JP4353480B2 - Electrode switching device - Google Patents

Electrode switching device Download PDF

Info

Publication number
JP4353480B2
JP4353480B2 JP2004372116A JP2004372116A JP4353480B2 JP 4353480 B2 JP4353480 B2 JP 4353480B2 JP 2004372116 A JP2004372116 A JP 2004372116A JP 2004372116 A JP2004372116 A JP 2004372116A JP 4353480 B2 JP4353480 B2 JP 4353480B2
Authority
JP
Japan
Prior art keywords
electrode
measurement
current
survey
selection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004372116A
Other languages
Japanese (ja)
Other versions
JP2006177807A (en
Inventor
浩一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004372116A priority Critical patent/JP4353480B2/en
Publication of JP2006177807A publication Critical patent/JP2006177807A/en
Application granted granted Critical
Publication of JP4353480B2 publication Critical patent/JP4353480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、地盤の電気探査に使用する電極切替装置に関する。さらに詳しくは、本発明は、地盤に設置した多数の電極の中から測定に使用する電流電極と電位電極を選択し、送信装置又は受信装置との接続を切替える電極切替装置に関するものである。   The present invention relates to an electrode switching device used for electrical exploration of the ground. More specifically, the present invention relates to an electrode switching device that selects a current electrode and a potential electrode used for measurement from among a large number of electrodes installed on the ground, and switches connection with a transmission device or a reception device.

地盤の電気探査法では、一対の電流電極と一対の電位電極を地表に設置しておき、送信機(直流電源)を一対の電流電極に接続すると共に、受信機(電圧計)を一対の電位電極に接続し、電流電極から流す直流電流の値とそれによって電位電極間に生じる電位差を計測して比抵抗を求め、この比抵抗に基づいて地盤を探査する。   In the ground electrical exploration method, a pair of current electrodes and a pair of potential electrodes are installed on the ground surface, a transmitter (DC power supply) is connected to the pair of current electrodes, and a receiver (voltmeter) is connected to a pair of potentials. A specific resistance is obtained by measuring a value of a direct current flowing from the current electrode and a potential difference generated between the potential electrodes, and then searching for the ground based on the specific resistance.

電流電極と電位電極の間の距離(電極間距離)が短ければ測定データには浅部地層の比抵抗が反映され、電極間距離が長ければ測定データには深部地層の比抵抗の影響が含まれるようになる。このため、電極間距離を変化させて測定することで、深さ方向の比抵抗の変化を知ることができる。そして、このような測定を効率良く行うために、多数の電極を1本の測線に沿って予め設置しておき、その中から測定に使用する電流電極と電位電極を選択してその組み合わせを順番に変えながら測定することが行われている。   If the distance between the current electrode and the potential electrode (distance between electrodes) is short, the measurement data reflects the resistivity of the shallow formation, and if the distance between the electrodes is long, the measurement data includes the influence of the resistivity of the deep formation. It comes to be. For this reason, it is possible to know the change in the specific resistance in the depth direction by changing the distance between the electrodes. In order to perform such a measurement efficiently, a large number of electrodes are installed in advance along one measurement line, and current electrodes and potential electrodes used for the measurement are selected from the electrodes, and the combinations are sequentially selected. It is being measured while changing to.

1本の測線に沿って設置された多数の電極の中から使用する一対の電流電極と電位電極を選択し、選択した電流電極と送信機との接続、および選択した電位電極と受信機との接続を操作する装置として、例えば特開2001−21662号に開示された電極切替装置がある。   A pair of current electrodes and potential electrodes to be used is selected from among a large number of electrodes installed along one survey line, the connection between the selected current electrode and the transmitter, and the selected potential electrode and the receiver. As an apparatus for operating the connection, for example, there is an electrode switching apparatus disclosed in Japanese Patent Laid-Open No. 2001-21626.

この電極切替装置を図17及び図18に示す。電極切替装置は、電流送信部(送信機)の2つの端子C1,C2と電位受信部(受信機)の2つの端子P1,P2に対応した4つのリレー装置を有している。各リレー装置は、端子の数、換言すると電極の数と同じ数のリレーを有しており、その中から1つのリレーを選択してオン操作することで、多数の電極の中から1つの電極を選択して電流送信部又は電位受信部に接続させる。そして、オン操作するリレーを順次変えることで、電流送信部又は電位受信部に接続させる電極を順次変化させることができる。
特開2001−21662号
This electrode switching device is shown in FIGS. The electrode switching device has four relay devices corresponding to the two terminals C1 and C2 of the current transmitter (transmitter) and the two terminals P1 and P2 of the potential receiver (receiver). Each relay device has the same number of relays as the number of terminals, in other words, the number of electrodes. By selecting one relay from the relays and turning it on, one of the electrodes can be selected. Is selected and connected to the current transmitter or the potential receiver. And the electrode connected to an electric current transmission part or an electric potential receiving part can be changed one by one by changing the relay which carries out an ON operation one by one.
Japanese Patent Laid-Open No. 2001-216262

しかしながら、上述の電極切替装置では、測線が1本の場合には対応可能であったが、測線が2本以上の場合には対応していなかった。このため、複数の測線について測定を行う場合には、1本の測線について測定を行った後、測定が終了した測線から測定が終了していない別の測線に電極を設置し直すと共にそれらの配線等もし直して測定を繰り返し行っていた。このため、測定の作業効率が極めて悪かった。   However, in the above-described electrode switching device, it was possible to cope with a single survey line, but it was not compatible with two or more survey lines. For this reason, when measuring a plurality of survey lines, after measuring a single survey line, re-install the electrodes from the survey line where the measurement has been completed to another survey line where the measurement has not been completed, and wiring them. The measurement was repeated and repeated. For this reason, the work efficiency of the measurement was extremely poor.

本発明は、複数の測線に対応可能な電極切替装置を提供することを目的する。   An object of this invention is to provide the electrode switching apparatus which can respond to a several survey line.

かかる目的を達成するために、請求項1記載の発明は、測線上の複数の測点にそれぞれ設置された電極の中から測定に使用する電流電極と電位電極を選択し、選択した電流電極に通じる導線を送信装置に接続すると共に、選択した電位電極に通じる導線を受信装置に接続する電極切替装置において、導線を接続する接続端子を複数の測線に対応する数だけ設けて複数の測線の電極を接続可能とし、複数の測線の中から測定に使用する1本の測線を選択して接続を切替える測線選択部と、測定に使用する測点を選択して接続を切替える測点選択部を備え、測線選択部と測点選択部とを直列に設け、測線選択部による測線の選択と測点選択部による測点の選択との組み合わせによって使用する測線と測点を切替えるものである。 In order to achieve such an object, the invention described in claim 1 selects a current electrode and a potential electrode used for measurement from electrodes respectively installed at a plurality of measurement points on a survey line, and selects the selected current electrode. In an electrode switching device for connecting a conducting wire that leads to a transmitting device and connecting a conducting wire that leads to a selected potential electrode to a receiving device, a number of connection terminals for connecting the conducting wires are provided corresponding to a plurality of measuring lines, and electrodes of a plurality of measuring lines are provided. A survey line selection unit that selects one survey line to be used for measurement from a plurality of survey lines and switches the connection, and a station selection unit that selects a survey point to be used for measurement and switches the connection. , it provided a survey line selection unit and the station selection unit in series, is shall switch the survey line and stations to be used in combination with the selection of the measurement point by the selection and station selection portion of the survey line by survey line selection unit.

したがって、測線が複数あっても各測点の測点の電極を送信装置又は受信装置に選択的に接続することができる。1本の測線に複数の測点があり、そのような測線が複数あったとしても、即ち、多数の電極が縦横に設置されていたとしても、その電極が属する測線と当該測線中の測点の位置とを指定することで、その電極を特定することができる。したがって、測線選択部によって測線を選択し、測点選択部によって当該測線中の測点を選択することで、電極を特定して送信装置又は受信装置に接続することができる。また、測線選択部と電極に通じる導線を接続する接続端子との増加によって測線の増加に対応できる。   Therefore, even if there are a plurality of survey lines, the electrodes of the measurement points at each measurement point can be selectively connected to the transmission device or the reception device. A single survey line has a plurality of survey points, and even if there are a plurality of such survey lines, that is, even if many electrodes are installed vertically and horizontally, the survey line to which the electrodes belong and the survey points in the survey line. By specifying the position of the electrode, the electrode can be specified. Therefore, by selecting a survey line by the survey line selection unit and selecting a survey point in the survey line by the survey point selection unit, it is possible to identify the electrode and connect it to the transmission device or the reception device. Further, the increase in the number of survey lines can be accommodated by the increase in the survey line selection unit and the connection terminals for connecting the conductive wires leading to the electrodes.

ここで、請求項2記載の電極切替装置のように、測点には電流電極と電位電極を兼用する兼用電極が設置されており、測線選択部と測点選択部を、兼用電極を送信装置又は受信装置に接続する経路の途中に設けていても良く、また、請求項3記載の電極切替装置のように、測点には電流電極と電位電極が別々に設置されており、測線選択部と測点選択部を、電流電極を送信装置に接続する経路の途中と電位電極を受信装置に接続する経路の途中のそれぞれに設けていても良い。即ち、電流電極と電位電極として共通の電極を使用する場合でも、別々の電極を使用する場合でも、電極と送信装置又は受信装置との接続の切替を行うことができる。   Here, as in the electrode switching device according to claim 2, a dual-purpose electrode that serves both as a current electrode and a potential electrode is installed at the measurement point, and the dual-line electrode is used as the line selection unit and the measurement point selection unit. Alternatively, it may be provided in the middle of the path connected to the receiving device, and as in the electrode switching device according to claim 3, the current electrode and the potential electrode are separately installed at the measuring point, and the line selection unit And the point selection unit may be provided in the middle of the path connecting the current electrode to the transmitter and in the middle of the path connecting the potential electrode to the receiver. That is, even when a common electrode is used as the current electrode and the potential electrode or when different electrodes are used, the connection between the electrode and the transmission device or the reception device can be switched.

また、請求項4記載の電極切替装置は、測点選択部が測点の中から遠電極とする測点を選択し、選択した遠電極測点の接続状態を維持するものである。したがって、遠電極を必要とする二極法又は三極法の電極配置に対応することができる。   According to a fourth aspect of the present invention, in the electrode switching device, the station selection unit selects a station as a far electrode from the stations, and maintains the connection state of the selected far electrode station. Therefore, it can respond to the electrode arrangement of the bipolar method or the triode method which requires a far electrode.

さらに、請求項5記載の電極切替装置は、測点選択部が、全ての測点を順番に選択して接続を切替えるものである。したがって、四極法の電極配置に対応することができる。   Furthermore, in the electrode switching device according to the fifth aspect, the station selection unit switches all the stations in order and switches the connection. Therefore, it can respond to the electrode arrangement of the quadrupole method.

しかして、請求項1記載の発明では、上述のように発明電極切替装置を構成しているので、測線が複数あっても対応することができる。また、測線選択部と接続端子との増加によって測線の増加に対応することができるので、測線の増加への対応が容易である。さらに、測線を増加させる場合であっても測点選択部を増加させる必要がないので、その分だけ必要な部品点数の増加を抑えることができ、装置の大型化、重量化を抑えることができる。   In the invention according to claim 1, since the inventive electrode switching device is configured as described above, it is possible to cope with a plurality of survey lines. Moreover, since the increase in the survey line can be accommodated by the increase in the survey line selection unit and the connection terminal, it is easy to cope with the increase in the survey line. Furthermore, even when the number of survey lines is increased, there is no need to increase the number of measurement point selection units. Therefore, an increase in the number of necessary parts can be suppressed, and the increase in size and weight of the apparatus can be suppressed. .

ここで、請求項2記載の電極切替装置のように、測点には電流電極と電位電極を兼用する兼用電極が設置されており、測線選択部と測点選択部を、兼用電極を送信装置又は受信装置に接続する経路の途中に設けていても良く、また、請求項3記載の電極切替装置のように、測点には電流電極と電位電極が別々に設置されており、測線選択部と測点選択部を、電流電極を送信装置に接続する経路の途中と電位電極を受信装置に接続する経路の途中のそれぞれに設けていても良い。即ち、電流電極と電位電極として同じ電極を使用する場合でも、別々の電極を使用する場合でも、電極と送信装置又は受信装置との接続の切替を良好に行うことができる。このため、汎用性が高い電極切替装置を提供することができる。   Here, as in the electrode switching device according to claim 2, a dual-purpose electrode that serves both as a current electrode and a potential electrode is installed at the measurement point, and the dual-line electrode is used as the line selection unit and the measurement point selection unit. Alternatively, it may be provided in the middle of the path connected to the receiving device, and as in the electrode switching device according to claim 3, the current electrode and the potential electrode are separately installed at the measuring point, and the line selection unit And the point selection unit may be provided in the middle of the path connecting the current electrode to the transmitter and in the middle of the path connecting the potential electrode to the receiver. That is, even when the same electrode is used as the current electrode and the potential electrode, or when separate electrodes are used, the connection between the electrode and the transmission device or the reception device can be switched satisfactorily. For this reason, an electrode switching device with high versatility can be provided.

