JP4355295B2 - Passive decompression drug injection method to wood - Google Patents

Passive decompression drug injection method to wood Download PDF

Info

Publication number
JP4355295B2
JP4355295B2 JP2005014472A JP2005014472A JP4355295B2 JP 4355295 B2 JP4355295 B2 JP 4355295B2 JP 2005014472 A JP2005014472 A JP 2005014472A JP 2005014472 A JP2005014472 A JP 2005014472A JP 4355295 B2 JP4355295 B2 JP 4355295B2
Authority
JP
Japan
Prior art keywords
wood
steam
drug
injection
passive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005014472A
Other languages
Japanese (ja)
Other versions
JP2005335365A5 (en
JP2005335365A (en
Inventor
順昭 服部
恵介 安藤
秀文 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005014472A priority Critical patent/JP4355295B2/en
Publication of JP2005335365A publication Critical patent/JP2005335365A/en
Publication of JP2005335365A5 publication Critical patent/JP2005335365A5/ja
Application granted granted Critical
Publication of JP4355295B2 publication Critical patent/JP4355295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、木材内に蒸気を導入し、その蒸気の凝縮で生じた減圧を利用して、薬剤液を木材内に含浸させる新規な薬剤注入方法に関するものであり、更に詳しくは、レーザインサイジングにより、木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させて木材内に蒸気を導入し、次いで、木材を、例えば、防虫剤、木材硬化剤、樹脂改質剤などの薬剤液に浸漬することによって、温度低下による蒸気の凝縮を起こさせ、材内を減圧状態として薬剤液を木材に含浸させる、木材へのパッシブ減圧薬剤注入方法、及び薬剤注入木材の製造方法に関するものである。本発明のパッシブ減圧薬剤注入方法は、木材の改質ないしは生木材の乾燥と改質を行なう木材の改質の技術分野において、格別の高圧条件を要することなく、簡便かつ低コストで、確実に木材内部深く薬剤を注入することができる新規な薬剤注入技術を提供するものである。 The present invention relates to a novel method for injecting chemicals into wood by introducing steam into the wood and using the reduced pressure generated by the condensation of the steam, and more specifically, laser insizing. To pierce the wood with a through-hole, allow steam to flow through the through-hole, introduce steam into the wood, and then convert the wood into a chemical solution such as an insect repellent, wood hardener, resin modifier, etc. by immersion, to cause condensation of steam due to the temperature drop, the drug solution is impregnated into the wood to the wood as a pressure reducing state, the passive vacuum infusion method into wood, and those concerning the manufacturing how the infusion timber is there. The passive decompression chemical injection method of the present invention is reliable, simple and low-cost without requiring special high-pressure conditions in the technical field of wood modification or wood modification, which involves drying and modifying raw wood. The present invention provides a novel drug injection technique capable of injecting a drug deep inside wood.

木材は、古来、原料となる樹木の豊富さ、あるいは加工の容易性、強度、耐久性などの特性から、建築材料、道具などの身近な原材料として利用されてきており、コンクリート、金属、プラスチックなどの利用が増えたとはいえ、世界的には、経済発展の度合いに応じて一人当たりの木材消費量は増加しており、人口の増加とも相まって、世界の木材消費量は年々増加している。それは、開発途上国における樹木の燃料としての消費などとともに、森林の減少となって現れている。例えば、1997年10月に発表された、WWF(世界自然保護基金)及びWCMC(世界自然保護モニタリングセンター)の森林減少に関する共同調査によると、8千年前に存在した世界の自然林の約3分の2が消失しまっている。特に、アフリカ、東南アジア及び南米の熱帯林の減少が大きく、2000年までの10年間では、アフリカ及び南米の熱帯林の減少が、世界の森林減少面積の96%となっている。これは、二酸化炭素を有機化合物として固定し、地面の水保持を齎す森林が、地球全体の課題である、地球温暖化、二酸化炭素の増加の防止、あるいは砂漠化防止、水資源維持、治水などで重要な役割を果たしていることから、憂慮すべきことである。   Since ancient times, wood has been used as a familiar raw material for building materials, tools, etc. due to its abundance of trees as raw materials, or ease of processing, strength, durability, etc., such as concrete, metal, plastic, etc. Although the use of timber has increased, timber consumption per capita has increased globally according to the degree of economic development, and the world's timber consumption has increased year by year, coupled with the increase in population. It appears as a decrease in forests, along with consumption as fuel for trees in developing countries. For example, according to a joint study on deforestation of the World Wildlife Fund (WFF) and the World Wildlife Conservation Monitoring Center (WCMC) announced in October 1997, about 3 minutes of the world's natural forest that existed 8,000 years ago 2 disappeared. In particular, the decline in tropical forests in Africa, Southeast Asia, and South America is significant. In the 10 years up to 2000, the decline in tropical forests in Africa and South America is 96% of the world's deforestation area. This is because forests that fix carbon dioxide as an organic compound and hesitate to maintain water on the ground are global issues, such as global warming, prevention of increase in carbon dioxide, or desertification, water resource maintenance, flood control, etc. It is a concern because it plays an important role.

日本では、戦後復興から高度経済成長への移行期にかけて、樹木の伐採量はその成長量を超えて増大し、1964年には戦後年間最多伐採量2324万mを記録したが、1962年の木材製品貿易自由化により南洋材輸入が激増し、国産材価格が低迷したことから、樹木の伐採量は減少しつづけた。例えば、木材生産量でみると、1960年に5655万mで、そのうち国産材は86.7%であったが、1997年には、10990万mで、そのうち国産材は19.6%であった。この樹木の伐採量減少は、日本における森林の保全に好都合とはならず、樹木の利用、その後の植林及び樹木生育のための手入れ・管理を通しての、樹木の生育環境の向上、樹木の種類又は世代の交替サイクル(樹木の生産と消費の安定したサイクル)を維持する、ないしは速めるなどのための努力が疎かになる傾向を生じさせ、森林の荒廃、林業の衰退へと繋がった。 In Japan, over the period of transition to the high economic growth from the post-war reconstruction, harvest of trees is increased beyond the amount of growth, but in 1964 was recorded post-war annual largest harvest 23.24 million m 3, 1962 The amount of felled trees continued to decline due to a sharp increase in imports of southern seawood due to the liberalization of trade in timber products and the decline in domestic timber prices. For example, when viewed in the wood production, at 56.55 million m 3 in 1960, but was of which domestic wood 86.7% in 1997, with 109.9 million m 3, of which domestic wood 19.6% Met. This decrease in the amount of felled trees is not favorable for forest conservation in Japan, and the use of trees, subsequent planting and maintenance and management for tree growth, improvement of the tree growth environment, tree type or The effort to maintain or speed up the generational change cycle (a stable cycle of tree production and consumption) has tended to be neglected, leading to deforestation and the decline of forestry.

昨今は、日本国内においても、二酸化炭素を有機化合物として固定するための森林の重要性、雨水などを地面に保持し、治水、飲料水の確保に役立てるための森林の重要性、あるいは自然景観と人の心に与える安らぎのための森林の重要性などから、森林の保護及び木材、間伐材などの有効利用が図られるようになった。木材、間伐材などは、天然素材で環境への負荷が少ないこと、公園など屋外に置かれる木材製品の自然環境との調和、構造部材としての軽量、強度、耐久性、調湿性、あるいは樹木の加工ないしは木材の加工に要するエネルギーが少なく、例えば、建築分野におけるライフサイクル炭酸ガス排出量(LCCO:life cycle CO)の面でも有利であること、有害成分が無く、環境に優しいこと、再利用可能で、生分解性であることなどから、その有効利用あるいは加工処理の必要性が高まっている。 Recently, in Japan, the importance of forests for fixing carbon dioxide as an organic compound, the importance of forests for retaining rainwater, etc. on the ground, and helping to secure flood control and drinking water, or the natural landscape Due to the importance of forests for peace of mind for humans, forest protection and effective use of timber, thinned wood, etc. have come to be attempted. Wood, thinned wood, etc. are natural materials that have little impact on the environment, harmony with the natural environment of wood products placed outdoors such as parks, light weight, strength, durability, humidity control, or trees as structural members machining or less energy is required for the processing of wood, for example, the life cycle carbon dioxide emissions in the construction sector (LCCO 2: life cycle CO 2 ) plane by also advantageous in, no harmful ingredients, environmentally friendly, re Since it is usable and biodegradable, the necessity for its effective use or processing is increasing.

また、二酸化炭素を固定した木材などの使用期間を長くする木材処理とともに、樹木の有効利用、利用量の増大を図り、その後の植林、樹木生育のための手入れ・管理などを通して、樹木などの生命活動を活発にする配慮が重要視されてきている。このことは、環境保護に対する社会的要請にも呼応している。そこで、木材の本来の特質を活かしつつ、その処理、あるいは改質を行ない、木材の寿命、木材の利用価値を更に向上させる必要性が増大している。因みに、例えば、日本における2002年1年間の製材品出荷量は約1440万mであり、そのうち、人工乾燥材は約179万m(2001年は約155万m)であった。 In addition to wood treatment that extends the period of use of timber with fixed carbon dioxide, etc., we plan to increase the effective use and increase of the amount of trees. After that, through tree planting, maintenance and management for tree growth, etc. Consideration to make the activity active is regarded as important. This is in response to social demands for environmental protection. Therefore, there is an increasing need to further improve the lifespan of wood and the utility value of wood by making use of the original characteristics of wood and performing treatment or modification. Incidentally, for example, the shipment volume of sawn timber in Japan for about one year in 2002 was about 14.4 million m 3 , of which artificially dried material was about 1.79 million m 3 (about 1,550,000 m 3 in 2001).

従来は、木材保存剤などで木材を処理する方法として、例えば、注薬缶内で、先ず減圧によって木材内の空気を取り出し、その後、加圧(JIS A 9002では、ゲージ圧0.4〜2.2MPa)によって、防虫剤、木材硬化剤、樹脂改質剤などの薬剤液を注入する、ベセル法、ローリー法、リュービング法などの加圧処理法が採られていた。しかしながら、減圧処理による効果が不十分であるため、その後の加圧でも薬剤液を木材内部まで完全に浸透させることは困難である。また、サザンイエローパインなどのように薬液の浸透性がよい樹種もあるが、例えば、スギ、ベイスギ、カラマツなどの樹種では、薬液の浸透性が悪く、均一に薬液を注入することが難しい。そのため、薬液の浸透を簡便、かつ確実にする方法として、通常は、薬液を注入する前に、木材表面に穴や溝を刻み、沢山の小さな痕を付けておくインサイジングなどが採用されていた。   Conventionally, as a method of treating wood with a wood preservative or the like, for example, in a canister, first, the air in the wood is taken out under reduced pressure, and then pressurized (in JIS A 9002, the gauge pressure is 0.4-2. Pressure treatment methods such as the Bethel method, the Lowry method, and the Lubbing method in which chemical solutions such as insect repellents, wood curing agents, and resin modifiers are injected. However, since the effect of the decompression treatment is insufficient, it is difficult to completely penetrate the chemical liquid into the wood even in the subsequent pressurization. In addition, some tree species such as Southern Yellow Pine have good chemical permeability, but, for example, tree species such as cedar, cedar, and larch have poor chemical permeability and it is difficult to uniformly inject the chemical. Therefore, as a method to make the penetration of the chemical solution simple and reliable, insizing, etc., in which holes and grooves are cut on the surface of the wood and a lot of small marks are usually made before the chemical solution is injected. .

これまでに、本発明者らは、木材の、改質しようとする表面すぐ下の表層部において、側面に、表面と平行な方向のレーザビームを照射して、表面に平行な方向の貫通孔を多数穿孔し、それら貫通孔に樹脂液を含浸させることにより、木材表層部の改質を行なう技術(特許文献1参照)、及び木材表面から反対側へ貫通する貫通孔を、レーザビームなどにより多数穿孔し、それら貫通孔に、高温蒸気又は薬剤を混入させた高温蒸気を貫流させて、木材の乾燥及び改質を行なう技術(特許文献2参照)、を開発している。   So far, the present inventors have irradiated a laser beam in a direction parallel to the surface on the side surface in the surface layer portion of the wood just below the surface to be modified, and through-holes in the direction parallel to the surface. A technique for modifying the wood surface layer by impregnating a resin liquid into the through holes (see Patent Document 1), and a through hole penetrating from the wood surface to the opposite side with a laser beam or the like A technique has been developed in which a large number of holes are drilled, and high temperature steam or high temperature steam mixed with a chemical is passed through the through holes to dry and modify the wood (see Patent Document 2).

また、木材を、過熱蒸気で熱処理をするなどして、木材細胞で樹液移動のバルブとして機能していた壁孔部(ピット)を開口させる前処理を施してから、無機質注入缶に入れ、缶内を所定の真空度に真空引きして、光触媒などの無機質微粒子の分散液を注入し、木材を乾燥させる無機質充填木材の製造技術も開発されている(特許文献3参照)。   In addition, the wood is preheated with superheated steam, etc., and pre-treated to open the wall holes (pits) that functioned as sap transfer valves with wood cells, and then placed in an inorganic injection can. A technique for producing inorganic-filled wood has also been developed in which the interior is evacuated to a predetermined degree of vacuum, a dispersion of inorganic fine particles such as a photocatalyst is injected, and the wood is dried (see Patent Document 3).

特開平10−71608号公報Japanese Patent Laid-Open No. 10-71608 特開2002−86406号公報JP 2002-86406 A 特開2000−102907号公報JP 2000-102907 A

このような状況の中で、本発明者らは、木材のスチームインジェクション乾燥の際に、材木内部が水蒸気で満たされていると思われる現象を発見したことと、上記従来技術に鑑みて、難しいとされていた木材内部への薬剤浸透により、木材の改質を確実、かつ簡便に行なうことを可能とする新しい木材改質技術を開発することを目標として鋭意研究を積み重ねた結果、木材内部の水蒸気を凝縮させると、材内が減圧状態になり、圧力差による木材内部への薬剤の浸透を図ることができること、そして、実用化が期待できる、有用な薬剤注入方法を開発することができることを見出し、本発明を完成するに至った。本発明は、木材を改質するために、木材内部を、新たな手段で減圧にして薬剤を注入する、新規木材改質方法、薬剤注入木材の製造方法を提供することを目的とするものである。 Under such circumstances, the present inventors have found a phenomenon that the inside of the timber is considered to be filled with water vapor during the steam injection drying of the wood, and it is difficult in view of the above-described conventional technology. As a result of intensive research with the goal of developing a new wood modification technology that enables reliable and easy modification of wood through the penetration of chemicals into the wood, If water vapor is condensed, the inside of the material will be in a reduced pressure state, the drug can penetrate into the wood due to the pressure difference, and a useful drug injection method that can be expected to be put into practical use can be developed. The headline and the present invention were completed. The present invention, which to modify the timber, the inner timber, to inject medication in the vacuum with a new unit, and an object thereof is to provide novel wood modification process, the manufacturing how the infusion timber It is.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)木材に、その内部へ導入した蒸気を凝縮させることによって生ずる減圧を利用して薬剤液を含浸させ、薬剤を注入するパッシブ減圧薬剤注入方法であって、木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させることにより、木材内に蒸気を滞留させ、次いで、木材を薬剤液に浸漬し、温度低下による蒸気の凝縮によって材内を減圧状態として木材に薬剤液を含浸させることを特徴とする、木材へのパッシブ減圧薬剤注入方法。
(2)レーザインサイジングにより木材に貫通孔を穿孔する、前記(1)記載のパッシブ減圧薬剤注入方法。
(3)蒸気が、高温水蒸気である、前記(1)に記載のパッシブ減圧薬剤注入方法。
(4)生木材の貫通孔に高温水蒸気を貫流させることにより、生木材を乾燥させるとともに、木材内に高温水蒸気を滞留させる、前記(1)に記載のパッシブ減圧薬剤注入方法。
)木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させることにより、木材内に蒸気を滞留させ、次いで、木材を薬剤液に浸漬し、温度低下による蒸気の凝縮によって材内を減圧状態として木材に薬剤液を含浸させることにより薬剤注入木材を製造することを特徴とする薬剤注入木材の製造方法。
)レーザインサイジングにより木材に貫通孔を穿孔する、前記()に記載の薬剤注入木材の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A passive decompression drug injection method in which a drug solution is impregnated by using a reduced pressure generated by condensing vapor introduced into the wood into the wood, and the drug is injected. By allowing steam to flow through the through-holes, the steam stays in the wood, and then the wood is immersed in the chemical solution, and the wood is impregnated with the chemical solution by condensing the vapor due to the temperature drop to reduce the pressure inside the material. A method for injecting a passive reduced-pressure medicine into wood.
(2) The passive decompression drug injection method according to (1), wherein a through hole is drilled in wood by laser insizing.
(3) The passive decompression drug injection method according to (1), wherein the steam is high-temperature steam.
(4) The passive decompression chemical injection method according to (1), wherein the high temperature water vapor is allowed to flow through the through holes of the raw wood, thereby drying the raw wood and retaining the high temperature water vapor in the wood.
( 5 ) Drilling through-holes in wood, allowing steam to flow through the through-holes, retaining the steam in the wood, then immersing the wood in the chemical solution, and condensing the inside of the material by condensing the steam due to a temperature drop A method for producing drug-injected wood, characterized in that a drug-injected wood is produced by impregnating wood with a drug solution in a reduced pressure state.
( 6 ) The method for producing drug-injected wood according to ( 5 ), wherein a through hole is drilled in the wood by laser insizing.

次に、本発明について、更に詳細に説明する。
本発明は、木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させることにより木材内に蒸気を滞留させ、次に、薬液中に浸漬することにより木材を冷却し、蒸気の凝縮によって木材内を減圧にすると同時に薬液で満たす、すなわち、積極的に木材内を減圧にして薬液を注入することを特徴としている。本発明で、木材に貫通孔を開ける手段としては、貫通孔の内径を小さくすることができる手段であれば特に限定されないが、水分通導組織(導管又は仮導管)を塞ぐことのない、COレーザ光照射によるレーザインサイジングが最適である。レーザインサイジングにより貫通孔を穿孔する場合でも、貫通孔の本数を増やし過ぎると、木材の強度の低下を齎すこと及び本発明のパッシブ減圧薬剤注入方法では薬剤浸潤度が大きくなることから、例えば、スギ材の場合、レーザ照射方向に直交する木材断面で見て、10000ヶ所/m以下とすることが好ましい。
Next, the present invention will be described in more detail.
In the present invention, a through hole is drilled in wood, and steam is allowed to stay in the wood by allowing the steam to flow through the through hole. Next, the wood is cooled by being immersed in a chemical solution, and the wood is condensed by condensing the steam. The inside is decompressed and filled with the chemical at the same time, that is, the inside of the wood is actively decompressed and the chemical is injected. In the present invention, the means for opening the through hole in the wood is not particularly limited as long as it can reduce the inner diameter of the through hole, but it does not block the moisture conducting structure (conduit or temporary conduit), CO. Laser insizing by two laser light irradiation is optimal. Even when drilling through-holes by laser insizing, if the number of through-holes is increased too much, the decrease in the strength of the wood is hesitated and the degree of drug infiltration increases in the passive decompression drug injection method of the present invention. In the case of a cedar material, it is preferable to set it to 10000 places / m 2 or less as viewed in a cross section of the wood perpendicular to the laser irradiation direction.

本発明で、木材の貫通孔へ貫流する蒸気としては、装置の構成の容易さ、エネルギー消費の少なさなどから、室温より高い温度で凝縮し、反応性が低い、水、アルコールなどの物質の蒸気が好ましく、特に、環境への影響がなく、生木材の乾燥にも適した、安価な水蒸気が最適である。木材の貫通孔へ貫流する際の蒸気温度は、薬剤の注入のみを目的とする場合は、凝縮点を超える適宜温度でよいが、水蒸気を用いて木材の乾燥、あるいは木材の乾燥及び改質と木材への薬剤の注入とを兼ねる場合は、105〜160℃とすることが好ましい。水蒸気が120℃、あるいは140℃程度では、木材成分に殆ど変化を与えないが、160℃、あるいはそれを超えると、ヘミロースの減少、リグニンの分解、α−セルロースの変化などで、木材成分に僅かな変化を引き起こし、乾燥と同時に、寸法安定性の向上などの材質変化を伴う場合がある。   In the present invention, the steam that flows into the through-hole of wood is a substance that is condensed at a temperature higher than room temperature and has low reactivity, such as water and alcohol, due to the ease of construction of the apparatus and low energy consumption. Steam is preferred, and in particular, cheap steam that is suitable for drying raw wood is optimal. The steam temperature at the time of flowing through the wood through-hole may be an appropriate temperature that exceeds the condensation point when only the injection of chemicals is intended, but it is possible to dry the wood using water vapor or to dry and modify the wood. When serving also as injection | pouring of the chemical | medical agent to wood, it is preferable to set it as 105-160 degreeC. When the water vapor is about 120 ° C or 140 ° C, there is almost no change in the wood component. However, when the temperature is 160 ° C or higher, the wood component is slightly changed due to hemirose reduction, lignin degradation, α-cellulose change, etc. In some cases, material changes such as improvement in dimensional stability occur simultaneously with drying.

本発明で、木材に注入する薬剤は、木材の改質などで従来用いられていた保存処理剤などの薬剤であって、特に限定されないが、例えば、寸法安定化剤、腐朽防止剤、防虫剤、防蟻剤、難燃化剤、防黴剤、染色剤、香料、木材硬化剤、樹脂改質剤などの薬剤が例示される。具体的物質の代表例を挙げると、第四級アンモニウム化合物(水溶性)、銅・第四級アルキルアンモニウム化合物(水溶性)、銅・ホウ素・アゾール化合物(水溶性)、脂肪酸金属塩(乳化性)、ナフテン酸金属塩(油溶性、乳化性)、クレオソート油(油性、鉄道枕木用など産業用以外には用いない)などである(JIS K 1570参照)。これら薬剤は、浸漬温度で、貫通孔を満たすことができる粘度の液状である場合は、そのまま用いられ、浸漬温度で固形ないしは粘度が大き過ぎる液状物である場合は、溶媒などにより貫通孔を満たすことができる粘度の液状にしたものが用いられる。また、薬剤液と貫通孔壁との界面張力、あるいは濡れも考慮しなければならない。更には、薬剤液の状態でなくとも、温度低下による上記蒸気の凝縮によって生じる木材内の減圧を利用して、気体状ないしはエアロゾル状の薬剤を木材に注入することも可能である。   In the present invention, the agent to be injected into wood is a preservative agent or the like conventionally used for modifying wood, and is not particularly limited. For example, a dimensional stabilizer, an antiseptic agent, and an insect repellent. Examples thereof include agents such as an antifungal agent, a flame retardant, an antifungal agent, a dyeing agent, a fragrance, a wood curing agent, and a resin modifier. Specific examples of specific substances include quaternary ammonium compounds (water-soluble), copper / quaternary alkyl ammonium compounds (water-soluble), copper / boron / azole compounds (water-soluble), fatty acid metal salts (emulsifying properties). ), Naphthenic acid metal salts (oil-soluble, emulsifiable), creosote oil (oil-based, not used for industrial purposes such as railway sleepers), and the like (see JIS K 1570). These chemicals are used as they are when they are in the form of a liquid with a viscosity that can fill the through-holes at the immersion temperature, and fill the through-holes with a solvent or the like if the liquid is solid or too liquid at the immersion temperature. A liquid having a viscosity capable of being used is used. In addition, the interfacial tension between the drug solution and the through-hole wall, or wetting must also be considered. Furthermore, it is also possible to inject a gaseous or aerosol drug into the wood by utilizing the reduced pressure in the wood caused by the condensation of the vapor due to the temperature drop, not in the state of the drug solution.

本発明のパッシブ薬剤注入方法における薬剤液の温度は、木材のバルク温度を、木材内に保持された蒸気が凝縮する温度よりも低くすることができる温度であればよく、用いる薬剤液に応じて、加熱又は冷却して温度調整してもよいが、消費エネルギーを少なくするためには、室温の薬剤液に、その量を蒸気が凝縮する温度よりも低い温度に維持できる量以上にして、蒸気が保持された木材を浸漬することが好ましい。   The temperature of the drug solution in the passive drug injection method of the present invention may be any temperature that allows the bulk temperature of the wood to be lower than the temperature at which the vapor retained in the wood condenses, and depends on the drug solution used. The temperature may be adjusted by heating or cooling. However, in order to reduce the energy consumption, the amount of the chemical solution at room temperature should be higher than the amount that can be maintained at a temperature lower than the temperature at which the vapor condenses. It is preferable to immerse wood in which is held.

本発明のパッシブ減圧薬剤注入方法により、例えば、スギ材の場合、薬剤液は、木材に穿孔された貫通孔を経て、それに通じる仮導管などの水分通導組織の100mm以上奥まで浸透し、薬剤浸潤度が大きくなり、従来の方法よりも多量の薬剤を確実に木材内に注入することができ、注入された薬剤も、その後、放散することが殆どない。また、本発明のパッシブ減圧薬剤注入方法は、蒸気の導入にそれ程の圧力を要しないため、従来のように、薬液注入のための高圧条件のような特別の加圧及びそのための装置を必要とせず、簡便、低エネルギー消費、低コストで、環境に優しい、木材への薬剤注入方法である。   According to the passive decompression drug injection method of the present invention, for example, in the case of cedar, the drug solution penetrates through the through-hole drilled in the wood to the depth of 100 mm or more of the moisture conducting tissue such as a temporary conduit leading to the drug solution. The degree of infiltration is increased, so that a larger amount of drug can be reliably injected into the wood than the conventional method, and the injected drug is hardly released thereafter. In addition, since the passive decompression drug injection method of the present invention does not require so much pressure to introduce the vapor, it requires a special pressurization such as a high-pressure condition for injecting a chemical solution and an apparatus therefor as in the prior art. It is a simple, low energy consumption, low cost, environmentally friendly method for injecting chemicals into wood.

本発明により、(1)例えば、レーザインサイジングにより貫通孔を穿孔した木材に蒸気噴射を行うことで、木材内部を蒸気で満たし、その後、薬剤液に浸漬して冷却し、木材内の蒸気を凝縮させることによって、木材内を減圧状態とし、インサイジング穴を通して薬剤液を含浸させる新しいパッシブ減圧薬剤注入方法を提供することができる、(2)本発明により、木材内部まで十分に薬剤を注入することができる、(3)木材に、従来よりも多い量の薬剤を確実に注入することができる、(4)これまで薬剤液注入に必要であった圧力容器を、不要とすることができる、(5)本発明の方法は、低コストの薬剤注入方法であり、しかも薬剤の浸透効果が優れている、(6)エネルギー消費が少なく、環境に優しい方法で、木材へ薬剤を注入することができる、(7)木材の乾燥と薬剤の注入を兼ねた工程とすることができる、(8)本発明の方法を実施するための装置が簡単であり、実用化が容易である、という格別の効果が奏される。   According to the present invention, (1) for example, vapor injection is performed on wood with through holes drilled by laser insizing, so that the interior of the wood is filled with steam, then immersed in a chemical solution and cooled, and the steam in the wood is By condensing, it is possible to provide a new passive decompression drug injection method in which the inside of the wood is decompressed and impregnated with the drug solution through the insizing hole. (2) According to the present invention, the medicine is sufficiently injected into the wood. (3) It is possible to reliably inject a larger amount of medicine into wood than before, (4) It is possible to eliminate the need for a pressure container that has been necessary for injecting a chemical solution so far. (5) The method of the present invention is a low-cost drug injection method and has an excellent drug penetration effect. (6) The drug is injected into wood by an environmentally friendly method with low energy consumption. (7) It can be a process that doubles the drying of the wood and the injection of the medicine, (8) The apparatus for carrying out the method of the present invention is simple, and the practical application is easy. This is an exceptional effect.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by these Examples.

(1)スギ生材のレーザインサイジング
供試材として、絶乾状態、すなわち、木材繊維と結合水が存在する細胞壁及び自由水が存在する細胞の内腔や細胞壁の間隙部分からなる木材から自由水及び結合水を除いた乾燥状態、とした場合に、約370kg/mであるスギ生材(120mm×120mm×600mm、600mm長さ方向が繊維方向)5本を用意し、COレーザ光を用いたレーザインサイジングにより、120mm×600mm面の中央を通る線上に、繊維方向に一列(供試材番号14B、14E)及び繊維方向に直角な方向に一列(供試材番号14A、14C、14D)の2種類の供試材となるように、5mm間隔で、面に垂直に120mm貫通する貫通孔を穿孔した。得られた穿孔スギ生材の重量は、供試材番号14A、14C、14Dが、それぞれ5.197kg、5.383kg、5.360kgであり、供試材番号14B、14Eが、それぞれ5.245kg、5.192kgであった。
(1) Laser sizing of Japanese cedar raw material As a test material, it is completely dry, that is, free from wood consisting of cell walls in which wood fibers and bound water are present, and cell lumens in which free water is present and cell wall gaps. Prepare 5 cedar raw materials (120 mm x 120 mm x 600 mm, 600 mm length direction is the fiber direction), which is about 370 kg / m 3 , and CO 2 laser light. By using laser insizing, a line in the fiber direction (test material numbers 14B and 14E) and a line in the direction perpendicular to the fiber direction (test material numbers 14A, 14C, 14D), through-holes penetrating 120 mm perpendicularly to the surface were drilled at intervals of 5 mm so as to be two kinds of specimens. The weights of the obtained perforated cedar raw materials are 5.197 kg, 5.383 kg, and 5.360 kg for specimen numbers 14A, 14C, and 14D, respectively, and 5.245 kg for specimen numbers 14B and 14E, respectively. It was 5.192 kg.

(2)穿孔スギ生材の水蒸気噴射処理
これらの穿孔スギ生材を、蒸気噴射プレス型乾燥装置に入れた。蒸気噴射プレス型乾燥装置において、穿孔スギ生材の穿孔面の一方の面を、高温高圧蒸気を噴射する下部熱盤の上に、蒸気通過域を開けたシール及びこの蒸気通過域に配置する金網を介して載せ、他方の面に、蒸気排出用の上部熱盤を、蒸気通過域を開けたシール及びこの蒸気通過域に配置する金網を介して当て、回りをスペーサで囲繞し、上下から両熱盤でプレスして穿孔スギ生材を密封した(前記特許文献2参照)。本実施例では、蒸気として水蒸気を用い、噴射水蒸気圧力約0.1MPa(水蒸気温度110℃)及び下部熱盤温度160℃の条件下で、貫通孔に水蒸気を3時間貫流させ、穿孔スギ生材を乾燥させるとともに、木材内に水蒸気を導入する処理をした。こうして、水蒸気を導入した穿孔スギ乾燥材を得た。これらの重量は、供試材番号14A、14C、14Dが、それぞれ4.911kg、5.065kg、5.039kgであり、供試材番号14B、14Eが、それぞれ4.717kg、4.685kgであった。
(2) Steam injection treatment of perforated cedar raw materials These perforated cedar raw materials were put into a steam injection press type drying apparatus. In a steam injection press type drying apparatus, one surface of a perforated surface of perforated cedar raw material is placed on a lower heat plate for injecting high-temperature and high-pressure steam, a seal having an open steam passage area, and a wire mesh disposed in the steam passage area. The upper surface of the steam discharge plate is placed on the other surface through a seal with an open steam passage area and a wire mesh placed in the steam passage area. The perforated cedar raw material was sealed with a hot platen (see Patent Document 2). In this embodiment, steam is used as steam, and steam is allowed to flow through the through holes for 3 hours under conditions of a jet steam pressure of about 0.1 MPa (water vapor temperature of 110 ° C.) and a lower hot platen temperature of 160 ° C. Was dried and steam was introduced into the wood. Thus, a perforated cedar desiccant into which water vapor was introduced was obtained. The weights of these specimens are as follows: specimen numbers 14A, 14C, and 14D are 4.911 kg, 5.065 kg, and 5.039 kg, and specimen numbers 14B and 14E are 4.717 kg and 4.685 kg, respectively. It was.

(3)前処理した木材へのパッシブ減圧注入
前記の、水蒸気を導入した穿孔スギ乾燥材を、直ちに、大気圧下にある、室温の水に浸漬し、そのまま約半日間放置した。得られた試供材の重量は、供試材番号14A、14C、14Dが、それぞれ5.457kg、5.983kg、6.047kgであり、供試材番号14B、14Eが、それぞれ5.515kg、5.473kgであった。
(3) Passive decompression injection into pretreated wood The perforated cedar desiccant introduced with water vapor was immediately immersed in water at room temperature under atmospheric pressure and left as it was for about half a day. The weights of the obtained test materials are 5.457 kg, 5.983 kg, 6.047 kg for the test material numbers 14A, 14C, and 14D, respectively, and 5.515 kg, 5 for the test material numbers 14B and 14E, respectively. .473 kg.

(4)木材の含水率変化
図1に、穿孔スギ生材(供試材番号14A〜14E)の含水率(%)の変化を示した。含水率(%)は、絶乾状態、すなわち、木材繊維と結合水が存在する細胞壁及び自由水が存在する細胞の内腔や細胞壁の間隙部分からなる木材から自由水及び結合水を除いた乾燥状態、にしたときの木材重量を100とした場合の、木材中に含まれている水分の重量割合である。図1から、3時間の水蒸気噴射により、穿孔スギ生材は乾燥され、パッシブ減圧注入により生材のときよりも含水率が上昇していることが分かる
(4) Change in moisture content of wood Fig. 1 shows a change in moisture content (%) of perforated cedar raw materials (test material numbers 14A to 14E). Moisture content (%) is completely dry, that is, dry water excluding free water and bound water from wood consisting of cell walls in which wood fibers and bound water are present and cell cavities in which free water is present and gaps between cell walls. This is the weight ratio of moisture contained in the wood when the weight of the wood in the state is 100. From FIG. 1, it is understood that the perforated cedar raw material is dried by the steam injection for 3 hours, and the moisture content is increased by passive decompression injection compared to the raw material.

図2に、供試材番号14A、14Cの供試材のパッシブ減圧注入後における、インサイジング列からの繊維方向の距離(mm)と含水率(%)との関係を示した。図2から、パッシブ減圧注入により、貫通孔壁から短くとも100mmまでは注水され、100〜150mmの間でバルクの含水率となっていることが分かる。つまり、本発明のパッシブ減圧注入により、貫通孔を経て、その周囲の仮導管などに注水されていることが分かる。図3に、供試材番号14Bの供試材のパッシブ減圧注入後における、インサイジング列からの幅方向の距離(mm)及びレーザ照射面からの照射方向の距離(mm)と含水率(%)との関係を示した。図3から、パッシブ減圧注入により、穿孔スギ乾燥材の120mmの長さの貫通孔の両側から、貫通孔周囲に深く注水されていることが分かる。なお、水に代え薬剤液を注入した場合も、同様に薬剤液が木材に含浸されると考えられる。   FIG. 2 shows the relationship between the distance (mm) in the fiber direction from the insizing row and the moisture content (%) after passive decompression injection of the test materials of test material numbers 14A and 14C. From FIG. 2, it can be seen that by passive vacuum injection, water is injected from the wall of the through hole to at least 100 mm, and the bulk moisture content is between 100 and 150 mm. That is, it can be seen that the passive decompression injection according to the present invention allows water to be injected into the surrounding temporary conduit through the through hole. FIG. 3 shows the distance (mm) in the width direction from the insizing array and the distance (mm) in the irradiation direction from the laser irradiation surface and the moisture content (%) after passive decompression injection of the test material with the test material number 14B. ). It can be seen from FIG. 3 that by passive vacuum injection, water is poured deeply around the through hole from both sides of the 120 mm long through hole of the perforated cedar desiccant. In addition, when a chemical | medical solution is inject | poured instead of water, it is thought that a chemical | medical solution is impregnated similarly to wood.

(1)スギ生材のレーザインサイジング
供試材として、絶乾状態にした場合に約360kg/m(供試材番号13A、13B、13D、13E)又は約330kg/m(1B)であるスギ生材(120mm×120mm×600mm、600mm幅方向が繊維方向)5本に、COレーザ光を用いたレーザインサイジングにより、120mm×600mm面の全面に、面に垂直に120mm貫通する貫通孔を、5000ケ所/mで均一に穿孔したもの(供試材番号13A、13D、13E、1B)及び2000ケ所/mで均一に穿孔したもの(供試材番号13B)を用意した。こうして得た穿孔スギ生材の重量は、供試材番号13A、13D、13E、1Bが、それぞれ5.609kg、5.895kg、5.415kg、7.570kgであり、供試材番号13Bが、5.472kgであった。
(1) Laser sizing of cedar raw material As a test material, when it is completely dried, it is about 360 kg / m 3 (test material numbers 13A, 13B, 13D, 13E) or about 330 kg / m 3 (1B). Through five cedar raw materials (120 mm x 120 mm x 600 mm, 600 mm width direction is the fiber direction), laser insizing using CO 2 laser light penetrates the entire surface of the 120 mm x 600 mm surface and penetrates 120 mm perpendicular to the surface. Those having holes uniformly drilled at 5000 locations / m 2 (sample numbers 13A, 13D, 13E, 1B) and those uniformly drilled at 2000 locations / m 2 (sample number 13B) were prepared. The weights of the perforated cedar raw materials thus obtained were 5.609 kg, 5.895 kg, 5.415 kg, and 7.570 kg for the test material numbers 13A, 13D, 13E, and 1B, respectively. It was 5.472 kg.

(2)穿孔スギ生材の水蒸気噴射処理
これらの穿孔スギ生材を、蒸気噴射プレス型乾燥装置に入れ、実施例1と同様に密封した。本実施例では、蒸気として水蒸気を用い、噴射水蒸気圧力約0.1MPa(水蒸気温度110℃)及び下部熱盤温度160℃の条件下で、貫通孔に水蒸気を3時間貫流させ、穿孔スギ生材を乾燥させるとともに、その内部に水蒸気を導入する処理をした。こうして、水蒸気を導入した穿孔スギ乾燥材を得た。それらの重量は、供試材番号13A、13D、13E、1Bが、それぞれ4.384kg、4.249kg、4.076kg、5.590kgであり、供試材番号13Bが、4.436kgであった。
(2) Steam injection treatment of perforated cedar raw materials These perforated cedar raw materials were put into a steam injection press type drying apparatus and sealed in the same manner as in Example 1. In this embodiment, steam is used as steam, and steam is allowed to flow through the through holes for 3 hours under conditions of a jet steam pressure of about 0.1 MPa (water vapor temperature of 110 ° C.) and a lower hot platen temperature of 160 ° C. Was dried and steam was introduced into the interior. Thus, a perforated cedar desiccant into which water vapor was introduced was obtained. The weights of the specimens 13A, 13D, 13E, and 1B were 4.384 kg, 4.249 kg, 4.076 kg, and 5.590 kg, respectively, and the specimen number 13B was 4.436 kg. .

(3)前処理した木材へのパッシブ減圧注入
前記の、水蒸気を導入した穿孔スギ乾燥材を、直ちに、大気圧下にある、室温の水に浸漬し、そのまま3時間放置した。得られた試供材の重量は、供試材番号13A、13D、13E、1Bが、それぞれ7.786kg、7.229kg、7.645kg、8.542kgであり、供試材番号13Bが、7.078kgであった。なお、水に代え薬剤液を注入した場合も、同様に薬剤液が木材に含浸されると考えられる。
(3) Passive vacuum injection into pretreated wood The above-mentioned perforated cedar desiccant into which water vapor was introduced was immediately immersed in water at room temperature under atmospheric pressure and left as it was for 3 hours. The weights of the obtained test materials are 7.786 kg, 7.229 kg, 7.645 kg, and 8.542 kg for the test material numbers 13A, 13D, 13E, and 1B, respectively. 078 kg. In addition, when a chemical | medical solution is inject | poured instead of water, it is thought that a chemical | medical solution is impregnated similarly to wood.

(4)木材の含水率変化
表1に、水蒸気を導入した穿孔スギ乾燥材へのパッシブ減圧注入による水注入量(kg/m)を示す。表1から、5000ケ所/mの場合、342〜413kg/mであり、2000ケ所/mの場合(供試材番号13B)は、306kg/mであるから、貫通孔を多くした方が、水注入量が多くなることが分かる。なお、JIS A 9002の注入規定量は、水溶性木材防腐剤及び乳化性木材防腐剤の場合、200kg/m以上である。
(4) Change in moisture content of wood Table 1 shows the water injection amount (kg / m 3 ) by passive decompression injection into the perforated cedar desiccant into which water vapor has been introduced. From Table 1, in the case of 5000 places / m 2 , it is 342 to 413 kg / m 3 , and in the case of 2000 places / m 2 (test material number 13B) is 306 kg / m 3 , so the number of through holes was increased. It can be seen that the amount of water injection increases. In addition, the prescribed injection amount of JIS A 9002 is 200 kg / m 3 or more in the case of a water-soluble wood preservative and an emulsifiable wood preservative.

図4に、穿孔スギ生材(供試材番号13A、13B,13D、13E,1B)の含水率(%)の変化を示した。図4から、3時間の水蒸気噴射により、穿孔スギ生材は乾燥され、3時間のパッシブ減圧注入により生材のときよりも含水率が上昇していることが分かる。また、インサイジング密度が5000ケ所/mである場合と、2000ケ所/mである場合とではそれ程差が大きくないことから、液体の水が、貫通孔を経て、その周囲の仮導管などに深く注入されていると考えられる。 FIG. 4 shows the change in the moisture content (%) of the perforated cedar raw material (test material numbers 13A, 13B, 13D, 13E, 1B). From FIG. 4, it can be seen that the perforated cedar raw material is dried by the steam injection for 3 hours, and the moisture content is higher than that of the raw material by the passive vacuum injection for 3 hours. Moreover, since the difference is not so large between the case where the insizing density is 5000 places / m 2 and the case where the insizing density is 2000 places / m 2 , the liquid water passes through the through-holes, and the temporary conduits around them. It is thought that it was infused deeply.

COレーザ光により貫通孔を開けた木材を、160℃に加熱し、120℃の水蒸気を15〜40分間噴射し、直ちに染色液(薬液のモデル)に浸漬した。木材は、染色液中で冷却され、貫通孔内は減圧になり、染色液が注入された。木材中に浸透した染色液量と貫通孔密度の関係を図5に示す。難注入材である乾燥ベイマツや生材のスギでも普通のベイツガと同等の注入量が認められた。 The wood whose through-holes were opened with CO 2 laser light was heated to 160 ° C., water vapor at 120 ° C. was sprayed for 15 to 40 minutes, and immediately immersed in a staining solution (chemical solution model). The wood was cooled in the dyeing solution, the pressure in the through hole was reduced, and the dyeing solution was injected. FIG. 5 shows the relationship between the amount of the dyeing solution that has penetrated into the wood and the through hole density. Dried bay pine, a difficult-to-inject material, and cedar of raw material were found to have the same amount of injection as ordinary baitsuga.

以上詳述したように、本発明は、木材へのパッシブ減圧薬剤注入方法に係るものであり、本発明により、木材内に蒸気を導入し、蒸気の凝縮による減圧を利用して薬剤液を木材内へ注入する、新規なパッシブ減圧薬剤注入方法を提供することができる。木材への薬剤注入、あるいは木材の乾燥及び薬剤注入の技術分野において、本発明により、簡便、低コスト、低エネルギー消費の環境に優しい方法で、木材内部に薬剤を確実に注入して、薬剤含有量の多い木材を生産し、提供することができる。   As described above in detail, the present invention relates to a method for injecting a passive decompression drug into wood. According to the present invention, steam is introduced into the wood, and the chemical liquid is applied to the wood using the decompression due to the condensation of the steam. It is possible to provide a novel passive decompression drug injection method for injection into the inside. In the technical field of drug injection into wood, or wood drying and drug injection, the present invention ensures that the drug is injected into the wood in a simple, low-cost, low energy consumption, environmentally friendly manner. A large amount of wood can be produced and provided.

レーザインサイジングを1列施したスギ生材の、水蒸気噴射3時間後及びパッシブ減圧注入3時間後の重量変化を示す図である。14B、14Eは、繊維方向に1列、14A、14C、14Dは、繊維方向に直角な方向に一列。It is a figure which shows the weight change 3 hours after water vapor | steam injection and 3 hours after passive decompression injection | pouring of the cedar raw material which performed laser insizing one row. 14B and 14E are one row in the fiber direction, and 14A, 14C and 14D are one row in the direction perpendicular to the fiber direction. 14A、14Cのパッシブ減圧注入3時間後の、レーザインサイジング列からの距離(mm)と含水率(%)との関係を示す図である。It is a figure which shows the relationship between the distance (mm) from a laser insizing row | line | column, and a moisture content (%) 3 hours after passive vacuum injection | pouring of 14A, 14C. 14Bのパッシブ減圧注入3時間後の、レーザインサイジング列からの距離(mm)及びレーザ光照射面からの距離(mm)と含水率(%)との関係を示す図である。It is a figure which shows the relationship between the distance (mm) from a laser insizing row | line | column, the distance (mm) from a laser beam irradiation surface, and a moisture content (%) 3 hours after passive decompression injection | pouring of 14B. レーザインサイジングを一つの面全体に施したスギ生材の、水蒸気噴射3時間後及びパッシブ減圧注入3時間後の重量変化を示す図である。13A、13D、13E、1Bは、インサイジング密度5000ヶ所/m、13Bは、インサイジング密度2000ヶ所/mIt is a figure which shows the weight change after 3 hours of water vapor | steam injections, and 3 hours after passive pressure reduction injection | pouring of the cedar raw material which gave laser insizing to the whole one surface. 13A, 13D, 13E, and 1B have an insizing density of 5000 places / m 2 , and 13B has an insizing density of 2000 places / m 2 . 木材中に浸透した染色液量と貫通孔密度の関係を示す図である。It is a figure which shows the relationship between the dyeing liquid quantity osmose | permeated in wood, and a through-hole density.

Claims (6)

木材に、その内部へ導入した蒸気を凝縮させることによって生ずる減圧を利用して薬剤液を含浸させ、薬剤を注入するパッシブ減圧薬剤注入方法であって、木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させることにより、木材内に蒸気を滞留させ、次いで、木材を薬剤液に浸漬し、温度低下による蒸気の凝縮によって材内を減圧状態として木材に薬剤液を含浸させることを特徴とする、木材へのパッシブ減圧薬剤注入方法。   A passive decompression drug injection method in which a drug solution is impregnated by injecting a drug solution using reduced pressure generated by condensing vapor introduced into the wood, and the through hole is drilled in the wood. The steam is caused to stay in the wood by allowing the steam to flow through, and then the wood is immersed in the chemical solution, and the wood is impregnated with the chemical solution by reducing the temperature of the material by condensing the vapor due to a temperature drop. A method for injecting passive decompression medicine into wood. レーザインサイジングにより木材に貫通孔を穿孔する、請求項1記載のパッシブ減圧薬剤注入方法。   The passive decompression drug injection method according to claim 1, wherein a through hole is drilled in wood by laser insizing. 蒸気が、高温水蒸気である、請求項1に記載のパッシブ減圧薬剤注入方法。   The passive decompression drug injection method according to claim 1, wherein the steam is high-temperature steam. 生木材の貫通孔に高温水蒸気を貫流させることにより、生木材を乾燥させるとともに、木材内に高温水蒸気を滞留させる、請求項1に記載のパッシブ減圧薬剤注入方法。   The passive decompression chemical injection method according to claim 1, wherein the high temperature water vapor is allowed to flow through the through hole of the raw wood, thereby drying the raw wood and retaining the high temperature water vapor in the wood. 木材に貫通孔を穿孔し、その貫通孔に蒸気を貫流させることにより、木材内に蒸気を滞留させ、次いで、木材を薬剤液に浸漬し、温度低下による蒸気の凝縮によって材内を減圧状態として木材に薬剤液を含浸させることにより薬剤注入木材を製造することを特徴とする薬剤注入木材の製造方法。   By drilling through-holes in wood and allowing steam to flow through the through-holes, the steam stays in the wood, and then the wood is immersed in a chemical solution, and the inside of the material is brought into a reduced pressure state by condensing the steam due to a temperature drop. A method for producing drug-injected wood, characterized in that a drug-injected wood is produced by impregnating wood with a chemical solution. レーザインサイジングにより木材に貫通孔を穿孔する、請求項に記載の薬剤注入木材の製造方法。 The manufacturing method of the chemical | medical agent injection | pouring wood of Claim 5 which drills a through-hole in wood by laser insizing.
JP2005014472A 2004-04-30 2005-01-21 Passive decompression drug injection method to wood Expired - Fee Related JP4355295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014472A JP4355295B2 (en) 2004-04-30 2005-01-21 Passive decompression drug injection method to wood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004136275 2004-04-30
JP2005014472A JP4355295B2 (en) 2004-04-30 2005-01-21 Passive decompression drug injection method to wood

Publications (3)

Publication Number Publication Date
JP2005335365A JP2005335365A (en) 2005-12-08
JP2005335365A5 JP2005335365A5 (en) 2006-09-07
JP4355295B2 true JP4355295B2 (en) 2009-10-28

Family

ID=35489435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014472A Expired - Fee Related JP4355295B2 (en) 2004-04-30 2005-01-21 Passive decompression drug injection method to wood

Country Status (1)

Country Link
JP (1) JP4355295B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108818811A (en) * 2018-07-03 2018-11-16 安吉孝丰飞乐建筑材料厂 A kind of production technology of mildewproof wood
CN111002412A (en) * 2019-12-11 2020-04-14 福州立雅家具有限公司 Antiseptic treatment method for furniture wood

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016842B2 (en) * 1971-12-29 1975-06-17
JPH07115326B2 (en) * 1989-03-10 1995-12-13 富洋木材販売株式会社 Wood modification method
JP2002086406A (en) * 2000-09-08 2002-03-26 Japan Science & Technology Corp Method and apparatus for drying and reforming of lumber by injection of steam

Also Published As

Publication number Publication date
JP2005335365A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP7086850B2 (en) A method for partially deligynifying and filling a lignocellulosic material, and a composite material structure obtained by the method.
Richardson Wood preservation
Walker et al. Wood preservation
Morrell Protection of wood-based materials
RU2349447C2 (en) Wood working for production of construction structures and other wooden goods
KR102144100B1 (en) Preservative treated woods and method for manufacturing the same
JP6399716B2 (en) Method for producing incombustible wood and incombustible wood
Salman et al. Decay and termite resistance of pine blocks impregnated with different additives and subjected to heat treatment
Lebow et al. Guide for use of wood preservatives in historic structures
JP4355295B2 (en) Passive decompression drug injection method to wood
US20030059545A1 (en) Process for treating wood and products from treated wood
Findlay The nature and durability of wood
US20210170623A1 (en) Green process for modifying wood
Chernenko Technology of wood impregnation by polymeric compositions
US10632645B2 (en) Method of treating wood
Wood et al. Enhancing the durability of low durability Eucalyptus plantation species: a review of strategies
Van Acker et al. Wood preservation and wood finishing
Deveci et al. Thermal characteristics of oriental beech wood treated with some leaching resistant borates
AU2018440465A1 (en) Paraffin-enhanced lumber and method of producing same
CA3160581A1 (en) A green process for modifying wood
US20110151129A1 (en) Wood treatment solution and process
JP3572323B1 (en) Processing method of thinned wood
JP2010111101A (en) Method of manufacturing durability-treated wood
KR20100069161A (en) A method of a wood preservation using sun-dried salt
EP2353818B1 (en) Method for impregnating a porous material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees