wires 10 having a length of 0 m and 0.5 m at intervals in the circumferential direction of the planned excavation outer circumferential line 15, for example, at four locations each. As a result, as the shield machine 11 approaches the reaching shaft 12, the position of the shield machine 11 is measured, the direction of the shield machine is corrected, and the return of the position error is confirmed, with higher accuracy. It is possible to reach the reaching shaft 12.

なお、本発明は上記実施形態に限定されることなく種々の変更が可能である。例えば、導電用電線は、掘削予定外周線の径方向に間隔をおいて一列に配置する必要は必ずしもなく、その位置を特定できれば、掘削予定外周線上及び/又は掘削予定外周線予定線から径方向に所定間隔離れた位置に、ランダムに設けておくこともできる。また、本発明は、泥土圧式シールド掘進機に限定されることなく、泥水式シールド掘進機等の、その他の種々のシールド掘進機を到達立坑に到達させるべく採用することもできる。さらに、各導電用電線10を地中に埋設設置する手段として、桟木を用いた方法以外のその他の種々の方法を採用することができ、通電確認手段は電球を消灯させるものである必要は必ずしもない。さらにまた、各導電用電線10は、閉回路となるが、切断される箇所においては、電線を一本の状態としておくことが、地盤中を電気が通過することにより導電用電線10が切断されても導電が切れなくなるのを、効果的に回避できる点で好ましい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the conductive wires do not necessarily need to be arranged in a line at intervals in the radial direction of the planned excavation outer circumference line. It is also possible to provide them at random positions at predetermined intervals. Further, the present invention is not limited to the mud pressure shield excavator, but can also be adopted to make various other shield excavators such as a mud shield shield excavator reach the reaching shaft. Further, various means other than the method using the pier can be adopted as means for burying and installing each conductive wire 10 in the ground, and the energization confirmation means is not necessarily required to turn off the light bulb. Absent. Furthermore, each conductive wire 10 is a closed circuit. However, at the portion to be cut, it is possible to keep the wire in a single state. When the electricity passes through the ground, the conductive wire 10 is cut. However, it is preferable in that it can be effectively avoided that the conduction is not cut off.

本発明の好ましい一実施形態に係るシールド掘進機の到達位置計測方法を説明する略示断面図である。It is a schematic sectional drawing explaining the arrival position measuring method of the shield machine which concerns on one preferable embodiment of this invention. 本発明の好ましい一実施形態に係るシールド掘進機の到達位置計測方法を説明する図1のA−Aに沿った略示断面図である。FIG. 2 is a schematic cross-sectional view taken along the line AA of FIG. 1 for explaining the arrival position measuring method of the shield machine according to a preferred embodiment of the present invention. (a)及び(b)は、導電用電線を地中に埋設設置する方法を説明する断面図である。(A) And (b) is sectional drawing explaining the method to embed and install the electric wire for conduction in the ground. 導電用電線及び電球を含む各配線経路の説明図である。It is explanatory drawing of each wiring path | route including a conductive wire and a light bulb. 位置表示板において、シールド掘進機の位置ずれを確認する状況の説明図である。It is explanatory drawing of the condition which confirms the position shift of a shield machine in a position display board.

符号の説明Explanation of symbols

10 導電用電線
11 シールド掘進機
11a 回転カッター
12 到達立坑
12a 到達立坑の壁面
13 坑口リング
14 坑口
14a 坑口コンクリート
15 掘削予定外周線
16 電球(通電確認手段)
17 セグメント
18 土留壁
19 改良地盤
20 電線群
21 コピーカッター
22 坑口蓋
23 充填材
24 桟木
25 穿孔
26 貧配合モルタル
27 位置表示板
28 配線経路
X シールド掘進機による到達掘進方向
Y 掘削予定外周線の径方向
DESCRIPTION OF SYMBOLS 10 Conductive wire 11 Shield machine 11a Rotating cutter 12 Reaching shaft 12a Reaching shaft wall 13 Wellhead ring 14 Wellhead 14a Wellhead concrete 15 Scheduled outer circumference line 16 Light bulb (energization confirmation means)
17 Segment 18 Retaining Wall 19 Improved Ground 20 Wire Group 21 Copy Cutter 22 Mouth Cover 23 Filling Material 24 Pier 25 Drilling 26 Poor Mixing Mortar 27 Position Display Board 28 Wiring Route X Reached Drilling Direction Y by Shield Engraver Diameter of Drilling Outer Peripheral Line direction

Claims (7)

到達立坑に到達するシールド掘進機を前記到達立坑の坑内に進入させるのに先立って、シールド掘進機の位置を前記到達立坑側から計測するシールド掘進機の到達位置計測方法であって、
前記到達立坑の壁面から地中に向けて、シールド掘進機の掘削予定外周線上及び/又は該掘削予定外周線から径方向に所定間隔離れた位置に、シールド掘進機による到達掘進方向に沿って導電用電線を所定の長さで埋設配線しておき、
該導電用電線がシールド掘進機の回転カッターにより切断されて通電が遮断されるのを、該導電用電線と接続する通電確認手段によって確認することにより、前記シールド掘進機の前記掘削予定外周線からのずれを計測するシールド掘進機の到達位置計測方法。
Prior to making the shield machine reaching the reach shaft enter the tunnel of the reach shaft, the shield machine reach position measuring method for measuring the position of the shield machine from the reach shaft side,
Conducted along the arrival direction of the shield excavator at a predetermined distance in the radial direction from the planned excavation peripheral line of the shield excavator and / or on the planned excavation outer periphery line of the shield excavator from the wall of the reach shaft to the ground Wires for burial with a predetermined length,
By confirming that the electric wire for conduction is cut by the rotary cutter of the shield machine and cut off the electric current by means of energization confirmation means connected to the electric wire for electric conduction, from the planned excavation outer circumference line of the shield machine A method for measuring the arrival position of a shield machine that measures the displacement of the shield.
複数の前記導電用電線が、前記掘削予定外周線の径方向に間隔をおいて一列に配置される電線群を構成している請求項1に記載のシールド掘進機の到達位置計測方法。   The reaching position measuring method for a shield machine according to claim 1, wherein the plurality of conductive wires constitute a group of wires arranged in a row at intervals in the radial direction of the planned excavation outer circumference. 前記電線群を構成する複数の前記導電用電線が、少なくとも1つの前記導電用電線を前記掘削予定外周線の内方に配置して、前記掘削予定外周線を挟んだ径方向両側に亘って一列に配置される請求項2に記載のシールド掘進機の到達位置計測方法。   A plurality of the conductive wires constituting the wire group are arranged in a row across both radial sides of the planned excavation outer circumferential line, with at least one of the conductive electric wires being arranged inward of the planned excavation outer peripheral line. The arrival position measuring method of the shield machine according to claim 2, which is disposed in 前記電線群が、前記掘削予定外周線の周方向に間隔をおいて少なくとも3箇所に配置されている請求項2又は3に記載のシールド掘進機の到達位置計測方法。   The arrival position measuring method of the shield machine according to claim 2 or 3, wherein the electric wire group is disposed at least at three positions with a space in the circumferential direction of the planned excavation outer circumferential line. 地中への埋設配線長さの異なる導電用電線からなる複数組の前記電線群が、前記掘削予定外周線の周方向に間隔をおいて配置されている請求項2〜4のいずれかに記載のシールド掘進機の到達位置計測方法。   5. The plurality of sets of the electric wire groups made of conductive wires having different embedded wiring lengths in the ground are arranged at intervals in the circumferential direction of the planned excavation outer circumferential line. How to measure the arrival position of the shield machine. 前記電線群を構成する前記導電用電線の少なくとも1つを前記回転カッターにより切断した後に、前記回転カッターからコピーカッターを突出させながら前記回転カッターを回転させて、次の径方向外方に位置する導電用電線を切断させる請求項2〜5のいずれかに記載のシールド掘進機の到達位置計測方法。   After cutting at least one of the conductive wires constituting the wire group by the rotary cutter, the rotary cutter is rotated while projecting a copy cutter from the rotary cutter, and is positioned outside in the next radial direction. The reaching position measuring method for a shield machine according to any one of claims 2 to 5, wherein the conductive wire is cut. 前記通電確認手段は、前記導電用電線を含んだ配線経路に繋がれる電球からなり、該電球を前記到達立坑側の作業ヤードに設けた位置表示板において点灯させて、電球の光が消えることにより前記導電用電線の切断を確認する請求項1〜6のいずれかに記載のシールド掘進機の到達位置計測方法。
The energization confirmation means comprises a light bulb connected to a wiring path including the conductive wire, and the light is turned on on a position display plate provided in the work yard on the reaching shaft side, and the light of the light bulb is extinguished. The reaching position measuring method of the shield machine according to any one of claims 1 to 6, wherein the cutting of the conductive wire is confirmed.
JP2005250597A 2005-08-31 2005-08-31 Measure method for reaching position of shield machine Active JP4361521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005250597A JP4361521B2 (en) 2005-08-31 2005-08-31 Measure method for reaching position of shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005250597A JP4361521B2 (en) 2005-08-31 2005-08-31 Measure method for reaching position of shield machine