また、請求項4記載の電極切替装置では、測点選択部が測点の中から遠電極とする測点を選択し、選択した遠電極測点の接続状態を維持するので、二極法又は三極法の電極配置の場合に電極と送信装置又は受信装置との接続の切替を行うことができる。   Further, in the electrode switching device according to claim 4, the station selection unit selects a station to be a far electrode from the stations, and maintains the connection state of the selected far electrode station. In the case of the triode electrode arrangement, the connection between the electrode and the transmission device or the reception device can be switched.

さらに、請求項5記載の電極切替装置では、測点選択部が全ての測点を順番に選択して接続を切替えるので、四極法の電極配置の場合に電極と送信装置又は受信装置との接続の切替を行うことができる。   Furthermore, in the electrode switching device according to claim 5, since the station selection unit selects all the station points in order and switches the connection, the connection between the electrode and the transmitting device or the receiving device in the case of the electrode arrangement of the quadrupole method Can be switched.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

まず最初に、本発明の電極切替装置を備える地盤探査装置について説明する。図1〜図7に、地盤探査装置の実施形態の一例を示す。地盤探査装置1は、地盤2に設置された一対の電流電極3及び一対の電位電極4と、電流電極3間に一定周期で電流を供給して電位電極4間の電位差を測定する測定部5と、電流の波形に対する電位差の波形の抵抗及び位相差を求める処理部6を備え、測定部5は電流の周期の周波数を変えて測定を複数回行うものであり、処理部6は、測定部5の複数回の測定に基づき周波数と抵抗との関係及び周波数と位相差との関係を求めるものである。測定部5と処理部6は制御部28によって同期され制御されている。また、本実施形態では、予め求めておいた地盤2別の周波数と抵抗との関係データ及び周波数と位相差との関係データを記憶した記憶手段29を備えており、処理部6は、記憶手段29に記憶されている関係データと求めた関係とを対比して測定対象地盤2を判別するものである。   First, a ground exploration device provided with the electrode switching device of the present invention will be described. 1 to 7 show an example of an embodiment of a ground exploration device. The ground exploration apparatus 1 includes a pair of current electrodes 3 and a pair of potential electrodes 4 installed on the ground 2, and a measuring unit 5 that measures a potential difference between the potential electrodes 4 by supplying a current between the current electrodes 3 at a constant period. And a processing unit 6 for determining the resistance and phase difference of the potential difference waveform with respect to the current waveform, the measuring unit 5 performs measurement a plurality of times by changing the frequency of the current cycle, and the processing unit 6 includes the measuring unit 5, the relationship between the frequency and the resistance and the relationship between the frequency and the phase difference are obtained based on the plurality of measurements. The measurement unit 5 and the processing unit 6 are synchronized and controlled by the control unit 28. Further, in the present embodiment, the storage unit 29 that stores the relationship data between the frequency and the resistance for each ground 2 and the relationship data between the frequency and the phase difference, which are obtained in advance, is provided. The measurement target ground 2 is discriminated by comparing the relation data stored in 29 with the obtained relation.

地盤2には、測線7に沿って多数の電流電極3と電位電極4が設置されており、多数の電流電極3の中から2個(一対)を選択して使用すると共に、多数の電位電極4の中から2個(一対)を選択して使用する。1本の測線7に対し、例えば60箇所の測点8が設定されており、各測点8には電流電極3と電位電極4が別々に設置されている。同一測点8の電流電極3と電位電極4は、測線7に直交する方向に並べて配置されている。電極3,4の各々は別々の導線によって測定部5の電極切替装置9の各接続端子10に接続されている。即ち、60個の電流電極3と60個の電位電極4はそれぞれ60本の導線を束ねた多芯ケーブル11によって電極切替装置9の対応する接続端子10に接続されている。測定部5は設置された電極3,4の中から使用する一対の電流電極3と一対の電位電極4の組合せを順次切り替えて測定を行う。例えば、四極法のDipole-Dipole法の電極配置で測定を行う。測線7として、例えば4本の測線7が設定されている。   The ground 2 is provided with a large number of current electrodes 3 and potential electrodes 4 along the measuring line 7, and two (a pair) are selected from the large number of current electrodes 3 and used. Two (a pair) are selected from four and used. For example, 60 measuring points 8 are set for one measuring line 7, and the current electrode 3 and the potential electrode 4 are separately installed at each measuring point 8. The current electrode 3 and the potential electrode 4 at the same measurement point 8 are arranged side by side in a direction orthogonal to the measurement line 7. Each of the electrodes 3 and 4 is connected to each connection terminal 10 of the electrode switching device 9 of the measurement unit 5 by a separate conductor. That is, each of the 60 current electrodes 3 and the 60 potential electrodes 4 is connected to the corresponding connection terminal 10 of the electrode switching device 9 by a multicore cable 11 in which 60 conductors are bundled. The measurement unit 5 performs measurement by sequentially switching the combination of the pair of current electrodes 3 and the pair of potential electrodes 4 to be used from among the installed electrodes 3 and 4. For example, the measurement is performed with a four-pole Dipole-Dipole electrode arrangement. For example, four survey lines 7 are set as the survey lines 7.

図3に電流電極3を示す。電流電極3は、例えばステンレス製の電極であり、地表から例えば30〜40cmの深さまで差し込まれる。電流電極3の太さは例えば15mmである。また、図4に電位電極4を示す。電位電極4は、例えば鉛製の電極であり、地表から例えば30から40cmの深さまで差し込まれる。電位電極4の太さは例えば15mmである。電位電極4の周囲には導電性ゲル材(アースFC硬化剤)12が充填されており、分極が生じ難くなっている。   FIG. 3 shows the current electrode 3. The current electrode 3 is a stainless steel electrode, for example, and is inserted from the ground surface to a depth of 30 to 40 cm, for example. The thickness of the current electrode 3 is 15 mm, for example. FIG. 4 shows the potential electrode 4. The potential electrode 4 is, for example, an electrode made of lead, and is inserted from the ground surface to a depth of, for example, 30 to 40 cm. The thickness of the potential electrode 4 is 15 mm, for example. A conductive gel material (earth FC curing agent) 12 is filled around the potential electrode 4 so that polarization hardly occurs.

測定部5は送信装置13と受信装置14と本発明の電極切替装置9を備えている。送信装置13は、端子15間に一定周期で定電流を供給し、電流値と電流の送信周波数を調節することができる。電流値は例えば1mA〜400mAの範囲で、送信周波数は例えば0.01Hz〜10kHzの範囲で、それぞれ調節することができる。ただし、調節できる範囲はこれらに限るものではない。また、送信装置13は、定電流として、例えば正弦波電流を供給する。電流値は、測定条件等に応じて適宜選択される。   The measuring unit 5 includes a transmission device 13, a reception device 14, and an electrode switching device 9 of the present invention. The transmission device 13 can supply a constant current between the terminals 15 at a constant period and adjust the current value and the transmission frequency of the current. The current value can be adjusted in the range of 1 mA to 400 mA, for example, and the transmission frequency can be adjusted in the range of 0.01 Hz to 10 kHz, for example. However, the adjustable range is not limited to these. The transmission device 13 supplies, for example, a sine wave current as a constant current. The current value is appropriately selected according to measurement conditions and the like.

受信装置14は、電流検出回路16と受信増幅回路17とA/D変換器18を備えている。また、電位電極4からの信号を受け付ける受信チャネルとして、例えば4つのチャネルを有している。受信増幅回路17は受信チャネル数に対応して、例えば4つ設けられている。また、A/D変換器18は、増幅の程度に応じて、例えば3つ(0dB,20dB,40dB)設けられている。   The reception device 14 includes a current detection circuit 16, a reception amplification circuit 17, and an A / D converter 18. Further, for example, there are four channels as reception channels for receiving signals from the potential electrode 4. For example, four reception amplifier circuits 17 are provided corresponding to the number of reception channels. For example, three (0 dB, 20 dB, 40 dB) A / D converters 18 are provided according to the degree of amplification.

本発明の電極切替装置9の実施形態の一例を図5及び図6に示す。電極切替装置9は、測線7上の複数の測点8にそれぞれ設置された電極の中から測定に使用する電流電極3と電位電極4を選択し、選択した電流電極3に通じる導線を送信装置13に接続すると共に、選択した電位電極4に通じる導線を受信装置14に接続するものである。導線を接続する接続端子10を複数の測線7に対応する数だけ設けて複数の測線7の電極3,4を接続可能としている。また、複数の測線7の中から測定に使用する1本の測線7を選択して接続を切替える測線選択部19と、測定に使用する測点8を選択して接続を切替える測点選択部20を備えている。本実施形態では、測点8には電流電極3と電位電極4が別々に設置されており、測線選択部19と測点選択部20は、電流電極3を送信装置13に接続する経路の途中と電位電極4を受信装置14に接続する経路の途中のそれぞれに設けられている。   An example of an embodiment of the electrode switching device 9 of the present invention is shown in FIGS. The electrode switching device 9 selects a current electrode 3 and a potential electrode 4 to be used for measurement from the electrodes respectively installed at a plurality of measurement points 8 on the measurement line 7, and transmits a conductive wire that leads to the selected current electrode 3 to the transmission device. 13, and a lead wire leading to the selected potential electrode 4 is connected to the receiving device 14. The connection terminals 10 for connecting the conducting wires are provided in a number corresponding to the plurality of survey lines 7 so that the electrodes 3 and 4 of the plurality of survey lines 7 can be connected. Further, a survey line selection unit 19 that selects one survey line 7 to be used for measurement from a plurality of survey lines 7 and switches the connection, and a survey point selection unit 20 that selects the survey point 8 to be used for measurement and switches the connection. It has. In the present embodiment, the current electrode 3 and the potential electrode 4 are separately installed at the measurement point 8, and the survey line selection unit 19 and the measurement point selection unit 20 are in the middle of the path connecting the current electrode 3 to the transmission device 13. And the potential electrode 4 are respectively provided in the middle of the path connecting the receiving device 14.

電流電極3用の接続端子10と電位電極4用の接続端子10は、それぞれ240(=60×4)個ずつ設けられており、最大4本分の測線7(A測線7〜D測線7)の電流電極3と電位電極4を接続することができる。即ち、測点8の数と同じ数の接続端子10が1組となり、接続可能とする測線7の最大数と同じ組数の接続端子10が設けられている。また、1組の接続端子10には、最大60個の電極を接続することができる。各接続端子10には、各測線7の多芯ケーブル11の導線が1本ずつ接続されている。ここで電流電極3を例に説明すると、各測線7とも、1番目の測点8の電流電極3に通じる導線は1番目の接続端子10に、2番目の測点8の電流電極3に通じる導線は2番目の接続端子10に、…、n番目の測点8の電流電極3に通じる導線はn番目の接続端子10に、…、60番目の測点8の電流電極3に通じる導線は60番目の接続端子10に、それぞれ接続されている。電位電極4についても同様である。   240 (= 60 × 4) connection terminals 10 for current electrode 3 and connection terminals 10 for potential electrode 4 are provided, and a maximum of four measurement lines 7 (A measurement line 7 to D measurement line 7). Current electrode 3 and potential electrode 4 can be connected. That is, the same number of connection terminals 10 as the number of the measurement points 8 make one set, and the same number of connection terminals 10 as the maximum number of the measurement lines 7 that can be connected are provided. In addition, a maximum of 60 electrodes can be connected to one set of connection terminals 10. Each connecting terminal 10 is connected to one conducting wire of the multi-core cable 11 of each measuring line 7. Here, the current electrode 3 will be described as an example. In each of the measuring lines 7, the conducting wire that leads to the current electrode 3 of the first measuring point 8 leads to the first connecting terminal 10 and the current electrode 3 of the second measuring point 8. The conducting wire leads to the second connecting terminal 10, the conducting wire leading to the current electrode 3 at the nth measuring point 8, the conducting wire leading to the nth connecting terminal 10, the conducting wire leading to the current electrode 3 at the 60th measuring point 8 Each is connected to the 60th connection terminal 10. The same applies to the potential electrode 4.

なお、接続端子10の数は240個ずつに限るものではない。例えば、図5及び図6に破線で示すように、拡張用の接続端子10を電流電極3用と電位電極4用にそれぞれ120(60×2)個ずつ設けておき、測線7の数を必要に応じて6本まで増加できるようにしても良い。また、その他の数でも良い。   The number of connection terminals 10 is not limited to 240. For example, as indicated by broken lines in FIGS. 5 and 6, 120 (60 × 2) connection terminals 10 for expansion are provided for each of the current electrode 3 and the potential electrode 4, and the number of measurement lines 7 is required. It may be possible to increase the number up to 6 according to. Other numbers may also be used.

測線選択部19は、測点8の数と同じ数だけ設けられた本線21と、各本線21を測線7の数と同じ数に分岐させた分岐線22と、分岐線22の途中に設けられたリレー23を備えている。分岐線22は接続端子10に接続されている。リレー23は測線7毎に組み分け(A組〜D組)されており、同じ組のリレー23は同時にオンオフ操作される。4つの組のうち、1つの組が択一的に選択されてオン操作される。例えば、A測線7を選択する場合にはA組のリレー23が全てオン操作され、他の組のリレー23は全てオフ操作される。B測線7、C測線7、D測線7を選択する場合も同様である。測線選択部19は電流電極3用のものと電位電極4用のものとで同じ構造である。   The survey line selection unit 19 is provided in the middle of the main line 21 provided as many as the number of the measurement points 8, the branch line 22 that branches each main line 21 into the same number as the number of the measurement lines 7, and the branch line 22. The relay 23 is provided. The branch line 22 is connected to the connection terminal 10. The relays 23 are grouped for each survey line 7 (A group to D group), and the relays 23 of the same group are simultaneously turned on and off. Of the four sets, one set is alternatively selected and turned on. For example, when the A survey line 7 is selected, the A set of relays 23 are all turned on, and the other sets of relays 23 are all turned off. The same applies to the selection of the B survey line 7, the C survey line 7, and the D survey line 7. The survey line selection unit 19 has the same structure for the current electrode 3 and the potential electrode 4.

図5に示す電流電極3用の測点選択部20は、測定に使用する電流電極3の数に合わせて2つのスイッチ回路24を備えている。また、図6に示す電位電極4用の測点選択部20は、受信チャネル分の電位電極4の数に合わせて8つのスイッチ回路24を備えている。スイッチ回路24を図7に示す。スイッチ回路24は、端子25と各本線21を接続する分岐線26と、各分岐線26の途中に設けられたリレー27を備えている。本実施形態では、測点8の数に対応して60本の本線21を有しているので、60個のリレー27を有している。各リレー27は択一的にオン操作される。例えば、1番目の測点8の電流電極3を端子25に接続する場合には、1番目の本線21に接続された分岐線26に設けられているリレー27をオン操作する。2番目〜60番目の測点8の電流電極3を端子25に接続する場合も同様であり、また、電位電極4についても同様である。   The measurement point selection unit 20 for the current electrode 3 shown in FIG. 5 includes two switch circuits 24 in accordance with the number of current electrodes 3 used for measurement. Further, the measuring point selection unit 20 for the potential electrode 4 shown in FIG. 6 includes eight switch circuits 24 corresponding to the number of potential electrodes 4 for the reception channel. The switch circuit 24 is shown in FIG. The switch circuit 24 includes a branch line 26 connecting the terminal 25 and each main line 21, and a relay 27 provided in the middle of each branch line 26. In the present embodiment, since 60 main lines 21 are provided corresponding to the number of measurement points 8, 60 relays 27 are provided. Each relay 27 is alternatively turned on. For example, when the current electrode 3 of the first measuring point 8 is connected to the terminal 25, the relay 27 provided on the branch line 26 connected to the first main line 21 is turned on. The same applies to the case where the current electrodes 3 of the second to 60th measuring points 8 are connected to the terminal 25, and the same applies to the potential electrode 4.

例えば、A測線7の1,2番目の測点8の電流電極3と、3,4番目の測点8の電位電極4(1ch)と、5,6番目の測点8の電位電極4(2ch)と、7,8番目の測点8の電位電極4(3ch)と、9,10番目の測点8の電位電極4(4ch)を使用する場合には、以下のリレー23,27をオン操作する。図5の電流電極3側(送信装置13側)については、測点選択部20の一方のスイッチ回路24の1番目のリレー27と、他方のスイッチ回路24の2番目のリレー27をオン操作すると共に、測線選択部19のA組のリレー23を全てオン操作する。また、図6の電位電極4側(受信装置14側)については、測線選択部19の1chの一方のスイッチ回路24の3番目のリレー27と他方のスイッチ回路24の4番目のリレー27、2chの一方のスイッチ回路24の5番目のリレー27と他方のスイッチ回路24の6番目のリレー27、3chの一方のスイッチ回路24の7番目のリレー27と他方のスイッチ回路24の8番目のリレー27、4chの一方のスイッチ回路24の9番目のリレー27と他方のスイッチ回路24の10番目のリレー27をオン操作すると共に、測線選択部19のA組のリレー23を全てオン操作する。   For example, the current electrode 3 at the first and second measuring points 8 on the A measuring line 7, the potential electrode 4 (1ch) at the third and fourth measuring points 8, and the potential electrode 4 (1ch) at the fifth and sixth measuring points 8 ( 2ch), the potential electrode 4 (3ch) of the seventh and eighth measuring points 8, and the potential electrode 4 (4ch) of the ninth and tenth measuring points 8 are used, the following relays 23 and 27 are used. Turn on. On the current electrode 3 side (transmission device 13 side) in FIG. 5, the first relay 27 of one switch circuit 24 of the point selection unit 20 and the second relay 27 of the other switch circuit 24 are turned on. At the same time, all the relays 23 of the set A of the survey line selection unit 19 are turned on. Further, for the potential electrode 4 side (receiving device 14 side) in FIG. 6, the third relay 27 of one switch circuit 24 of the 1ch of the survey line selection unit 19 and the fourth relay 27, 2ch of the other switch circuit 24 are arranged. The fifth relay 27 of one switch circuit 24, the sixth relay 27 of the other switch circuit 24, the seventh relay 27 of the one switch circuit 24 of 3ch, and the eighth relay 27 of the other switch circuit 24. The 9th relay 27 of one switch circuit 24 of 4ch and the 10th relay 27 of the other switch circuit 24 are turned on, and all the A-group relays 23 of the survey line selection unit 19 are turned on.

各リレー23,27は、制御部28によって切替操作される。   The relays 23 and 27 are switched by the control unit 28.

電極切替装置9は、送信装置13の端子15と電流検出回路16の端子30を接続している。また、電極切替装置9は、受信チャネル毎に電位電極4と受信装置14の受信増幅回路17の端子31とを接続している。電流検出回路16と受信増幅回路17は、3つのA/D変換器18を介して処理部6に接続されている。その接続にはUSB端子が使用されている。   The electrode switching device 9 connects the terminal 15 of the transmission device 13 and the terminal 30 of the current detection circuit 16. The electrode switching device 9 connects the potential electrode 4 and the terminal 31 of the reception amplifier circuit 17 of the reception device 14 for each reception channel. The current detection circuit 16 and the reception amplification circuit 17 are connected to the processing unit 6 via three A / D converters 18. A USB terminal is used for the connection.

処理部6は、抵抗及び位相差算出手段32、関係算出手段33、判別手段34を備えている。本実施形態では、処理部6と制御部28をコンピュータによって実現している。即ち、少なくとも1つのCPUやMPUなどの中央演算装置と、データの入出力を行うインターフェースと、プログラムやデータを記憶する記憶装置等を備えるコンピュータと所定の制御ないし演算プログラムによって、抵抗及び位相差算出手段32、関係算出手段33、判別手段34、制御部28を実現している。即ち、中央演算装置は、記憶装置に記憶されたOS等の制御プログラム、周波数と抵抗との関係データ及び周波数と位相差との関係やそれらの関係に基づいて岩盤を判別する方法などの手順を規定したプログラム及び所要データ等により、抵抗及び位相差算出手段32、関係算出手段33、判別手段34、制御部28を実現している。また、コンピュータには、例えばディスプレイやプリンター等の出力装置35が接続されている。コンピュータとして、例えば作動周波数1.4GHzクラスのCPUを搭載するパーソナルコンピュータの使用が可能である。また、そのOSとしては、一般に市販され広く普及している例えばWindows(登録商標)等の使用が可能である。   The processing unit 6 includes a resistance and phase difference calculation unit 32, a relationship calculation unit 33, and a determination unit 34. In the present embodiment, the processing unit 6 and the control unit 28 are realized by a computer. That is, the resistance and phase difference are calculated by a computer having at least one central processing unit such as a CPU or MPU, an interface for inputting / outputting data, a storage device for storing programs and data, and a predetermined control or calculation program. Means 32, relationship calculation means 33, discrimination means 34, and control unit 28 are realized. That is, the central processing unit performs procedures such as a control program such as an OS stored in the storage device, relationship data between frequency and resistance, a relationship between frequency and phase difference, and a method for discriminating a rock mass based on the relationship. The resistance and phase difference calculation means 32, the relationship calculation means 33, the determination means 34, and the control unit 28 are realized by the prescribed program and required data. Further, an output device 35 such as a display or a printer is connected to the computer. As the computer, for example, a personal computer equipped with a CPU having an operating frequency of 1.4 GHz can be used. As the OS, it is possible to use, for example, Windows (registered trademark) which is generally commercially available and widely used.

抵抗及び位相差算出手段32は、送信装置13が送信した電流の信号波形と、測定部5によって測定された電位電極4間の電位差の信号波形とを比較し、電流の信号波形に対する電位差の信号波形の抵抗及び位相差を求める。測定部5は電流の周波数fを変化させて測定を複数回繰り返し行い、抵抗及び位相差算出手段32は繰り返し行われる測定毎に抵抗及び位相差を算出する。算出した抵抗R及び位相差θは電流の周波数fとともに関係算出手段33に送信される。   The resistance and phase difference calculation means 32 compares the signal waveform of the current transmitted by the transmitter 13 with the signal waveform of the potential difference between the potential electrodes 4 measured by the measuring unit 5, and the signal of the potential difference with respect to the signal waveform of the current Determine the resistance and phase difference of the waveform. The measuring section 5 changes the current frequency f and repeats the measurement a plurality of times, and the resistance and phase difference calculating means 32 calculates the resistance and the phase difference for each repeated measurement. The calculated resistance R and phase difference θ are transmitted to the relationship calculating means 33 together with the current frequency f.

関係算出手段33は、抵抗及び位相差算出手段32から供給されたデータに基づいて周波数fと抵抗Rとの関係及び周波数fと位相差θとの関係を求める。周波数fと抵抗Rとの関係及び周波数fと位相差θとの関係の一例を図8に示す。いま、測定部5が周波数fを変えた測定を10回繰り返したとすると、得られたデータ(周波数,抵抗)は、(f1,R1)、(f2,R2)、(f3,R3)、…、(f10,R10)となるので、縦軸に抵抗Rを、横軸に周波数fをとってグラフ化すると、図8に示す関係が得られる。同様に、得られたデータ(周波数,位相差)は、(f1,θ1)、(f2,θ2)、(f3,θ3)、…、(f10,θ10)となるので、縦軸に位相差θを、横軸に周波数fをとってグラフ化すると、図8に示す関係が得られる。周波数fと抵抗Rとの関係を表す抵抗グラフは途中で傾斜をもつ形状となり、周波数fと位相差θとの関係を表す位相差グラフは抵抗グラフの最大傾斜の周波数でピークを示す山形形状となり、地盤2の状況・含水率等に応じてその形状が変化する(図9、図10)。   The relationship calculation unit 33 obtains the relationship between the frequency f and the resistance R and the relationship between the frequency f and the phase difference θ based on the data supplied from the resistance and phase difference calculation unit 32. An example of the relationship between the frequency f and the resistor R and the relationship between the frequency f and the phase difference θ are shown in FIG. If the measurement unit 5 repeats the measurement with the frequency f changed 10 times, the obtained data (frequency, resistance) is (f1, R1), (f2, R2), (f3, R3),. Since (f10, R10) is obtained, when the resistance R is plotted on the vertical axis and the frequency f is plotted on the horizontal axis, the relationship shown in FIG. 8 is obtained. Similarly, since the obtained data (frequency, phase difference) is (f1, θ1), (f2, θ2), (f3, θ3),..., (F10, θ10), the phase difference θ is plotted on the vertical axis. Is plotted with the frequency f on the horizontal axis, the relationship shown in FIG. 8 is obtained. The resistance graph representing the relationship between the frequency f and the resistance R has a shape with a slope in the middle, and the phase difference graph representing the relationship between the frequency f and the phase difference θ has a mountain shape having a peak at the frequency of the maximum slope of the resistance graph. The shape of the ground 2 changes depending on the situation / moisture content of the ground 2 (FIGS. 9 and 10).

関係算出手段33が求めた周波数fと抵抗Rとの関係及び周波数fと位相差θとの関係は判別手段34に出力される。判別手段34は、周波数fと抵抗Rとの関係及び周波数fと位相差θとの関係に基づいて測定対象の地盤2を判別する。ここでは、周波数fと位相差θとの関係に関して、位相差のピーク周波数に基づいて測定対象地盤2を判別する。ここで、位相差のピーク周波数には、その周波数の値fmaxと当該周波数fmaxにおける位相差の大きさθmaxとが含まれる。記憶手段29には予め求めておいた地盤別の周波数と位相差との関係データ(ここではfmaxとθmax)が記憶されており、判別手段34は記憶手段29に記憶されている関係データとの対比によって測定対象地盤2の判定を行う。また、これに加えて周波数fと抵抗Rとの関係にも基づいて測定対象地盤2を判別する。記憶手段29には予め求めておいた地盤別の周波数と抵抗との関係データが記憶されており、判別手段34は記憶手段29に記憶されている関係データとの対比によって測定対象地盤2の判定を行う。例えば、fmaxと、θmaxと、周波数と抵抗との関係とが一致又は近似する場合に、測定対象地盤2が対比しているサンプル地盤であると判断する。   The relationship between the frequency f and the resistance R and the relationship between the frequency f and the phase difference θ obtained by the relationship calculation unit 33 are output to the determination unit 34. The discriminating means 34 discriminates the ground 2 to be measured based on the relationship between the frequency f and the resistance R and the relationship between the frequency f and the phase difference θ. Here, regarding the relationship between the frequency f and the phase difference θ, the measurement target ground 2 is determined based on the peak frequency of the phase difference. Here, the peak frequency of the phase difference includes the frequency value fmax and the phase difference magnitude θmax at the frequency fmax. The storage means 29 stores relationship data (here, fmax and θmax) between the frequency and the phase difference for each ground, which have been obtained in advance, and the determination means 34 is connected to the relationship data stored in the storage means 29. The measurement target ground 2 is determined by comparison. In addition to this, the measurement target ground 2 is determined based on the relationship between the frequency f and the resistance R. The storage means 29 stores the relationship data between the frequency and the resistance obtained in advance for each ground, and the determination means 34 determines the measurement target ground 2 by comparing with the relationship data stored in the storage means 29. I do. For example, when fmax, θmax, and the relationship between the frequency and the resistance match or approximate, it is determined that the measurement target ground 2 is a sample ground to be compared.

記憶手段29としては、例えばハードディスク、メモリ、DVD、CD、MO、フロッピーディスク(登録商標)等の使用が可能である。   As the storage means 29, for example, a hard disk, memory, DVD, CD, MO, floppy disk (registered trademark) or the like can be used.

地盤探査装置1は、例えば測定現場に設置されている。ただし、必ずしも地盤探査装置1の全てを測定現場に設置する必要はなく、例えば電極3,4及び測定部5を測定現場に設置すると共に、処理部6及び制御部28を例えば研究所等の遠隔地に設置し、これらを例えばインターネット、専用線、無線通信線等の電気通信回線を使用して接続しても良い。なお、この場合には、制御部28とは別に測定部5専用の制御部を測定部5に設けることが好ましい。このような構成の地盤探査装置1は、特に、地盤2を長期間にわたりモニタリングする場合等の使用に適している。即ち、例えば高レベル放射性廃棄物の地層処分、石油や液化天然ガス等の液体の地下岩盤貯蔵、地下発電所等、大規模地下空間の掘削に伴う空洞周辺岩盤全域の水理的な挙動を長期間モニタリングする場合の地盤探査装置1としての使用に特に適している。また、リモートアクセスにより研究所などの遠隔地から現場に設置した装置を制御することが可能で、リアルタイムに現場の地下水挙動等を把握することができる。   The ground exploration device 1 is installed at a measurement site, for example. However, it is not always necessary to install all of the ground exploration device 1 at the measurement site. For example, the electrodes 3 and 4 and the measurement unit 5 are installed at the measurement site, and the processing unit 6 and the control unit 28 are installed at a remote site such as a laboratory. They may be installed on the ground and connected using, for example, an electric communication line such as the Internet, a dedicated line, or a wireless communication line. In this case, it is preferable to provide a control unit dedicated to the measurement unit 5 in the measurement unit 5 separately from the control unit 28. The ground exploration device 1 having such a configuration is particularly suitable for use when the ground 2 is monitored over a long period of time. In other words, for example, geological disposal of high-level radioactive waste, storage of underground rocks such as oil and liquefied natural gas, underground power plant, etc. It is particularly suitable for use as a ground exploration device 1 for period monitoring. In addition, it is possible to control equipment installed at the site from a remote place such as a laboratory by remote access, and to understand the groundwater behavior and the like at the site in real time.

この地盤探査装置1によれば、(1)広帯域(例えば0.01Hz〜10kHz)中任意の周波数の正弦波印加電流に対する地盤の電気特性(抵抗及び位相差)を測定することができる。(2)最大60点の測点8に対応し、あらゆる電極配置の組み合わせに対応することができる。また、例えば4chの受信回路を有し、例えばdipole-dipole法では1組の電流電極(送信電極)3対に対し4箇所4組の電位電極(受信電極)4対での信号を同時に計測することができる。(3)送信装置13が送信する電流の周波数の切替、電極切替装置9のリレー23,27の切替、送信装置13の送信電流のレベル・受信装置14の受信ゲインの調整などの一連の測定操作は、コンピュータによる制御で全て自動的に行うことができる。等の効果がある。   According to the ground exploration apparatus 1, (1) it is possible to measure the electrical characteristics (resistance and phase difference) of the ground with respect to a sine wave applied current having an arbitrary frequency in a wide band (for example, 0.01 Hz to 10 kHz). (2) It corresponds to a maximum of 60 measuring points 8 and can correspond to any combination of electrode arrangements. In addition, for example, a 4-channel receiving circuit is provided, and in the dipole-dipole method, for example, signals at four pairs of four potential electrodes (receiving electrodes) at four locations are measured simultaneously with respect to three pairs of current electrodes (transmitting electrodes). be able to. (3) A series of measurement operations such as switching of the frequency of the current transmitted by the transmission device 13, switching of the relays 23 and 27 of the electrode switching device 9, adjustment of the transmission current level of the transmission device 13 and the reception gain of the reception device 14. Can be automatically performed under computer control. There are effects such as.

次に、地盤探査方法について説明する。この方法は、測定対象地盤2に設置した一対の電流電極3間に一定周期で電流を供給して測定対象地盤2に設置した電位電極4間の電位差を測定し、電流の波形に対する電位差の波形の抵抗及び位相差を求め、電流の周期の周波数を変えて測定を複数回行い周波数と抵抗との関係及び周波数と位相差との関係を求め、上述の2つの関係に基づいて測定対象地盤2を判別するものである。   Next, the ground exploration method will be described. In this method, a current is supplied at a constant cycle between a pair of current electrodes 3 installed on the measurement target ground 2 to measure a potential difference between the potential electrodes 4 installed on the measurement target ground 2, and a potential difference waveform with respect to a current waveform is measured. The resistance and phase difference are obtained, measurement is performed a plurality of times by changing the frequency of the current cycle, the relation between the frequency and the resistance and the relation between the frequency and the phase difference are obtained, and the measurement target ground 2 is based on the above two relations. Is to discriminate.

本実施形態では、受信装置14は4チャネル(1ch〜4ch)の受信チャネルを有しているが、説明を簡単にし理解を容易にするために、まず最初に4チャネル有ることを考慮しないで説明し、その後4チャネル有ることを考慮した場合について説明する。また、同様の理由から、まず最初に使用する電流電極3と電位電極4を変化させることを考慮しないで説明し、その後使用する電流電極3と電位電極4を変化させることを考慮して説明する。   In the present embodiment, the receiving apparatus 14 has four channels (1ch to 4ch) of receiving channels. However, in order to simplify the explanation and make it easy to understand, the explanation is made without first considering that there are four channels. Then, a case where there are four channels after that will be described. For the same reason, the description will be made without first considering the change of the current electrode 3 and the potential electrode 4 to be used, and then the change of the current electrode 3 and the potential electrode 4 to be used will be considered. .

測定部5の送信装置13が例えば周波数f1で電流を送信すると、電流電極3間に正弦波の電流が周波数f1で流される。同時に、電流は受信装置14の電流検出回路16にも供給され、基準抵抗で電圧信号としてA/D変換器18を通じて処理部6の抵抗及び位相差算出手段32に出力される。   For example, when the transmitter 13 of the measuring unit 5 transmits a current at a frequency f1, a sine wave current is caused to flow between the current electrodes 3 at the frequency f1. At the same time, the current is also supplied to the current detection circuit 16 of the receiving device 14 and is output to the resistance and phase difference calculation means 32 of the processing unit 6 through the A / D converter 18 as a voltage signal with the reference resistance.

電流電極3間に定電流が流されると、電位電極4間の電位差が変化する。一対の電位電極4によって測定された電位差信号は受信装置14の受信増幅回路17に供給され、増幅された後、A/D変換器18を通じて処理部6の抵抗及び位相差算出手段32に出力される。測定部5は、処理部6に電流信号と電位差信号を出力したことを制御部28に知らせる。   When a constant current flows between the current electrodes 3, the potential difference between the potential electrodes 4 changes. The potential difference signal measured by the pair of potential electrodes 4 is supplied to the reception amplification circuit 17 of the reception device 14, amplified, and then output to the resistance and phase difference calculation means 32 of the processing unit 6 through the A / D converter 18. The The measurement unit 5 notifies the control unit 28 that the current signal and the potential difference signal have been output to the processing unit 6.

処理部6の抵抗及び位相差算出手段32は、受信装置14から供給された電位差信号と定電流信号とを比較し、電流の波形に対する電位差の波形の抵抗R1及び位相差θ1を求める。そして、抵抗及び位相差算出手段32は求めた抵抗R1及び位相差θ1を電流の周波数f1とともに関係算出手段33に送信する。   The resistance and phase difference calculating means 32 of the processing unit 6 compares the potential difference signal supplied from the receiving device 14 with the constant current signal, and obtains the resistance R1 and the phase difference θ1 of the waveform of the potential difference with respect to the current waveform. Then, the resistance and phase difference calculation unit 32 transmits the obtained resistance R1 and phase difference θ1 to the relationship calculation unit 33 together with the current frequency f1.

一方、測定部5は、電流信号と測定した電位差信号を処理部6に出力した後、制御部28の命令に受けて、電流の周波数を変化(f1→f2)させて上述の測定を繰り返し行う。これにより、周波数を変えた測定用電流信号と測定した電位差信号が処理部6の抵抗及び位相差算出手段32に供給される。そして、電流の周波数をf2に変えて上述の測定を行った結果、抵抗及び位相差算出手段32が算出した抵抗がR2、位相差がθ2であったとすると、データとしてf2とR2及びθ2が関係算出手段33に送信される。   On the other hand, the measurement unit 5 outputs the current signal and the measured potential difference signal to the processing unit 6 and then receives the command of the control unit 28 to change the current frequency (f1 → f2) and repeat the above measurement. . As a result, the measurement current signal with the frequency changed and the measured potential difference signal are supplied to the resistance and phase difference calculation means 32 of the processing unit 6. As a result of performing the above measurement with the current frequency changed to f2, if the resistance calculated by the resistance and phase difference calculation means 32 is R2 and the phase difference is θ2, then f2 is related to data as R2 and θ2. It is transmitted to the calculation means 33.

そして、測定部5による周波数を変えた繰り返しの測定が終了すると、関係算出手段33は制御部28の命令を受けて周波数fと抵抗Rとの関係及び周波数fと位相差θとの関係を求める。例えば周波数がf1、f2、…、f10のとき、抵抗がR1、R2、…、R10、位相差がθ1、θ2、…、θ10であったとすると、図8に示すような関係が求められる。   When the repeated measurement with the frequency changed by the measuring unit 5 is completed, the relationship calculating means 33 receives the command of the control unit 28 and obtains the relationship between the frequency f and the resistance R and the relationship between the frequency f and the phase difference θ. . For example, when the frequencies are f1, f2,..., F10, and the resistors are R1, R2,..., R10 and the phase differences are θ1, θ2,.

周波数と位相差との関係を図9及び図10に示す。図9に示すように、位相差グラフは地盤2中に分極現象を発生する粘土鉱物が多く含まれるほど大きくなる(図9のA→B→Cの順)。また、図10に示すように、分極現象を発生する粘土鉱物を含む地盤2の性質(間隙率、鉱物の配列構造)、物理的な性質(例えば含水率)等により、位相差グラフのピーク周波数の値fmaxは変化する。このため、地盤2の種類が変われば位相差グラフも変化する。また、周波数と抵抗との関係を示す抵抗グラフも地盤2の種類が変われば変化する。したがって、測定によって図8に示すような関係を求めることで、地盤2を判別することができる。   The relationship between the frequency and the phase difference is shown in FIGS. As shown in FIG. 9, the phase difference graph becomes larger as the soil 2 contains more clay minerals that generate a polarization phenomenon (in order of A → B → C in FIG. 9). Further, as shown in FIG. 10, the peak frequency of the phase difference graph is determined depending on the properties (porosity, mineral arrangement structure), physical properties (for example, moisture content) of the ground 2 including the clay mineral that generates the polarization phenomenon. The value of fmax varies. For this reason, if the kind of the ground 2 changes, the phase difference graph also changes. In addition, the resistance graph indicating the relationship between the frequency and the resistance also changes as the type of the ground 2 changes. Therefore, the ground 2 can be determined by obtaining the relationship as shown in FIG. 8 by measurement.

本実施形態では、各種サンプル地盤2について予め周波数と位相差との関係及び周波数と抵抗との関係を求めておき、それらを関係データとして記憶手段29に記憶してあるので、判別手段34は記憶手段29にアクセスし、記憶されている関係データと関係算出手段33が算出した周波数と位相差との関係及び周波数と抵抗との関係を対比し、測定対象地盤2を判別する。例えば、位相差グラフのピーク周波数の値fmaxと、当該周波数における位相差の大きさθmaxと、周波数と抵抗との関係とに基づいて測定対象地盤2を判別する。例えば、fmaxと、θmax、周波数と抵抗との関係とが一致又は近似するサンプル地盤2を、測定対象地盤2と判断する。このようにすることで、高精度の判別を行うことができる。特に、周波数と位相差との関係及び周波数と抵抗との関係という2つの関係に基づいて判別を行うので、非常に高精度の判別を行うことができる。   In the present embodiment, the relationship between the frequency and the phase difference and the relationship between the frequency and the resistance are obtained in advance for the various sample grounds 2, and these are stored in the storage means 29 as relation data. Accessing the means 29, the stored relational data is compared with the relation between the frequency and phase difference calculated by the relation calculating means 33 and the relation between the frequency and resistance, and the measurement target ground 2 is determined. For example, the measurement target ground 2 is determined based on the peak frequency value fmax of the phase difference graph, the phase difference magnitude θmax at the frequency, and the relationship between the frequency and the resistance. For example, the sample ground 2 whose fmax, θmax, and the relationship between the frequency and the resistance match or approximate is determined as the measurement target ground 2. By doing in this way, highly accurate discrimination can be performed. In particular, since the determination is performed based on two relationships, that is, the relationship between the frequency and the phase difference and the relationship between the frequency and the resistance, it is possible to perform determination with very high accuracy.

なお、周波数fと位相差θとの関係には、(1)fmaxとθmaxの組み合わせ、の他に、(2)fmaxのみ、(3)θmaxのみ、(4)これらと位相差グラフの形状との組み合わせ、(5)位相差グラフの形状のみ、が含まれる。   The relationship between the frequency f and the phase difference θ includes (1) a combination of fmax and θmax, (2) only fmax, (3) only θmax, and (4) the shape of the phase difference graph. (5) Only the shape of the phase difference graph is included.

したがって、例えば地盤判別の精度にそれ程高い精度が要求されない場合等には、fmaxとθmaxのうち、いずれか一方にのみ基づいて地盤2を判別しても良い。また、例えば地盤2中に含まれる粘土鉱物の多少を判別することを目的にする場合等には、θmaxに基づいて地盤2の判別を行っても良い。さらに、例えば粘土鉱物を含む地盤2の性質(間隙率、鉱物の配列構造)、物理的な性質(例えば含水率)等を判別することを目的にする場合等には、fmaxに基づいて地盤2の判別を行っても良い。   Therefore, for example, when the accuracy of ground determination is not so high, the ground 2 may be determined based on only one of fmax and θmax. For example, when the purpose is to determine the amount of clay mineral contained in the ground 2, the ground 2 may be determined based on θmax. Further, for example, when the purpose is to discriminate the properties (porosity, mineral arrangement structure), physical properties (eg, moisture content), etc. of the ground 2 containing clay minerals, the ground 2 is based on fmax. It may be determined.

また、周波数と位相差との関係については、位相差グラフの形状に基づいて地盤2を判別しても良い。例えば、各種サンプル地盤2について予め周波数と位相差との関係を求めて位相差グラフを求めておき、これらを関係データとして記憶手段29に記憶しておく。判別手段34は記憶手段29にアクセスし、記憶されている関係データと関係算出手段33が求めた周波数と位相差との関係(ここでは位相差グラフの形状)を対比し、測定対象地盤2を判別する。例えば、位相差グラフの形状が一致又は近似するサンプル地盤を、測定対象地盤2と判断する。このようにすることで、高精度の判別を行うことができる。同様に、周波数と抵抗との関係についても、抵抗グラフの形状に基づいて地盤2を判別しても良い。   Further, regarding the relationship between the frequency and the phase difference, the ground 2 may be determined based on the shape of the phase difference graph. For example, the relationship between the frequency and the phase difference is obtained in advance for the various sample grounds 2 to obtain a phase difference graph, and these are stored in the storage means 29 as relationship data. The discriminating means 34 accesses the storage means 29, compares the stored relational data with the relationship between the frequency and the phase difference obtained by the relation calculating means 33 (here, the shape of the phase difference graph), and determines the ground 2 to be measured. Determine. For example, a sample ground whose shape of the phase difference graph matches or approximates is determined as the measurement target ground 2. By doing in this way, highly accurate discrimination can be performed. Similarly, regarding the relationship between the frequency and the resistance, the ground 2 may be determined based on the shape of the resistance graph.

また、抵抗及び位相差グラフの形状に基づいて地盤2を判別する場合には、抵抗及び位相差グラフのフィッティングにより直流比抵抗R0、チャージアビリティm等を求め、これらに基づいて判別を行っても良い。   Further, when determining the ground 2 based on the shape of the resistance and phase difference graph, the DC specific resistance R0, the charge ability m, etc. are obtained by fitting the resistance and phase difference graph, and the determination is performed based on these. good.

即ち、地盤2のスペクトルIP(Induced-Polarization:分極)現象を説明する等価な電気回路モデルの一つとして、Cole-Coleモデル(コールコールモデル;Patron,1978)がある。これは数学的には複素数であり4つの未知数を含む数式1で示される。   That is, there is a Cole-Cole model (Cole-Cole model; Patron, 1978) as one of equivalent electric circuit models for explaining the spectrum IP (Induced-Polarization) phenomenon of the ground 2. This is mathematically complex and is shown in Equation 1 including four unknowns.

ここに、R0は直流比抵抗、mはチャージアビリティ(chargeability)、τは緩和の時定数(sec)、cは周波数依存係数、ωは角周波数、iは√(-1)である。   Here, R0 is a DC specific resistance, m is a chargeability, τ is a relaxation time constant (sec), c is a frequency dependence coefficient, ω is an angular frequency, and i is √ (−1).

4つの未知数とは数式1中のR0、m、τ、cのことであり、数学的には最小二乗法により観測した位相差(および抵抗)データに最もよく整合する“解”として求めることができる。物理的なイメージを、図12に示す。図12は、時間領域でみたIP現象の概念図である。なお、図12(a)は送信電流波形を、(b)は受信電位波形をそれぞれ示している。   The four unknowns are R0, m, τ, and c in Equation 1, and are mathematically determined as “solutions” that best match the phase difference (and resistance) data observed by the least square method. it can. A physical image is shown in FIG. FIG. 12 is a conceptual diagram of the IP phenomenon seen in the time domain. 12A shows a transmission current waveform, and FIG. 12B shows a reception potential waveform.

R0は直流電流に対する電位より求まる比抵抗(=測定電位/直流電流)である。mは地盤2の充電効果(電荷を蓄える性質)の強さを表す指標で、過渡応答の積分値に関連する。τは分極現象の時間的な長さに関連し、時間領域でIP現象を見た場合、電流を流している期間に地盤2に蓄えられた電荷が電流遮断後に地盤2から流れる電流により観測される電位波形、すなわち“過渡応答”の時間的な長さに関連する。cは分極の支配過程に伴う係数で、分極現象が単一の支配過程による場合はc=1となる(そうでない場合cは1以下になる)。分極現象の支配過程としては、鉱石と地下水中のイオンとの電荷の移動過程、電気二重層の充電・放電過程、電気二重層の構造が変化するのに伴いイオンの拡散過程などがある(電気二重層とは鉱物粒子(固体)とそれを取り巻く地下水(液体)との境界面に形成されるイオン濃度が高い領域をいう)。   R0 is a specific resistance (= measurement potential / DC current) determined from the potential with respect to DC current. m is an index representing the strength of the charging effect (charge storing property) of the ground 2, and is related to the integral value of the transient response. τ is related to the time length of the polarization phenomenon. When the IP phenomenon is observed in the time domain, the charge accumulated in the ground 2 during the current flow is observed by the current flowing from the ground 2 after the current interruption. This is related to the time waveform of the potential waveform, that is, the “transient response”. c is a coefficient associated with the dominant process of polarization. When the polarization phenomenon is based on a single dominant process, c = 1 (otherwise, c is 1 or less). The dominant processes of the polarization phenomenon include the charge transfer process between the ore and ions in the groundwater, the charge / discharge process of the electric double layer, and the ion diffusion process as the structure of the electric double layer changes (electricity) A double layer is a region with a high ion concentration formed at the interface between mineral particles (solid) and the surrounding groundwater (liquid).

位相差グラフは、地盤2の含水率等によりfmaxとθmaxが変化するだけではなく、グラフの山形の曲線形状(太さや対称性)も変化する。上記4つのパラメータからIP特性をより詳細に数値的な指標として表すことができる。即ち、上記4つのパラメータを求め、これに基づいて測定対象地盤2の判別を行うことができる。例えば、各種サンプル地盤2について予め上記4つのパラメータを求めておき、これらを関係データとして記憶手段29に記憶しておく。判別手段34は記憶手段29にアクセスし、記憶されている関係データと関係算出手段33が求めた周波数と抵抗との関係及び周波数と位相差との関係(ここでは、上記4つのパラメータ)を対比し、測定対象地盤2を判別する。例えば、上記4つのパラメータが一致又は近似するサンプル地盤2を、測定対象地盤2と判断する。このようにすることで、さらに高精度の判別を行うことができる。   In the phase difference graph, not only fmax and θmax change due to the moisture content of the ground 2 or the like, but also the mountain-shaped curve shape (thickness and symmetry) of the graph also changes. The IP characteristics can be expressed in more detail as a numerical index from the above four parameters. That is, the above four parameters are obtained, and the measurement target ground 2 can be determined based on the four parameters. For example, the above four parameters are obtained in advance for various sample grounds 2 and stored in the storage means 29 as related data. The determination unit 34 accesses the storage unit 29 and compares the stored relationship data with the relationship between the frequency and the resistance obtained by the relationship calculation unit 33 and the relationship between the frequency and the phase difference (here, the above four parameters). Then, the measurement target ground 2 is determined. For example, the sample ground 2 that matches or approximates the above four parameters is determined as the measurement target ground 2. By doing so, it is possible to perform discrimination with higher accuracy.

なお、図12に示すような時間領域で計測した過渡応答曲線からIP特性を求めることも可能ではある。しかし、この場合には次のような欠点がある。即ち、実際ノイズがあるフィールドでは、図12(b)で示すような過渡応答を計測するのはかなり困難である。また、測定システムそのものの周波数特性の補正を正確に行うのは困難である。これらに対し、測定に使用する定電流の周波数を変えて複数回測定を繰り返す手法(周波数領域での計測)は、ノイズに強く単一周波数ごとに確実にデータを計測していくことができる。   Note that it is also possible to obtain the IP characteristic from the transient response curve measured in the time domain as shown in FIG. However, this case has the following drawbacks. That is, it is quite difficult to measure the transient response as shown in FIG. In addition, it is difficult to accurately correct the frequency characteristics of the measurement system itself. On the other hand, the method of repeating the measurement a plurality of times by changing the frequency of the constant current used for measurement (measurement in the frequency domain) can withstand noise and reliably measure data for each single frequency.

本実施形態では受信装置14は4チャネルの受信チャネルを有しているので、同時に4箇所4対の電位電極4間の電位差を測定できる。このため、4箇所の電位差信号が一度に受信装置14から抵抗及び位相差算出手段32に供給され、抵抗及び位相差算出手段32は4箇所の抵抗及び位相差を一度に算出する。そして、算出された4箇所の抵抗及び位相差は一度に関係算出手段33に供給され、関係算出手段33は4箇所についての周波数と抵抗との関係及び周波数と位相差との関係を並行して求める。求められた4箇所についての周波数と抵抗との関係及び周波数と位相差との関係は判別手段34に一度に供給され、判別手段34では、4箇所について地盤2の判別を一度に行う。このように、受信チャネルを4チャネル有することで、一度に4箇所についての処理を行うことができるので、短時間で電気探査を終了することができる。   In the present embodiment, since the receiving device 14 has four receiving channels, the potential difference between four potential electrodes 4 at four locations can be measured simultaneously. Therefore, the four potential difference signals are supplied from the receiving device 14 to the resistor and phase difference calculating unit 32 at a time, and the resistor and phase difference calculating unit 32 calculates the four resistors and phase differences at a time. Then, the calculated resistance and phase difference at the four locations are supplied to the relationship calculating means 33 at a time, and the relationship calculating means 33 calculates the relationship between the frequency and the resistance and the relationship between the frequency and the phase difference at the four locations in parallel. Ask. The obtained relationship between the frequency and resistance and the relationship between the frequency and the phase difference at the four places are supplied to the discriminating means 34 at a time, and the discriminating means 34 discriminates the ground 2 at the four places at a time. As described above, since four reception channels are provided, it is possible to perform processing for four locations at a time, and thus the electric exploration can be completed in a short time.

次に、電流電極3と電位電極4の組み合わせを変えて測定を行う場合について説明する。例えば、以下の(1)〜(3)の順序で測定を行う。   Next, a case where measurement is performed by changing the combination of the current electrode 3 and the potential electrode 4 will be described. For example, the measurement is performed in the following order (1) to (3).

(1)まず、1つの測線7を選択し、1つの組み合わせの電流電極3に対し、電位電極4の組み合わせを変化させて測定を行う。電流電極3以外の測点8の電位電極4について、その組み合わせを変えて測定を行う(図13(a))。なお、図13の黒三角形は電位電極4となる測点8を、斜線の三角形は電流電極3となる測点8を、白色の三角形は測定に使用しない測点8を示している。また、C1,P1a等の文字は端子25を示している。 (1) First, one measurement line 7 is selected, and measurement is performed by changing the combination of potential electrodes 4 with respect to one combination of current electrodes 3. The potential electrode 4 at the measuring point 8 other than the current electrode 3 is measured by changing its combination (FIG. 13A). The black triangle in FIG. 13 indicates the station 8 that becomes the potential electrode 4, the hatched triangle indicates the station 8 that becomes the current electrode 3, and the white triangle indicates the station 8 that is not used for the measurement. Further, characters such as C1, P1a indicate the terminal 25.

(2)次に、電流電極3の組み合わせを変えて(1)の測定を繰り返す。全ての電流電極3の組み合わせについて測定を行う。これにより1つの測線7についての測定が終了する。(図13(b)) (2) Next, the combination of the current electrodes 3 is changed and the measurement of (1) is repeated. Measurement is performed for all combinations of current electrodes 3. Thereby, the measurement for one survey line 7 is completed. (Fig. 13 (b))

(3)次に、測線7を変えて(1)と(2)の測定を繰り返し行う。そして、全ての測線7について測定を行う。 (3) Next, the measurement line 7 is changed and the measurements (1) and (2) are repeated. And it measures about all the measuring lines 7. FIG.

表1に、1つの測線7についての電極3,4の組み合わせの変化を示す。なお、表1中の電極3,4についての番号は、測点8を意味する。例えば、番号1の電流電極3は、各測線7に設けられている60箇所の測点8のうち1番目の測点8の電流電極3を意味し、番号60の電位電極4は、各測線7に設けられている60箇所の測点8のうち60番目の測点8の電位電極4を意味する。   Table 1 shows the change in the combination of the electrodes 3 and 4 for one survey line 7. The numbers for the electrodes 3 and 4 in Table 1 mean the measuring point 8. For example, the current electrode 3 of number 1 means the current electrode 3 of the first measurement point 8 among the 60 measurement points 8 provided on each measurement line 7, and the potential electrode 4 of number 60 corresponds to each measurement line. 7 represents the potential electrode 4 of the 60th measuring point 8 out of the 60 measuring points 8 provided in 7.

4本の測線7のうち、最初にA測線7について測定を行う。例えば1回目の測定では1,2番目の測点8の電流電極3を選択し、電位電極4の組み合わせを変化させて測定を行う(表1のA)。なお、4チャネルを使用して測定を行うので、8回目の測定では1チャネルのみを使用する。   Of the four survey lines 7, first, the A survey line 7 is measured. For example, in the first measurement, the current electrode 3 at the first and second measurement points 8 is selected, and measurement is performed by changing the combination of the potential electrodes 4 (A in Table 1). Since measurement is performed using four channels, only one channel is used in the eighth measurement.

そして、1,2番目の測点8の電流電極3に対し、3〜60番目の測点8の電位電極4を使用した測定が終了した後、電流電極3を1,3番目の測点8の電流電極3に変えて、2,4〜60番目の測点8の電位電極4を使用して測定を行う(表1のB)。そして、1,3番目の測点8の電流電極3に対し、2,4〜60番目の測点8の電位電極4を使用した測定が終了した後、さらに、電流電極3の組み合わせを変えて測定を行い、全ての電流電極3の組み合わせについて測定を行う(表1のC)。これにより、A測線7についての測定が終了する。次に、同様の測定をB測線7→C測線7→D測線7についても行う。これにより、測定が終了する。   Then, after the measurement using the potential electrode 4 of the third to 60th measurement points 8 is completed for the current electrode 3 of the first and second measurement points 8, the current electrode 3 is changed to the first and third measurement points 8. In place of the current electrode 3, measurement is performed using the potential electrode 4 at the second, fourth to 60th measuring points 8 (B in Table 1). Then, after the measurement using the potential electrode 4 at the 2nd to 4th to the 60th measuring points 8 is completed for the current electrode 3 at the 1st and 3rd measuring points 8, the combination of the current electrodes 3 is further changed. Measurement is performed, and all current electrode 3 combinations are measured (C in Table 1). Thereby, the measurement about A measuring line 7 is complete | finished. Next, the same measurement is performed for the B survey line 7 → C survey line 7 → D survey line 7 as well. Thereby, the measurement ends.

このように4本の測線7について測定を行うことで、地盤2についての周波数と抵抗との関係及び周波数と位相差の関係を三次元的に求めることができる。そのイメージを図14に示す。なお、図14には、測線7が1本しか記載されていないが、測線7を複数設けることで地盤2中の周波数と抵抗との関係及び周波数と位相差との関係の空間分布を求めることができ、地盤2を三次元的に探査することができる。測定部5はコンピュータ制御によって自動的に電極切替装置9のリレー23,27を切替えるので、迅速に測定を行うことができ、電極2,3の組み合わせが多数あっても測定に要する期間を短くできる。   Thus, by measuring about the four measuring lines 7, the relationship between the frequency and the resistance and the relationship between the frequency and the phase difference for the ground 2 can be obtained three-dimensionally. The image is shown in FIG. Although only one survey line 7 is shown in FIG. 14, the spatial distribution of the relationship between the frequency and the resistance in the ground 2 and the relationship between the frequency and the phase difference is obtained by providing a plurality of the survey lines 7. The ground 2 can be explored three-dimensionally. Since the measuring unit 5 automatically switches the relays 23 and 27 of the electrode switching device 9 by computer control, it is possible to perform measurement quickly and to shorten the period required for measurement even if there are many combinations of the electrodes 2 and 3. .

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、四極法のDipole-Dipole法の電極配置を例に説明したが、Dipole-Dipole法に限るものでなく、Wenner法、Eltran法、シュランベルジャー法でも良い。また、四極法に限るものではなく、二極法、三極法の電極配置でも良い。   For example, in the above description, the electrode arrangement of the four-pole Dipole-Dipole method has been described as an example, but the present invention is not limited to the Dipole-Dipole method, and the Wenner method, Eltran method, and Schramberger method may be used. Further, the electrode arrangement is not limited to the quadrupole method, and may be an electrode arrangement of the bipolar method or the tripolar method.

なお、二極法の場合には、60個の電流電極3のうちいずれか1つを電流遠電極として固定的に使用すると共に、60個の電位電極4のうちいずれか1つを電位遠電極として固定的に使用することが考えられる。例えば、59番目の電流電極3(59番目の測点8の電流電極3をいう、以下同様)を電流遠電極として固定的に使用し、60番目の電位電極4(60番目の測点8の電位電極4をいう、以下同様)を電位遠電極として固定的に使用する。即ち、測線7が切り替わっても、例えば59番目の電流電極3と60番目の電位電極4は常に遠電極となる。この場合、電極切替装置9の電流電極3用の測点選択部20の2つのスイッチ回路24のうち、片方のスイッチ回路(例えばC2端子25側の回路)24の59番目のリレー27(59番目の本線21に接続された分岐線26に設けられているリレー27をいう、以下同様)をオン状態に維持すると共に、電位電極4用の測点選択部20の8つのスイッチ回路24のうち、1ch〜4chの片方のスイッチ回路(例えばP2a、P2b、P2c、P2d端子25側の回路)24の60番目のリレー27をオン状態に維持する。   In the case of the bipolar method, any one of the 60 current electrodes 3 is fixedly used as a current far electrode, and any one of the 60 potential electrodes 4 is a potential far electrode. It can be considered to be used as a fixed. For example, the 59th current electrode 3 (referred to as the current electrode 3 at the 59th station 8; hereinafter the same) is fixedly used as the far electrode, and the 60th potential electrode 4 (at the 60th station 8). The potential electrode 4 (hereinafter the same) is fixedly used as a potential far electrode. That is, even if the survey line 7 is switched, for example, the 59th current electrode 3 and the 60th potential electrode 4 are always far electrodes. In this case, of the two switch circuits 24 of the point selection unit 20 for the current electrode 3 of the electrode switching device 9, the 59th relay 27 (59th switch) of one switch circuit (for example, the circuit on the C2 terminal 25 side) 24. The relay 27 provided on the branch line 26 connected to the main line 21 is maintained in the ON state, and among the eight switch circuits 24 of the station selection unit 20 for the potential electrode 4, The 60th relay 27 of one switch circuit (for example, the circuit on the P2a, P2b, P2c, P2d terminal 25 side) 24 of 1ch to 4ch is maintained in the ON state.

また、三極法の場合には、60個の電流電極3のうちいずれか1つを電流遠電極として固定的に使用することが考えられる。例えば、60番目の電流電極3を電流遠電極として固定的に使用する。即ち、測線7が切り替わっても、例えば60番目の電流電極4は常に遠電極となる。この場合、電極切替装置9の電流電極3用の測点選択部20の2つのスイッチ回路24のうち、片方のスイッチ回路(例えばC2端子25側の回路)24の60番目のリレー27をオン状態に維持する。   In the case of the triode method, it is conceivable that any one of the 60 current electrodes 3 is fixedly used as a current far electrode. For example, the 60th current electrode 3 is fixedly used as a current far electrode. That is, even if the survey line 7 is switched, for example, the 60th current electrode 4 is always a far electrode. In this case, among the two switch circuits 24 of the point selection unit 20 for the current electrode 3 of the electrode switching device 9, the 60th relay 27 of one switch circuit (for example, the circuit on the C2 terminal 25 side) 24 is turned on. To maintain.

また、上述の説明では、測点8には電流電極3と電位電極4が別々に設置されていたが、必ずしもこの構成に限るものではなく、測点8に電流電極3と電位電極4を兼用する兼用電極を設置しても良い。   In the above description, the current electrode 3 and the potential electrode 4 are separately provided at the measuring point 8. However, the present invention is not necessarily limited to this configuration, and the current electrode 3 and the potential electrode 4 are also used as the measuring point 8. A dual-purpose electrode may be installed.

兼用電極を設置した場合の電極切替装置9を図11に示す。この電極切替装置9の測線選択部19と測点選択部20は、兼用電極を送信装置13又は前記受信装置14に接続する経路の途中に設けられている。即ち、上述の電極切替装置9では、図5及び図6に示すように測線選択部19と測点選択部20を電流電極3用のものと電位電極4用のものとに分けていたが、図11の電極切替装置9では、測線選択部19と測点選択部20とを共通にしている。測線選択部19は、図5又は図6の測線選択部19と同じ構成である。測点選択部20は、測定に同時使用する電流電極3と電位電極4の合計数に合わせて10個のスイッチ回路24を備えている。より具体的には、送信装置13に接続する2つのスイッチ回路24(C1端子25用とC2端子25用)と、受信装置14の1chに接続する2つのスイッチ回路24(P1a端子25用とP2a端子25用)、2chに接続する2つのスイッチ回路24(P1b端子25用とP2b端子25用)、3chに接続する2つのスイッチ回路24(P1c端子25用とP2c端子25用)、4chに接続する2つのスイッチ回路24(P1d端子25用とP2d端子25用)を備えている。各スイッチ回路24は図7のスイッチ回路24と同じである。また、兼用電極を使用することで電極3,4の数が全体として1/2になるので、接続端子10の数も1/2となる。   FIG. 11 shows the electrode switching device 9 when the dual-purpose electrode is installed. The line selection unit 19 and the point selection unit 20 of the electrode switching device 9 are provided in the middle of the path connecting the dual-purpose electrode to the transmission device 13 or the reception device 14. That is, in the electrode switching device 9 described above, the line selection unit 19 and the point selection unit 20 are divided into those for the current electrode 3 and those for the potential electrode 4 as shown in FIGS. In the electrode switching device 9 of FIG. 11, the survey line selection unit 19 and the survey point selection unit 20 are made common. The survey line selection unit 19 has the same configuration as the survey line selection unit 19 shown in FIG. The station selection unit 20 includes ten switch circuits 24 in accordance with the total number of current electrodes 3 and potential electrodes 4 used simultaneously for measurement. More specifically, two switch circuits 24 (for the C1 terminal 25 and for the C2 terminal 25) connected to the transmission apparatus 13 and two switch circuits 24 (for the P1a terminal 25 and P2a) connected to 1ch of the reception apparatus 14 are used. Terminal 25), two switch circuits 24 connected to 2ch (for P1b terminal 25 and P2b terminal 25), two switch circuits 24 connected to 3ch (for P1c terminal 25 and P2c terminal 25), connected to 4ch Two switch circuits 24 (for the P1d terminal 25 and for the P2d terminal 25). Each switch circuit 24 is the same as the switch circuit 24 of FIG. Moreover, since the number of electrodes 3 and 4 is halved as a whole by using the dual-purpose electrode, the number of connection terminals 10 is also halved.

例えば、A測線7の1,2番目の兼用電極を電流電極3として、3,4番目の兼用電極を電位電極4(1ch)として、5,6番目の兼用電極を電位電極4(2ch)として、7,8番目の兼用電極を電位電極4(3ch)として、9,10番目の兼用電極を電位電極4(4ch)としてそれぞれ使用する場合には、以下のリレー23,27をオン操作する。例えば、測点選択部20のC1用スイッチ回路24(C1端子25用のスイッチ回路24をいう、以下同様)の1番目のリレー27、C2用スイッチ回路24の2番目のリレー27、P1a用スイッチ回路24の3番目のリレー27、P2a用スイッチ回路24の4番目のリレー27、P1b用スイッチ回路24の5番目のリレー27、P2b用スイッチ回路24の6番目のリレー27、P1c用スイッチ回路24の7番目のリレー27、P2c用スイッチ回路24の8番目のリレー27、P1d用スイッチ回路24の9番目のリレー27、P2d用スイッチ回路24の10番目のリレー27をオン操作すると共に、測線選択部19のA組のリレー23を全てオン操作する。   For example, the 1st and 2nd dual-purpose electrodes of the A measuring line 7 are the current electrodes 3, the 3rd and 4th dual-purpose electrodes are the potential electrodes 4 (1ch), and the 5th and 6th dual-purpose electrodes are the potential electrodes 4 (2ch). When the seventh and eighth combined electrodes are used as the potential electrode 4 (3ch) and the ninth and tenth combined electrodes are used as the potential electrode 4 (4ch), the following relays 23 and 27 are turned on. For example, the first relay 27 of the C1 switch circuit 24 (referred to as the switch circuit 24 for the C1 terminal 25, hereinafter the same) of the station selection unit 20, the second relay 27 of the C2 switch circuit 24, and the P1a switch The third relay 27 of the circuit 24, the fourth relay 27 of the P2a switch circuit 24, the fifth relay 27 of the P1b switch circuit 24, the sixth relay 27 of the P2b switch circuit 24, and the P1c switch circuit 24 The seventh relay 27, the eighth relay 27 of the P2c switch circuit 24, the ninth relay 27 of the P1d switch circuit 24, and the tenth relay 27 of the P2d switch circuit 24 are turned on, and a line selection is performed. All the A-group relays 23 of the unit 19 are turned on.

兼用電極を使用する場合には、必要な電極の数を半分にできると共に、電極切替装置9の構成が簡単なものになり、電極の設置等の準備作業が容易になると共に、電極切替装置9の製造コストを安くすることができる。   When the dual-purpose electrode is used, the number of necessary electrodes can be halved, the configuration of the electrode switching device 9 can be simplified, preparation work such as electrode installation can be facilitated, and the electrode switching device 9 The manufacturing cost can be reduced.

また、上述の説明では、測線7として4本の測線7を設定していたが、設定する測線7の数は4本に限るものではない。例えば1本、2本、3本、5本以上でも良い。   In the above description, four survey lines 7 are set as the survey lines 7. However, the number of survey lines 7 to be set is not limited to four. For example, one, two, three, five or more may be used.

また、上述の説明では、1本の測線7に60箇所の測点8を設けたが、1本の測線7に設ける測点8の数は60箇所に限るものではない。なお、測点8の数の増減に応じて電極切替装置9の接続端子10や本線21、リレー23,27等の数を増減させても良いが、測点8の数が電極切替装置9の接続端子10や本線21、リレー23,27等の数よりも少ない場合には、測点8に対応する接続端子10や本線21、リレー23,27等を使用し、余った接続端子10、本線21、リレー23,27等は不使用にすれば良い。   In the above description, 60 measurement points 8 are provided on one survey line 7, but the number of measurement points 8 provided on one survey line 7 is not limited to 60. The number of connection terminals 10 of the electrode switching device 9, the main line 21, the relays 23 and 27, etc. may be increased or decreased according to the increase or decrease of the number of measurement points 8. If the number is less than the number of connection terminals 10, main lines 21, relays 23, 27, etc., the connection terminals 10, main lines 21, relays 23, 27, etc. corresponding to the measuring points 8 are used, and the remaining connection terminals 10, main lines are used. 21, relays 23, 27, etc. may be left unused.

さらに、上述の説明では、地盤探査装置1が判別手段34を備えていたが、判別手段34を省略すると共に、関係算出手段33によって求められた周波数と抵抗との関係及び周波数と位相差との関係を出力装置35に出力するようにしても良い。   Furthermore, in the above description, the ground exploration apparatus 1 includes the determination unit 34. However, the determination unit 34 is omitted, and the relationship between the frequency and the resistance obtained by the relationship calculation unit 33 and the frequency and the phase difference are determined. The relationship may be output to the output device 35.

また、上述の説明では、周波数と抵抗との関係及び周波数と位相差との関係の2つの関係に基づいて地盤2を判別していたが、必ずしもこれに限るものではなく、周波数と位相差の関係に基づいて地盤2を判別するようにしても良い。この場合には、判別の精度をある程度高く維持しつつ、計算量の減少により迅速に測定を行うことができる。   Further, in the above description, the ground 2 is determined based on the two relations of the relation between the frequency and the resistance and the relation between the frequency and the phase difference. The ground 2 may be determined based on the relationship. In this case, it is possible to perform measurement quickly by reducing the amount of calculation while maintaining a high degree of discrimination accuracy.

また、上述の説明では、本発明の電極切替装置9を、周波数と抵抗との関係及び周波数と位相差との関係に基づいて地盤2を判別する地盤探査装置1及び地盤探査方法に適用する場合について説明していたが、適用可能な地盤探査装置及び地盤探査方法はこれらに限るものではない。例えば、比抵抗に基づいて地盤2を判定する地盤探査装置及び地盤探査方法でも良く、その他の地盤探査装置及び地盤探査方法でも良い。つまり、複数の測線上に設置されている多数の電極の中から測定に使用する電流電極と電位電極とを選択し、選択した電極の組み合わせを順次切替えて測定を繰り返し行う地盤探査装置及び地盤探査方法であれば適用可能である。   In the above description, the electrode switching device 9 of the present invention is applied to the ground exploration device 1 and the ground exploration method for determining the ground 2 based on the relationship between the frequency and the resistance and the relationship between the frequency and the phase difference. However, applicable ground exploration devices and ground exploration methods are not limited to these. For example, a ground exploration device and a ground exploration method for determining the ground 2 based on the specific resistance may be used, and other ground exploration devices and ground exploration methods may be used. In other words, a ground exploration device and a ground exploration device that select current electrodes and potential electrodes used for measurement from among a large number of electrodes installed on a plurality of survey lines, and repeat measurement by sequentially switching the combination of the selected electrodes. Any method is applicable.

さらに、電極3,4として、地下貯蔵空洞等のロックボルトを利用しても良い。   Furthermore, you may utilize rock bolts, such as an underground storage cavity, as the electrodes 3 and 4. FIG.

周波数と位相差との関係に基づいて地盤2を判別できることを確認するために、実験を行った。実験には、一定量の石炭灰に水量を調整し(含水率で2〜50%)混ぜて締め硬めた試料を使用した。当該試料には、粘土サイズの微少粒子が多く含まれていた。周波数毎の位相差に加え、抵抗も測定した。   An experiment was conducted to confirm that the ground 2 can be determined based on the relationship between the frequency and the phase difference. In the experiment, a sample was prepared by adjusting the amount of water to a certain amount of coal ash (2 to 50% in water content) and tightening it. The sample contained many fine particles of clay size. In addition to the phase difference for each frequency, the resistance was also measured.

実験の結果を図15に示す。図15の(a)は含水率2%の試料、(b)は含水率6%の試料、(c)は含水率10%の試料、(d)は含水率15%の試料、(e)は含水率20%の試料、(f)は含水率30%の試料、(g)は含水率40%の試料、(h)は含水率50%の試料、をそれぞれ使用した結果である。また、各図において、下向きの矢印は位相差グラフのピーク周波数を示す。   The result of the experiment is shown in FIG. 15A is a sample with a moisture content of 2%, (b) is a sample with a moisture content of 6%, (c) is a sample with a moisture content of 10%, (d) is a sample with a moisture content of 15%, (e) Is a result of using a sample with a water content of 20%, (f) using a sample with a water content of 30%, (g) using a sample with a water content of 40%, and (h) using a sample with a water content of 50%. Moreover, in each figure, the downward arrow shows the peak frequency of the phase difference graph.

図15からも明らかなように、ピーク周波数(矢印)の値(臨界周波数fmax)は含水率が大きくなるにしたがって高周波数側にシフトする傾向にあることを確認できた。また、ピーク周波数の位相差の大きさθmaxは含水率が大きくなるにしたがって増加する傾向にあること、含水率が10%より小さくなるとθmaxが極端に減少することを確認できた。さらに、位相差グラフの形状は含水率によって異なることを確認できた。これらの結果、周波数と位相差の関係に基づいて、地盤2の含水率を判別できることを確認できた。即ち、fmax、θmax、fmaxとθmax(2つの組み合わせ)、グラフ形状、fmaxとグラフ形状(2つの組み合わせ)、θmaxとグラフ形状(2つの組み合わせ)、fmaxとθmaxとグラフ形状(3つの組み合わせ)、のいずれかによって地盤2の含水率を判別できることを確認できた。また、抵抗グラフの形状も図15(a)〜(h)で変化しているので、抵抗グラフの形状も併せて判断することで、より高精度の判別が可能であることを確認できた。   As is clear from FIG. 15, it was confirmed that the value of the peak frequency (arrow) (critical frequency fmax) tends to shift to the higher frequency side as the water content increases. In addition, it was confirmed that the phase difference θmax of the peak frequency tends to increase as the water content increases, and that θmax decreases extremely when the water content is less than 10%. Furthermore, it was confirmed that the shape of the phase difference graph varies depending on the moisture content. As a result, it was confirmed that the moisture content of the ground 2 could be determined based on the relationship between the frequency and the phase difference. That is, fmax, θmax, fmax and θmax (two combinations), graph shape, fmax and graph shape (two combinations), θmax and graph shape (two combinations), fmax, θmax and graph shape (three combinations), It was confirmed that the moisture content of the ground 2 can be determined by any of the above. In addition, since the shape of the resistance graph also changes in FIGS. 15A to 15H, it can be confirmed that more accurate discrimination is possible by also determining the shape of the resistance graph.

周波数と位相差との関係に基づいて地盤2を高精度に判別できることを確認するために、実験を行った。実験には、泥岩試料と砂岩試料を使用した。比較のため、比抵抗についても測定した。   An experiment was conducted to confirm that the ground 2 can be determined with high accuracy based on the relationship between the frequency and the phase difference. In the experiment, mudstone samples and sandstone samples were used. For comparison, the specific resistance was also measured.

実験の結果を図16に示す。図16の(a)は泥岩試料、(b)は粗粒砂岩試料である。泥岩試料と砂岩試料とを比較すると、比抵抗グラフ同士のよりも、位相差グラフ同士の差の方が大きいことがわかった。この結果、比抵抗グラフに基づいて判別を行うよりも位相差グラフに基づいて判別を行った方が、泥岩試料と砂岩試料との区別が容易であり、より高精度に判別できることを確認できた。また、比抵抗グラフについても泥岩試料と砂岩試料とでは差があるので、位相差グラフと比抵抗グラフの両者に基づいて判別を行うことで、さらに高精度に判別できることを確認できた。   The result of the experiment is shown in FIG. FIG. 16A shows a mudstone sample, and FIG. 16B shows a coarse sandstone sample. When the mudstone sample and the sandstone sample were compared, it was found that the difference between the phase difference graphs was larger than that between the specific resistance graphs. As a result, it was confirmed that it was easier to distinguish between the mudstone sample and the sandstone sample by performing the discrimination based on the phase difference graph than by performing the discrimination based on the resistivity graph, and it was possible to discriminate with higher accuracy. . Moreover, since there is a difference between the mudstone sample and the sandstone sample, it was confirmed that the specific resistance graph could be determined with higher accuracy by performing the determination based on both the phase difference graph and the specific resistance graph.

図16(a)は、直流比抵抗R0=195.5、チャージアビリティm=0.5620、緩和の時定数τ=7.3430E−03、周波数依存係数c=0.6324、(b)は、直流比抵抗R0=374.9、チャージアビリティm=0.0984、緩和の時定数τ=0.5747、周波数依存係数c=0.1505である。   FIG. 16A shows the DC specific resistance R0 = 195.5, the charge ability m = 0.5620, the relaxation time constant τ = 7.3430E-03, the frequency dependence coefficient c = 0.6324, and (b) DC specific resistance R0 = 374.9, chargeability m = 0.0984, relaxation time constant τ = 0.5747, and frequency dependence coefficient c = 0.1505.

なお、図16の理論値のグラフは以下のように求めた。即ち、上述のCole-Coleモデルを表す数式1にはIP現象の強度や性質を示す指標となる4つの未知数R0、m、τ、cがあったが、数学的には最小二乗法により、観測した位相差、比抵抗データに最もよく整合する“解”として求めることができる。数学的に具体的な解法は、以下の通りである。   In addition, the graph of the theoretical value of FIG. 16 was calculated | required as follows. In other words, Equation 1 representing the Cole-Cole model described above has four unknowns R0, m, τ, and c that serve as indices indicating the strength and nature of the IP phenomenon. It can be obtained as the “solution” that best matches the phase difference and resistivity data. A mathematically specific solution is as follows.

試料と等価な理論モデルのインピーダンスZは、周波数ωとモデルパラメータP1,P2,・・・Pnの関数であり、周波数ωiにおける実測インピーダンスをとすれば数式2で表すことが出来る。   The impedance Z of the theoretical model equivalent to the sample is a function of the frequency ω and model parameters P1, P2,... Pn, and can be expressed by Equation 2 if the measured impedance at the frequency ωi is taken.

Zは非線形関数であるので、多変数関数のテーラー展開を利用して線形化近似すると数式3が得られる。   Since Z is a non-linear function, Equation 3 is obtained by linear approximation using the Taylor expansion of a multivariable function.

ここで、Pjは真の等価モデルのパラメータ値、Pjは初期推測モデルとして与えたパラメータ値でありその差をΔPjとおけば数式4となる。 Here, P 0 j is a parameter value of a true equivalent model, Pj is a parameter value given as an initial guess model, and if the difference is ΔPj, Equation 4 is obtained.

いま、Zi、Ziは複素数であり、その絶対値|Z|と位相角θとを用いて、数式5と表されることから、対数変換を行って絶対値と位相角とを分離して取扱う。すなわち、数式6であり、数式7,8となる。 Now, Z 0 i and Zi are complex numbers, and their absolute values | Z | and the phase angle θ are used to be expressed as Equation 5. Therefore, logarithmic transformation is performed to separate the absolute value and the phase angle. Handle. That is, Equation 6 and Equations 7 and 8.

このとき,データ数がn個、パラメータPjがm個の場合(n≧m)、Aは2n行m列の行列を構成している。したがって、数式9,数式10,数式11とおけば、数式12と表される。   At this time, when the number of data is n and the parameter Pj is m (n ≧ m), A constitutes a matrix of 2n rows and m columns. Therefore, if Formula 9, Formula 10, and Formula 11 are used, Formula 12 is expressed.

最小二乗法を用いてbからyを安定に求めるために、正則化一般逆行列を作用させた数式13を用いる。   In order to stably obtain y from b using the method of least squares, Equation 13 using a regularized general inverse matrix is used.

ここで、Iは恒等行列、λはダンピングファクタなどと呼ばれる正の定数である。 Here, I is an identity matrix, and λ is a positive constant called a damping factor.

jはyiとの数式14の関係から求められ、計算はRMS残差が小さくなるまで反復して行う。
P 0 j is obtained from the relationship of equation 14 with yi, and the calculation is repeated until the RMS residual becomes small.

なお、回帰分析の分散分析において、観測値(実験data)と理論値(数式による計算値)との残差の平方和(平方和sum of squares)を自由度で割ったものが平均平方 Mean Square、この√をとったものが、root mean square (RMS)となり、数式15で表します。
ここで、ρai は測定値、ρai は計算値、Nは全測定データ数である。
In the analysis of variance of regression analysis, the mean square is obtained by dividing the residual sum of squares (sum of squares) between the observed values (experiment data) and the theoretical values (calculated values using mathematical formulas) by the degrees of freedom. , √ is the root mean square (RMS).
Here, [rho ai f is measured, [rho ai c are calculated values, N is the is the total number of measurements.

本発明の電極切替装置を適用した地盤探査装置の実施形態の一例を示すブロック図である。It is a block diagram which shows an example of embodiment of the ground exploration apparatus to which the electrode switching apparatus of this invention is applied. 同地盤探査装置の測定部を示すブロック図である。It is a block diagram which shows the measurement part of the ground exploration apparatus. 電流電極を設置した地盤の断面図である。It is sectional drawing of the ground which installed the current electrode. 電位電極を設置した地盤の断面図である。It is sectional drawing of the ground which installed the potential electrode. 本発明の電極切替装置の実施形態の一例を示し、電流電極側の測線選択部と測点選択部のブロック図である。It is an example of embodiment of the electrode switching apparatus of this invention, and is a block diagram of a survey line selection part and a measurement point selection part by the side of a current electrode. 本発明の電極切替装置の実施形態の一例を示し、電位電極側の測線選択部と測点選択部のブロック図である。It is an example of embodiment of the electrode switching apparatus of this invention, and is a block diagram of the survey line selection part by the side of a potential electrode, and a measurement point selection part. 測点選択部のスイッチ回路を示す図である。It is a figure which shows the switch circuit of a station selection part. 周波数と抵抗との関係及び周波数と位相差との関係を示す概念図である。It is a conceptual diagram which shows the relationship between a frequency and resistance, and the relationship between a frequency and a phase difference. 位相差グラフが地盤に含まれる粘土鉱物の量によって変化する様子を示す図である。It is a figure which shows a mode that a phase difference graph changes with the quantity of the clay mineral contained in the ground. 位相差グラフが地盤の含水率等によって変化する様子を示す図である。It is a figure which shows a mode that a phase difference graph changes with the moisture content etc. of a ground. 電極切替装置の他の実施形態を示すブロック図である。It is a block diagram which shows other embodiment of an electrode switching apparatus. 時間領域でみたIP現象の概念を示し、(a)は送信電流波形を示す図、(b)は受信電位波形を示す図である。The concept of the IP phenomenon seen in the time domain is shown, (a) is a diagram showing a transmission current waveform, and (b) is a diagram showing a reception potential waveform. スペクトルIP法による測定の概念を示し、(a)は電流電極を固定して電位電極を順番に変化させながら測定を行う様子を示す概念図、(b)は電流電極を変化させて(a)の測定を繰り返し行う様子を示す概念図である。The concept of the measurement by the spectrum IP method is shown, (a) is a conceptual diagram showing a state in which the current electrode is fixed and the potential electrode is changed in order, and (b) is the change of the current electrode. It is a conceptual diagram which shows a mode that this measurement is repeatedly performed. 地盤の周波数と位相差との関係を三次元的に求める概念を示す図である。It is a figure which shows the concept which calculates | requires the relationship between the frequency of a ground, and a phase difference in three dimensions. 周波数と位相差との関係に基づいて地盤を判別できること確認する実験の結果を示し、(a)は含水率2%の試料を使用した結果を示すグラフ、(b)は含水率6%の試料を使用した結果を示すグラフ、(c)は含水率10%の試料を使用した結果を示すグラフ、(d)は含水率15%の試料を使用した結果を示すグラフ、(e)は含水率20%の試料を使用した結果を示すグラフ、(f)は含水率30%の試料を使用した結果を示すグラフ、(g)は含水率40%の試料を使用した結果を示すグラフ、(h)は含水率50%の試料を使用した結果を示すグラフである。The result of the experiment to confirm that the ground can be discriminated based on the relationship between the frequency and the phase difference is shown, (a) is a graph showing the result of using a sample having a moisture content of 2%, and (b) is a sample having a moisture content of 6%. (C) is a graph showing the result of using a sample with a water content of 10%, (d) is a graph showing the result of using a sample with a water content of 15%, and (e) is a water content. Graph showing results using 20% sample, (f) graph showing results using 30% moisture sample, (g) graph showing results using 40% moisture sample, (h ) Is a graph showing the results of using a sample having a water content of 50%. 周波数と位相差との関係に基づいて地盤を高精度に判別できることを確認する実験の結果を示し、(a)は泥岩試料を使用した結果を示すグラフ、(b)は粗粒砂岩試料を使用した結果を示すグラフである。The result of the experiment to confirm that the ground can be discriminated with high accuracy based on the relationship between the frequency and the phase difference is shown. (A) is a graph showing the result of using a mudstone sample, (b) is a coarse sandstone sample. It is a graph which shows the result. 従来の電極切替装置の原理を示す図である。It is a figure which shows the principle of the conventional electrode switching apparatus. 従来の電極切替装置の概略を示す図である。It is a figure which shows the outline of the conventional electrode switching apparatus.

符号の説明Explanation of symbols

7 測線
8 測点
3 電流電極
4 電位電極
13 送信装置
14 受信装置
9 電極切替装置
10 接続端子
19 測線選択部
20 測点選択部
7 Measuring Line 8 Measuring Point 3 Current Electrode 4 Potential Electrode 13 Transmitting Device 14 Receiving Device 9 Electrode Switching Device 10 Connection Terminal 19 Survey Line Selecting Unit 20 Measuring Point Selecting Unit

Claims (5)

測線上の複数の測点にそれぞれ設置された電極の中から測定に使用する電流電極と電位電極を選択し、選択した電流電極に通じる導線を送信装置に接続すると共に、選択した電位電極に通じる導線を受信装置に接続する電極切替装置において、前記導線を接続する接続端子を複数の測線に対応する数だけ設けて複数の測線の電極を接続可能とし、複数の測線の中から測定に使用する1本の測線を選択して接続を切替える測線選択部と、前記複数の測線のそれぞれに設けられた測定に使用する測点を選択して接続を切替える測点選択部を備え、前記測線選択部と前記測点選択部とを直列に設け、前記測線選択部による測線の選択と前記測点選択部による測点の選択との組み合わせによって使用する測線と測点を切替えることを特徴とする電極切替装置。 Select the current electrode and potential electrode to be used for measurement from the electrodes installed at each of the multiple measuring points on the survey line, connect the lead wire that leads to the selected current electrode to the transmitter, and lead to the selected potential electrode In the electrode switching device for connecting the lead wire to the receiving device, the connection terminals for connecting the lead wires are provided in a number corresponding to the plurality of survey lines so that the electrodes of the plurality of survey lines can be connected and used for measurement from the plurality of survey lines. A survey line selection unit that selects one survey line and switches connection; and a survey point selection unit that selects a survey point used for measurement provided in each of the plurality of survey lines and switches connection, and the survey line selection unit electrode to the survey point is provided and a selection unit in series, wherein to switch between the survey line and stations to be used in combination with the selection of the station selection of the measuring line and by the measuring line selector according to the station selection unit and Cut off Apparatus. 前記測点には電流電極と電位電極を兼用する兼用電極が設置されており、前記測線選択部と前記測点選択部は、前記兼用電極を前記送信装置又は前記受信装置に接続する経路の途中に設けられていることを特徴とする請求項1記載の電極切替装置。   A dual-purpose electrode that serves both as a current electrode and a potential electrode is installed at the measurement point, and the survey line selection unit and the measurement point selection unit are in the middle of a path that connects the dual-purpose electrode to the transmission device or the reception device. The electrode switching device according to claim 1, wherein the electrode switching device is provided. 前記測点には電流電極と電位電極が別々に設置されており、前記測線選択部と前記測点選択部は、前記電流電極を前記送信装置に接続する経路の途中と前記電位電極を前記受信装置に接続する経路の途中のそれぞれに設けられていることを特徴とする請求項1記載の電極切替装置。   A current electrode and a potential electrode are separately installed at the station, and the line selection unit and the station selection unit are in the middle of a path connecting the current electrode to the transmitter and the potential electrode is received. The electrode switching device according to claim 1, wherein the electrode switching device is provided in each of the paths connected to the device. 前記測点選択部は前記測点の中から遠電極とする測点を選択し、選択した遠電極測点の接続状態を維持することを特徴とする請求項1から3のいずれか1つに記載の電極切替装置。   4. The method according to claim 1, wherein the station selection unit selects a station to be a far electrode from the stations and maintains a connection state of the selected far electrode station. 5. The electrode switching device as described. 前記測点選択部は、全ての測点を順番に選択して接続を切替えることを特徴とする請求項1から3のいずれか1つに記載の電極切替装置。   The electrode switching device according to any one of claims 1 to 3, wherein the station selection unit switches connections by selecting all the station points in order.
JP2004372116A 2004-12-22 2004-12-22 Electrode switching device Expired - Fee Related JP4353480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004372116A JP4353480B2 (en) 2004-12-22 2004-12-22 Electrode switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372116A JP4353480B2 (en) 2004-12-22 2004-12-22 Electrode switching device

Publications (2)

Publication Number Publication Date
JP2006177807A JP2006177807A (en) 2006-07-06
JP4353480B2 true JP4353480B2 (en) 2009-10-28

Family

ID=36732052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372116A Expired - Fee Related JP4353480B2 (en) 2004-12-22 2004-12-22 Electrode switching device

Country Status (1)

Country Link
JP (1) JP4353480B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051502A (en) * 2006-08-22 2008-03-06 Makoto Inoue Multi-electrode electrical logging method for small diameter
JP5016550B2 (en) * 2007-05-09 2012-09-05 一般財団法人電力中央研究所 Ground survey equipment
KR101521473B1 (en) * 2014-06-02 2015-05-21 한국지질자원연구원 A underwater detector and a method for underwater detection
CN108873074B (en) * 2018-04-18 2020-03-24 浙江大学 Electrode random distribution type high-density resistivity measuring method and exploration system
JP7250873B1 (en) 2021-09-16 2023-04-03 中央開発株式会社 Ground resistivity monitoring device and slope failure warning system

Also Published As

Publication number Publication date
JP2006177807A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CN101432742B (en) Two-axial pad formation resistivity imager
CN102495291A (en) Impedance frequency response method for measuring corrosion state of grounding network of transformer substation
CN104897734B (en) Soil moisture content real-time measurement system and method in earth structure
CN106405250B (en) High-density ground resistivity measuring system and method suitable for complex terrain condition
JP4353480B2 (en) Electrode switching device
JP4356993B2 (en) Ground exploration method and ground exploration device
HU184067B (en) Hydrocarbon prospection method and device for indirect observing hydrocarbon reservoirs
Blattner Study of driven ground rods and four point soil resistivity tests
Oyubu Soil resistivity and soil PH profile investigation: a case study of Delta state university faculty of engineering complex
Guo et al. Controlled large-scale tests of practical grounding electrodes—Part I: Test facility and measurement of site parameters
US9970969B1 (en) Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material
CN113297526B (en) Horizontal layered soil structure joint inversion method based on Wenner quadrupole and magnetotelluric data
CN103643948A (en) Dual-electrical azimuthal imaging logging instrument and method
KR101475155B1 (en) Method for predicting ground condition ahead of tunnel using electrical resistivity
Carpenter Jr et al. Designing for a low resistance earth interface (grounding)
CN210742516U (en) Array induced polarization exploration device
Unde et al. Soil resistivity measurement and interpretation technique
Zhao et al. Research on geo-electrical resistivity observation system specially used for earthquake monitoring in China
Boys Resistivity testing for earthing safety
RU2466430C2 (en) Method of electrical exploration using cylindrical probe
Nor et al. Validation of the calculation and measurement techniques of earth resistance values
Lathi Impulse measurements in earthing systems
Mousa Experimental investigation of enhanced earth electrode systems under high frequency and transient conditions
CN111221045B (en) Working parameter optimization method for frequency domain conduction electrical method three-dimensional exploration of exploration abnormal area
RU2172006C1 (en) Method for electric logging of cased wells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees