JP4356517B2 - Silicon single crystal pulling apparatus and silicon single crystal manufacturing method - Google Patents

Silicon single crystal pulling apparatus and silicon single crystal manufacturing method Download PDF

Info

Publication number
JP4356517B2
JP4356517B2 JP2004158982A JP2004158982A JP4356517B2 JP 4356517 B2 JP4356517 B2 JP 4356517B2 JP 2004158982 A JP2004158982 A JP 2004158982A JP 2004158982 A JP2004158982 A JP 2004158982A JP 4356517 B2 JP4356517 B2 JP 4356517B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
storage container
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004158982A
Other languages
Japanese (ja)
Other versions
JP2005336020A (en
Inventor
悟 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2004158982A priority Critical patent/JP4356517B2/en
Publication of JP2005336020A publication Critical patent/JP2005336020A/en
Application granted granted Critical
Publication of JP4356517B2 publication Critical patent/JP4356517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコン単結晶を形成するためのシリコン単結晶引上装置およびシリコン単結晶の製造方法に関するものである。   The present invention relates to a silicon single crystal pulling apparatus and a silicon single crystal manufacturing method for forming a silicon single crystal.

半導体デバイスなどの基板として用いられる単結晶シリコンウェハは、シリコン単結晶インゴットをスライスして、鏡面加工等を行うことにより製造される。こうしたシリコン単結晶インゴットの製造方法としては、例えば、チョクラルスキー法(CZ法)やフローティングゾーン法(FZ法)などが挙げられる。このうち、CZ法は、大口径の単結晶インゴットを得やすいことや、欠陥の制御が比較的容易であるなどの理由により、シリコン単結晶インゴットの製造の大部分を占める。   A single crystal silicon wafer used as a substrate for a semiconductor device or the like is manufactured by slicing a silicon single crystal ingot and performing mirror surface processing or the like. Examples of a method for producing such a silicon single crystal ingot include the Czochralski method (CZ method) and the floating zone method (FZ method). Among them, the CZ method occupies most of the production of a silicon single crystal ingot because it is easy to obtain a large-diameter single crystal ingot and the defect control is relatively easy.

こうしたシリコン単結晶インゴットから製造される単結晶シリコンウェハに要求される重要な特性の1つとして比抵抗がある。この比抵抗は、シリコン単結晶中の不純物濃度に応じて変わり、その値は用途やユーザの規格等に応じて一定の範囲が要求される。このため、要求される比抵抗範囲に応じて、シリコン融液中に一定量の不純物(ドーパント)を予め添加して引上成長を行っている。しかし、引き上げられる半導体単結晶の比抵抗は、単結晶の成長が進むにつれてルツボ内のシリコン融液の減少して不純物濃度が変化するために、成長軸方向に徐々に低下する。   One of important characteristics required for a single crystal silicon wafer manufactured from such a silicon single crystal ingot is resistivity. This specific resistance changes according to the impurity concentration in the silicon single crystal, and the value is required to be within a certain range according to the application, user's standards, and the like. For this reason, according to the required specific resistance range, a certain amount of impurities (dopant) is added in advance to the silicon melt to carry out pulling growth. However, the specific resistance of the pulled semiconductor single crystal gradually decreases in the growth axis direction because the silicon melt in the crucible decreases and the impurity concentration changes as the growth of the single crystal proceeds.

こうした、シリコン単結晶の成長軸方向の比抵抗変化を制御するために、例えば特許文献1には、導管を用いて引上途上でドーパント不純物を添加する装置が記載されている。また、特許文献2には、ドーパントを含有したシリコン細棒を坩堝内のシリコン融液に挿入してドーパントを添加する方法が記載されている。
特開平05−032540号公報 特開平06−234592号公報
In order to control such a change in resistivity in the growth axis direction of the silicon single crystal, for example, Patent Document 1 describes an apparatus for adding a dopant impurity during pulling using a conduit. Patent Document 2 describes a method of adding a dopant by inserting a silicon thin rod containing a dopant into a silicon melt in a crucible.
JP 05-032540 A Japanese Patent Laid-Open No. 06-234592

しかしながら、上述した特許文献1に記載された単結晶引上装置のように、引上げ途上で導管からドーパント不純物を添加する方式では、所定の添加量のみを投入するために抵抗値の的中率は変わらないが、投入したドーパントがシリコン溶液に完全に溶融するまでシリコン融液に固体のドーパントが浮遊し、これが引上げ中のシリコン単結晶に接して単結晶化を阻害するという課題があった。   However, as in the single crystal pulling apparatus described in Patent Document 1 described above, in the method of adding a dopant impurity from a conduit in the course of pulling, since only a predetermined amount is added, the target value of the resistance value is Although there is no change, there is a problem in that the solid dopant floats in the silicon melt until the added dopant is completely melted in the silicon solution, which is in contact with the silicon single crystal being pulled and inhibits single crystallization.

一方、特許文献2に記載された単結晶引上装置のように、ドーパントを含有したシリコン細棒でドーパントを添加する方式では、溶融前の固体のドーパントをシリコン融液に浮遊させることなく投入できるので、単結晶化を阻害する可能性は少ないものの、mg単位で要求されるドーパントの溶解量が融液の温度変化によりばらつきを生じさせ、結果的に抵抗値の的中率のばらつきも大きくなるという課題があった。   On the other hand, in the method of adding a dopant with a silicon thin rod containing a dopant as in the single crystal pulling apparatus described in Patent Document 2, a solid dopant before melting can be added without floating in the silicon melt. Therefore, although there is little possibility of inhibiting single crystallization, the amount of dissolved dopant required in mg units varies due to the temperature change of the melt, and as a result, the variation in the hit ratio of the resistance value also increases. There was a problem.

本発明は、上記事情に鑑みてなされたものであって、異なる比抵抗範囲の半導体単結晶を効率的に得ることが可能なシリコン単結晶引上装置およびシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a silicon single crystal pulling apparatus and a silicon single crystal manufacturing method capable of efficiently obtaining semiconductor single crystals having different specific resistance ranges. With the goal.

上記の目的を達成するために、本発明のシリコン単結晶引上装置によれば、シリコン融液を収容するルツボと、前記ルツボを加熱するヒータとを有し、チョクラルスキー法により成長軸方向において比抵抗分布が不連続なシリコン単結晶を引上げるシリコン単結晶引上装置であって、
前記シリコン単結晶の引上げ途上で前記シリコン融液に不純物を投入する不純物投入装置を備え、
前記不純物投入装置は、不純物を収容する収納容器と、この収納容器を前記ルツボ内に挿脱させる上下動装置とからなり、
前記収納容器は、筒状の胴部と、この胴部から一体に延びる先端部とからなり、該先端部は、先端部分が開放面を成し、前記胴部の幅よりも狭くなるように窄まって形成されるとともに、
前記収納容器の先端部の開口幅よりも粒径が大きい不純物を収納するか、前記先端部にシリコンプレートを設置した上で前記先端部の開口幅よりも粒径が小さい不純物を収納容器に収納するものとされることを特徴とする。
本発明は、シリコン融液を収容するルツボと、前記ルツボを加熱するヒータとを有し、チョクラルスキー法によりシリコン単結晶を引上げるシリコン単結晶引上装置であって、前記シリコン単結晶の引上げ途上で前記シリコン融液に不純物を投入する不純物投入装置を備えたことを特徴とするシリコン単結晶引上装置が提供される。また、前記不純物投入装置は、不純物を収容する収納容器と、この収納容器を前記ルツボ内に挿脱させる上下動装置とから構成されれば良い。

In order to achieve the above object , according to the silicon single crystal pulling apparatus of the present invention, it has a crucible for containing a silicon melt and a heater for heating the crucible, and the growth axis direction is determined by the Czochralski method. A silicon single crystal pulling apparatus for pulling up a silicon single crystal having a discontinuous resistivity distribution in
An impurity injection device for introducing impurities into the silicon melt during the pulling of the silicon single crystal;
The impurity input device comprises a storage container that stores impurities, and a vertical movement device that inserts and removes the storage container into the crucible,
The storage container includes a cylindrical barrel and a tip portion that extends integrally from the barrel portion, and the tip portion has an open surface that is narrower than the width of the barrel portion. As it forms,
An impurity having a particle size larger than the opening width of the front end portion of the storage container is stored, or an impurity having a particle size smaller than the opening width of the front end portion is stored in the storage container after a silicon plate is installed at the front end portion. It is said that it is supposed to be.
The present invention is a silicon single crystal pulling apparatus having a crucible for containing a silicon melt and a heater for heating the crucible, and pulling up the silicon single crystal by the Czochralski method. There is provided a silicon single crystal pulling apparatus comprising an impurity adding apparatus for introducing impurities into the silicon melt during pulling. Moreover, the said impurity input apparatus should just be comprised from the storage container which accommodates an impurity, and the up-down moving apparatus which inserts / removes this storage container in the said crucible.

上記の目的を達成するために、本発明によれば、シリコン融液をからシリコン単結晶を引上げる引上工程と、前記引上工程の途上で前記シリコン融液に不純物を投入する不純物投入工程とを有し、成長軸方向において比抵抗分布が不連続なシリコン単結晶を得ることを特徴とするシリコン単結晶の製造方法が提供される。   In order to achieve the above object, according to the present invention, a pulling step of pulling a silicon single crystal from a silicon melt, and an impurity adding step of adding impurities to the silicon melt in the course of the pulling step And a silicon single crystal having a specific resistance distribution discontinuous in the growth axis direction is obtained.

本発明のシリコン単結晶引上装置によれば、収納容器内で不純物を溶解させつつ石英ルツボ内のシリコン融液に拡散させることによって、シリコン融液に固形の不純物が漂ってシリコン単結晶インゴットの成長を阻害したり、シリコン融液7の温度変化によって不純物の溶解量にばらつきが生じるといったことがない。こうした不純物投入工程を経たシリコン単結晶インゴットは、成長軸方向に不連続に不純物濃度が変化する。   According to the silicon single crystal pulling apparatus of the present invention, solid impurities are drifted in the silicon melt and dissolved in the silicon melt in the quartz crucible while the impurities are dissolved in the storage container. The growth is not hindered, and the amount of dissolved impurities does not vary due to the temperature change of the silicon melt 7. The impurity concentration of the silicon single crystal ingot that has undergone such an impurity injection process changes discontinuously in the growth axis direction.

こうした工程を経て引上げられたシリコン単結晶インゴットは、不純物投入工程の前後出で成長軸方向に比抵抗分布が不連続に変化している。これによって、用途やユーザの規格等に応じて、成長軸方向に不連続に異なる比抵抗範囲を持つシリコン単結晶インゴットを効率的に得ることが可能になる。   In the silicon single crystal ingot pulled up through these steps, the resistivity distribution changes discontinuously in the growth axis direction before and after the impurity addition step. This makes it possible to efficiently obtain a silicon single crystal ingot having specific resistance ranges that differ discontinuously in the growth axis direction according to the application, user specifications, and the like.

本発明のシリコン単結晶引き上げ装置によれば、得ることを可能にする。   According to the silicon single crystal pulling apparatus of the present invention, it can be obtained.

以下、本発明の実施の形態を図面を参照して説明する。図1は、本発明のシリコン単結晶引上装置の概略を示す一部破断斜視図である。また図2はシリコン単結晶引上装置の断面図である。シリコン単結晶引上装置10は、略円筒形の外殻11を備え、内部にシリコンを溶融して貯留する石英ルツボ12を収容する。外殻11は、例えば内部に一定の隙間を形成した二重壁構造であればよく、この隙間に冷却水13を流すことによって、石英ルツボ12を加熱した際に外殻11が高温化することを防止する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially broken perspective view schematically showing a silicon single crystal pulling apparatus according to the present invention. FIG. 2 is a cross-sectional view of the silicon single crystal pulling apparatus. The silicon single crystal pulling apparatus 10 includes a substantially cylindrical outer shell 11 and accommodates a quartz crucible 12 for melting and storing silicon therein. For example, the outer shell 11 may have a double-wall structure in which a constant gap is formed inside. By flowing the cooling water 13 through the gap, the outer shell 11 is heated when the quartz crucible 12 is heated. To prevent.

また、外殻11には、給排気管21が備えられ、シリコン単結晶の引上時にはシリコン単結晶引上装置10の内部にアルゴンなどの不活性ガスが導入される。外殻11の頂部には、引上駆動装置14が備えられる。引上駆動装置14は、シリコン単結晶インゴット5の成長核となる種結晶6およびそこから成長するシリコン単結晶インゴット5を回転させつつ上方に引上げる。   The outer shell 11 is provided with an air supply / exhaust pipe 21, and an inert gas such as argon is introduced into the silicon single crystal pulling apparatus 10 when pulling the silicon single crystal. A pulling drive device 14 is provided on the top of the outer shell 11. The pulling drive device 14 pulls the seed crystal 6 that is a growth nucleus of the silicon single crystal ingot 5 and the silicon single crystal ingot 5 that is grown therefrom while pulling upward.

外殻11の内側には、保温筒15が備えられる。保温筒15は、例えば黒鉛で形成されれば良く、石英ルツボ12の加熱中の温度低下を軽減するとともに、外殻11の昇温を抑制する役割りを果たす。   A heat insulating cylinder 15 is provided inside the outer shell 11. The heat insulating cylinder 15 may be made of graphite, for example, and serves to reduce the temperature drop during heating of the quartz crucible 12 and to suppress the temperature rise of the outer shell 11.

保温筒15の内側には、略円筒形の側面ヒータ16が備えられる。側面ヒータ16は、石英ルツボ12の円筒形の胴部12aを加熱する。この側面ヒータ16の内側に、石英ルツボ12およびルツボ支持体(黒鉛ルツボ)17が収容される。石英ルツボ12は、全体が石英で一体に形成され、上方が開放面12cを成す略円筒形の胴部12aおよびこの胴部12aの下方を閉塞するすり鉢状の底部12bとからなる。   A substantially cylindrical side heater 16 is provided inside the heat insulating cylinder 15. The side heater 16 heats the cylindrical body 12 a of the quartz crucible 12. A quartz crucible 12 and a crucible support (graphite crucible) 17 are accommodated inside the side heater 16. The quartz crucible 12 is formed of quartz as a whole and is composed of a substantially cylindrical body 12a having an open surface 12c on the upper side and a mortar-shaped bottom 12b closing the lower side of the body 12a.

石英ルツボ12には、固形のシリコンを溶融したシリコン融液7が貯留される。ルツボ支持体17は、例えば全体が黒鉛で形成され、石英ルツボ12を包むように密着して支持する。ルツボ支持体17は、シリコンの溶融時に軟化した石英ルツボ12の形状を維持し、石英ルツボ12を支える役割りを果たす。   The quartz crucible 12 stores a silicon melt 7 obtained by melting solid silicon. The crucible support 17 is made of, for example, graphite as a whole, and supports the crucible 12 so as to wrap the quartz crucible 12. The crucible support 17 maintains the shape of the quartz crucible 12 softened when silicon is melted and plays a role of supporting the quartz crucible 12.

石英ルツボ12の上面には、シリコン融液7の上面を覆うように保温カバー31が形成されている。保温カバー31は、シリコン単結晶インゴット5や、後述する不純物投入装置23の収納容器24を挿通させる開口が形成されている。こうした保温カバー31は、シリコン融液7の温度変動を抑える。   A heat insulating cover 31 is formed on the upper surface of the quartz crucible 12 so as to cover the upper surface of the silicon melt 7. The heat insulating cover 31 is formed with an opening through which the silicon single crystal ingot 5 and a storage container 24 of an impurity input device 23 described later are inserted. Such a heat insulating cover 31 suppresses temperature fluctuation of the silicon melt 7.

ルツボ支持体17の下側にはルツボ支持装置19が備えられる。ルツボ支持装置19は、ルツボ支持体17および石英ルツボ12を下側から支えるとともに、育成に伴って変化するシリコン融液7の液面位置に対応して、石英ルツボ12の位置を調節するリフト(図示せず)を備えている。   A crucible support device 19 is provided below the crucible support 17. The crucible support device 19 supports the crucible support 17 and the quartz crucible 12 from the lower side, and adjusts the position of the quartz crucible 12 corresponding to the liquid surface position of the silicon melt 7 that changes with growth ( (Not shown).

石英ルツボ12の上部側方には、不純物投入装置23が備えられる。不純物投入装置23は、不純物(ドーパント)を収容する収納容器24と、この収納容器を石英ルツボ12に挿脱させる上下動装置25とから構成されている。   An impurity injection device 23 is provided on the upper side of the quartz crucible 12. The impurity input device 23 includes a storage container 24 that stores impurities (dopant), and a vertical movement device 25 that inserts and removes the storage container into and from the quartz crucible 12.

図3に示すように、不純物投入装置23を構成する収納容器24は、筒状の胴部24aと、この胴部24aから一体に延びる先端部24bとからなる。先端部24bは、先端部分が開放面24cを成し、胴部の幅Wよりも狭くなるように窄まって形成されている。   As shown in FIG. 3, the storage container 24 constituting the impurity input device 23 includes a cylindrical trunk portion 24a and a tip portion 24b extending integrally from the trunk portion 24a. The distal end portion 24b is formed to be narrowed so that the distal end portion forms an open surface 24c and becomes narrower than the width W of the body portion.

こうした収納容器24には、シリコン単結晶の引上げ途上でシリコン融液に溶融させる不純物(ドーパント)が収容される。例えば、図3のaに示すように、収納容器24の先端部24bの開口幅Sよりも粒径が大きい不純物26aが収納容器24に収納されれば良い。   Such a storage container 24 stores an impurity (dopant) that is melted into the silicon melt while the silicon single crystal is being pulled. For example, as shown in a of FIG. 3, impurities 26 a having a particle size larger than the opening width S of the tip 24 b of the storage container 24 may be stored in the storage container 24.

また、例えば、図3のbに示すように、先端部24bの開口幅Sよりも粒径が小さい不純物26bを収納容器24に収納する際には、先端部24bにシリコンプレート27等を設置した上で開口幅Sよりも粒径が小さい不純物26bを収納容器24に収納すればよい。   Further, for example, as shown in FIG. 3b, when the impurity 26b having a particle size smaller than the opening width S of the tip 24b is stored in the storage container 24, a silicon plate 27 or the like is installed on the tip 24b. The impurities 26b having a particle size smaller than the opening width S may be stored in the storage container 24.

上下動装置25は、こうした不純物26を収容した収納容器24を石英ルツボ12上で保持し、引上げ途上で収納容器24を降下させて、シリコン融液7内に収納容器24を浸す。上下動装置25は、図2に示す石英ルツボ12の外縁Pよりも外側に位置するように設置される。これにより上下動装置25はシリコン融液7の直上を避けた位置になり、上下動に伴う塵埃等がシリコン融液7に落下して引き上げに影響を及ぼすことを防止する。   The vertical movement device 25 holds the storage container 24 containing such impurities 26 on the quartz crucible 12, lowers the storage container 24 while being pulled up, and immerses the storage container 24 in the silicon melt 7. The vertical movement apparatus 25 is installed so that it may be located outside the outer edge P of the quartz crucible 12 shown in FIG. As a result, the vertical movement device 25 is located at a position avoiding directly above the silicon melt 7 and prevents dust or the like accompanying the vertical movement from falling on the silicon melt 7 and affecting the pulling up.

次に、図4、5を参照して、本発明のシリコン単結晶引上装置を用いた本発明のシリコン単結晶の製造方法を説明する。まず、引上げ開始前に、不純物投入装置23の収納容器24に不純物(ドーパント)を収容した後、上下動装置25を操作して収納容器24の先端部24bが石英ルツボ12の上面よりも上になる位置まで収納容器24を上昇させておく(図4参照)。なお、収納容器24に収容される不純物(ドーパント)の量は、用途やユーザの規格等に応じた濃度になるように予め計算された分量であればよい。   Next, with reference to FIGS. 4 and 5, a method for producing a silicon single crystal of the present invention using the silicon single crystal pulling apparatus of the present invention will be described. First, before starting the pulling, after storing impurities (dopants) in the storage container 24 of the impurity input device 23, the vertical movement device 25 is operated so that the tip 24 b of the storage container 24 is above the upper surface of the quartz crucible 12. The storage container 24 is raised to a position (see FIG. 4). Note that the amount of impurities (dopant) accommodated in the storage container 24 may be an amount calculated in advance so as to have a concentration according to the purpose of use, user specifications, and the like.

側面ヒータ16によって石英ルツボ12を加熱して原料シリコンを溶融してシリコン融液7を形成し、シリコン単結晶インゴット5を成長させる(引上工程)。そして、シリコン単結晶インゴット5が所定の長さまで引上げられ、石英ルツボ12内のシリコン融液7が所定量まで減少したら、上下動装置25を操作して、収納容器24がシリコン融液7に浸るまで収納容器24を降下させる(図5参照)。   The quartz crucible 12 is heated by the side heater 16 to melt the raw material silicon to form the silicon melt 7 and grow the silicon single crystal ingot 5 (pulling process). When the silicon single crystal ingot 5 is pulled up to a predetermined length and the silicon melt 7 in the quartz crucible 12 is reduced to a predetermined amount, the vertical movement device 25 is operated to immerse the storage container 24 in the silicon melt 7. The storage container 24 is lowered (see FIG. 5).

収納容器24が降下してシリコン融液7に浸されると、図3に示す収納容器24の開放面24cから収納容器24内にシリコン融液7が入り込み、収納容器24に収容されている不純物26を溶解させる(不純物投入工程)。そして、溶解された不純物26は石英ルツボ12内のシリコン融液7に拡散し、シリコン融液7内の不純物濃度を所定の値まで高める。   When the storage container 24 is lowered and immersed in the silicon melt 7, the silicon melt 7 enters the storage container 24 from the open surface 24 c of the storage container 24 shown in FIG. 3, and the impurities stored in the storage container 24. 26 is dissolved (impurity charging step). Then, the dissolved impurities 26 diffuse into the silicon melt 7 in the quartz crucible 12 and increase the impurity concentration in the silicon melt 7 to a predetermined value.

このように、収納容器24内で不純物26を溶解させつつ石英ルツボ12内のシリコン融液7に拡散させることによって、シリコン融液7に固形の不純物が漂ってシリコン単結晶インゴットの成長を阻害したり、シリコン融液7の温度変化によって不純物の溶解量にばらつきが生じるといったことがない。こうした不純物投入工程を経たシリコン単結晶インゴット5は、成長軸方向に不連続に不純物濃度が変化し、シリコン単結晶インゴット5の引上げが続けられる。   In this way, by dissolving the impurities 26 in the storage container 24 and diffusing them into the silicon melt 7 in the quartz crucible 12, solid impurities drift in the silicon melt 7 and inhibit the growth of the silicon single crystal ingot. There is no variation in the amount of dissolved impurities due to the temperature change of the silicon melt 7. The silicon single crystal ingot 5 that has undergone such an impurity injection process has its impurity concentration discontinuously changed in the growth axis direction, and the silicon single crystal ingot 5 continues to be pulled up.

こうした工程を経て引上げられたシリコン単結晶インゴット5は、不純物投入工程の前後出で成長軸方向に比抵抗分布が不連続に変化している。これによって、用途やユーザの規格等に応じて、成長軸方向に不連続に異なる比抵抗範囲を持つシリコン単結晶インゴットを効率的に得ることが可能になる。   In the silicon single crystal ingot 5 pulled through these steps, the specific resistance distribution changes discontinuously in the growth axis direction before and after the impurity addition step. This makes it possible to efficiently obtain a silicon single crystal ingot having specific resistance ranges that differ discontinuously in the growth axis direction according to the application, user specifications, and the like.

本出願人は、上述したような本発明のシリコン単結晶引上装置を用いて得られるシリコン単結晶インゴットの特性を検証した。検証にあたって、図1、2に示したシリコン単結晶引上装置を用いて引上げられたシリコン単結晶について、予め設定された比抵抗(狙い抵抗)の的中率のばらつき、および単結晶化率を調べた。また、比較例として、従来のシリコン単結晶引上装置を用いて引上げられたシリコン単結晶(2例)について、同様に狙い抵抗的中率のばらつき、および単結晶化率を調べた。こうした検証結果を表1に示す   The present applicant verified the characteristics of a silicon single crystal ingot obtained by using the silicon single crystal pulling apparatus of the present invention as described above. In the verification, with respect to the silicon single crystal pulled using the silicon single crystal pulling apparatus shown in FIGS. 1 and 2, the variation in the hit ratio of the preset specific resistance (target resistance) and the single crystallization rate Examined. Further, as a comparative example, the variation of the target resistance ratio and the single crystallization rate were similarly investigated for the silicon single crystal (two examples) pulled using the conventional silicon single crystal pulling apparatus. These verification results are shown in Table 1.

Figure 0004356517
Figure 0004356517

表1に示す結果によれば、従来の比較例では狙い抵抗的中率のばらつきを下げようとすると単結晶化率が下がり、逆に単結晶化率を上げようとすると狙い抵抗的中率のばらつきが大きくなるという結果になったが、本発明においては、抵抗的中率のばらつきを下げつつ単結晶化率を良好に保てることか確認された。   According to the results shown in Table 1, in the conventional comparative example, the single crystallization rate decreases when trying to reduce the dispersion of the target resistive median, and conversely when the single crystallization rate is increased, the target resistive median Although the result showed that the variation became large, in the present invention, it was confirmed that the single crystallization rate could be kept good while reducing the variation in the resistance median.

図1は、本発明のシリコン単結晶引上装置の概略を示す一部破断斜視図である。FIG. 1 is a partially broken perspective view schematically showing a silicon single crystal pulling apparatus according to the present invention. 図2は、本発明のシリコン単結晶引上装置の概略を示す断面図である。FIG. 2 is a sectional view schematically showing the silicon single crystal pulling apparatus of the present invention. 図3は、不純物投入装置の収納容器を示す断面図である。FIG. 3 is a cross-sectional view showing a storage container of the impurity input device. 図4は、本発明のシリコン単結晶の製造方法を示す説明図である。FIG. 4 is an explanatory view showing a method for producing a silicon single crystal according to the present invention. 図5は、本発明のシリコン単結晶の製造方法を示す説明図である。FIG. 5 is an explanatory view showing a method for producing a silicon single crystal according to the present invention.

符号の説明Explanation of symbols

10 シリコン単結晶引上装置
12 石英ルツボ
12a 胴部
12b 底部
12c 開放面
16 側面ヒータ
23 不純物投入装置
24 収納容器
25 上下動装置
DESCRIPTION OF SYMBOLS 10 Silicon single crystal pulling apparatus 12 Quartz crucible 12a Body part 12b Bottom part 12c Open surface 16 Side heater 23 Impurity throwing apparatus 24 Storage container 25 Vertical motion apparatus

Claims (1)

シリコン融液を収容するルツボと、前記ルツボを加熱するヒータとを有し、チョクラルスキー法により成長軸方向において比抵抗分布が不連続なシリコン単結晶を引上げるシリコン単結晶引上装置であって、
前記シリコン単結晶の引上げ途上で前記シリコン融液に不純物を投入する不純物投入装置を備え
前記不純物投入装置は、不純物を収容する収納容器と、この収納容器を前記ルツボ内に挿脱させる上下動装置とからなり、
前記収納容器は、筒状の胴部と、この胴部から一体に延びる先端部とからなり、該先端部は、先端部分が開放面を成し、前記胴部の幅よりも狭くなるように窄まって形成されるとともに、
前記収納容器の先端部の開口幅よりも粒径が大きい不純物を収納するか、前記先端部にシリコンプレートを設置した上で前記先端部の開口幅よりも粒径が小さい不純物を収納容器に収納するものとされることを特徴とするシリコン単結晶引上装置。
A silicon single crystal pulling apparatus having a crucible for containing a silicon melt and a heater for heating the crucible, and pulling up a silicon single crystal having a discontinuous resistivity distribution in the growth axis direction by the Czochralski method. And
An impurity injection device for introducing impurities into the silicon melt during the pulling of the silicon single crystal ;
The impurity input device comprises a storage container that stores impurities, and a vertical movement device that inserts and removes the storage container into the crucible,
The storage container includes a cylindrical barrel and a tip portion that extends integrally from the barrel portion, and the tip portion has an open surface that is narrower than the width of the barrel portion. As it forms,
An impurity having a particle size larger than the opening width of the front end portion of the storage container is stored, or an impurity having a particle size smaller than the opening width of the front end portion is stored in the storage container after a silicon plate is installed at the front end portion. A silicon single crystal pulling apparatus characterized by that.
JP2004158982A 2004-05-28 2004-05-28 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method Active JP4356517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158982A JP4356517B2 (en) 2004-05-28 2004-05-28 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158982A JP4356517B2 (en) 2004-05-28 2004-05-28 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2005336020A JP2005336020A (en) 2005-12-08
JP4356517B2 true JP4356517B2 (en) 2009-11-04

Family

ID=35489987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158982A Active JP4356517B2 (en) 2004-05-28 2004-05-28 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4356517B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10294583B2 (en) 2007-04-24 2019-05-21 Sumco Techxiv Corporation Producing method and apparatus of silicon single crystal, and silicon single crystal ingot
JP5074826B2 (en) * 2007-05-31 2012-11-14 Sumco Techxiv株式会社 Dopant implantation method and doping apparatus
JP5302556B2 (en) 2008-03-11 2013-10-02 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
JP5329143B2 (en) 2008-07-30 2013-10-30 Sumco Techxiv株式会社 Silicon single crystal pulling device
JP5270996B2 (en) * 2008-07-30 2013-08-21 Sumco Techxiv株式会社 Silicon single crystal pulling device
JP5410086B2 (en) * 2008-12-19 2014-02-05 Sumco Techxiv株式会社 Silicon single crystal pulling device
JP5144546B2 (en) * 2009-01-14 2013-02-13 Sumco Techxiv株式会社 Silicon single crystal pulling device
US8535439B2 (en) 2009-01-14 2013-09-17 Sumco Techxiv Corporation Manufacturing method for silicon single crystal
JP5399212B2 (en) 2009-11-16 2014-01-29 Sumco Techxiv株式会社 Method for producing silicon single crystal
US10006145B2 (en) 2012-12-31 2018-06-26 Corner Star Limited Liquid doping systems and methods for controlled doping of single crystal semiconductor material
JP2016503964A (en) 2012-12-31 2016-02-08 エムイーエムシー・エレクトロニック・マテリアルズ・ソシエタ・ペル・アチオニMEMC Electronic Materials, SpA Indium-doped silicon wafer and solar cell using the same
CN107429421B (en) 2014-11-26 2020-03-27 各星有限公司 Apparatus and method for introducing volatile dopants into a melt
WO2016142893A1 (en) * 2015-03-10 2016-09-15 Sunedison Semiconductor Limited Liquid doping systems and methods for controlled doping of a melt
CN217600905U (en) * 2022-03-31 2022-10-18 内蒙古中环协鑫光伏材料有限公司 External re-feeding device for pulling single crystal

Also Published As

Publication number Publication date
JP2005336020A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4356517B2 (en) Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
US9217208B2 (en) Apparatus for producing single crystal
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
US20080184929A1 (en) Single crystal pulling apparatus
KR20060090746A (en) Process for producing a silicon single crystal with controlled carbon content
JP5309170B2 (en) A method for pulling a single crystal made of silicon from a melt contained in a crucible, and a single crystal produced by this method
JP5399212B2 (en) Method for producing silicon single crystal
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
JP2017222551A (en) Production method of silicon single crystal
JP2007022864A (en) Method for manufacturing silicon single crystal
CN114616361B (en) Method for producing silicon single crystal
JP5167942B2 (en) Method for producing silicon single crystal
JP2010064930A (en) Method for pulling up silicon single crystal, and doping apparatus used for the same
JP2007186354A (en) Device for pulling silicon single crystal
KR100304291B1 (en) Silicon crystal and its manufacturing apparatus, manufacturing method
TWI831613B (en) Method for producing single crystal silicon ingot
TWI796517B (en) Single crystal silicon ingot and method for producing the same
JP5222162B2 (en) Method for producing silicon single crystal
TWI751028B (en) Method for manufacturing single crystal silicon
JP4341379B2 (en) Single crystal manufacturing method
JP2010030868A (en) Production method of semiconductor single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP2023549193A (en) Method for forming single crystal silicon ingot with reduced crucible corrosion
JP2007210865A (en) Silicon single crystal pulling device
JP2020045258A (en) Method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4356517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250