Publications (2)

Publication Number Publication Date
JP2007063832A JP2007063832A (en) 2007-03-15
JP4361521B2 true JP4361521B2 (en) 2009-11-11

Family

ID=37926341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005250597A Active JP4361521B2 (en) 2005-08-31 2005-08-31 Measure method for reaching position of shield machine

Country Status (1)

Country Link
JP (1) JP4361521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117967342B (en) * 2024-03-29 2024-07-19 三一重型装备有限公司 Method and device for controlling cutting part of transverse shaft heading machine and transverse shaft heading machine

Also Published As

Publication number Publication date
JP2007063832A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
CN103216234B (en) A kind of construction method of horizontal branch many well groups butt shaft
US8286731B2 (en) Method and apparatus for constructing deep vertical boreholes and underground cut-off walls
JP5448974B2 (en) Ground displacement detection device
KR20200026260A (en) Auger-type vertical drilling system with path correction device
JP2009174178A (en) Method of constructing underground structure
JP4361521B2 (en) Measure method for reaching position of shield machine
CN103233465B (en) Collimate permanent dot structure and construction method thereof
JP2008111227A (en) Construction method and connection structure of multiple tunnel and connection structure of tunnel and pipe roof forming multiple tunnel
CN116348655A (en) Methods and systems for subsurface deployment of materials and equipment
CA3089808C (en) Determining a relative wellbore location utilizing a well shoe having a ranging source
JP2000204884A (en) Method and device for detecting wear of cutter bit of shield machine
JP5890566B1 (en) Marked boring rod and boring hole trajectory correction method using this
JP2007162323A (en) Wall body forming method and wall body
JP4226433B2 (en) Shield joining method and protective barrier structure
JP3353036B2 (en) Excavator for renewing existing buried pipelines and excavation method when renewing existing buried pipelines
JP3753647B2 (en) Open-cut construction method for buried works such as pipes and markers for existing buried objects
JP2008111264A (en) Pipe burying method and pipe burying system
JP6914885B2 (en) Excavation shape confirmation device and excavation shape confirmation method
JP5522822B2 (en) How to check the position of the excavator, the excavator
CN108867718B (en) Construction method for monitoring deep horizontal displacement of deep foundation pit of subway station
KR101540437B1 (en) Trust method for a excavation
CN111577338A (en) Tunnel auxiliary supporting structure and construction method
JP2005200992A (en) Construction method for tunnel
JPS6322996A (en) Method of confirming relative position of shield excavator in method of underground joining construction
CN105888658A (en) Arrangement construction method of original land stress testing hole

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Ref document number: 4361521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250