JP4352779B2 - Thick steel plate rolling method - Google Patents

Thick steel plate rolling method Download PDF

Info

Publication number
JP4352779B2
JP4352779B2 JP2003182812A JP2003182812A JP4352779B2 JP 4352779 B2 JP4352779 B2 JP 4352779B2 JP 2003182812 A JP2003182812 A JP 2003182812A JP 2003182812 A JP2003182812 A JP 2003182812A JP 4352779 B2 JP4352779 B2 JP 4352779B2
Authority
JP
Japan
Prior art keywords
shape
rolling
thick
predicted
planar shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003182812A
Other languages
Japanese (ja)
Other versions
JP2005014055A (en
Inventor
健二 平田
正之 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003182812A priority Critical patent/JP4352779B2/en
Publication of JP2005014055A publication Critical patent/JP2005014055A/en
Application granted granted Critical
Publication of JP4352779B2 publication Critical patent/JP4352779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、厚鋼板の幅方向に板厚分布を付与することにより、平面形状を制御して圧延する厚鋼板の圧延方法に関する。
【0002】
【従来の技術】
一般に、厚鋼板の圧延工程はスラブの表面手入れあるいは幅出し精度を保つため、板厚調整を行う調整圧延フェーズ、平面上で圧延方向を90度回転して所定の製品幅を得る幅出し圧延フェーズ、再び90度回転して所定の製品板厚を得る仕上圧延フェーズ、の3つの圧延フェーズから構成されている。厚鋼板の圧延はレバース圧延で行われており、これらの3つのフェーズを合わせて全部で10数パスの圧下を加えている。
【0003】
このようなプロセスを経て得られる製品の平面形状は、幅出し比(製品幅/スラブ幅)あるいは長手方向圧下比(製品長さ/スラブ長)をパラメータの1つとして変化する。例えば、幅出し比が小さく長手方向圧下比が大きい場合は鼓状となり、逆に幅出し比が大きく長手方向圧下比が小さい場合は太鼓状となることが一般的に知られている。圧延完了後の板取りにおいては、これらの平面形状で矩形から外れている部分はすべて切り落とされ、製品の歩留まりの低下を招く。
【0004】
これらの平面形状不良への対策として、予め最終的な平面形状を予測して圧延を行う方法がいくつか提案されている。
【0005】
例えば、特許文献1には、圧延中にロール間隔を変えることにより、被圧延材に所定の板厚分布を付与した後、90°回転して幅出し圧延あるいは仕上圧延を行う厚板の平面形状制御方法が提案されている。この特許文献1の平面形状の制御では、次のようにしてタングあるいはフィッシュテールを矩形に近づけるようにしている。
【0006】
長手端面がタングとなる場合は、幅出し圧延フェーズの最終パスにおいて、長手方向の先後端部の板厚を中央部より厚くなるように板厚分布を付与し、その後、仕上圧延を行う。幅端面がタングとなる場合は、調整圧延フェーズの最終パスにおいて、長手方向の先後端部の板厚が中央部より厚くなるように板厚分布を付与し、その後、幅出し圧延を行えばよいとしている。
【0007】
また、付与する板厚分布の決め方としては、例えば特許文献2では通常圧延にて矩形から外れる体積と厚肉部の体積を同一とする、すなわち厚肉部の体積が全て圧延方向に流れると仮定した、マスフロー一定の法則を用いればよいとしている。
【0008】
また、特許文献3では、上記マスフロー一定の法則の考え方に加え、幅方向塑性流動の影響を板厚、板幅を用いた回帰式を用いて考慮している。
【0009】
さらに、非特許文献1〜3には、厚肉部を付与しないスラブ(鉛モデル)を実際に圧延したときの被圧延材の平面形状の実測値に基づいて、入り側板厚、板幅、ロール径、圧下率などのパラメータを含む予測式(実験式)を求め、予測式により被圧延材の平面形状を予測する方法がそれぞれ記載されている。
【0010】
【特許文献1】
特開昭52-57061号公報(2〜4頁、第1図〜第4図)
【0011】
【特許文献2】
特開昭55-77907号公報(2〜4頁、第1図〜第5図)
【0012】
【特許文献3】
特開昭57-097803号公報(2〜5頁、第1図〜第3図)
【0013】
【非特許文献1】
岡戸、中内他:鉄と鋼(1976年)、236頁
【0014】
【非特許文献2】
岡戸、中内他:鉄と鋼(1978年)、278頁
【0015】
【非特許文献3】
岡戸、中内他:鉄と鋼、66(1980年)、964頁
【0016】
【発明が解決しようとする課題】
上記の従来技術では、通常圧延にて矩形から外れる体積と厚肉部が先後端に流れる体積が一致するように、厚肉部形状を決定している。
【0017】
しかしながら、平面形状を矩形に近づける場合に、矩形から外れた部分の体積を考慮するだけでは不十分である。例えば、図1の(a)および(b)に示すような通常圧延時の先端クロップ3の形状を考えたとき、幅方向に板厚分布を付与された被圧延材2を圧延した場合に、パターンAとパターンBとで厚肉部が先端部に流れる体積が同じ場合であっても(SA=SB)、クロップ3の切捨て体積はパターンBの方が大きくなり、製品の歩留まりが異なる。つまり図2に示すような幅方向に板厚分布を付与された被圧延材を圧延した場合に生じるフィッシュテール形状を正確に予測しなければ、通常圧延時に発生する矩形から外れた部分(クロップ)を効率的に低減できないという問題がある。
【0018】
例えば、図3に示すようなテーパ状の板厚分布(長さL、高さΔH)を付与する場合を考えたとき、付与する板厚分布を決定する方法として特許文献3では次のようにしている。
【0019】
まず、通常圧延時の最終クロップ形状として、図4に示すように肩落ち幅Wfとクロップ長Lcを予測し、補うべき面積(SO=Wf×Lc)を算出する。次に、長さL=Wfとしてマスフロー一定則より高さΔH*を算出した後、幅方向塑性流動係数によりΔH*をΔHに補正する。このようにして特許文献3の従来法ではクロップロスが最小となる長さLと高さΔHを算出する。
【0020】
しかしながら、従来法におけるL=Wfの前提は、図4に示すような板厚分布を有する材料を、90℃回転した後に水平圧延したときに生じるフィッシュテールの幅(図2のWcrop)が肩落ち幅Wfと一致するという仮定のもとに決定されているものであり、この前提条件を支える仮定が崩れると、必ずしも最適な板厚分布(長さLと高さΔH)を算出できていないという問題がある。
【0021】
非特許文献1〜3の方法では、一様な厚さの単純断面形状スラブを圧延する場合には平面形状をある程度の精度で予測することはできるが、予め幅方向に板厚分布を付与したスラブを圧延する場合については圧延後の平面形状を予測することはできない。
【0022】
本発明は上記課題を解決するためになされたものであって、最終平面形状を矩形に近づけるために必要な厚肉部の断面形状を高精度に算出することができる厚鋼板の圧延方法を提供することを目的とする。
【0023】
【課題を解決するための手段】
本発明に係る厚鋼板の圧延方法は、厚鋼板の幅方向に部分的に厚肉部を有する板厚分布を付与することにより、厚鋼板の平面形状を制御する圧延方法において、(a)厚肉部を付与しない場合における通常の仕上圧延後の平面形状Pruを予測する工程と、(b)前記予測平面形状Pruが目標とする矩形の平面形状Proから外れる部分の形状ΔPrを算出する工程と、(c)前記外れる部分の形状ΔPrを、部分的に厚肉部を有する板厚分布を付与した後であって少なくとも1パスの圧延を受けた後の予測換算形状ΔPrcに換算する工程と、(d)部分的に厚肉部を付与した後であって1パス圧延後の予測平面形状Prdaと厚肉部を付与しない場合であって1パス圧延後の予測平面形状Pruaとの差分として差形状ΔPrdを算出する工程と、(e)前記予測換算形状ΔPrcの面積A1と前記差形状ΔPrdの面積A2との差分として面積差ΔAdを算出する工程と、(f)前記面積差ΔAdが最小となるような板厚分布が付与されるように、厚肉部の寸法および形状をそれぞれ決定する工程と、を具備することを特徴とする。
【0024】
上記工程(d)では、厚肉部を付与しない場合の前記予測平面形状Pruaと比較した場合に、厚肉部を付与することにより最も大きく伸びる量Lmaxと伸びが増加する領域の幅Wcropとをそれぞれ予測し、これらの予測LmaxおよびWcropを用いて前記予測平面形状Prdaを予測する。厚肉部を付与することにより最も大きく伸びる量Lmaxと伸びが増加する領域の幅Wcropとの予測においては、少なくとも厚肉部の幅L、肉厚分布ΔH、および板幅Wに対する厚肉部幅Lの比W/Lを用いることが望ましい。なお、図2に示す最大伸び量Lmaxと伸び増加領域幅Wcropに関しては従前の圧延実績から多くのデータを得ることができるので、予測平面形状Prdaをさらに高精度に予測することができる。
【0025】
また、上記工程(d)では、厚肉部の幅L、肉厚分布ΔH、および板幅Wに対する厚肉部幅Lの比(W/L)を用いて前記予測LmaxおよびWcropを予測することが好ましい。これらのパラメータ(Lmax,Wcrop,L,ΔH,W,W/L)および所定の数式を用いる数値解析法(Finite Element Method;FEM)により、および/または鉛モデル圧延模擬試験により、板厚分布付与後の1パスでの予測平面形状Prdaをさらに高精度に予測することができる。
【0026】
以下、図6〜図10を参照しながら予測平面形状Prdaを求める方法について説明する。
図6の(a)は平坦部の拘束が無いと仮定した場合に厚肉部がすべて圧延方向に伸びた状態を示す平面模式図、図6の(b)は平坦部の拘束が有ると仮定した場合に厚肉部を1パス圧延後の実際の状態を示す平面模式図である。
【0027】
厚肉部の断面形状を三角形と仮定すると式(1)〜(4)の関係が成立する。但し、C11〜C23は実験条件(板厚、板幅、圧下条件、ロール径など)および圧延後の平面形状測定結果から求める係数である。
【0028】
図7は、WcropとLmaxから後端部の平面形状プロフィールの計算予測方法を説明する図である。平面形状の曲線を4次と仮定すると、平面形状yは式(5)で与えられる。
【0029】
【数1】

Figure 0004352779
【0030】
上記のように、LmaxとWcrop(既知)および対称の5条件から、上記4次式の5個の係数D1〜D5を決定することができる。例えば、Lmaxとなる座標(xL,Lmax)と突出する部分のもう1点(変曲点)の座標(xa,ya)とを実験に基づいて予測する簡易式を作成し、その簡易式を用いて係数D1〜D5を決定する。この4次式(5)が板厚分布付与後の1パスでの予測平面形状Prdaを与えるものとなる。つまり、本発明では平面形状のプロフィールをWcropおよびLmaxの2つの代表値で表現することとしている。
【0031】
図8の(a)は最終平面形状が矩形となる理想的圧延状態を示す平面模式図、図8の(b)は通常圧延で矩形から不足する部分に基づく幅出し完了後の目標形状の設定方法を説明する図である。
【0032】
さらに高精度に幅出し完了後の形状ΔPrcを求める場合は、幅端部の幅方向メタルフローも考慮に入れて、上記の一次近似で得られた幅出し完了時の平面形状から求められたΔPr1、ΔPrc1を用いて、従来の通常圧延における厚肉部の無い場合の平面形状予測式で最終平面形状を求め、不足する(または過剰となる)ΔPr2を再度求める。
【0033】
上記と同様の方法で幅出し完了時に換算した形状(ΔPrc2)を求める。つまり、より精度の良いΔPrc=ΔPrc1+ΔPrc2とすればよい。なお、符号Yf(x)は最終圧延後の不足分を表わし、符号Yw(x)は断面に厚肉部を有するときの1パス圧延後の不足分を表わす。上記の方法を繰り返すことにより精度が向上する。
【0034】
図9は、次材以降へのフィードバックを説明する図である。図中にて実線で示す特性線Pは実測値を、破線で示す特性線Qは予測値をそれぞれ表わす。予測値と実測値との平面形状プロフィールを比較し、LmaxおよびWcropそれぞれのずれ割合を算出した。前提条件として、予測値が次材でも同じようなずれを生じると仮定し、また、ベースとなる厚肉部を付与しない場合の従来の平面形状予測式の精度は良好であると仮定した。
【0035】
RL=δLmax/Lmax
RW=δWcrop/Wcrop
そのずれ割合の何%(係数:CoeR,CoeW)かを次材の予測値に付加する。
【0036】
次材の修正Lmax=RL×CoeR×Lmax(次材の予測値)
次材の修正Wcrop=RL×CoeW×Wcrop(次材の予測値)
これらの修正により図5のフローチャートから求まる厚肉部形状が変更される。
【0037】
なお、上記の予測式(1)〜(4)の精度向上を目的として、多数の実測値(計測値)とそれぞれの圧延条件に基づき式中の係数C11〜C23を重回帰法のような統計的手法を用いて学習する。
【0038】
図10は、水平圧延による平面形状変化を説明するモデル図である。
【0039】
(i)1パス水平圧延による平面形状変化モデルの例
矩形鋼板を水平圧延した場合の平面形状変化モデルを図10に示す。幅異形量とクロップ長はそれぞれ式(6)と式(7)から得られる。板幅変動と先後端クロップ長は式(8)と式(9)で近似できる。但し、式中の記号はそれぞれ、R:ワークロール半径、Δh:水平圧延圧下量、Hi:入側板厚、Wo:板幅の中央値である。
【0040】
【数2】
Figure 0004352779
【0041】
(ii)多パス圧延による平面形状変化モデルの例
多パス圧延後の形状は、各パスの積算値として取り扱われる。式(10)と式(11)に多パス圧延時の板幅変動と先後端クロップ形状を示す。但し、式中の記号はそれぞれ、yw(n),yw(n-1):nパス目,n−1パス目の出側板幅変動、yw:nパス目で生じる板幅変動、yL(n),yL(n-1):nパス目,n−1パス目の出側クロップ形状、yL:nパス目で生じるクロップ形状変化、α:伸び率補正係数、h(n),h(n-1):nパス目,n−1パス目の出側板厚である。
【0042】
【数3】
Figure 0004352779
【0043】
(iii)平面形状予測精度の検証
幅方向に厚肉部を付与した場合のエッジングによる平面形状変化モデルと水平圧延による平面形状変化モデルを重ね合わせて、矩形スラブから仕上圧延終了後の平面形状まで予測する一貫シミュレータを構成した。圧延終了後の平面形状予測精度は、例えば、板内幅偏差で±10mm、クロップ長で±100mmであり、平面形状制御に適用するのに十分な予測精度が得られた。クロップ長の予測精度が板内幅偏差に比べて劣るのは、予測誤差が長手方向に延ばされて拡大されていくからである。
【0044】
本発明は、圧延中に付与した板厚分布が、その後の水平圧延によりどのように変形するのかを検討する中でなされた。材料の変形を検討するにあたり、本発明者らは純鉛を用いたモデル圧延実験を行った。
【0045】
図11は横軸に板幅エッジからの距離(mm)をとり、縦軸に後端クロップのタング長さ(mm)をとって、板幅方向における後端クロップのタング長さ分布を示す特性線図である。図中にて特性線Aはマスフロー一定則に基づいて計算した理論値曲線を示し、特性線Bは実際に試料を用いて測定した実験値曲線を示す。板厚12mm×幅180mm×長さ300mmサイズの素材に対してL=40mm、ΔH=1.0mmのような板厚分布を付与した。この板厚分布付与材料を板厚10.5mmまで圧延したときの後端部クロップ形状について理論値と実験値をそれぞれ調べた。
【0046】
図11から明らかなように、いわゆるフィッシュテール形状となっており、伸びの最大値(Lmax)はほぼ幅端部で生じている。ここで、特許文献3に記載されたマスフロー一定則に基づいて予測した形状を図中に示すが、幅端部についてはマスフロー一定則での予測値よりも伸びは小さいことが判明した。これは幅端部では幅広がりの影響が大きいためである。また、伸びが大きい領域の幅(Wcrop)はL(=40mm)よりも大きいことが判明した。
【0047】
以上の実験結果より、このような板厚分布を有した材料を圧延した場合に発生する平面形状変化を予測するためには)代表寸法として、少なくとも図2の(a)に示す最大伸び長さLmaxと厚肉部の影響により伸びが大きくなっている領域の幅Wcropを用いる必要がある。例えば、4次曲線等を利用して形状を近似することにより、フィッシュテール形状を予測することが可能である。
【0048】
さらに、部分的に厚肉部を付与した後の圧延パス後において、圧延材の平面形状Prdrを測定し、この平面形状Prdrの測定値と上記予測平面形状Prdaの値との差分を、次材以降の圧延にフィードバックするようにしてもよい。
【0049】
【発明の実施の形態】
以下、添付の図面を参照しながら本発明の好ましい実施の形態について説明する。
図5のフローチャートを用いて本発明の実施形態を説明する。
先ず通常圧延でのクロップ形状Pruを図中に実線で示すように予測する(工程S1)。このクロップ形状Pruの予測には、例えば特許文献3に記載された所定の実験式を用いてもよいし、数値解析法(Finite Element Method;FEM)を用いるようにしてもよい。
【0050】
次いで、通常圧延クロップ予測形状Pruを目標とする矩形の平面形状Pro(図中の破線)と比較し、前者が後者から外れる部分の形状ΔPrを算出する(工程S2)。
【0051】
算出した矩形から外れる部分の形状ΔPrを幅出し圧延完了したときに予測される形状に換算する(工程S3)。この換算工程S3では、幅出し圧延完了パスで板厚分布を付与する場合を考えると、図1の(a)に示すパターンAの形状を仕上圧延圧下比(=幅出し完了板厚/製品板厚)で割り戻し、パターンAの形状を幅出し圧延完了時点での図1の(b)に示すパターンBに近似する形状A´に換算する。この一次近似形状A´は、厚肉部を付与しない場合に不足する部分の形状を圧下比分だけ圧延方向に縮小した形状を算出し、この算出形状を通常圧延における幅出し圧延完了時の平面形状にプラスした平面形状が、最終の仕上圧延で平面形状が矩形となる平面形状Pro(幅出し圧延完了時の形状)となる。
【0052】
なお、本実施例では一次近似形状A´を用いるようにしているが、さらに精度良く目標平面形状を求める手法としてFEMを採用してもよい。すなわち、FEMを用いて線形計画法に準じた演算を何回も繰り返すことにより、最終的に目標平面形状を求めることができる。また、FEMから加工の最終段階までを逆に溯って帰納的に演算して形状を求めるようにしてもよい。
【0053】
換算した一次近似の予測形状A´に基いて幅出し圧延完了時の厚肉部を付与しない場合の平面形状Pruaを求める(工程S4)。
【0054】
この幅出し圧延完了時の厚肉部を付与しない場合の平面形状Pruaに基いて初期の板厚分布を仮定する(工程S5)。この仮定した板厚分布を厚鋼板端部に板厚分布を付与するときに用いる。
【0055】
板厚分布付与後に、1パスでの予測平面形状Prdaを算出する(工程S6)。板厚分布付与後の1パスでは、ほとんど厚肉部のみを圧下して平らにするように圧延する。このとき、板厚が厚い部分は圧延方向に伸びようとするが、ほとんど圧下されない部分は伸ばされずに伸びようとする厚肉部を拘束し、かつ幅端部に近いメタルは幅方向にも流れ、その結果、(i)厚肉部の圧延方向に突出する長さ(クロップ長さ)は短くなり、(ii)伸びようとする厚肉部に圧下されない部分が引っ張られて、突出する幅Wcropは厚肉部を付与した幅Lより大きくなる。すなわち図6の(a)に示すように、素材断面において厚肉部の占める部分(断面積S2)とそれ以外の部分(断面積S1)との割合、例えばS1/(S1+S2)、S2/(S1+S2)、および厚肉部の圧下率ε2(圧下歪み:伸びようとする大きさ)とそれ以外の圧下率ε1とが、WcropとLmaxを予測する主要なパラメータであり、これらを用いて予測式として上記の2つの式(1)と式(2)を作成した。なお、断面積S1,S2は上記の式(3)と式(4)に示すようにΔHとW/Lを用いて表わすことができる。
【0056】
図7に示すように、平面形状のプロフィールを4次式(5)で近似すると、WcropとLmaxから平面形状のプロフィールを決定することができる。この4次式(5)が板厚分布付与後の1パスでの予測平面形状Prdaを与えるものとなる。
【0057】
1パスでの予測平面形状Prdaから厚肉部を付与しない場合の平面形状Pruaを差し引き、その差分を差形状ΔPrdとする(工程S7)。
【0058】
形状ΔPrcの面積A1から差形状ΔPrdの面積A2を差し引き、その差分を面積差ΔAd(=A1−A2)とする(工程S8)。
【0059】
求めた面積差ΔAdを所定の許容面積差Asと比較し、その大小を判定する(工程S9)。面積差ΔAdが許容面積差Asより小さいか又は等しい場合は合格判定とし、演算を終了する。なお、所定の許容面積差Asは、ゼロではないが限りなくゼロに近い値であり、板厚と板幅との組合せごとに予め実験により求めておいたものである。
【0060】
面積差ΔAdが許容面積差Asより大きい場合は、不合格と判定し、先の初期板厚分布を修正し(工程S10)、工程S5に戻る。工程S5では修正板厚分布を実圧延の板厚分布と仮定する。そして、この修正板厚分布を用いて上記工程S6〜S8の手順に従って面積差ΔAdを求め、求めた面積差ΔAdと許容面積差Asとの大小を繰り返し比較判定する(工程S9)。具体的には、厚肉部形状(長さL、高さΔH)の初期値に対してこれを圧延したときの形状Bを予測し、形状Bが一次近似形状A´に近づくように、厚肉部形状の修正を繰り返す。この処理により、クロップロスが最小となるような、長さL、高さΔHの最適値が算出可能である。なお、本発明では、厚肉部形状の修正量および修正方法については特に問わない。
【0061】
なお、部分的に厚肉部を付与した後の圧延パス後に、圧延材の平面形状(Prdr)を測定し、この測定値と予測した平面形状(Prda)との差を、次材以降の圧延にフィードバックするようにしてもよい。
【0062】
【実施例】
次に、本発明方法を適用した実施例について説明する。
【0063】
本発明方法に従って平面形状を制御した厚板サンプルを実施例とし、上記特許文献3の方法に従って平面形状を制御した厚板サンプルを比較例として、両者に生じるクロップロスの比較を行った。
【0064】
厚板サンプルとして初期サイズが板厚251mm×幅1320mm×長さ2095mmのスラブを採用し、このスラブから板厚9.8mm×幅2394mm×長さ29500mmの圧延製品を得ることを想定した。厚板に付与する板厚分布は図2(b)に示す断面形状とした。
【0065】
表1に調整圧延、幅出圧延、仕上圧延のパススケジュールをそれぞれ示す。調整圧延は3パス、幅出圧延は4パス、仕上圧延は9パスとした。調整圧延の3パス目では厚板を90°回転させてクロスロールを行った。幅出圧延の4パス目では、1〜3パスで厚板に板厚分布を付与した後に、これを90°回転させてクロスロールを行った。
【0066】
通常圧延時のクロップ長Lcは430mm、肩落ち幅Wは400mmであるため、比較例では長さLc=W=400mm、高さΔH=7.0mmであった。これに対して、本発明方法を適用した実施例では、長さLc=350mm、高さΔH=16.2mmであった。
【0067】
【表1】
Figure 0004352779
【0068】
図12に通常圧延時のクロップロスCR1に対する、従来法(特許文献3の方法を用いた比較例)と本発明方法(上記の実施例)をそれぞれ適用した場合のクロップロスCR2の比(CR2/CR1)を示す。この図から明らかなように、従来法を適用した場合にはクロップロスが約35%低減するが、本発明方法を適用すればクロップロスを約65%も削減することができた。
【0069】
【発明の効果】
本発明は、材料の幅方向に薄肉部と厚肉部を有する板厚分布を付与することにより、平面形状を制御して圧延する厚鋼板の圧延方法において、付与する板厚分布を決定するにあたり、板厚分布を付与した後の圧延における平面形状変化を予測することにより、最終平面形状を矩形に近づけるために必要な厚肉部の断面形状を高精度に算出することができる。このため、クロップロスが従来に比べて大幅に低減され、製品歩留りを飛躍的に向上させることができる。
【図面の簡単な説明】
【図1】(a)は通常圧延時における厚鋼板の後端部(パターンA)を示す断面模式図、(b)は通常圧延時における他の厚鋼板の後端部(パターンB)を示す断面模式図。
【図2】(a)は厚鋼板の後端部を示す平面模式図、(b)は厚鋼板の後端部を示す断面模式図。
【図3】厚鋼板の後端部を示す断面模式図。
【図4】通常圧延されたクロップ形状を示す平面模式図。
【図5】(a)は本発明の厚鋼板の圧延方法を示すフローチャート、(b)は各工程に対応する厚鋼板の断面をそれぞれ示す模式図。
【図6】(a)は平坦部の拘束が無いと仮定した場合に厚肉部がすべて圧延方向に伸びた状態を示す平面模式図、(b)は平坦部の拘束が有ると仮定した場合に厚肉部を1パス圧延後の実際の状態を示す平面模式図。
【図7】WcropとLmaxから後端部の平面形状プロフィールの計算予測方法を説明する図。
【図8】(a)は最終平面形状が矩形となる理想的圧延状態を示す平面模式図、(b)は通常圧延で矩形から不足する部分に基づく幅出し完了後の目標形状の設定方法を説明する図。
【図9】次材以降へのフィードバックを説明する図。
【図10】水平圧延による平面形状変化を説明するモデル図。
【図11】板幅方向における後端クロップのタング長さ分布を示す特性線図。
【図12】クロップロスについて本発明方法と従来法とを比較して示すグラフ図。
【符号の説明】
2…厚鋼板、
3…クロップ、
Pru…通常圧延でのクロップ形状(予測平面形状)、
Pro…目標とする矩形の平面形状、
ΔPr…矩形から外れる部分の形状、
ΔPrc…1パス後の予測換算形状、
Prua…厚肉部を付与しない場合の1パス後の予測平面形状、
Prda…板厚分布付与後の1パスでの予測平面形状、
ΔPrd…差形状(=Prda−Prua)、
A1…予測換算形状ΔPrcの面積、
A2…差形状ΔPrdの面積、
ΔAd…面積差(=A1−A2)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of rolling a thick steel plate that is rolled while controlling a planar shape by providing a plate thickness distribution in the width direction of the thick steel plate.
[0002]
[Prior art]
In general, the rolling process for thick steel plates is to maintain the surface care or width accuracy of the slab, so that the adjustment rolling phase for adjusting the plate thickness and the width rolling phase for obtaining a predetermined product width by rotating the rolling direction 90 degrees on a flat surface. The finish rolling phase is composed of three rolling phases, which are rotated 90 degrees again to obtain a predetermined product sheet thickness. Rolling of thick steel plates is performed by lever rolling, and a total of 10 or more passes of rolling is applied in combination of these three phases.
[0003]
The planar shape of the product obtained through such a process changes with the width ratio (product width / slab width) or the longitudinal reduction ratio (product length / slab length) as one of the parameters. For example, it is generally known that when the tenter ratio is small and the longitudinal reduction ratio is large, a drum shape is obtained, and conversely, when the tenter ratio is large and the longitudinal reduction ratio is small, a drum shape is obtained. In the plate cutting after the completion of rolling, all of these planar shapes that are out of the rectangle are cut off, resulting in a decrease in product yield.
[0004]
As countermeasures against these planar shape defects, several methods have been proposed in which rolling is performed by predicting a final planar shape in advance.
[0005]
For example, Patent Document 1 discloses that a planar shape of a thick plate that is subjected to tenth rolling or finish rolling by turning 90 ° after giving a predetermined thickness distribution to the material to be rolled by changing the roll interval during rolling. A control method has been proposed. In the control of the planar shape disclosed in Patent Document 1, the tongue or fishtail is brought close to a rectangle as follows.
[0006]
When the longitudinal end face becomes a tongue, in the final pass of the tenter rolling phase, a thickness distribution is imparted so that the thickness of the front and rear end portions in the longitudinal direction is thicker than the central portion, and then finish rolling is performed. When the width end face becomes a tongue, in the final pass of the adjustment rolling phase, a plate thickness distribution is given so that the plate thickness of the front and rear end portions in the longitudinal direction is thicker than the central portion, and then tentering rolling may be performed. It is said.
[0007]
In addition, as a method of determining the thickness distribution to be applied, for example, in Patent Document 2, it is assumed that the volume deviated from the rectangle in normal rolling and the volume of the thick part are the same, that is, the volume of the thick part flows in the rolling direction. The law of constant mass flow should be used.
[0008]
Moreover, in patent document 3, in addition to the idea of the above-mentioned law of constant mass flow, the influence of width direction plastic flow is taken into account using a regression equation using the plate thickness and plate width.
[0009]
Further, in Non-Patent Documents 1 to 3, based on the actual measured values of the planar shape of the material to be rolled when a slab (lead model) that does not give a thick part is actually rolled, the entry side plate thickness, plate width, roll Methods for obtaining a prediction formula (empirical formula) including parameters such as diameter and rolling reduction and predicting the planar shape of the material to be rolled by the prediction formula are described.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 52-57061 (pages 2 to 4, FIGS. 1 to 4)
[0011]
[Patent Document 2]
Japanese Unexamined Patent Publication No. 55-77907 (pages 2 to 4, FIGS. 1 to 5)
[0012]
[Patent Document 3]
JP-A-57-097803 (pages 2 to 5, FIGS. 1 to 3)
[0013]
[Non-Patent Document 1]
Okado, Nakauchi et al .: Iron and steel (1976), p. 236
[Non-Patent Document 2]
Okado, Nakauchi et al .: Iron and steel (1978), p. 278
[Non-Patent Document 3]
Okado, Nakauchi et al .: Iron and Steel, 66 (1980), page 964.
[Problems to be solved by the invention]
In the above prior art, the shape of the thick part is determined so that the volume deviated from the rectangle by normal rolling and the volume of the thick part flowing at the front and rear ends coincide.
[0017]
However, when the planar shape is made close to a rectangle, it is not sufficient to consider the volume of the portion outside the rectangle. For example, when considering the shape of the tip crop 3 at the time of normal rolling as shown in (a) and (b) of FIG. 1, when the material to be rolled 2 provided with a thickness distribution in the width direction is rolled, Even if the volume A and the pattern B have the same volume flowing at the tip (SA = SB), the cut-off volume of the crop 3 is larger in the pattern B and the product yield is different. In other words, unless the fishtail shape generated when the material to be rolled having a thickness distribution in the width direction as shown in FIG. 2 is rolled is accurately predicted, a portion (crop) deviated from a rectangle generated during normal rolling. There is a problem that it cannot be reduced efficiently.
[0018]
For example, when considering a case where a tapered plate thickness distribution (length L, height ΔH) as shown in FIG. 3 is applied, Patent Document 3 discloses a method for determining the applied plate thickness distribution as follows. ing.
[0019]
First, as the final crop shape at the time of normal rolling, as shown in FIG. 4, a shoulder drop width W f and a crop length Lc are predicted, and an area to be supplemented (SO = W f × Lc) is calculated. Next, after calculating the height ΔH * from the mass flow constant law with the length L = W f , ΔH * is corrected to ΔH by the width direction plastic flow coefficient. In this way, the conventional method of Patent Document 3 calculates the length L and the height ΔH that minimize the crop loss.
[0020]
However, the premise of L = W f in the conventional method, a material having a thickness distribution as shown in FIG. 4, 90 ° C. rotated width of the fishtail which occurs when the horizontally rolled after (wcrop in Figure 2) shoulder It is determined based on the assumption that it coincides with the falling width W f, and if the assumption that supports this precondition is broken, the optimum thickness distribution (length L and height ΔH) is not necessarily calculated. There is no problem.
[0021]
In the methods of Non-Patent Documents 1 to 3, when rolling a simple cross-sectional slab having a uniform thickness, the planar shape can be predicted with a certain degree of accuracy, but a thickness distribution is given in advance in the width direction. When rolling a slab, the planar shape after rolling cannot be predicted.
[0022]
The present invention has been made to solve the above problems, and provides a method for rolling a thick steel plate capable of calculating with high accuracy the cross-sectional shape of a thick portion necessary for making the final planar shape close to a rectangle. The purpose is to do.
[0023]
[Means for Solving the Problems]
The rolling method of a thick steel plate according to the present invention is a rolling method for controlling the planar shape of a thick steel plate by providing a plate thickness distribution partially having a thick portion in the width direction of the thick steel plate. A step of predicting the planar shape Pru after normal finish rolling in the case where the meat part is not provided, and (b) a step of calculating a shape ΔPr of a portion where the predicted planar shape Pru deviates from the target rectangular planar shape Pro. (C) converting the shape ΔPr of the disengaged portion into a predicted conversion shape ΔPrc after giving a plate thickness distribution partially having a thick portion and subjected to at least one pass rolling; (D) The difference between the predicted planar shape Prda after one-pass rolling and the predicted planar shape Prua after one-pass rolling after the thick-walled portion is partially applied and the thick-walled portion is not applied. Calculating the shape ΔPrd; and (e) the prediction. A step of calculating an area difference ΔAd as a difference between the area A1 of the calculation shape ΔPrc and the area A2 of the difference shape ΔPrd; and (f) a plate thickness distribution that minimizes the area difference ΔAd is given. And a step of determining the dimension and shape of the thick part, respectively.
[0024]
In the step (d), when compared with the predicted planar shape Prua in the case where the thick portion is not provided, the amount Lmax that is most greatly extended by adding the thick portion and the width Wcrop of the region in which the elongation increases are determined. Predict the predicted planar shape Prda using these predictions Lmax and Wcrop, respectively. In the prediction of the amount Lmax that is most greatly extended by adding the thick part and the width Wcrop of the region where the elongation is increased, at least the thick part width with respect to the width L of the thick part, the thickness distribution ΔH, and the plate width W It is desirable to use a ratio W / L of L. In addition, since many data can be obtained from the past rolling performance regarding the maximum elongation amount Lmax and the elongation increase region width Wcrop shown in FIG. 2, the predicted planar shape Prda can be predicted with higher accuracy.
[0025]
In the step (d), the predicted Lmax and Wcrop are predicted using the width L of the thick portion, the thickness distribution ΔH, and the ratio (W / L) of the thick portion width L to the plate width W. Is preferred. Thickness distribution is given by these parameters (Lmax, Wcrop, L, ΔH, W, W / L) and numerical analysis method (Finite Element Method; FEM) using predetermined formulas and / or by lead model rolling simulation test The predicted planar shape Prda in the subsequent one pass can be predicted with higher accuracy.
[0026]
Hereinafter, a method for obtaining the predicted planar shape Prda will be described with reference to FIGS.
FIG. 6A is a schematic plan view showing a state in which all the thick portions extend in the rolling direction when it is assumed that there is no constraint on the flat portion, and FIG. 6B assumes that there is a constraint on the flat portion. It is a plane schematic diagram which shows the actual state after 1-pass rolling a thick part in the case of doing.
[0027]
Assuming that the cross-sectional shape of the thick-walled portion is a triangle, the relationships of equations (1) to (4) are established. However, C11 to C23 are coefficients obtained from the experimental conditions (plate thickness, plate width, reduction condition, roll diameter, etc.) and the planar shape measurement result after rolling.
[0028]
FIG. 7 is a diagram for explaining a method for calculating and predicting the planar shape profile of the rear end portion from Wcrop and Lmax. Assuming that the planar shape curve is fourth-order, the planar shape y is given by equation (5).
[0029]
[Expression 1]
Figure 0004352779
[0030]
As described above, the five coefficients D1 to D5 of the above-mentioned quaternary equation can be determined from Lmax, Wcrop (known), and five symmetrical conditions. For example, a simple formula for predicting the coordinates (xL, Lmax) that becomes Lmax and the coordinates (xa, ya) of another point (inflection point) of the protruding portion is created based on an experiment, and the simple formula is used. To determine the coefficients D1 to D5 . This quartic equation (5) gives the predicted planar shape Prda in one pass after the plate thickness distribution is given. That is, in the present invention, the planar profile is expressed by two representative values of Wcrop and Lmax.
[0031]
FIG. 8 (a) is a schematic plan view showing an ideal rolling state in which the final planar shape is a rectangle, and FIG. 8 (b) is a setting of a target shape after completion of the tentering based on a portion that is insufficient from the rectangle in normal rolling. It is a figure explaining a method.
[0032]
Further, when the shape ΔPrc after the completion of the width finding is obtained with high accuracy, ΔPr obtained from the planar shape at the time of the completion of the width finding obtained by the above-mentioned first approximation, taking into account the width direction metal flow at the width end portion. 1 , ΔPrc 1 is used to determine the final planar shape using a planar shape prediction formula when there is no thick portion in conventional normal rolling, and ΔPr 2 that is insufficient (or excessive) is obtained again.
[0033]
The shape (ΔPrc 2 ) converted at the time of completion of width finding is obtained by the same method as described above. That is, more accurate ΔPrc = ΔPrc 1 + ΔPrc 2 may be set. Reference numeral Y f (x) represents the shortage after the final rolling, the code Y w (x) denotes the shortfall after one pass rolling when having a thick portion in the cross section. The accuracy is improved by repeating the above method.
[0034]
FIG. 9 is a diagram for explaining feedback to subsequent materials. In the figure, a characteristic line P indicated by a solid line represents an actual measurement value, and a characteristic line Q indicated by a broken line represents a predicted value. The planar shape profiles of the predicted value and the actually measured value were compared, and the deviation ratios of Lmax and Wcrop were calculated. As a precondition, it is assumed that the same deviation occurs in the predicted value even in the next material, and that the accuracy of the conventional planar shape prediction formula when the thick portion serving as the base is not given is assumed to be good.
[0035]
RL = δLmax / Lmax
RW = δWcrop / Wcrop
What percentage (coefficient: CoeR, CoeW) of the deviation ratio is added to the predicted value of the next material.
[0036]
Correction of next material Lmax = RL × CoeR × Lmax (predicted value of next material)
Next material correction Wcrop = RL × CoeW × Wcrop (predicted value of next material)
With these corrections, the thick part shape obtained from the flowchart of FIG. 5 is changed.
[0037]
For the purpose of improving the accuracy of the above prediction formulas (1) to (4), the coefficients C11 to C23 in the formulas are calculated as in the multiple regression method based on a large number of actually measured values (measured values) and respective rolling conditions. To learn using traditional techniques.
[0038]
FIG. 10 is a model diagram for explaining a planar shape change due to horizontal rolling.
[0039]
(I) Example of planar shape change model by 1-pass horizontal rolling FIG. 10 shows a planar shape change model when a rectangular steel plate is horizontally rolled. The width variation amount and the crop length are obtained from the equations (6) and (7), respectively. The plate width variation and the leading and trailing end crop length can be approximated by Equations (8) and (9). However, the symbols in the formula are R: work roll radius, Δh: horizontal rolling reduction, Hi: entry side plate thickness, Wo: median plate width.
[0040]
[Expression 2]
Figure 0004352779
[0041]
(Ii) Example of planar shape change model by multi-pass rolling The shape after multi-pass rolling is handled as an integrated value of each pass. Equation (10) and Equation (11) show the sheet width variation and the leading and trailing edge crop shape during multi-pass rolling. However, the symbols in the equations are yw (n), yw (n-1): fluctuation of the exit side plate width in the nth pass and n-1th pass, yw: plate width variation generated in the nth pass, yL (n ), YL (n−1): n-th pass, n−1-th exit side crop shape, yL: crop shape change occurring in the n-th pass, α: elongation correction coefficient, h (n), h (n -1): Thickness of the exit side of the nth and n-1th passes.
[0042]
[Equation 3]
Figure 0004352779
[0043]
(Iii) Verification of planar shape prediction accuracy From the rectangular slab to the planar shape after finishing rolling by superimposing the planar shape variation model due to edging and the planar shape variation model due to horizontal rolling when a thick part is added in the width direction An integrated simulator to predict was constructed. The planar shape prediction accuracy after the rolling is, for example, ± 10 mm in the in-plate width deviation and ± 100 mm in the crop length, and sufficient prediction accuracy to be applied to the planar shape control was obtained. The reason why the crop length prediction accuracy is inferior to the in-plate width deviation is that the prediction error is extended in the longitudinal direction and enlarged.
[0044]
The present invention has been made in examining how the plate thickness distribution imparted during rolling is deformed by subsequent horizontal rolling. In examining the deformation of the material, the present inventors conducted a model rolling experiment using pure lead.
[0045]
In FIG. 11, the horizontal axis indicates the distance (mm) from the plate width edge, and the vertical axis indicates the tongue length (mm) of the trailing end crop, and shows the tongue length distribution of the trailing end crop in the plate width direction. FIG. In the figure, a characteristic line A shows a theoretical value curve calculated based on a constant mass flow rule, and a characteristic line B shows an experimental value curve actually measured using a sample. A thickness distribution such as L = 40 mm and ΔH = 1.0 mm was applied to a material having a thickness of 12 mm × width of 180 mm × length of 300 mm. The theoretical value and the experimental value were examined for the shape of the rear end crop when the thickness distribution imparting material was rolled to a thickness of 10.5 mm.
[0046]
As is apparent from FIG. 11, the so-called fishtail shape is obtained, and the maximum value (Lmax) of elongation occurs almost at the width end. Here, the shape predicted based on the mass flow constant law described in Patent Document 3 is shown in the figure, but it has been found that the elongation at the width end is smaller than the predicted value based on the mass flow constant law. This is because the influence of the width expansion is large at the width end portion. Further, it was found that the width (Wcrop) of the region having a large elongation is larger than L (= 40 mm).
[0047]
From the above experimental results, in order to predict a change in the planar shape that occurs when a material having such a thickness distribution is rolled, as a representative dimension, at least the maximum stretch length shown in FIG. It is necessary to use the width Wcrop of the region where the elongation is large due to the influence of Lmax and the thick portion. For example, the fishtail shape can be predicted by approximating the shape using a quartic curve or the like.
[0048]
Furthermore, after the rolling pass after partially giving the thick part, the planar shape Prdr of the rolled material is measured, and the difference between the measured value of the planar shape Prdr and the value of the predicted planar shape Prda is determined as the next material. You may make it feed back to subsequent rolling.
[0049]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
The embodiment of the present invention will be described with reference to the flowchart of FIG.
First, a crop shape Pru in normal rolling is predicted as indicated by a solid line in the drawing (step S1). For the prediction of the crop shape Pru, for example, a predetermined empirical formula described in Patent Document 3 may be used, or a numerical analysis method (Finite Element Method; FEM) may be used.
[0050]
Next, the normal rolling crop predicted shape Pru is compared with the target rectangular planar shape Pro (broken line in the figure), and the shape ΔPr of the portion where the former deviates from the latter is calculated (step S2).
[0051]
The shape ΔPr of the portion deviating from the calculated rectangle is converted into a shape predicted when the tenter rolling is completed (step S3). In this conversion step S3, considering the case where the sheet thickness distribution is given in the tenth rolling completion pass, the shape of the pattern A shown in FIG. The thickness of the pattern A is converted to a shape A ′ that approximates the pattern B shown in FIG. The primary approximate shape A ′ is a shape obtained by reducing the shape of the portion that is insufficient when the thick-walled portion is not provided in the rolling direction by the reduction ratio, and this calculated shape is a planar shape at the completion of tenter rolling in normal rolling. The planar shape added to is the planar shape Pro (the shape when the tenter rolling is completed) in which the planar shape becomes rectangular in the final finish rolling.
[0052]
In the present embodiment, the primary approximate shape A ′ is used, but FEM may be employed as a method for obtaining the target plane shape with higher accuracy. That is, the target plane shape can be finally obtained by repeating the calculation according to the linear programming method many times using FEM. Alternatively, the shape may be obtained by performing a recursive calculation from the FEM to the final stage of machining.
[0053]
A planar shape Prua in the case where the thick part at the completion of tentering rolling is not given is obtained based on the converted primary approximate predicted shape A ′ (step S4).
[0054]
An initial plate thickness distribution is assumed based on the planar shape Prua in the case where the thick portion at the time of completion of the tentering rolling is not given (step S5). This assumed plate thickness distribution is used when the plate thickness distribution is given to the end of the thick steel plate.
[0055]
After providing the plate thickness distribution, the predicted planar shape Prda in one pass is calculated (step S6). In one pass after the plate thickness distribution is imparted, almost only the thick wall portion is rolled down so as to be flattened. At this time, the thick part tends to extend in the rolling direction, but the part that is hardly crushed restrains the thick part that is not stretched, and the metal near the width end also flows in the width direction. As a result, (i) the length (crop length) protruding in the rolling direction of the thick portion is shortened, and (ii) the width Wcrop where the portion that is not crushed by the thick portion to be stretched is pulled and protruded Becomes larger than the width L to which the thick portion is provided. That is, as shown in FIG. 6A, the ratio of the portion occupied by the thick portion (cross-sectional area S2) to the other portion (cross-sectional area S1) in the material cross section, for example, S1 / (S1 + S2), S2 / ( S1 + S2), the reduction ratio ε2 of the thick wall portion (the reduction strain: the size to be stretched) and the other reduction ratio ε1 are the main parameters for predicting Wcrop and Lmax. The above two formulas (1) and (2) were created. The cross-sectional areas S1 and S2 can be expressed using ΔH and W / L as shown in the above formulas (3) and (4).
[0056]
As shown in FIG. 7, when a planar profile is approximated by a quartic equation (5), the planar profile can be determined from Wcrop and Lmax. This quartic equation (5) gives the predicted planar shape Prda in one pass after the plate thickness distribution is given.
[0057]
The planar shape Prua in the case where the thick portion is not applied is subtracted from the predicted planar shape Prda in one pass, and the difference is set as a difference shape ΔPrd (step S7).
[0058]
The area A2 of the difference shape ΔPrd is subtracted from the area A1 of the shape ΔPrc, and the difference is defined as an area difference ΔAd (= A1−A2) (step S8).
[0059]
The obtained area difference ΔAd is compared with a predetermined allowable area difference As to determine the magnitude (step S9). When the area difference ΔAd is smaller than or equal to the allowable area difference As, it is determined to be acceptable and the calculation is terminated. The predetermined allowable area difference As is not limited to zero but is a value close to zero, and is obtained in advance by experiment for each combination of the plate thickness and the plate width.
[0060]
If the area difference ΔAd is larger than the allowable area difference As, it is determined to be unacceptable, the previous initial plate thickness distribution is corrected (step S10), and the process returns to step S5. In step S5, the corrected sheet thickness distribution is assumed to be the actual rolled sheet thickness distribution. Then, using this corrected plate thickness distribution, the area difference ΔAd is obtained according to the procedure of the above steps S6 to S8, and the magnitude of the obtained area difference ΔAd and the allowable area difference As is repeatedly compared and determined (step S9). Specifically, the thickness B is predicted so that the shape B when the thick portion shape (length L, height ΔH) is rolled with respect to the initial values of the thick portion shape (the length L and the height ΔH) is approximated to the primary approximate shape A ′. Repeat the flesh shape correction. By this processing, it is possible to calculate the optimum values of the length L and the height ΔH so that the crop loss is minimized. In the present invention, there is no particular limitation on the correction amount and correction method for the thick-walled portion shape.
[0061]
In addition, after the rolling pass after giving a thick part partly, the planar shape (Prdr) of a rolling material is measured, and the difference between this measured value and the predicted planar shape (Prda) is the rolling after the next material. You may make it feed back to.
[0062]
【Example】
Next, examples to which the method of the present invention is applied will be described.
[0063]
Crop loss generated in both cases was compared using a thick plate sample whose planar shape was controlled according to the method of the present invention as an example and a thick plate sample whose planar shape was controlled according to the method of Patent Document 3 as a comparative example.
[0064]
As a thick plate sample, a slab having an initial size of 251 mm × width 1320 mm × length 2095 mm was adopted, and it was assumed that a rolled product having a thickness of 9.8 mm × width 2394 mm × length 29500 mm was obtained from this slab. The plate thickness distribution to be given to the thick plate is the cross-sectional shape shown in FIG.
[0065]
Table 1 shows the pass schedules for adjustment rolling, tentering rolling, and finishing rolling, respectively. Adjusted rolling was 3 passes, widening rolling was 4 passes, and finish rolling was 9 passes. In the third pass of adjustment rolling, the thick plate was rotated 90 ° to perform cross roll. In the fourth pass of the tenter rolling, a plate thickness distribution was given to the thick plate by 1-3 passes, and then this was rotated 90 ° to perform cross roll.
[0066]
Since the crop length Lc during normal rolling is 430 mm and the shoulder drop width W is 400 mm, in the comparative example, the length Lc = W = 400 mm and the height ΔH = 7.0 mm. On the other hand, in the example to which the method of the present invention was applied, the length Lc = 350 mm and the height ΔH = 16.2 mm.
[0067]
[Table 1]
Figure 0004352779
[0068]
FIG. 12 shows the ratio of the crop loss CR2 when the conventional method (comparative example using the method of Patent Document 3) and the method of the present invention (the above-mentioned embodiment) are applied to the crop loss CR1 during normal rolling (CR2 / CR1). As is apparent from this figure, the crop loss is reduced by about 35% when the conventional method is applied, but the crop loss can be reduced by about 65% when the method of the present invention is applied.
[0069]
【The invention's effect】
The present invention provides a plate thickness distribution having a thin portion and a thick portion in the width direction of the material, thereby determining the thickness distribution to be applied in a rolling method of a thick steel plate that is rolled while controlling the planar shape. By predicting the planar shape change in rolling after imparting the plate thickness distribution, the cross-sectional shape of the thick part necessary to make the final planar shape close to a rectangle can be calculated with high accuracy. For this reason, crop loss is significantly reduced as compared with the prior art, and the product yield can be dramatically improved.
[Brief description of the drawings]
1A is a schematic cross-sectional view showing a rear end portion (pattern A) of a thick steel plate during normal rolling, and FIG. 1B shows a rear end portion (pattern B) of another thick steel plate during normal rolling. FIG.
2A is a schematic plan view showing a rear end portion of a thick steel plate, and FIG. 2B is a schematic cross-sectional view showing a rear end portion of the thick steel plate.
FIG. 3 is a schematic cross-sectional view showing a rear end portion of a thick steel plate.
FIG. 4 is a schematic plan view showing a normally rolled crop shape.
FIG. 5A is a flowchart showing a method for rolling a thick steel plate according to the present invention, and FIG. 5B is a schematic diagram showing a cross section of the thick steel plate corresponding to each step.
FIG. 6A is a schematic plan view showing a state in which all thick portions are extended in the rolling direction when it is assumed that there is no flat portion constraint, and FIG. 6B is a case where there is a flat portion constraint. The plane schematic diagram which shows the actual state after 1-pass rolling a thick part.
FIG. 7 is a diagram for explaining a calculation prediction method of a planar shape profile of a rear end portion from Wcrop and Lmax.
FIG. 8A is a schematic plan view showing an ideal rolling state in which the final planar shape is a rectangle, and FIG. 8B is a method for setting a target shape after the completion of the tentering based on a portion that is insufficient from the rectangle in normal rolling. Illustration to explain.
FIG. 9 is a diagram for explaining feedback to subsequent materials.
FIG. 10 is a model diagram illustrating a change in planar shape due to horizontal rolling.
FIG. 11 is a characteristic diagram showing a tongue length distribution of a trailing end crop in a plate width direction.
FIG. 12 is a graph showing a comparison of the crop loss between the method of the present invention and the conventional method.
[Explanation of symbols]
2. Thick steel plate,
3 ... Crop,
Pru ... Crop shape in normal rolling (predicted plane shape),
Pro: Target rectangular planar shape,
ΔPr: the shape of the part out of the rectangle,
ΔPrc: Predicted conversion shape after 1 pass,
Prua: Predicted planar shape after one pass when no thick part is given,
Prda: Predicted plane shape in one pass after plate thickness distribution is given,
ΔPrd ... difference shape (= Prda-Prua),
A1: Area of the predicted conversion shape ΔPrc,
A2: Area of the difference shape ΔPrd,
ΔAd: Area difference (= A1-A2).

Claims (3)

厚鋼板の幅方向に部分的に厚肉部を有する板厚分布を付与することにより、厚鋼板の平面形状を制御する圧延方法において、
(a)厚肉部を付与しない場合における通常の仕上げ圧延後の平面形状Pruを予測する工程と、
(b)前記予測平面形状Pruが目標とする矩形の平面形状Pr0から外れる部分の形状ΔPrを算出する工程と、
(c)前記外れる部分の形状ΔPrを、部分的に厚肉部を有する板厚分布を付与した後であって少なくとも1パスの圧延を受けた後の予測換算形状ΔPrcに換算する工程と、
(d)部分的に厚肉部を付与した後であって1パス圧延後の予測平面形状Prdaと厚肉部を付与しない場合であって1パス圧延後の予測平面形状Pruaとの差分として差形状ΔPrdを算出する工程と、
(e)前記予測換算形状ΔPrcの面積A1と前記差形状ΔPrdの面積A2との差分として面積差ΔAdを算出する工程と、
(f)前記面積差ΔAdが最小となるような板厚分布が付与されるように、厚肉部の寸法および形状をそれぞれ決定する工程と、
を具備することを特徴とする厚鋼板の圧延方法。
In the rolling method for controlling the planar shape of the thick steel plate by giving a plate thickness distribution having a thick part partly in the width direction of the thick steel plate,
(A) a step of predicting a planar shape Pru after normal finish rolling in the case where a thick part is not provided;
(B) calculating a shape ΔPr of a portion where the predicted planar shape Pru deviates from the target rectangular planar shape Pr0;
(C) a step of converting the shape ΔPr of the disengaged portion into a predicted conversion shape ΔPrc after giving a plate thickness distribution partially having a thick portion and subjected to at least one pass rolling;
(D) The difference between the predicted planar shape Prda after one-pass rolling and the predicted planar shape Prua after one-pass rolling after the thick-walled portion is partially applied and the thick-walled portion is not applied. Calculating the shape ΔPrd;
(E) calculating an area difference ΔAd as a difference between the area A1 of the predicted conversion shape ΔPrc and the area A2 of the difference shape ΔPrd;
(F) determining the dimensions and the shape of the thick portion so that a plate thickness distribution is provided so that the area difference ΔAd is minimized;
A method of rolling a thick steel plate, comprising:
前記工程(d)では、厚肉部を付与しない場合の前記予測平面形状Pruaと比較した場合に、厚肉部を付与することにより最も大きく伸びる量Lmaxと伸びが増加する領域の幅Wcropとをそれぞれ予測し、これらの予測LmaxおよびWcropを用いて前記予測平面形状Prdaを予測することを特徴とする請求項1に記載の方法。  In the step (d), when compared with the predicted planar shape Prua in the case where the thick part is not provided, the amount Lmax which is most greatly extended by providing the thick part and the width Wcrop of the region where the increase in elongation is obtained. The method according to claim 1, wherein each prediction is performed and the predicted planar shape Prda is predicted using these predictions Lmax and Wcrop. 前記工程(d)では、厚肉部の幅L、肉厚分布ΔH、および板幅Wに対する厚肉部幅Lの比(W/L)を用いて前記予測LmaxおよびWcropを予測することを特徴とする請求項2に記載の方法。In the step (d), the predicted Lmax and Wcrop are predicted using the width L of the thick portion, the thickness distribution ΔH, and the ratio (W / L) of the thick portion width L to the plate width W. The method according to claim 2.
JP2003182812A 2003-06-26 2003-06-26 Thick steel plate rolling method Expired - Lifetime JP4352779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182812A JP4352779B2 (en) 2003-06-26 2003-06-26 Thick steel plate rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182812A JP4352779B2 (en) 2003-06-26 2003-06-26 Thick steel plate rolling method

Publications (2)

Publication Number Publication Date
JP2005014055A JP2005014055A (en) 2005-01-20
JP4352779B2 true JP4352779B2 (en) 2009-10-28

Family

ID=34183097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182812A Expired - Lifetime JP4352779B2 (en) 2003-06-26 2003-06-26 Thick steel plate rolling method

Country Status (1)

Country Link
JP (1) JP4352779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974624A (en) * 2012-12-06 2013-03-20 秦皇岛首秦金属材料有限公司 Edge plane shape control method of large-expansion-ratio high strength grade pipeline steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018260B2 (en) * 2007-06-13 2012-09-05 Jfeスチール株式会社 Plate rolling method and plate rolling apparatus
JP5740827B2 (en) * 2010-03-30 2015-07-01 Jfeスチール株式会社 Thick plate rolling method
JP6222181B2 (en) * 2014-08-20 2017-11-01 Jfeスチール株式会社 Method and apparatus for rolling thick steel plates
CN112139243A (en) * 2020-08-27 2020-12-29 柳州钢铁股份有限公司 Method for improving steel plate tail rectangularity in medium and heavy plate rolling process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974624A (en) * 2012-12-06 2013-03-20 秦皇岛首秦金属材料有限公司 Edge plane shape control method of large-expansion-ratio high strength grade pipeline steel
CN102974624B (en) * 2012-12-06 2015-01-21 秦皇岛首秦金属材料有限公司 Edge plane shape control method of large-expansion-ratio high strength grade pipeline steel

Also Published As

Publication number Publication date
JP2005014055A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US6418354B1 (en) Optimizing the band width at the band ends on a mill train
JP4352779B2 (en) Thick steel plate rolling method
JP7135962B2 (en) Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method
JP2000033411A (en) Device for measuring genetic factor in rolling
JP2006309709A (en) Result prediction device, control device and quality design device
KR100931541B1 (en) Rolled plate shape control method
JP2007050413A (en) Method and apparatus for controlling steel sheet width
CN114042760B (en) Method for improving wedge-shaped section of strip steel through lower working roll shifting compensation value
JP2004358492A (en) Thick plate rolling method
JP2003311326A (en) Steel plate manufacturing method
JPS6326219A (en) Diciding method for running conditions of tension leveller
JPH06277728A (en) Method for controlling and setting plate crown
KR100939248B1 (en) Width control of broadside rolling in hot plate mill
JP7115459B2 (en) Thick steel plate rolling method and rolling apparatus
JP7388459B2 (en) Pass schedule calculation method for steel plate rolling process, pass schedule calculation device for steel plate rolling process, and steel plate rolling method
JP3516726B2 (en) Edge drop control method during cold rolling
KR100910491B1 (en) Method for decision of strip target shape using thickness profile
JP6822390B2 (en) Rough rolling time calculation method for thick steel sheets, rough rolling time calculation device for thick steel sheets, and manufacturing method for thick steel sheets
JP5018260B2 (en) Plate rolling method and plate rolling apparatus
KR20020051653A (en) On line width control method in hot plate mill
JP2003290808A (en) Method for controlling sheet width in tandem cold rolling
JP4140316B2 (en) Metal plate manufacturing method
CN117443930A (en) Method for improving width precision of rough rolling R1 frame outlet
JP2003326305A (en) Method for controlling shape in cold rolling
JP2005059053A (en) Method for controlling width of sheet in cold tandem rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Ref document number: 4352779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term