JP4354575B2 - Ozone-containing cleaning solution and resist removal method - Google Patents
Ozone-containing cleaning solution and resist removal method Download PDFInfo
- Publication number
- JP4354575B2 JP4354575B2 JP16826999A JP16826999A JP4354575B2 JP 4354575 B2 JP4354575 B2 JP 4354575B2 JP 16826999 A JP16826999 A JP 16826999A JP 16826999 A JP16826999 A JP 16826999A JP 4354575 B2 JP4354575 B2 JP 4354575B2
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- resist
- cleaning
- solvent
- wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Detergent Compositions (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、レジスト除去や素子の洗浄等に使用する電子機器の洗浄液、及び該浄化液をレジスト除去方法に関する。
【0002】
【従来技術】
オゾンは強力でクリーンな酸化剤として注目されつつあり、特に分解生成物が酸素であり従来から使用されている塩素系のものと比較して残留物が被処理水中に残留しないこと、分解速度が速くオゾンがそれ自身残留せず二次公害の問題も全くないこと等の理由から水処理用としての使用が増加している。
このように酸化剤として有用なオゾンを発生させるために従来から主として放電法及び電解法が採用され、酸素とオゾンの混合ガスであるオゾン含有ガスとして得られている。前者の放電法は放電用電極物質の混入や空気中の窒素の放電酸化物であるNOxの混入があり、特に高純度を要求される電子機器洗浄用としては不適切で、他の用途としても不純物が多いため望ましくなく、現在では高純度オゾン含有ガスの製法としては実質上使用されていない。
【0003】
後者の電解法は、水の電気分解によりオゾン含有ガスを製造する方法で、この電解生成オゾン含有ガスは、水を原料とし、二酸化鉛、金、白金等を電極として使用しあるいはこれら電極物質を固体電解質(SPE)の隔膜に付着させた構造体いわゆるSPE型電極構造体を使用して電解を行い、陽極側から水電解生成物であるオゾンを酸素との混合物として得ることができる。該電解オゾンは液体系で製造されるため完全な湿潤ガスであり、15%以上の高濃度で得られる等の特徴を有している。
このオゾン含有ガスを使用して対象物の洗浄を行う場合、洗浄対象が廃水やプール水であるとオゾン含有ガスを直接洗浄対象物に吹き込んで有害不純物の分解や殺菌を行うことができる。又洗浄対象が半導体素子等の電子機器であると、電解で生成したオゾン含有ガスを純水等の高純度水に溶解してオゾン水として洗浄用に使用される(特公平8−13356 号公報)。
【0004】
前記半導体素子の製造の一工程であるシリコン基板上の微細金属配線やパターン形成工程、あるいはLCDガラス基板上のパターン形成工程では、頻繁にリソグラフィー技術が用いられる。このリソグラフィーが使用される工程は、有機高分子系の感光性樹脂から成るレジストの塗布→ベイキング→マスク露光→エッチング→レジスト除去の順に行われる。前記オゾン水は、個々の半導体素子の洗浄やレジスト除去に使用され、その酸化剤としての優秀性から電子機器の素子洗浄用及びレジスト除去用として幅広く使用されている。
現在では、多層配線化や線幅の狭小化等の配線の高密度化が急速に進み、製品完成までの間のリソグラフィーを使用する工程の数が増加している。現在リソグラフィーを使用する工程で使用されるレジストの除去方法としては、レジスト種専用の有機系剥離液によりレジストを溶解させる方法、酸素等のプラズマアッシングによりエッチングで除去する方法、120 ℃程度の高温高濃度硫酸と過酸化水素から成る無機系の剥離液を併用する酸化的除去方法等がある。
【0005】
このレジスト剥離後の洗浄液としては、トリクロロエチレン、1、1、1−トリクロロエタン、テトラクロロエチレン、塩化メチレン等の塩素系溶剤、フロン112 、フロン113 等のフロン系溶剤、及び芳香族系溶剤が使用されている。更にこれらの溶剤で洗浄後に、ケトン系又はアルコール性溶剤を組み合わせて洗浄を行うこともあり、例えば剥離液でレジストを剥離した後、前記塩素系溶剤又はフロン系溶剤で洗浄し、次いでメチルエチルケトン、アセトン等で洗浄し、更にイソプロパノール等で洗浄するレジスト除去方法が用いられている。
【0006】
【発明が解決しようとする課題】
現在電子機器用素子の洗浄の殆どの工程には、前述のオゾン水が使用されている。該オゾン水は電解法により生成させた高純度オゾン含有ガスを使用して生成させたものであるため、電子機器洗浄に要求される純度要求に応じられる純度を有し、純度面では問題は生じていない。
しかしながら洗浄対象となる電子機器の数の増加から、単なる洗浄効果の維持及び向上だけでなく、より高速度で洗浄することが望まれているが、現在のオゾン水を使用する洗浄方法では、この要望には十分に応じているとは言えない。
【0007】
又前述のレジスト除去方法は、剥離力及び洗浄力は優れているが、それぞれに取扱い上の問題点がありレジスト種に応じて使い分ける必要がある。つまりそれぞれレジスト残渣の発生、有機系廃液の発生、濃厚硫酸の発生等の問題点があり、特に近年のリソグラフィーを使用する工程の増加に伴って、廃液量が増大し、処理系統への負担増や生活環境への悪影響が危惧されている。
又オゾン水によるレジスト除去あるいは洗浄方法には、(1)高濃度オゾン水が得られにくく、レジストのような強固な有機物の除去にはエッチングレートが小さく適切でない、(2)オゾンは水中では分解速度が比較的速く溶存オゾンが効果的に利用されない、(3)オゾン水中では温度を60℃以上に上げるとオゾンの分解速度が上昇し水蒸気圧の上昇によりオゾン濃度が下がり効果的でない、といった問題点が指摘されている。この他にも、オゾン水等をはじめとする各種浄化液による洗浄等の浄化が行われているが、より一層の浄化効果の向上が望まれている。
本発明は、このような電子機器のレジスト除去をより効果的にかつ不純物や廃液を発生させることなく行い得るオゾン含有浄化液、及び該浄化液を使用する浄化方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、オゾン含有ガスをパーフルオロカーボン溶媒に溶解させたことを特徴とするレジスト除去用オゾン含有浄化液であり、該浄化液は電子機器のレジスト除去用として使用する。この浄化液は、オゾン含有ガスを、散気ボールを使用してパーフルオロカーボン溶媒中に吹き込み溶解させることにより、又はパーフルオロカーボン溶媒を陽極液として使用するオゾンの電解生成により製造できる。又該浄化液を使用するスピン洗浄法又は超音波照射を伴う浸漬法により効率良く製造できる。
【0009】
以下本発明を詳細に説明する。
本発明に係る、オゾン含有ガスをパーフルオロカーボン溶媒に溶解させて成るオゾン含有浄化液は次のような特徴を有している。
(1)オゾンの有機溶媒に対する溶解度が水に対する溶解度より格段に高いため、浄化液特に洗浄液として洗浄能力が高くなる。
(2)パーフルオロカーボン溶媒自体にも浄化能力があるため、更に一層の浄化能力の向上が達成できる。
(3)パーフルオロカーボン溶媒の選択、特に沸点を好適に選択すると、オゾン水では行い得ない100℃を越える温度でのレジスト除去が可能になる。
(4)パーフルオロカーボン溶媒中でのオゾン分解が水中でのオゾン分解より進行しにくいため、浄化液としての寿命が長くなる。
【0010】
本発明では、溶媒としてパーフルオロカーボン化合物の溶媒を使用し、この溶媒が好ましいのは、フッ素を含む有機溶媒は殆どオゾンと反応せず、対象浄化物の処理工程中に安定に維持され、再生等を行うことなく繰り返し使用できるからであり、パーフルオロカーボン化合物を使用すると一層の耐性向上が達成できる。塩素、臭素あるいは沃素を含有する有機溶媒の中にはオゾンと反応して分解したり劣化したりする溶媒があり、分解物による汚染も考えられるため、フッ素以外のハロゲンを含有する有機溶媒は使用しない。
【0011】
更に本発明のパーフルオロカーボン溶媒は、室温付近で液体であることが望ましく、例えば沸点が30℃以上、融点が20℃以下のパーフルオロカーボン溶媒であることが好ましい。沸点が100 ℃を越える有機溶媒を選択すると前述の通りオゾン水では不可能な温度での洗浄等が可能になり、従来のオゾン処理では成し得なかった操作が可能になる。該パーフルオロカーボン溶媒は単独の化合物でも混合物でも良い。所望の沸点のパーフルオロカーボン溶媒が見出せない場合には2以上のパーフルオロカーボン溶媒を混合して見掛け上の沸点を調節することができる。
【0012】
本発明のパーフルオロカーボン溶媒としては、パーフルオロカーボン(PFC、炭化水素の全ての水素をフッ素で置換した化合物)がある。
【0013】
オゾンに対する耐食性という面からも、パーフルオロカーボンやパーフルオロエーテルの使用が望ましい。本発明に使用するパーフルオロカーボン溶媒に対するオゾンの溶解度は、純水や水道水に対するオゾンの溶解度の数倍から数十倍に達し、溶解度の上昇に伴って浄化能力も上昇する。これらのパーフルオロカーボン溶媒は通常モノマーが重合した高分子化合物で、低分子量の場合ほど同一重量の有機溶媒に対するオゾンの溶解度は高く、高分子量の場合ほど同一重量の有機溶媒に対するオゾンの溶解度は低くなる。該有機溶媒にオゾン含有ガスを溶解させるには、通常のオゾン水製造の場合のように散気板や散気ボールを使用して行うことが望ましく、つまりオゾン含有ガスを散気板や散気ボールを通して有機溶媒中にバブリングすることにより容易にオゾン含有浄化液が得られる。
【0014】
この他に、オゾン製造とパーフルオロカーボン溶媒への溶解を一回の操作で行うこともできる。つまり隔膜を使用して陽極室及び陰極室に区画された電解槽の陽極室にオゾン発生用陽極を設置し、かつ陽極液としてパーフルオロカーボン溶媒を使用して電解を行うと陽極室で生成するオゾン含有ガスがそのまま陽極液である前記パーフルオロカーボン溶媒に溶解して本発明のオゾン含有浄化液が得られる。
本発明の浄化液のオゾン濃度は、使用するパーフルオロカーボン溶媒や温度にも依存するが通常室温で300 〜500 mg/lであり、前述の通り通常のオゾン水のオゾン濃度の数倍〜数十倍に達する。本発明のパーフルオロカーボン溶媒にオゾン含有ガスが溶解させて成る浄化液は、前述した通り、電子機器製造時のリソグラフィーを使用する工程におけるレジスト除去に使用できる。
【0015】
ウェハ表面に被覆されたレジスト除去は、単に該ウェハを本発明のオゾン含有浄化液に浸漬するだけでも良いが、単なる浸漬だけではオゾン含有浄化液によりウェハ表面から剥離されたレジストがウェハ表面に残って未剥離のレジストとオゾン含有浄化液の接触を阻害しやすくなるため、浸漬と同時に超音波照射して剥離レジストの表面からの脱離を促進することが好ましい。
更に回転(スピン)しているウェハ表面にオゾン含有浄化液を噴射してレジスト除去を試みても、超音波照射と同様に剥離したレジストがウェハ表面から脱離するため、処理効率が上昇する。
【0018】
本発明におけるレジスト除去は、この浄化液のみによる操作に限定されず、例えば紫外線照射や前述した超音波照射を併用し、あるいはオゾン以外のガスや液体を同時に使用しても良い。又溶剤についても前述のハロゲンを含有する有機溶媒以外に特定の成分の除去に効果のあるハロゲンを含有しない溶媒を前記パーフルオロカーボン溶媒と混合して使用しても良い。
【0019】
【発明の実施の形態】
次に添付図面に基づいて本発明のオゾン含有浄化液によるレジスト除去の実施形態を説明するが、本発明はこれに限定されるものではない。
図1は本発明に係るオゾン含有浄化液によるレジスト除去の一実施形態(浸漬法)を示す概略正面図である。
オゾン含有ガス製造用電解槽本体1は、固体電解質である陽イオン交換膜2により陽極室3と陰極室4に区画され、前記イオン交換膜2の陽極室3側にはオゾン含有ガス発生に対する触媒能を有する陽極物質粉末5が、又陰極室4側には陰極物質粉末6がそれぞれ付着してSPE型電解槽1となっている。
【0020】
この電解槽1の陽極室3及び陰極室4に純水を満たし両極間に通電すると、陽極室3側でオゾンと酸素の混合ガスであるオゾン含有ガスが発生する。
一方この電解槽1の近傍には、超音波洗浄槽7が設置され、該洗浄槽7内には純水8が満たされている。この洗浄槽7内に、底面が丸く成形された石英製るつぼ9が設置され、該るつぼ9中にはフッ素含有有機溶媒10が満たされかつ該有機溶媒10に浸漬するようにレジスト付ウェハ11が配置されてる。
前記電解槽1の陽極室3側で発生したオゾン含有ガスは供給ライン12を通って前記有機溶媒10中に導入され、該有機溶媒10中の散気ボール13表面から有機溶媒10中に溶解し、オゾン含有浄化液が作製される。作製されたオゾン含有浄化液は該浄化液中のウェハ11に接触し溶解しているオゾン及び有機溶媒自身の酸化力によりウェハ11上のレジストを除去するとともにウェハ11表面を浄化する。この際に超音波が印加され、更にレジスト除去及び表面浄化効果が顕著になる。
【0021】
図2は本発明に係るオゾン含有浄化液によるレジスト除去の他の実施形態(スピン洗浄法)を示す概略正面図であり、電解槽本体1及びその部材は図1と同様であるため同一符号を付して説明を省略する。
オゾン含有ガス製造用電解槽本体1で発生したオゾン含有ガスは供給ライン12aから混合ポンプ14に供給され、フッ素を含有する有機溶媒の貯留槽15に貯留された有機溶媒10aと混合され、混合ポンプ14中でオゾン含有浄化液が生成する。このオゾン含有浄化液は気液分離槽16に供給され、未溶解オゾンが分離除去された後、スピン洗浄器17に供給される。このスピン洗浄器17は、受皿18の中心に回転自在に設置された軸19に固定されたレジスト付ウェハ11aを有している。
【0022】
このスピン洗浄器16のウェハ11aを回転させながらオゾン含有浄化液を該ウェハ11aの中心に供給もくしは噴射すると、ウェハ11a上のレジストがオゾン含有浄化液の流束により剥離し、その後剥離したレジストはウェハ11a表面から除去される。その後オゾン含有浄化液の供給を停止しかつ回転数を維持したままそのまま又は回転数を増加しながら回転軸19の回転を継続すると、ウェハ11a表面の前記洗浄液が飛散してウェハ11aの乾燥が行われる。
使用後のオゾン含有浄化液はPTFEフィルター20を通して混入したレジスト等の不純物を除去した後、前記貯留槽15に循環される。
【0023】
(実施例)
次に本発明に係るオゾン含有浄化液を使用するレジスト浄化等の浄化操作の実施例を記載するが、該実施例は本発明を限定するものではない。
実施例1
まずオゾン含有ガスのフッ素含有有機溶媒への溶解度を測定した。
電解有効面積90cm2 の電解槽に、陽極面に二酸化鉛粉末を、陰極面に白金粉末をそれぞれ付着させた固定電解質であるナフィオン(商品名)製隔膜を装着してSPE型電解槽とし、前記隔膜により該電解槽を陽極室と陰極室に区画し、該電解槽内には純水1リットルを満たした。この電解槽に100 A/dm2 となるように通電することにより、オゾンを12重量%含有するオゾンと酸素の混合ガス(オゾン含有ガス)が10g/時の割合で得られた。
【0024】
このオゾン含有ガスを、住友スリーエム株式会社製のフッ素含有有機溶媒であるフロリナートFC−77(沸点97℃)100 mlを満たしたパイレックスガラス製の円筒形ガス洗浄瓶に0.7 リットル/分の割合で導入し、多孔質石英製の散気ボールを通して前記有機溶媒中に溶解させた。
このオゾン含有有機溶媒5mlを採取し、20重量%の沃化カリウム水溶液5mlと混合しかつ激しく震盪して十分に接触させて、沃素イオンをオゾンにより酸化させて黄色く発色させた。
次に1/10N硫酸水溶液5mlを添加して沃素を遊離させた後、1/50Nチオ硫酸ナトリウム溶液を用いて発色が消えるまで滴定を行った。
同様にして有機溶媒の液温を変えてそれぞれオゾン溶解度を測定してオゾン溶解度の温度依存性を調べた。その結果を表1に示す。
【0025】
比較例1
ガス洗浄瓶中にフロリナートFC−77の代わりに純水を満たし、実施例1と同一条件でオゾンを溶解させ、同様にして純水中へのオゾン溶解度の温度依存性を測定した。その結果を表1中に示した。
表1から、フロリナートは純水と比較して極めて高いオゾン溶解性を示し、50℃以下の温度では供給したオゾン含有ガスより高濃度のオゾン含有フロリナートが得られたことが分かる。
【0026】
【表1】
【0027】
実施例2
実施例1の電解槽を使用して図1に示すようなレジスト除去装置を組み立てた。この装置の超音波洗浄槽に純水を満たし、更にこの中に上面が開口する石英るつぼを設置した。このるつぼ中に実施例1と同じフロリナートFC−77を入れ、更にこのフロリナートに浸漬するように多孔質石英製の散気ボールを配置した。
実施例1で得たオゾンを12重量%含むオゾン含有ガスを散気ボールを通してフロリナート中に0.7 リットル/分の割合で供給し、供給開始20分後にオゾン濃度を測定したところ460 mg/lであった。このオゾン含有フロリナートにポジ型レジストTSMRV90(東京応化工業株式会社製)を厚さ1.2 μmで塗布した6インチシリコンウェハをフロリナート中に浸漬させた。3分後に取り出して120 ℃で乾燥させ、SEMによる断面観察により、レジストの残留膜厚からエッチング速度を算出した。その結果を表2に示した。
同じ条件でウェハ浸漬時に超音波照射を併用して、同様にしてエッチング速度を算出した。その結果も表2に示した。
【0028】
比較例2
フロリナートの代わりに純水を使用したこと以外は実施例2と同様にしてオゾン水を作製したところオゾン濃度は60mg/lであった。実施例2と同様にして(超音波照射なし)エッチング速度を算出した。その結果を表2に示した。
実施例2及び比較例2の結果を示す表2から、オゾン溶解の溶媒としてフッ素を含有する有機溶媒を使用すると、純水が溶媒の場合と比較して溶解オゾン濃度が7倍以上になることが分かる。オゾン含有浄化液とオゾン水(超音波照射なし)によるレジスト除去のエッチング速度を比較すると前者を使用すると約2.5 倍のエッチング速度が得られ、ウェハの製造、ひいては該ウェハを有する半導体製造の迅速化が達成でき、電子機器製造の高速化及び高密度化に対応できる。
更に超音波を照射しながらレジスト除去を行うと、同じオゾン含有浄化液を使用した場合でもレジスト除去速度は4倍に達する。これはオゾン含有浄化液によりウェハから剥離したレジストが超音波によりウェハ表面から浄化液とともに流れ去り、未剥離レジストと浄化液との接触を好適に行い得るからであると推測できる。
【0029】
【表2】
【0030】
実施例3
図2に示した電解槽及びスピン洗浄器を使用してレジスト付ウェハからのレジスト除去を行った。
実施例1と同様にしてオゾンを12重量%含むオゾン含有ガスを生成させ、混合ポンプにより実施例1と同じフロリナートFC−77と混合し、気液分離器で未溶解オゾンを分離してオゾン含有浄化液とした。このオゾン含有浄化液中のオゾン濃度を測定したところ、460 mg/lであり、液温は20℃であった。
【0031】
スピン洗浄器に実施例2と同じシリコンウェハを回転自在に設置し、300rpmで回転させた。この回転しているウェハ中心に前記オゾン含有浄化液を0.1 リットル/分の割合で3分間噴射して洗浄を行った。オゾン含有浄化液の供給を停止した後、回転数を1000rpm に上昇して1分間スピン乾燥を行った。
その後、SEMによるウェハの断面観察により、残留膜厚を測定しエッチング速度を算出した。その結果を表3に示した。
【0032】
【表3】
【0033】
比較例3
オゾン含有浄化液の代わりに比較例2で使用したオゾン濃度は60mg/lのオゾン水(オゾン水1)を使用したこと以外は実施例3と同じ操作を行い、SEMによるウェハの断面観察により、残留膜厚を測定しエッチング速度を算出した。その結果を表3に示した。
更にオゾン濃度を30mg/lに調整したオゾン水(オゾン水2)を作製し、同様にウェハの洗浄を行い、エッチング速度を算出した。その結果を表3に示した。
表3から実施例3のスピン洗浄法によると実施例2の超音波照射のない浸漬法と比較して4倍のエッチング速度が得られ、この値は超音波照射を伴う浸漬法と同じ速度があることが分かる。これも超音波照射の場合と同じように、ウェハから剥離したレジストがウェハの回転とウェハ表面に噴射されるオゾン含有浄化液の流束によりウェハ表面から浄化液とともに流れ去り、未剥離レジストと浄化液との接触を好適に行い得るからであると推測できる。
【0034】
実施例4
染料の1種であるキノリンイエローS40mgを純水100 mlに溶解し、室温下でオゾンを440 mg/l溶解した10mlのフロリナートFC−43(住友スリーエム株式会社製、沸点174 ℃)と混合し、前記染料の褪色を観察し色度を測定した。表4に示す通り、色度は0.5 であった。なおキノリンイエローS40mgを純水100 mlに溶解した原液の色度は大き過ぎて測定できなかったため、5000倍に希釈し測定し、色度20が得られた。
【0035】
比較例4
フロリナートFC−43の代わりにオゾンを60mg/l溶解したオゾン水を使用して同様に褪色処理を行い、処理後の色度を測定した。その結果は表4に示す通り、200 倍希釈で20であった。
【0036】
【表4】
【0037】
実施例5
表面に二酸化鉛めっきを施したチタン繊維焼結体を陽極、表面に白金めっきを施したステンレス繊維焼結体を陰極、塩酸中で煮沸したナフィオン117 (デュポン社製)膜を電解質として、それぞれ用いてオゾン発生用電解槽を構成した。陽極及び陰極の電解面積は共に5cm2 とした。
この電解槽の陽極室にフロリナートFC−70(住友スリーエム株式会社製、沸点215 ℃)を満たし、陰極室には超純水を加え、電流密度0.5 A/dm2 で3時間電解を行った。
3時間経過後の陽極発生ガス中のオゾン濃度は10容量%、陽極室のフロリナートに含有されるオゾンの濃度は450 mg/lであった。
【0038】
【発明の効果】
本発明は、オゾン含有ガスをパーフルオロカーボン溶媒に溶解させたことを特徴とするオゾン含有浄化液である。パーフルオロカーボン溶媒は純水と比較してオゾン溶解度が格段に高く、本発明のオゾン含有浄化液は高濃度オゾン含有溶液として、電子機器の素子のレジスト除去等に効果的に使用できる。
更にパーフルオロカーボン溶媒はそれ自身が浄化作用を有するため、オゾンの浄化作用と溶媒の浄化作用を合わせ持つ浄化液が提供できる。又オゾン水は沸点が100 ℃であるため、従来のオゾン水洗浄では100 ℃を越える温度での浄化操作は行い得なかったが、本発明ではパーフルオロカーボン溶媒の沸点を好適に選択すると、100 ℃を越える温度での洗浄や殺菌等が可能になり、従来はオゾン洗浄の対象となりえなかったレジスト除去に対応できる。
【0039】
フッ素の有する浄化能力は他のハロゲンより高いだけでなく、パーフルオロカーボン溶媒は殆どオゾンと反応しないため劣化することがなく、長期間に亘って交換や再生を行うこと使用を継続できる。パーフルオロカーボン溶媒の浄化能力が高く、かつ劣化がほぼ完全に防止できる。
又本発明のオゾン含有浄化液は、電子機器のウェハからレジストを除去する際に使用すると効果的で、前述の飛躍的洗浄力及び温度調節により予期できない浄化効果が得られる。
【0040】
前記オゾン含有浄化液は、一般的にはオゾン含有ガスを、散気ボールを使用してハロゲンを含有する有機溶媒中に吹き込み溶解させることにより製造できるが、特殊な製造手段として、SPE型オゾン製造用電解槽の陽極液としてパーフルオロカーボン溶媒を使用すると、該電解槽の陽極室で本発明のオゾン含有浄化液が得られる。これにより別個の溶解手段が不要になり、作業性が向上する。
前述のレジスト除去は、レジストを被覆したウェハを回転させながらオゾン含有浄化液を供給し、あるいは超音波照射しながらウェハをオゾン含有浄化液に浸漬して行うことができ、いずれの方法でも除去効率が向上する。これはオゾン含有浄化液が流束としてウェハ表面と衝突してウェハ表面から剥離したレジストを浄化液とともにウェハ表面から流し去り、あるいは超音波がウェハ表面から剥離したレジストを浄化液とともにウェハ表面から流し去るため、未剥離レジストの浄化液との接触が好適に行い得るからであると推測できる。
【図面の簡単な説明】
【図1】本発明に係るオゾン含有浄化液によるレジスト除去の一実施形態を示す概略正面図。
【図2】同じく他の実施形態を示す概略正面図。
【符号の説明】
1 電解槽本体
2 イオン交換膜
3 陽極室
4 陰極室
5 陽極物質粉末
6 陰極物質粉末
7 超音波洗浄槽
8 純水
9 るつぼ
10、10a フッ素含有有機溶媒
11、11a レジスト付ウェハ
12、12a 供給ライン
13 散気ボール
14 混合ポンプ
15 貯留槽
16 気液分離槽
17 スピン洗浄器
18 受皿
19 軸
20 フィルター[0001]
BACKGROUND OF THE INVENTION
The present invention, the cleaning liquid of the electronic device to be used in the cleaning or the like of the resist removal and elements, and the purifying liquid to a method of resist removal.
[0002]
[Prior art]
Ozone is attracting attention as a powerful and clean oxidant. Especially, the decomposition product is oxygen, and the residue does not remain in the water to be treated compared to the chlorine-based ones used in the past. Use for water treatment is increasing due to the fact that ozone does not remain quickly and there is no problem of secondary pollution.
Thus, in order to generate ozone useful as an oxidant, a discharge method and an electrolysis method have been mainly employed so far, and obtained as an ozone-containing gas that is a mixed gas of oxygen and ozone. The former discharge method involves the mixing of discharge electrode materials and NOx, which is a discharge oxide of nitrogen in the air, and is particularly inappropriate for cleaning electronic devices that require high purity. It is not desirable because it contains a large amount of impurities, and is currently not practically used as a method for producing high-purity ozone-containing gas.
[0003]
The latter electrolysis method is a method of producing an ozone-containing gas by electrolysis of water, and this electrolysis-generated ozone-containing gas is made from water as a raw material and using lead dioxide, gold, platinum, etc. as an electrode, or using these electrode substances. Electrolysis is performed using a so-called SPE-type electrode structure that is attached to a solid electrolyte (SPE) diaphragm, and ozone, which is a water electrolysis product, can be obtained as a mixture with oxygen from the anode side. Since the electrolytic ozone is produced in a liquid system, it is a completely wet gas, and has characteristics such as being obtained at a high concentration of 15% or more.
When the object is cleaned using this ozone-containing gas, if the object to be cleaned is waste water or pool water, the ozone-containing gas can be directly blown into the object to be cleaned to decompose or sterilize harmful impurities. When the object to be cleaned is an electronic device such as a semiconductor element, ozone-containing gas generated by electrolysis is dissolved in high-purity water such as pure water and used as cleaning water (Japanese Patent Publication No. 8-13356). ).
[0004]
Lithography technology is frequently used in the fine metal wiring and pattern forming process on the silicon substrate or the pattern forming process on the LCD glass substrate, which is one process of manufacturing the semiconductor element. The process in which the lithography is used is performed in the order of application of a resist made of an organic polymer photosensitive resin → baking → mask exposure → etching → resist removal. The ozone water is used for cleaning of individual semiconductor elements and resist removal, and is widely used for element cleaning of electronic equipment and for resist removal because of its excellent oxidizing agent.
At present, the density of wirings such as multilayer wiring and line width narrowing is rapidly increasing, and the number of processes using lithography until product completion is increasing. The resist removal method currently used in the process using lithography includes a method of dissolving the resist with an organic stripping solution dedicated to the resist type, a method of removing by etching using plasma ashing such as oxygen, and a high temperature of about 120 ° C. There is an oxidative removal method using an inorganic stripping solution composed of concentrated sulfuric acid and hydrogen peroxide.
[0005]
As the cleaning liquid after the resist is stripped, chlorinated solvents such as trichloroethylene, 1,1,1-trichloroethane, tetrachloroethylene, and methylene chloride, chlorofluorocarbon solvents such as chlorofluorocarbon 112 and chlorofluorocarbon 113, and aromatic solvents are used. . Further, after washing with these solvents, a combination of ketone or alcoholic solvents may be used. For example, after removing the resist with a stripping solution, washing with the chlorinated solvent or chlorofluorocarbon solvent, and then with methyl ethyl ketone and acetone. For example, a resist removal method in which the resist is washed with isopropanol and then with isopropanol or the like is used.
[0006]
[Problems to be solved by the invention]
At present, the ozone water described above is used in most processes for cleaning electronic device elements. Since the ozone water is generated using a high purity ozone-containing gas generated by an electrolytic method, it has a purity that meets the purity requirements required for electronic equipment cleaning, and there is a problem in terms of purity. Not.
However, due to the increase in the number of electronic devices to be cleaned, it is desired not only to maintain and improve the cleaning effect but also to perform cleaning at a higher speed. However, in the current cleaning method using ozone water, It cannot be said that the request is adequately met.
[0007]
The resist removal method described above is excellent in peeling power and cleaning power, but each has a problem in handling and needs to be used depending on the resist type. In other words, there are problems such as the generation of resist residues, the generation of organic waste liquid, and the generation of concentrated sulfuric acid. Especially, with the recent increase in processes using lithography, the amount of waste liquid increases and the burden on the processing system increases. And there are concerns about adverse effects on the living environment.
Also, the resist removal or cleaning method using ozone water is as follows: (1) It is difficult to obtain high-concentration ozone water, and the etching rate is not suitable for removing strong organic substances such as resist. (2) Ozone decomposes in water. The rate is relatively fast and dissolved ozone cannot be used effectively. (3) In ozone water, if the temperature is raised to 60 ° C or higher, the decomposition rate of ozone increases and the ozone concentration decreases due to the increase in water vapor pressure, which is not effective. A point has been pointed out. In addition to this, purification such as washing with various purification liquids such as ozone water is performed, and further improvement of the purification effect is desired.
The present invention is to provide a purification method of using more effectively and ozone-containing cleaning liquid capable of performing without generating impurities and waste, the 及 beauty the purifying solution is resist removal of such an electronic device Objective.
[0008]
[Means for Solving the Problems]
The present invention is a resist-removing ozone-containing cleaning solution in which an ozone-containing gas is dissolved in a perfluorocarbon solvent, and the cleaning solution is used for resist removal of electronic equipment . This purifying liquid can be produced by blowing and dissolving ozone-containing gas into a perfluorocarbon solvent using a diffuser ball, or by electrolytic generation of ozone using the perfluorocarbon solvent as an anolyte. Further, it can be efficiently produced by a spin cleaning method using the cleaning solution or an immersion method involving ultrasonic irradiation.
[0009]
The present invention will be described in detail below.
An ozone-containing cleaning liquid obtained by dissolving an ozone-containing gas in a perfluorocarbon solvent according to the present invention has the following characteristics.
(1) Since the solubility of ozone in an organic solvent is much higher than the solubility in water, the cleaning ability of the cleaning liquid, particularly the cleaning liquid, is increased.
(2) Since the perfluorocarbon solvent itself has a purification capability, further improvement in the purification capability can be achieved.
(3) When a perfluorocarbon solvent is selected, particularly when the boiling point is suitably selected, the resist can be removed at a temperature exceeding 100 ° C., which is not possible with ozone water .
(4) Since the ozonolysis in the perfluorocarbon solvent is less likely to proceed than the ozonolysis in water, the life as a purification liquid is prolonged.
[0010]
In the present invention, a solvent of a perfluorocarbon compound is used as a solvent, and this solvent is preferable because an organic solvent containing fluorine hardly reacts with ozone, is stably maintained during the treatment process of the target purified product, and is regenerated. This is because the perfluorocarbon compound can be used repeatedly, and when a perfluorocarbon compound is used, further improvement in resistance can be achieved. Some organic solvents that contain chlorine, bromine, or iodine can be decomposed or deteriorated by reacting with ozone, and may be contaminated by decomposition products. Use organic solvents that contain halogens other than fluorine. do not do.
[0011]
Furthermore, the perfluorocarbon solvent of the present invention is desirably a liquid near room temperature, and is preferably a perfluorocarbon solvent having a boiling point of 30 ° C. or higher and a melting point of 20 ° C. or lower, for example. Boiling point allows cleaning or the like at a temperature not possible with previously described ozone water by selecting the organic solvent exceeding 100 ° C., allowing operations which not been achieved with conventional ozone treatment. The perfluorocarbon solvent may be a single compound or a mixture . If can not find it perfluorocarbon solvent and the boiling point of Nozomu Tokoro can adjust the boiling the apparent by mixing two or more perfluorocarbon solvent.
[0012]
Examples of the perfluorocarbon solvent of the present invention include perfluorocarbon (PFC, a compound obtained by substituting all hydrogen of hydrocarbons with fluorine ).
[0013]
From the viewpoint of corrosion resistance to ozone, the use of path over fluorocarbon and perfluoroether is desirable. The solubility of ozone in the perfluorocarbon solvent used in the present invention reaches several to several tens of times the solubility of ozone in pure water or tap water, and the purification capacity increases as the solubility increases. These perfluorocarbon solvents are usually polymer compounds in which monomers are polymerized. The lower the molecular weight, the higher the solubility of ozone in the same weight of organic solvent, and the higher the molecular weight, the lower the solubility of ozone in the same weight of organic solvent. . In order to dissolve the ozone-containing gas in the organic solvent, it is desirable to use a diffuser plate or a diffuser ball as in normal ozone water production, that is, the ozone-containing gas is diffused by the diffuser plate or diffuser. An ozone-containing cleaning solution can be easily obtained by bubbling into an organic solvent through a ball.
[0014]
In addition, ozone production and dissolution in a perfluorocarbon solvent can be performed by a single operation. In other words, ozone generated in the anode chamber when an anode for ozone generation is installed in the anode chamber of the electrolytic cell partitioned into an anode chamber and a cathode chamber using a diaphragm and electrolysis is performed using a perfluorocarbon solvent as the anolyte. The ozone-containing cleaning solution of the present invention is obtained by dissolving the contained gas as it is in the perfluorocarbon solvent which is an anolyte.
The ozone concentration of the purification solution of the present invention is usually 300 to 500 mg / l at room temperature although it depends on the perfluorocarbon solvent and temperature to be used. As described above, the ozone concentration is several times to several tens of times the normal ozone water ozone concentration. Reach twice. Cleaning liquid comprising perfluorocarbon solvent dissolved ozone-containing gas of the present invention can be used to resist removal removed by the process using a lithographic during street, electronic equipment manufactured as described above.
[0015]
To remove the resist coated on the wafer surface, the wafer may be simply immersed in the ozone-containing cleaning solution of the present invention. However, the resist stripped from the wafer surface by the ozone-containing cleaning solution remains on the wafer surface only by the immersion. Therefore, it is preferable to promote detachment from the surface of the stripped resist by irradiating with ultrasonic waves simultaneously with the immersion.
Furthermore, even if an ozone-containing cleaning solution is sprayed onto the rotating (spinning) wafer surface to try to remove the resist, the peeled resist is detached from the wafer surface in the same manner as in the case of ultrasonic irradiation, so that the processing efficiency increases.
[0018]
The resist removal in the present invention is not limited to the operation using only the cleaning solution. For example, ultraviolet irradiation and ultrasonic irradiation described above may be used together, or a gas or liquid other than ozone may be used simultaneously. As for the solvent, in addition to the above organic solvent containing halogen, a solvent containing no halogen effective for removing a specific component may be mixed with the perfluorocarbon solvent.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of resist removal by the ozone-containing cleaning solution of the present invention will be described based on the attached drawings, but the present invention is not limited to this.
FIG. 1 is a schematic front view showing one embodiment (immersion method) of resist removal using an ozone-containing cleaning solution according to the present invention.
The electrolytic cell
[0020]
When the
On the other hand, an
The ozone-containing gas generated on the
[0021]
FIG. 2 is a schematic front view showing another embodiment (spin cleaning method) of resist removal by the ozone-containing cleaning solution according to the present invention. The electrolytic cell
The ozone-containing gas generated in the electrolytic cell
[0022]
When the
The used ozone-containing cleaning solution is circulated through the
[0023]
(Example)
Next, examples of purification operations such as resist purification using the ozone-containing purification solution according to the present invention will be described, but the examples do not limit the present invention.
Example 1
First, the solubility of the ozone-containing gas in the fluorine-containing organic solvent was measured.
An electrolytic cell having an effective electrolysis area of 90 cm 2 is equipped with a diaphragm made of Nafion (trade name), which is a fixed electrolyte in which lead dioxide powder is adhered to the anode surface and platinum powder is adhered to the cathode surface, to form an SPE type electrolytic cell, The electrolytic cell was divided into an anode chamber and a cathode chamber by a diaphragm, and the electrolytic cell was filled with 1 liter of pure water. By energizing the electrolytic cell to 100 A / dm 2 , a mixed gas of ozone and oxygen (ozone-containing gas) containing 12% by weight of ozone was obtained at a rate of 10 g / hour.
[0024]
This ozone-containing gas was introduced at a rate of 0.7 liter / min into a pyrex glass cylindrical gas cleaning bottle filled with 100 ml of Fluorinert FC-77 (boiling point 97 ° C), a fluorine-containing organic solvent manufactured by Sumitomo 3M Limited. Then, it was dissolved in the organic solvent through a diffused ball made of porous quartz.
5 ml of this ozone-containing organic solvent was sampled, mixed with 5 ml of a 20% by weight aqueous potassium iodide solution, and shaken vigorously to bring it into full contact, whereby iodine ions were oxidized with ozone to develop a yellow color.
Next, 5 ml of 1/10 N aqueous sulfuric acid solution was added to liberate iodine, and titration was performed with 1/50 N sodium thiosulfate solution until the color disappeared.
Similarly, the temperature dependence of ozone solubility was investigated by changing the liquid temperature of the organic solvent and measuring ozone solubility. The results are shown in Table 1.
[0025]
Comparative Example 1
A gas cleaning bottle was filled with pure water instead of Florinart FC-77, ozone was dissolved under the same conditions as in Example 1, and the temperature dependence of the solubility of ozone in pure water was measured in the same manner. The results are shown in Table 1.
From Table 1, it can be seen that Fluorinert showed extremely high ozone solubility compared with pure water, and that ozone-containing Fluorinert having a higher concentration than the supplied ozone-containing gas was obtained at a temperature of 50 ° C. or lower.
[0026]
[Table 1]
[0027]
Example 2
Using the electrolytic cell of Example 1, a resist removing apparatus as shown in FIG. 1 was assembled. The ultrasonic cleaning tank of this apparatus was filled with pure water, and a quartz crucible having an open top surface was installed therein. The same florinate FC-77 as in Example 1 was placed in the crucible, and a porous quartz diffused ball was placed so as to be immersed in the florinate.
The ozone-containing gas containing 12% by weight of ozone obtained in Example 1 was supplied through a diffuser ball into Florinart at a rate of 0.7 liter / minute, and after 20 minutes from the start of supply, the ozone concentration was 460 mg / l. It was. A 6-inch silicon wafer coated with a positive resist TSMRV90 (manufactured by Tokyo Ohka Kogyo Co., Ltd.) with a thickness of 1.2 μm was immersed in this ozone-containing fluorinate. After 3 minutes, it was taken out and dried at 120 ° C., and the etching rate was calculated from the residual film thickness of the resist by observing the cross section with SEM. The results are shown in Table 2.
The etching rate was calculated in the same manner using ultrasonic irradiation during wafer immersion under the same conditions. The results are also shown in Table 2.
[0028]
Comparative Example 2
When ozone water was produced in the same manner as in Example 2 except that pure water was used instead of florinate, the ozone concentration was 60 mg / l. The etching rate was calculated in the same manner as in Example 2 (no ultrasonic irradiation). The results are shown in Table 2.
From Table 2 showing the results of Example 2 and Comparative Example 2, when an organic solvent containing fluorine is used as the solvent for dissolving ozone, the dissolved ozone concentration becomes 7 times or more compared to the case where pure water is the solvent. I understand. Comparing the etching rate of resist removal using ozone-containing cleaning solution and ozone water (no ultrasonic irradiation), the former can be used to obtain an etching rate of about 2.5 times, which speeds up the manufacture of wafers and, in turn, the manufacture of semiconductors having the wafers It can be achieved, and it can cope with high speed and high density of electronic device manufacturing.
Furthermore, when resist removal is performed while irradiating with ultrasonic waves, the resist removal rate reaches four times even when the same ozone-containing cleaning solution is used. It can be presumed that this is because the resist peeled off from the wafer by the ozone-containing cleaning liquid flows away from the wafer surface together with the cleaning liquid by ultrasonic waves, and the contact between the unpeeled resist and the cleaning liquid can be suitably performed.
[0029]
[Table 2]
[0030]
Example 3
The resist was removed from the resist-coated wafer using the electrolytic bath and spin cleaner shown in FIG.
In the same manner as in Example 1, an ozone-containing gas containing 12% by weight of ozone was generated, mixed with the same Fluorinert FC-77 as in Example 1 by a mixing pump, and undissolved ozone was separated with a gas-liquid separator to contain ozone. A purification solution was obtained. When the ozone concentration in this ozone-containing cleaning liquid was measured, it was 460 mg / l, and the liquid temperature was 20 ° C.
[0031]
The same silicon wafer as in Example 2 was rotatably installed in the spin cleaner and rotated at 300 rpm. Cleaning was performed by spraying the ozone-containing cleaning liquid at the center of the rotating wafer at a rate of 0.1 liter / min for 3 minutes. After stopping the supply of the ozone-containing cleaning solution, the rotational speed was increased to 1000 rpm and spin drying was performed for 1 minute.
Thereafter, the residual film thickness was measured by cross-sectional observation of the wafer by SEM, and the etching rate was calculated. The results are shown in Table 3.
[0032]
[Table 3]
[0033]
Comparative Example 3
The ozone concentration used in Comparative Example 2 in place of the ozone-containing cleaning solution was the same as in Example 3 except that 60 mg / l of ozone water (ozone water 1) was used. The residual film thickness was measured and the etching rate was calculated. The results are shown in Table 3.
Further, ozone water (ozone water 2) having an ozone concentration adjusted to 30 mg / l was prepared, and the wafer was similarly cleaned, and the etching rate was calculated. The results are shown in Table 3.
According to the spin cleaning method of Example 3 from Table 3, an
[0034]
Example 4
40 mg of quinoline yellow S, one of the dyes, is dissolved in 100 ml of pure water and mixed with 10 ml of Fluorinert FC-43 (Sumitomo 3M Limited, boiling point 174 ° C.) in which ozone is dissolved at 440 mg / l at room temperature. The discoloration of the dye was observed and the chromaticity was measured. As shown in Table 4, the chromaticity was 0.5. The chromaticity of the stock solution in which 40 mg of quinoline yellow S was dissolved in 100 ml of pure water was too large to be measured. Therefore, the chromaticity of 20 was obtained by diluting 5000 times and measuring.
[0035]
Comparative Example 4
Discoloration treatment was similarly performed using ozone water in which 60 mg / l of ozone was dissolved instead of Fluorinert FC-43, and the chromaticity after the treatment was measured. As shown in Table 4, the result was 20 at 200-fold dilution.
[0036]
[Table 4]
[0037]
Example 5
A titanium fiber sintered body with lead dioxide plating on the surface is used as the anode, a stainless steel fiber sintered body with platinum plating on the surface as the cathode, and Nafion 117 (DuPont) membrane boiled in hydrochloric acid is used as the electrolyte. Thus, an electrolytic cell for generating ozone was constructed. Both the anode and cathode electrolysis areas were 5 cm 2 .
The electrolytic chamber was filled with Fluorinert FC-70 (manufactured by Sumitomo 3M Limited, boiling point 215 ° C.), ultrapure water was added to the cathode chamber, and electrolysis was performed at a current density of 0.5 A / dm 2 for 3 hours.
After 3 hours, the ozone concentration in the anode-generated gas was 10% by volume, and the concentration of ozone contained in the anode chamber florinate was 450 mg / l.
[0038]
【The invention's effect】
The present invention is an ozone-containing purifying liquid characterized by dissolving an ozone-containing gas in a perfluorocarbon solvent. Perfluorocarbon solvents is much higher ozone solubility as compared to pure water, ozone-containing cleaning liquid of the present invention is as highly concentrated ozone-containing solution, can be effectively used to record resist removal or the like of the elements of the electronic device.
Further, since the perfluorocarbon solvent itself has a purification action, a purification liquid having both ozone purification action and solvent purification action can be provided. In addition, since ozone water has a boiling point of 100 ° C., conventional ozone water cleaning could not be performed at a temperature exceeding 100 ° C. However, in the present invention, when the boiling point of the perfluorocarbon solvent is suitably selected, 100 ° C. It is possible to perform cleaning and sterilization at a temperature exceeding 1, and to cope with resist removal that could not be subjected to ozone cleaning in the past .
[0039]
Purification capacity with a full Tsu containing not only higher than the other halogen, perfluorocarbon solvent hardly be degraded because it does not react with ozone, can continue to use to perform the replacement or regeneration for a long period of time. High purification ability of the path over fluorocarbon solvents, and deterioration can be almost completely prevented.
The ozone-containing cleaning liquid of the present invention is effective when used in removing resist from c E c of the electronic device, cleaning effect can not be expected to obtain a remarkably detergency and temperature control described above.
[0040]
The ozone-containing cleaning liquid can be generally produced by blowing and dissolving ozone-containing gas in an organic solvent containing halogen using a diffuser ball. However, as a special production means, SPE-type ozone production is possible. When a perfluorocarbon solvent is used as the anolyte for the electrolytic cell, the ozone-containing cleaning solution of the present invention is obtained in the anode chamber of the electrolytic cell. This eliminates the need for a separate melting means and improves workability.
The resist removal described above can be performed by supplying the ozone-containing cleaning solution while rotating the wafer coated with the resist, or by immersing the wafer in the ozone-containing cleaning solution while irradiating with ultrasonic waves. Will improve. This is because the ozone-containing cleaning solution collides with the wafer surface as a flux and the resist peeled off from the wafer surface is washed away from the wafer surface together with the cleaning solution, or the ultrasonic wave is removed from the wafer surface together with the cleaning solution from the wafer surface. Since it leaves, it can be estimated that it is because the contact of the unstripped resist with the cleaning solution can be suitably performed.
[Brief description of the drawings]
FIG. 1 is a schematic front view showing an embodiment of resist removal using an ozone-containing cleaning solution according to the present invention.
FIG. 2 is a schematic front view showing another embodiment.
[Explanation of symbols]
1 Electrolytic Cell Body 2
10, 10a Fluorine-containing organic solvent
11, 11a Wafer with resist
12, 12a Supply line
13 Aeration ball
14 Mixing pump
15 Reservoir
16 Gas-liquid separation tank
17 Spin cleaner
18 saucer
19 axes
20 filters
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16826999A JP4354575B2 (en) | 1999-06-15 | 1999-06-15 | Ozone-containing cleaning solution and resist removal method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16826999A JP4354575B2 (en) | 1999-06-15 | 1999-06-15 | Ozone-containing cleaning solution and resist removal method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000355699A JP2000355699A (en) | 2000-12-26 |
JP4354575B2 true JP4354575B2 (en) | 2009-10-28 |
Family
ID=15864896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16826999A Expired - Lifetime JP4354575B2 (en) | 1999-06-15 | 1999-06-15 | Ozone-containing cleaning solution and resist removal method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4354575B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4039662B2 (en) * | 2002-08-13 | 2008-01-30 | 株式会社Sumco | Method for cleaning semiconductor substrate or element |
TWI558876B (en) * | 2010-07-05 | 2016-11-21 | 大陽日酸股份有限公司 | Surface oxidation treatment method and surface oxidation treatment apparatus |
EP3590912A4 (en) * | 2017-02-03 | 2020-12-30 | Daikin Industries, Ltd. | Method for producing perfluoroalkadiene compounds |
-
1999
- 1999-06-15 JP JP16826999A patent/JP4354575B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000355699A (en) | 2000-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3690619B2 (en) | Cleaning method and cleaning device | |
TWI525684B (en) | Cleaning methods and cleaning systems for electronic materials | |
US5378317A (en) | Method for removing organic film | |
JP2001205204A (en) | Apparatus for manufacturing washing liquid for electronic part members | |
JP5087325B2 (en) | Cleaning system and cleaning method | |
KR100913449B1 (en) | Cleaning system and cleaning method | |
KR100194010B1 (en) | Cleaning method and system for semiconductor substrate and cleaning liquid manufacturing method | |
WO2010113587A1 (en) | Method for cleaning electronic material and device for cleaning electronic material | |
JP5729571B2 (en) | Metal gate semiconductor cleaning method | |
JP3313263B2 (en) | Electrolytic water generation method, its generation apparatus, and semiconductor manufacturing apparatus | |
US20050139487A1 (en) | Method for the oxidative treatment of components comprised of or containing elementary silicon and/or substantially inorganic silicon compounds | |
KR100229687B1 (en) | Method for removing organic thin film | |
JPH1064867A (en) | Method and device for cleaning a variety of electronic component members | |
JP4354575B2 (en) | Ozone-containing cleaning solution and resist removal method | |
JP2006278838A (en) | Sulfuric acid recycling type cleaning system | |
JP2005150768A (en) | Cleaning method and cleaning method of electronic component | |
WO2004016723A1 (en) | Technique on ozone water for use in cleaning semiconductor substrate | |
JP4399843B2 (en) | Method and apparatus for removing photoresist from substrate surface for electronics industry | |
JP3980518B2 (en) | Wet cleaning processing apparatus and wet cleaning processing method | |
JP2001185520A (en) | Method of surface treatment of substrate for forming semiconductor element | |
JP2004296463A (en) | Cleaning method and cleaning device | |
JP4051693B2 (en) | Cleaning method for electronic materials | |
JPH1129795A (en) | Cleaning water for electronic material, its preparation, and cleaning of electronic material | |
JPH04111308A (en) | Method for removing organic material film | |
JP2001096273A (en) | Method and device for producing ionized water useful for cleaning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050118 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050118 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050118 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081024 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090730 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4354575 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |