JP4355867B2 - Advanced ozone purification equipment for pool water - Google Patents

Advanced ozone purification equipment for pool water Download PDF

Info

Publication number
JP4355867B2
JP4355867B2 JP17438099A JP17438099A JP4355867B2 JP 4355867 B2 JP4355867 B2 JP 4355867B2 JP 17438099 A JP17438099 A JP 17438099A JP 17438099 A JP17438099 A JP 17438099A JP 4355867 B2 JP4355867 B2 JP 4355867B2
Authority
JP
Japan
Prior art keywords
ozone
water
filter
filters
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17438099A
Other languages
Japanese (ja)
Other versions
JP2001000981A (en
Inventor
淳二 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP17438099A priority Critical patent/JP4355867B2/en
Publication of JP2001000981A publication Critical patent/JP2001000981A/en
Application granted granted Critical
Publication of JP4355867B2 publication Critical patent/JP4355867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明は、複数の濾過器を備えたプール水の循環濾過系の水をオゾン処理するプール水のオゾン浄化装置に関し、特に処理システムの総合的改善を図るものである。
【0002】
【従来の技術】
プール水のオゾン浄化装置としては、プール水を循環濾過する濾過設備の濾過水又は濾過ポンプ吐出水の一部として例えば5〜10%の水を分流させ、これをオゾンガスと接触させてオゾン水とし、これを濾過器の入口側である濾過ポンプの吸入側又は吐出側に合流させ、オゾンの効果によって濾過性能を大幅に向上させるようにしている。一方、プール水の循環濾過設備では、プール底部と共にオーバーフロー水を別々の濾過器を用いて循環濾過させたり、50mプールのような大型プールに対して複数台の濾過器を用いてプール水を循環濾過するようにした設備がある。
【0003】
このような循環濾過系統では、複数の濾過器のそれぞれに対してオゾン発生装置を1台ずつ設けることが理想であり、そのような設備構成にした例もある。しかし、その場合には設備コストが大幅に高くなるという問題がある。一方、例えば財団法人日本プールアメティティー施設協会では、オゾン量が循環水量の0.2ppm になるようなオゾン発生装置を選定するように推奨されている。そのため従来では、オゾン発生装置の台数を1台とし、その容量を複数の濾過器の合計流量に対応する量にし、オゾン発生装置のオゾンの全量を何れか1台の濾過器に供給するようにした設備が一般的に採用されている。このような設備であっても、複数の濾過器の循環水は合流部分で混合されるため、オゾンの効果はプール水の全体に及んで水質が浄化されるものと考えられていた。
【0004】
しかしながら、オゾンを用いて濾過するということは、水中の無機物をオゾン酸化し、それによって凝集されたものを濾過装置で取り除くと同時に、濾過器内で脱色、脱臭、殺菌、有害物の酸化分解という多用な水質浄化効果を上げることを目的とするので、上記のような従来の設備では、オゾンを注入しない濾過器において、濾過水に対する前記の極めて重要な諸効果が不十分になり、プール水全体としての浄化効果が不十分になるという問題があった。一方、オゾンが注入される濾過器では、全濾過器相当分のオゾンが入れられるため、オゾン過剰になって濾過器等の構成材料の劣化を促進させ、メンテナンスコストが上昇するという問題があった。
【0005】
【発明が解決しようとする課題】
本発明は従来技術に於ける上記問題を解決し、設備費用を増大させることなく、プール水のオゾン浄化効果を大幅に向上させると共に、濾過器や配管材料に悪影響を与えることのないプール水のオゾン浄化装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するために、請求項1の発明は、複数の濾過器と各濾過器にプールの水を供給する供給路と各濾過器で濾過された水を合流させてプールに戻す循環路とを備えたプール水の循環濾過系の水をオゾン処理するプール水のオゾン浄化装置において、前記循環濾過系の循環路の合流部分の水を分流する分岐系と、前記分岐系の水にオゾンを供給する1台のオゾン発生装置と、前記分岐系の水にオゾンを溶解させてオゾン水にするオゾン溶解槽と、前記オゾン溶解槽のオゾン水を各濾過器にそれぞれ送水するように分岐した複数の分岐オゾン水系と、各分岐オゾン水系に設けられ各濾過器に送水するオゾン水の量を調整可能にする調整手段と、複数の濾過器のうちの使用する濾過器に対応したオゾン発生量の選択が可能であって選択されたオゾン発生量を前記オゾン発生装置に対して設定することが可能なオゾン発生量選択手段とを備えることを特徴とする。
【0007】
請求項2の発明は、上記に加えて、前記調整手段は、前記分岐オゾン水系の対応する濾過器へのオゾン水の流れを遮断可能にする複数の送水遮断手段と、前記分岐オゾン水系の遮断されたオゾン水を前記分岐系に戻すための複数の戻し系と、前記戻し系へのオゾン水の流れを遮断可能にする複数の戻し遮断手段とを備えていることを特徴とする。
【0008】
請求項3の発明は、上記に加えて、前記送水遮断手段および前記戻し遮断手段は、それぞれ制御信号が与えられることによって開閉可能な開閉弁から成り、濾過器の使用状態を検出する濾過器使用状態検出手段と、前記濾過器使用状態検出手段により検出された各濾過器の使用状態に応じて、使用されている濾過器についてはオゾン水を送水しかつ使用されていない濾過器についてはオゾン水を前記分岐系に戻すように前記開閉弁に前記制御信号を与える弁制御手段と、前記濾過器使用状態検出手段により検出された各濾過器の使用状態に応じて前記オゾン発生装置によるオゾンの発生量を制御するオゾン発生量制御手段を有することを特徴とする。
【0009】
【発明の実施の形態】
図1は本発明を適用したプール水のオゾン浄化装置の全体構成の一例を示す。
本装置は、複数の濾過器として主濾過器1及び副濾過器2を備え、プール100の水であるプール水の循環濾過系101の水をオゾン処理する装置であり、循環濾過系101の合流部分として本例では主及び副濾過器1、2の出口側合流部分101aの水を分流して送水する分岐系4、この系の分岐水にオゾンを供給する1台のオゾン発生装置5、分岐水にオゾンを溶解させるオゾン溶解槽6を備えていてここでオゾンを溶解したオゾン水を主及び副濾過器1、2の濾過水入口側1a、2aに送水するように分岐した複数の分岐オゾン水系7、8、これらの系のそれぞれに設けられオゾン水の量を調整可能にする調整手段としての手動調整弁10、11及び流量計13、14、等を有する。
【0010】
主及び副濾過器1、2には、プール100の底部102及びオーバーフロー溜まり103から中間タンク104を経由した水が循環ポンプ16、17によって供給され循環される。本例の濾過器1、2の通過水量はそれぞれ80m3/h及び40m3/hである。又、プール100は温水プールであり、合流系101aには循環水加熱用の熱交換器19が設けられている。分岐系4には、ブースタポンプ20及びオゾン混合用エダクタ21が設けられ、オゾン混合水がオゾン溶解槽6内に入り、この中で水にオゾンが一部分溶解し、分岐オゾン水系7、8に送られる。オゾンの残部は気液分離器6aを経て排オゾン分解器6bで分解され、酸素となって放出される。
【0011】
オゾン発生装置5は、電解セル5a及び直流電源発生部5bを備え、固体高分子電解質膜を使用し本例では容量が24g/h になっている電解式のものであり、180g/m3 程度の高濃度のオゾンを発生させる。直流電源発生部5bには電流制御回路5cが設けられていて、調整つまみ5dによって電解セル5aに流す電流を調整することにより、この電流値にほぼ比例してオゾン発生量を調整することができる。
【0012】
手動調整弁10、11は、主及び副濾過器1、2に流される濾過水量に対応してオゾン水量を調整するためのものであるが、目的とする流量に対して適正なサイズの弁が選択されていれば、全開状態で使用することができる。配管中にオリフィス等の流量調整機構を設け、手動調整弁10、11をできるだけ全開で使用できるようにしてもよい。弁10、11としては通常の各種形式のものを用いることができる。但し、2台の濾過器のうち1台だけを使用する頻度の高いような装置では、流量調整に適した形式の弁にすることが望ましい。
【0013】
以上のようなプール水のオゾン浄化装置は次のように使用される。
プール使用中には、循環ポンプ16、17が運転され、プールの底部及びオーバーフロー水が循環・濾過される。このとき、オゾン発生装置5及びブースタポンプ20が運転され、分岐系4の分岐水をオゾン水にし、分岐オゾン水系7、8から主及び副濾過器1、2の入口側1a、2aに供給する。このとき、オゾン水の流量計13、14を見ながら手動調整弁10、11を操作し、分岐オゾン水系7、8の水量がそれぞれ濾過器1、2に流される濾過水量に比例するように調整する。
【0014】
なお、例えば1台の濾過器を点検や補修等のために停止させるときには、運転している方の濾過器にその濾過水量に対応したオゾン水量を流すように調整する。このときには、調整つまみ5dを調整し、電流制御回路5cを介して電解セル5aに流す電流を調整し、オゾン発生装置5のオゾン発生量を必要なオゾン量に調整し、オゾン水のオゾン濃度がほぼ一定値になるように維持する。
【0015】
発明者等の実験によれば、上記のようなオゾン浄化装置により、次のような運転結果が得ることができた。
循環濾過水量
主濾過器 80 m3/h
副濾過器 40 m3/h
合計 120 m3/h
分岐水量(通常5〜10%) 8 m3/h
オゾン発生量 24 g/h
オゾンガス濃度 180 g/Nm3 (18)
分岐系残留溶存オゾン濃度 2.1 ppm (0.3 )
循環濾過水の溶存オゾン濃度
主濾過器入口 0.07 ppm (0.00)
副濾過器入口 0.07 ppm (0.00)
プール水の目視透明度 25m以上
【0016】
これから分かるように、本発明を適用したオゾン浄化装置によれば、1台のオゾン発生装置により、2台の濾過器に均等に高濃度で溶解したオゾン水を供給するので、8m3/hの分岐水にオゾンが作用するだけでなく、2台の濾過器の両方に入る濾過水、従って循環濾過水の全体にオゾンが作用するので、プール水に対して極めて高いオゾン浄化効果を得ることができる。即ち、水中の無機物、有機物をオゾン酸化し、凝集されたものを濾過器で取り除くと共に、濾過器内で、脱色、脱臭、殺菌、有害物の酸化分解という多様な水質浄化効果を2台の全ての濾過器に対して得ることができる。そして、濾過器の構成材料に悪影響を与えるという不具合も解消される。又、オゾン浄化装置が1台のオゾン発生装置で構成されているので、装置コストが低く構成も簡単である。
【0017】
このような効果は、従来のオゾン浄化装置では得られない。即ち、オゾン発生装置で発生させたオゾンの全量をオゾン水とし、同じ8m3/h×2.1ppmのオゾン水を作っても、これを1台のみの濾過器に導入するので、上記のような水質浄化効果が1台の濾過器でしか得られず、プール水全体としてのオゾン浄化効果が上がらない。更に、1台の濾過器では、溶存オゾン濃度が過剰な高濃度になり、オゾン浄化する方の濾過器の構成材料を劣化させることにもなる。
【0018】
なお、上表で( )付きで示した数値は、電解式オゾン発生装置で得られたオゾンを空気で1/10に希釈した参考実験結果を示す。この場合には、濾過器入口での溶存オゾン濃度が0になった。従って、本発明の効果は、通常の無声放電式オゾン発生装置では低くなり、電解式又は高濃度タイプ無声放電式のオゾン発生装置で特に大きくなることが分かった。
【0019】
図2はオゾン浄化装置の他の例を示す。
本例の装置は、例えば大型のプール100に適用され、図1の装置に較べて、3台の同じ大容量の濾過器1、2、3が設けられていること、調整手段として、分岐オゾン水系7、8、9のオゾン水の流れを遮断可能にする複数の送水遮断手段としての3方口電磁弁22、23、24、遮断されたオゾン水を分岐オゾン水系に戻すための複数の戻し系としてブースタポンプ20の吸入側に戻す戻し系25、26、27、及びこれらの系のオゾン水の流れを遮断可能にする複数の戻し遮断手段として本例では前記3方口電磁弁22、23、24を備えていること、及び、濾過器1、2、3のうちの使用される濾過器に対応したオゾン発生量の選択を可能にするオゾン発生量選択手段としてのオゾン発生量設定器28を有することが相違する。なお、濾過器が1台追加されていることから、手動調整弁12、流量計15及び循環ポンプ18等が追加されている。
【0020】
オゾン発生量設定器28では、本例では同じ濾過器が3台設けられているので、その使用台数に対応してオゾン量の多くなる順に3台オゾン量、2台オゾン量及び1台オゾン量の3種類のうちの何れかのオゾン量を設定できるようになっている。オゾン発生装置5にはこのように設定した信号の何れかが送られ、それに対応して電流制御回路5cが電解セル5aに与える電流値を制御する。このような電流値としては、例えば約200A、150A及び100Aが選択される。
【0021】
なお、図1の装置にもオゾン発生量設定器28を設けることができる。この場合、図1の装置では、濾過器1、2の容量が異なるので、設定オゾン量は、2台オゾン量、1台大オゾン量及び1台小オゾン量となり、電流値では上記と同じになる。このようなオゾン発生量設定器28は、オゾン発生装置5の機側の操作制御盤又はプールの管理室等に設けられる遠隔操作盤等に適宜組み込まれる。
【0022】
電磁弁22〜24は、本例では電磁弁操作器29によって開閉される。この開閉操作では、分岐オゾン水系7、8、9を選択的に開通又は閉鎖させこれらに対応して戻し系25、26、27を閉鎖又は開通させることになる。電磁弁操作器29は上記遠隔操作盤等に組み込まれる。なお、三方口電磁弁22〜24を通常の開閉式の二方口電磁弁にし、戻し系25、26、27をそれぞれの電磁弁の上流側から分岐し、それぞれの戻し系にも開閉式の二方口電磁弁を設けた管系にしてもよい。又、電磁弁を空気作動弁等にすることもできる。
【0023】
このような装置によれば、図1の装置と同じ作用効果が得られると共に、使用する濾過器の数に対応してオゾン水の供給状態を遠隔操作等によって簡単に調整することができる。即ち、例えば3台の濾過器全てを使用していた状態から、濾過器3の使用を停止したときには、オゾン発生量設定器28を操作してオゾン発生装置5のオゾン発生量を2台オゾン量に設定すると共に、電磁弁操作器29を操作して電磁弁24のオゾン水供給側9を閉鎖させて戻り系27を開通させる。電磁弁22、23は操作されないので、濾過器3台運転時の状態を維持していて、オゾン水供給側が通じて戻り側が閉鎖している。手動調整弁10〜12は予め等流量のオゾンが流れるように全て全開又は開度調整されている。
【0024】
このような操作により、濾過器3にはオゾン水が供給されなくなり、その系におけるオゾン濃度の上昇が防止される。一方、このオゾン水は分岐オゾン水系9から逃がされて戻り系27を経由してブースタポンプ20の吸入側に戻される。その結果、分岐オゾン水系7、8では、分岐オゾン系9の閉鎖の影響を受けず、濾過器3台運転時と同じ流量のオゾン水の供給が維持される。そして、オゾン発生装置では2台オゾン量に切り換えられている。
【0025】
従って、本例の装置によれば、簡単な操作で、図1の装置と同様に、運転されている濾過器1、2において一定のオゾン濃度の下に過不足のないオゾン水量によって良好なオゾン浄化作用が持続され、濾過器が停止している系は過剰オゾンにならないように保護される。又、濾過器の使用状態に合わせてオゾン発生装置の電流値が調整されるので、装置の運転コストが減少すると共に省エネにも寄与することができる。
【0026】
なお、上記例では分岐系9から戻し系27に戻される水もオゾン水になっているので、この水を循環させることにより、オゾン発生装置からのオゾン発生量を前記2台オゾン量に減少させることができる。
【0027】
図3は更に他の例を示す。
本例の装置では、送水遮断手段及び水逃がし系遮断手段はそれぞれ制御信号が与えられることによって開閉可能な開閉弁から成るが、この開閉弁は図2の装置と同様に三方口電磁弁22〜24になっている。そして、濾過器1〜3の使用状態を検出する濾過器使用状態検出手段としての濾過器運転センサ30、オゾン発生量制御手段としてのオゾン発生量制御器31、及び弁制御手段としての電磁弁制御器32が設けられている。
【0028】
濾過器運転センサ30としては、本例では循環ポンプ16〜18の運転信号を用いている。但し、それぞれの濾過器系にフロースイッチや圧力スイッチを設けたり、濾過器の出入口に設けられる弁に開閉スイッチを設けられる等、他の適当な検出手段を用いることができる。濾過器運転センサ30の信号はそれぞれの制御器31、32に送られる。
【0029】
オゾン発生量制御器31は、濾過器の使用状態としてこの例では運転台数に対応して自動的にオゾン発生量を制御する。この制御は、図2のオゾン発生量設定器28でオゾン発生量を設定した後の制御と同じである。電磁弁制御器32は、濾過器の使用状態に対応してオゾン水を使用時に送水し不使用時に逃がすように三方口電磁弁22〜24に制御信号を与える。即ち、運転されている濾過器ではオゾン水供給側を開通させ戻り系を閉鎖させ、運転されていない濾過器ではその反対に制御する。
【0030】
本例の装置によれば、濾過器の運転状態に対応してオゾン発生量調整と電磁弁操作とを行う必要がなくなり、オゾン浄化装置における省力化が図られると共に、誤操作が回避され運転操作の確実性を得ることができる。なお、オゾン発生量制御器31及び電磁弁制御器32は、図2に示すオゾン発生量設定器28及び電磁弁操作器29に代えて、又はこれらと共に設けることができる。
【0031】
【発明の効果】
以上の如く本発明によれば、請求項1の発明においては、複数の濾過器を備えたプール水の循環濾過系の水をオゾン処理するプール水のオゾン浄化装置において、所定の構成を持つ分岐系と1台のオゾン発生装置と複数の分岐オゾン水系と調整手段とが設けられるので、1台のオゾン発生装置で発生させたオゾンを分岐系の水に供給し、オゾン溶解槽でオゾンを溶解させてオゾン水とした後、調整手段によって各濾過器に供給されるオゾン水の量濾過器の濾過水量に適合するように調整されて、複数の分岐オゾン水系を介して各濾過器の濾過用水入口側に供給される。
【0032】
その結果、1台のオゾン発生装置を使用した簡易でコストの低い構成により、2台以上の複数の濾過器に均等にオゾン水を供給でき、分岐オゾン水系の水だけでなく、複数の濾過器に入る循環濾過水の全体にオゾンを作用させ、プール水に対して高いオゾン浄化効果を発生させることができる。又、1台のオゾン発生装置で発生させたオゾンから成るオゾン水を複数の濾過器に分配するので、濾過器における残留オゾン濃度が過大にならず、濾過器の構成材料に悪影響を与えることがない。
【0033】
請求項2の発明においては、上記に加えて、調整手段が所定の構成を持つそれぞれ複数の送水遮断手段と複数の戻し系と複数の戻し遮断手段とを備えているので、複数の分岐オゾン水系の全ての系を使用する状態でこれらの間のオゾン水量を予め調整しておくことにより、簡単な操作で使用濾過器に対応したオゾン水を供給することができる。
【0034】
例えば、複数台として3台の濾過器が設けられているときに2台の濾過器の使用を停止したとすれば、停止した濾過器に対応する送水遮断手段を作動させてオゾン水の供給を遮断すると共に、その分岐オゾン水系の戻し系であって濾過器3台運転時に戻し遮断手段で遮断されていた戻し系の遮断を解除することにより、2台の濾過器に対応する分岐オゾン水系の遮断の影響を受けることなく、使用されている1台濾過器に対応する分岐オゾン水系への1台分のオゾン水の供給を維持することができる。
【0035】
即ち、1台の濾過器への分岐オゾン水系のオゾン水の流量を他の濾過器の停止毎に調整する必要がなくなり、プール水のオゾン浄化装置の運転が容易になる。又、不使用の濾過器にはオゾン水が供給されないことになり、その系統のオゾン濃度の異常な上昇が防止され、それに伴う配管等の劣化促進等が防止される。又、使用しない濾過器用の分岐オゾン水系のオゾン水を分岐系に戻すので、原料水をオゾン濃度の高い水にしてオゾン発生装置で発生させるオゾン量を減少させることが可能になる。
【0036】
そして、濾過器のうち使用される濾過器に対応したオゾン発生量の選択を可能にするオゾン発生量選択手段を設けているので、上記例によれば、1台の濾過器が運転されるのでこれに対応したオゾン発生量を選択することにより、容易な操作により、3台の濾過器を運転していたときよりも少なくなった必要なオゾン量を確保し、過不足のないオゾン水量及びオゾン水濃度を得て、良好なオゾン浄化作用を持続されることができる。又、オゾン発生装置の出力を低下させ、電力の節減による運転費用の低減及び省エネルギー効果を得ることができる。更に、不使用濾過器における過剰オゾンの弊害も防止される。
【0037】
請求項3の発明においては、送水遮断手段及び戻し遮断手段を制御信号によって開閉可能な開閉弁とし、濾過器の使用状態を検出する濾過器使用状態検出手段と弁制御手段とオゾン発生量制御手段とを設け、検出手段の検出により、弁制御手段によって濾過器の使用状態に対応して開閉弁に前記制御信号を送り、使用濾過器にのみオゾン水を供給するように開閉弁を開閉させると共に、オゾン発生量制御手段によって使用濾過器に対応してオゾン発生量を制御するので、濾過器の運転状態に対応して自動的にオゾン濃度及びオゾン水量を調整し、前記請求項2の発明の諸効果を得ることができる。
【0038】
その結果、オゾン発生量の調整と電磁弁操作とをする必要がなくなり、オゾン浄化装置における省力化を図り、誤操作を回避して運転操作の確実性を得ることができる。
【図面の簡単な説明】
【図1】本発明を適用したプール水のオゾン浄化装置の全体構成の一例を示す説明図である。
【図2】上記装置の全体構成の他の例を示す説明図である。
【図3】上記装置の全体構成の更に他の例を示す説明図である。
【符号の説明】
1 主濾過器、濾過器(複数の濾過器)
1a、2a、3a 濾過水入口側(濾過用水入口側)
2 副濾過器、濾過器(複数の濾過器)
3 濾過器(複数の濾過器)
4 分岐系
5 オゾン発生装置
6 オゾン溶解槽
7、8、9 分岐オゾン水系
10、11、12 手動調整弁(調整手段)
13、14、15 流量計(調整手段)
22、23、24 3方口電磁弁(複数の送水遮断手段、複数の戻し遮断手段、調整手段、開閉弁)
25、26、27 戻し系(複数の戻し系、調整手段)
28 オゾン発生量設定器(オゾン発生量選択手段)
30 濾過器運転センサ(濾過器使用状態検出手段)
31 オゾン発生量制御器(オゾン発生量制御手段)
32 電磁弁制御器(弁制御手段)
100 プール
101 循環濾過系
101a 出口側合流部分(合流部分)
[0001]
[Field of the Invention]
The present invention relates to an ozone purification apparatus for pool water that performs ozone treatment on water in a circulating filtration system of pool water having a plurality of filters, and particularly aims at comprehensive improvement of the treatment system.
[0002]
[Prior art]
As a pool water ozone purification device, for example, 5 to 10% of water is diverted as part of filtrate water or filtration pump discharge water of a filtration facility for circulating and filtering pool water, and this is brought into contact with ozone gas to form ozone water. This is combined with the suction side or the discharge side of the filtration pump, which is the inlet side of the filter, so that the filtration performance is greatly improved by the effect of ozone. On the other hand, in the circulating water filtration equipment for pool water, the overflow water is circulated and filtered using a separate filter together with the bottom of the pool, or the pool water is circulated using a plurality of filters for a large pool such as a 50 m pool. There is a facility for filtering.
[0003]
In such a circulation filtration system, it is ideal to provide one ozone generator for each of a plurality of filters, and there is an example in which such an equipment configuration is adopted. However, in that case, there is a problem that the equipment cost is significantly increased. On the other hand, for example, the Japan Pool Amety Facility Association recommends that an ozone generator be selected so that the amount of ozone is 0.2 ppm of the amount of circulating water. Therefore, conventionally, the number of ozone generators is set to one, the capacity is set to an amount corresponding to the total flow rate of a plurality of filters, and the total amount of ozone in the ozone generator is supplied to any one filter. Such equipment is generally adopted. Even in such a facility, since the circulating water of the plurality of filters is mixed at the merged portion, it was considered that the effect of ozone extends to the entire pool water and the water quality is purified.
[0004]
However, filtering with ozone means oxidizing the inorganic substances in water with ozone and removing the aggregated substances with a filter, and at the same time, decoloring, deodorizing, sterilizing, and oxidative decomposition of harmful substances in the filter. Since the purpose is to increase the effect of water purification, the above-mentioned conventional facilities as described above are insufficient for the filtered water in the filter that does not inject ozone, and the entire pool water As a result, there is a problem that the purification effect becomes insufficient. On the other hand, in a filter into which ozone is injected, since ozone corresponding to all the filters is put in, there is a problem that the ozone becomes excessive and the deterioration of the constituent materials such as the filter is promoted, and the maintenance cost increases. .
[0005]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems in the prior art, greatly increases the ozone purification effect of pool water without increasing the equipment cost, and does not adversely affect the filter and piping material. It is an object to provide an ozone purification device.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a plurality of filters , a supply path for supplying pool water to each filter, and water filtered by each filter combined into a pool. in an ozone purifier of pool water to ozone treatment circulation filtration system water pool water with a circulation path for returning, a branch system to divert water confluence portion of the circulation path of the circulation filtration system, said branch system an ozone generator one supplying ozone water, the ozone dissolving tank to the ozone water by dissolving ozone into water in the branch system, so that water respectively ozone water of the ozone dissolving tank to the filter A plurality of branched ozone water systems branched into two, an adjusting means that is provided in each branched ozone water system and that can adjust the amount of ozone water that is sent to each filter, and corresponds to a filter to be used among the plurality of filters. It is possible to select the amount of ozone generated Characterized in that a selected amount of ozone generated and a ozone generation amount selecting means capable of setting to the ozone generator.
[0007]
According to the invention of claim 2, in addition to the above, the adjusting means includes a plurality of water supply blocking means that can block a flow of ozone water to a corresponding filter of the branched ozone water system, and a blocking of the branched ozone water system. characterized in that it comprises a plurality of return system for ozone water back into the branch system that is, a plurality of return blocking means allowing blocking the flow of ozone water to the return system.
[0008]
According to a third aspect of the present invention, in addition to the above, the water supply shut-off means and the return shut-off means are each composed of an on-off valve that can be opened and closed by being given a control signal, and a filter that detects the use state of each filter According to the use state detecting means and the use state of each filter detected by the filter use state detecting means, ozone water is supplied to the used filter and ozone is used for the unused filter. Valve control means for supplying the control signal to the on-off valve so as to return water to the branching system , and the amount of ozone generated by the ozone generator according to the use state of each filter detected by the filter use state detection means . It has an ozone generation amount control means for controlling the generation amount.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an example of the overall configuration of an ozone purification apparatus for pool water to which the present invention is applied.
This apparatus includes a main filter 1 and a sub-filter 2 as a plurality of filters, and is an apparatus that ozone-treats the water in the circulating filtration system 101 of the pool water, which is the water in the pool 100. As a part, in this example, the branch system 4 that divides and sends the water of the outlet side confluent part 101a of the main and sub-filters 1 and 2, one ozone generator 5 that supplies ozone to the branched water of this system, the branch A plurality of branch ozones provided with an ozone dissolution tank 6 for dissolving ozone in water and branched so that ozone water in which ozone is dissolved is sent to the filtrate inlet sides 1a and 2a of the main and sub-filters 1 and 2 The water systems 7 and 8 have manual adjustment valves 10 and 11, flow meters 13 and 14, etc. as adjustment means provided in each of these systems and capable of adjusting the amount of ozone water.
[0010]
The main and sub filters 1 and 2 are supplied with water from the bottom 102 of the pool 100 and the overflow pool 103 via the intermediate tank 104 and circulated by the circulation pumps 16 and 17. The amounts of water passing through the filters 1 and 2 in this example are 80 m 3 / h and 40 m 3 / h, respectively. The pool 100 is a hot water pool, and a heat exchanger 19 for heating the circulating water is provided in the merge system 101a. The branch system 4 is provided with a booster pump 20 and an ozone mixing eductor 21, and ozone mixed water enters the ozone dissolution tank 6, in which part of the ozone is dissolved in water and sent to the branch ozone water systems 7 and 8. It is done. The remaining ozone is decomposed by the exhaust ozone decomposer 6b through the gas-liquid separator 6a and released as oxygen.
[0011]
The ozone generator 5 includes an electrolytic cell 5a and a DC power source generator 5b, uses a solid polymer electrolyte membrane, and is an electrolytic type having a capacity of 24 g / h in this example, about 180 g / m 3. Of high concentration of ozone. The direct current power generation unit 5b is provided with a current control circuit 5c, and the amount of ozone generation can be adjusted substantially in proportion to the current value by adjusting the current flowing through the electrolytic cell 5a by the adjustment knob 5d. .
[0012]
The manual adjustment valves 10 and 11 are for adjusting the amount of ozone water corresponding to the amount of filtered water flowing to the main and sub-filters 1 and 2, but a valve of an appropriate size for the target flow rate is used. If selected, it can be used in the fully open state. A flow rate adjusting mechanism such as an orifice may be provided in the piping so that the manual adjustment valves 10 and 11 can be used as fully open as possible. As the valves 10 and 11, various kinds of ordinary types can be used. However, in a device that frequently uses only one of the two filters, it is desirable to use a valve of a type suitable for flow rate adjustment.
[0013]
The pool water ozone purifier as described above is used as follows.
When the pool is in use, the circulation pumps 16 and 17 are operated, and the bottom of the pool and the overflow water are circulated and filtered. At this time, the ozone generator 5 and the booster pump 20 are operated, and the branch water of the branch system 4 is turned into ozone water, which is supplied from the branch ozone water systems 7 and 8 to the inlet sides 1a and 2a of the main and sub filters 1 and 2. . At this time, the manual adjustment valves 10 and 11 are operated while observing the flow meters 13 and 14 of the ozone water so that the amount of water in the branched ozone water systems 7 and 8 is proportional to the amount of filtered water flowing through the filters 1 and 2, respectively. To do.
[0014]
For example, when one filter is stopped for inspection or repair, adjustment is made so that the amount of ozone water corresponding to the amount of filtered water flows through the filter that is in operation. At this time, the adjustment knob 5d is adjusted, the current flowing through the electrolytic cell 5a through the current control circuit 5c is adjusted, the ozone generation amount of the ozone generator 5 is adjusted to the necessary ozone amount, and the ozone concentration of the ozone water is Maintain a nearly constant value.
[0015]
According to the experiments by the inventors, the following operation results could be obtained by the ozone purifier as described above.
Circulating filtration water main filter 80 m 3 / h
Subfilter 40 m 3 / h
Total 120 m 3 / h
Branch water volume (usually 5-10%) 8 m 3 / h
Ozone generation 24 g / h
Ozone gas concentration 180 g / Nm 3 (18)
Branched system residual dissolved ozone concentration 2.1 ppm (0.3)
Circulating filtrate dissolved ozone concentration Main filter inlet 0.07 ppm (0.00)
Subfilter inlet 0.07 ppm (0.00)
Pool water visual transparency 25m or more 【0016】
As can be seen from the figure, according to the ozone purifying apparatus to which the present invention is applied, ozone water that is uniformly dissolved at a high concentration is supplied to two filters by one ozone generator, so that 8 m 3 / h Not only does the ozone act on the branch water, but the ozone acts on the filtered water entering both of the two filters, and thus the entire circulating filtered water, so that an extremely high ozone purification effect can be obtained for the pool water. it can. In other words, both inorganic and organic substances in water are ozone-oxidized, and aggregated substances are removed with a filter, and various water purification effects such as decolorization, deodorization, sterilization, and oxidative decomposition of harmful substances are carried out in the filter. Can be obtained for a filter of And the malfunction of having a bad influence on the constituent material of a filter is also eliminated. In addition, since the ozone purification device is composed of one ozone generator, the device cost is low and the configuration is simple.
[0017]
Such an effect cannot be obtained with a conventional ozone purification device. That is, the total amount of ozone generated by the ozone generator is ozone water, and even if the same 8m 3 /h×2.1ppm ozone water is made, it is introduced into only one filter. The water purification effect can be obtained with only one filter, and the ozone purification effect as a whole pool water cannot be improved. Further, in one filter, the dissolved ozone concentration becomes excessively high, and the constituent material of the filter for purifying ozone is also deteriorated.
[0018]
In addition, the numerical value shown with () in the above table | surface shows the reference experiment result which diluted the ozone obtained with the electrolytic ozone generator to 1/10 with air. In this case, the dissolved ozone concentration at the filter inlet became zero. Therefore, it has been found that the effect of the present invention is low in a normal silent discharge type ozone generator, and particularly large in an electrolytic type or high concentration type silent discharge type ozone generator.
[0019]
FIG. 2 shows another example of the ozone purification device.
The apparatus of this example is applied to, for example, a large pool 100, and is provided with three identical large-capacity filters 1, 2, and 3 as compared with the apparatus of FIG. Three-way solenoid valves 22, 23, 24 as a plurality of water supply blocking means that can block the flow of ozone water in the water systems 7, 8, 9, a plurality of returns for returning the blocked ozone water to the branched ozone water system In this example, the three-way solenoid valves 22, 23 are used as return systems 25, 26, 27 that return to the suction side of the booster pump 20 as a system, and a plurality of return blocking means that can block the flow of ozone water in these systems. , 24, and an ozone generation amount setting device 28 as an ozone generation amount selection means that enables selection of an ozone generation amount corresponding to the filter used among the filters 1, 2, and 3. Is different. Since one filter is added, a manual adjustment valve 12, a flow meter 15, a circulation pump 18, and the like are added.
[0020]
In the ozone generation amount setting device 28, since the same three filters are provided in this example, three ozone amounts, two ozone amounts, and one ozone amount in order of increasing ozone amount corresponding to the number of units used. One of the three types of ozone amount can be set. One of the signals set in this way is sent to the ozone generator 5, and the current value given to the electrolysis cell 5a by the current control circuit 5c is controlled correspondingly. As such a current value, for example, about 200 A, 150 A, and 100 A are selected.
[0021]
The ozone generation amount setting device 28 can also be provided in the apparatus of FIG. In this case, since the capacities of the filters 1 and 2 are different in the apparatus of FIG. 1, the set ozone amount is two ozone amounts, one large ozone amount and one small ozone amount, and the current value is the same as above. . Such an ozone generation amount setting device 28 is appropriately incorporated in an operation control panel on the machine side of the ozone generator 5 or a remote operation panel provided in a pool management room or the like.
[0022]
The electromagnetic valves 22 to 24 are opened and closed by an electromagnetic valve operating device 29 in this example. In this opening / closing operation, the branched ozone water systems 7, 8, 9 are selectively opened or closed, and the return systems 25, 26, 27 are closed or opened correspondingly. The electromagnetic valve operator 29 is incorporated in the remote operation panel or the like. The three-way solenoid valves 22 to 24 are ordinary open / close two-way solenoid valves, and the return systems 25, 26, and 27 are branched from the upstream side of the respective solenoid valves. A pipe system provided with a two-way solenoid valve may be used. Further, the electromagnetic valve can be an air operated valve or the like.
[0023]
According to such an apparatus, the same operation effect as the apparatus of FIG. 1 can be obtained, and the supply state of the ozone water can be easily adjusted by remote control or the like corresponding to the number of filters to be used. That is, for example, when the use of the filter 3 is stopped from the state in which all three filters are used, the ozone generation amount of the ozone generator 5 is set to two ozone amounts by operating the ozone generation amount setting unit 28. And the solenoid valve operating device 29 is operated to close the ozone water supply side 9 of the solenoid valve 24 to open the return system 27. Since the solenoid valves 22 and 23 are not operated, the state when the three filters are operated is maintained, the ozone water supply side is connected, and the return side is closed. The manual adjustment valves 10 to 12 are all fully opened or opened so that an equal flow of ozone flows in advance.
[0024]
By such an operation, ozone water is not supplied to the filter 3, and an increase in ozone concentration in the system is prevented. On the other hand, this ozone water is released from the branched ozone water system 9 and returned to the suction side of the booster pump 20 via the return system 27. As a result, the branched ozone water systems 7 and 8 are not affected by the closing of the branched ozone system 9, and the supply of ozone water at the same flow rate as when three filters are operated is maintained. In the ozone generator, the ozone amount is switched to two.
[0025]
Therefore, according to the apparatus of this example, with a simple operation, in the same manner as the apparatus of FIG. A system in which the purifying action is continued and the filter is stopped is protected from excessive ozone. In addition, since the current value of the ozone generator is adjusted according to the usage state of the filter, the operating cost of the device can be reduced and it can contribute to energy saving.
[0026]
In the above example, the water returned from the branch system 9 to the return system 27 is also ozone water. By circulating this water, the amount of ozone generated from the ozone generator is reduced to the amount of ozone in the two units. be able to.
[0027]
FIG. 3 shows still another example.
In the apparatus of this example, the water supply shut-off means and the water escape system shut-off means are each composed of an open / close valve that can be opened and closed by being given a control signal. This open / close valve is similar to the apparatus of FIG. 24. And the filter driving | operation sensor 30 as a filter use condition detection means which detects the use condition of the filters 1-3, the ozone generation amount controller 31 as an ozone generation amount control means, and the electromagnetic valve control as a valve control means A vessel 32 is provided.
[0028]
As the filter operation sensor 30, operation signals of the circulation pumps 16 to 18 are used in this example. However, other suitable detection means such as a flow switch and a pressure switch for each filter system, and an open / close switch for a valve provided at the inlet / outlet of the filter can be used. The signal from the filter operation sensor 30 is sent to the respective controllers 31 and 32.
[0029]
The ozone generation amount controller 31 automatically controls the ozone generation amount corresponding to the number of operating units in this example as the use state of the filter. This control is the same as the control after the ozone generation amount is set by the ozone generation amount setting device 28 in FIG. The solenoid valve controller 32 gives a control signal to the three-way solenoid valves 22 to 24 so that ozone water is supplied when in use and escaped when not in use, corresponding to the use state of the filter. In other words, the ozone water supply side is opened and the return system is closed in the operated filter, and the opposite is controlled in the filter not operated.
[0030]
According to the apparatus of this example, it is not necessary to perform ozone generation amount adjustment and solenoid valve operation in accordance with the operation state of the filter, saving labor in the ozone purifying apparatus, avoiding erroneous operation and avoiding operation operation. Certainty can be obtained. The ozone generation amount controller 31 and the electromagnetic valve controller 32 can be provided in place of or together with the ozone generation amount setting unit 28 and the electromagnetic valve operating unit 29 shown in FIG.
[0031]
【The invention's effect】
As described above, according to the present invention, in the invention according to claim 1, in the ozone purification apparatus for pooled water that performs ozone treatment of water in a circulating filtration system of pooled water having a plurality of filters, a branch having a predetermined configuration is provided. System, one ozone generator, multiple branch ozone water systems and adjustment means are provided, so ozone generated by one ozone generator is supplied to the branch water, and ozone is dissolved in the ozone dissolution tank after the ozone water by, it is adjusted such that the amount of the ozone water supplied to the filter by adjusting means is adapted to filtering water for each filter, via a plurality of branches ozone water of each filter Supplied to the filtration water inlet side.
[0032]
As a result, it is possible to supply ozone water evenly to two or more filters with a simple and low-cost configuration using one ozone generator, and not only branched ozone water but also a plurality of filters. It is possible to cause ozone to act on the entire circulating filtered water that enters and generate a high ozone purification effect on the pool water. Also, since ozone water composed of ozone generated by one ozone generator is distributed to a plurality of filters, the residual ozone concentration in the filter does not become excessive, which may adversely affect the constituent materials of the filter. Absent.
[0033]
In the invention of claim 2, in addition to the above, since the adjusting means includes a plurality of water supply blocking means, a plurality of return systems, and a plurality of return blocking means each having a predetermined configuration, a plurality of branched ozone water systems By adjusting the amount of ozone water between them in a state where all the systems are used, ozone water corresponding to the filter used can be supplied with a simple operation.
[0034]
For example, if the use of two filters is stopped when three filters are provided as a plurality of units, the water supply shut-off means corresponding to the stopped filter is operated to supply ozone water. In addition to shutting off, the return of the branch ozone water system that was shut off by the return shut-off means when the three filters were in operation was released to remove the branch ozone water system corresponding to the two filters. The supply of ozone water for one unit to the branched ozone water system corresponding to the single filter used can be maintained without being affected by the interruption.
[0035]
In other words, it is not necessary to adjust the flow rate of the branched ozone water system ozone water to one filter every time the other filter is stopped, and the operation of the pool water ozone purifier becomes easy. In addition, ozone water is not supplied to the unused filter, so that an abnormal increase in the ozone concentration of the system is prevented, and the accompanying deterioration of piping and the like is prevented. Further, since the branched ozone water system ozone water for the filter that is not used is returned to the branch system, it is possible to reduce the amount of ozone generated by the ozone generator by changing the raw material water to water having a high ozone concentration.
[0036]
And since the ozone generation amount selection means which enables selection of the ozone generation amount corresponding to the filter used among the filters is provided, according to the above example, one filter is operated. By selecting the ozone generation amount corresponding to this, it is possible to secure the necessary ozone amount that is less than when operating three filters by easy operation, and the amount of ozone water and ozone without excess or deficiency A good ozone purification action can be sustained by obtaining a water concentration. In addition, the output of the ozone generator can be reduced, and the operation cost can be reduced and the energy saving effect can be obtained by saving power. Furthermore, the harmful effect of excess ozone in the unused filter is also prevented.
[0037]
In the invention of claim 3, the water supply shut-off means and the return shut-off means are on-off valves that can be opened and closed by a control signal, and the filter use state detecting means, the valve control means, and the ozone generation amount control means for detecting the use state of the filter. The control signal is sent to the on-off valve by the valve control means according to the use state of the filter by the detection of the detecting means, and the on-off valve is opened and closed so as to supply ozone water only to the used filter. Since the ozone generation amount is controlled by the ozone generation amount control means corresponding to the filter used, the ozone concentration and the amount of ozone water are automatically adjusted according to the operation state of the filter. Various effects can be obtained.
[0038]
As a result, it is not necessary to adjust the amount of ozone generated and to operate the solenoid valve, thereby saving labor in the ozone purification device, avoiding erroneous operations, and ensuring the reliability of driving operations.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of the overall configuration of an ozone purification apparatus for pool water to which the present invention is applied.
FIG. 2 is an explanatory diagram showing another example of the overall configuration of the apparatus.
FIG. 3 is an explanatory diagram showing still another example of the overall configuration of the apparatus.
[Explanation of symbols]
1 Main filter, filter (multiple filters)
1a, 2a, 3a Filtration water inlet side (filtration water inlet side)
2 Sub-filter, filter (multiple filters)
3 Filters (multiple filters)
4 Branch system 5 Ozone generator 6 Ozone dissolution tank 7, 8, 9 Branch ozone water system
10, 11, 12 Manual adjustment valve (adjustment means)
13, 14, 15 Flowmeter (Adjustment means)
22, 23, 24 3-way solenoid valve (multiple water shutoff means, multiple return shutoff means, adjustment means, open / close valve)
25, 26, 27 Return system (multiple return systems, adjustment means)
28 Ozone generation amount setting device (Ozone generation amount selection means)
30 Filter operation sensor (filter use state detection means)
31 Ozone generation amount controller (Ozone generation amount control means)
32 Solenoid valve controller (valve control means)
100 Pool 101 Circulation filtration system 101a Outlet side merging part (merging part)

Claims (3)

複数の濾過器と各濾過器にプールの水を供給する供給路と各濾過器で濾過された水を合流させてプールに戻す循環路とを備えたプール水の循環濾過系の水をオゾン処理するプール水のオゾン浄化装置において、
前記循環濾過系の循環路の合流部分の水を分流する分岐系と、前記分岐系の水にオゾンを供給する1台のオゾン発生装置と、前記分岐系の水にオゾンを溶解させてオゾン水にするオゾン溶解槽と、前記オゾン溶解槽のオゾン水を各濾過器にそれぞれ送水するように分岐した複数の分岐オゾン水系と、各分岐オゾン水系に設けられ各濾過器に送水するオゾン水の量を調整可能にする調整手段と、複数の濾過器のうちの使用する濾過器に対応したオゾン発生量の選択が可能であって選択されたオゾン発生量を前記オゾン発生装置に対して設定することが可能なオゾン発生量選択手段とを備えることを特徴とするプール水のオゾン浄化装置。
Ozone treatment of water in the circulating filtration system of pool water with a plurality of filters, a supply path that supplies pool water to each filter, and a circulation path that combines the water filtered by each filter and returns it to the pool In the pool water ozone purification device,
The circulation and filtration system branch system to divert the water converging portion of the circulation path of the one and the ozone generator which supplies ozone to the branch system of water, the branch system water dissolved ozone Ozone water An ozone dissolution tank , a plurality of branched ozone water systems branched so as to send ozone water in the ozone dissolution tank to each filter, and the amount of ozone water to be supplied to each filter provided in each branch ozone water system Adjusting means that makes it possible to adjust the ozone generation amount corresponding to the filter to be used from among the plurality of filters, and setting the selected ozone generation amount to the ozone generator An ozone purifier for pooled water comprising an ozone generation amount selection means capable of performing the above .
前記調整手段は、前記分岐オゾン水系の対応する濾過器へのオゾン水の流れを遮断可能にする複数の送水遮断手段と、前記分岐オゾン水系の遮断されたオゾン水を前記分岐系に戻すための複数の戻し系と、前記戻し系へのオゾン水の流れを遮断可能にする複数の戻し遮断手段とを備えていることを特徴とする請求項1に記載のプール水のオゾン浄化装置。The adjusting means includes a plurality of water supply blocking means that can block a flow of ozone water to a corresponding filter of the branched ozone water system, and a means for returning the blocked ozone water of the branched ozone water system to the branched system. a plurality of return system and, pool water ozone purifying apparatus according to claim 1, characterized in that it comprises a plurality of return blocking means allowing blocking the flow of ozone water to the return system. 前記送水遮断手段および前記戻し遮断手段は、それぞれ制御信号が与えられることによって開閉可能な開閉弁から成り、
濾過器の使用状態を検出する濾過器使用状態検出手段と、前記濾過器使用状態検出手段により検出された各濾過器の使用状態に応じて、使用されている濾過器についてはオゾン水を送水しかつ使用されていない濾過器についてはオゾン水を前記分岐系に戻すように前記開閉弁に前記制御信号を与える弁制御手段と、前記濾過器使用状態検出手段により検出された各濾過器の使用状態に応じて前記オゾン発生装置によるオゾンの発生量を制御するオゾン発生量制御手段を有することを特徴とする請求項2に記載のプール水のオゾン浄化装置。
The water supply shut-off means and the return shut-off means are each composed of an on-off valve that can be opened and closed by being given a control signal,
A filter usage state detecting means for detecting a use state of each filter, depending on the use state of each filter detected by the filter used state detecting means, water supply ozone water for filters used For the unused filters, the valve control means for giving the control signal to the on-off valve so as to return ozone water to the branch system , and the use of each filter detected by the filter use state detecting means The apparatus for purifying ozone of pooled water according to claim 2, further comprising ozone generation amount control means for controlling the amount of ozone generated by the ozone generator according to the state .
JP17438099A 1999-06-21 1999-06-21 Advanced ozone purification equipment for pool water Expired - Fee Related JP4355867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17438099A JP4355867B2 (en) 1999-06-21 1999-06-21 Advanced ozone purification equipment for pool water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17438099A JP4355867B2 (en) 1999-06-21 1999-06-21 Advanced ozone purification equipment for pool water

Publications (2)

Publication Number Publication Date
JP2001000981A JP2001000981A (en) 2001-01-09
JP4355867B2 true JP4355867B2 (en) 2009-11-04

Family

ID=15977615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17438099A Expired - Fee Related JP4355867B2 (en) 1999-06-21 1999-06-21 Advanced ozone purification equipment for pool water

Country Status (1)

Country Link
JP (1) JP4355867B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909648B2 (en) * 2006-06-06 2012-04-04 クロリンエンジニアズ株式会社 Circulating ozone water production apparatus and method of operating the apparatus

Also Published As

Publication number Publication date
JP2001000981A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US4784771A (en) Method and apparatus for purifying fluids
JP5417301B2 (en) Water treatment equipment
KR101492879B1 (en) Water treatment apparatus and water treatment method
JP4355867B2 (en) Advanced ozone purification equipment for pool water
KR101446127B1 (en) Water treatment apparatus
JP7256804B2 (en) Water purification and dispensing system and method of operating such system
KR101459001B1 (en) Water treatment apparatus and water treatment method
KR101982804B1 (en) Water treatment apparatus and water treatment method
KR102079173B1 (en) Water treatment apparatus and water treatment method
JPH08243560A (en) Water purifier
KR101476323B1 (en) Water treatment apparatus and water treatment method
KR101447963B1 (en) Water treatment method
JPH0716570A (en) Ionic water preparation instrument
JPH1071393A (en) Method for washing and sterilizing continuous water supply type electrolytic water making apparatus and continuous water supply type electrolytic fresh water generating apparatus equipped with mechanism executing this method
WO2022014221A1 (en) Apparatus for producing ultrapure water
JPH06241564A (en) Hot water supply apparatus including water purifier
US20240278181A1 (en) Water purifier
KR0175897B1 (en) Water control device for a water purifier
JPH06238280A (en) Electrolytic water preparation and its device
KR0175898B1 (en) Water supply shutoff apparatus for a water purifier
KR101446128B1 (en) Water treatment method
KESKAR 8.40 Water Supply Plant Controls
CN117651688A (en) Water purifier
KR101447519B1 (en) Water treatment method
KR101496307B1 (en) Water treatment apparatus and sterilizing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081014

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees