JP4352301B2 - Electromagnetic fuel injection valve - Google Patents

Electromagnetic fuel injection valve Download PDF

Info

Publication number
JP4352301B2
JP4352301B2 JP2001297580A JP2001297580A JP4352301B2 JP 4352301 B2 JP4352301 B2 JP 4352301B2 JP 2001297580 A JP2001297580 A JP 2001297580A JP 2001297580 A JP2001297580 A JP 2001297580A JP 4352301 B2 JP4352301 B2 JP 4352301B2
Authority
JP
Japan
Prior art keywords
fuel injection
movable core
core
fuel
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001297580A
Other languages
Japanese (ja)
Other versions
JP2003106236A (en
Inventor
正博 岡嶋
義智 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001297580A priority Critical patent/JP4352301B2/en
Publication of JP2003106236A publication Critical patent/JP2003106236A/en
Application granted granted Critical
Publication of JP4352301B2 publication Critical patent/JP4352301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Description

【0001】
【発明の属する技術分野】
本発明は、電磁力により作動する燃料噴射弁に関するものである。
【0002】
【従来の技術】
最近のガソリンエンジンやディーゼルエンジンは、高出力、低騒音等に加え、低燃費で、厳しい排ガス規制等を満足することが求められる。このため、エンジンへの燃料供給は燃料噴射弁によって正確に行われる。
燃料噴射弁は、図1を参照するとわかるように、例えば、円筒状のパイプに固定コアと、弁体に結合された可動コアとが収納され、それらの外周側に電磁コイルが配設されている。固定コアと可動コアとは磁気回路の一部を形成している。電磁コイルが給電を受けて起磁力を生じると、固定コアと可動コアとの間に磁路が形成される。そして、可動コアが固定コアに電磁力によって吸引されて、弁体が上昇し燃料噴射孔を開孔する。逆に、電磁コイルへの給電を遮断すると、スプリング(付勢手段)によって可動コアは固定コアから引離され、弁体が下降し燃料噴射孔を閉孔する。この燃料噴射弁は、制御装置(ECU)によって制御され、通常は、電磁コイルへの印加電圧(駆動パルス)を調整して行われる。そして、弁体による燃料噴射孔の開閉時間や開閉タイミングを制御することにより、吸気管やシリンダ内へ噴射される燃料の噴射量や噴射時期等が高精度に制御される。
【0003】
自動車エンジンに要求される高出力化、低騒音化、低燃費化、排ガスのクリーン化を達成するためには、このような燃料噴射弁の制御をより高精度化する必要がある。すなわち、燃料噴射量の制御性の向上、さらには噴射開始時間及び終了時間の短縮化などが要請されており、これらに応えるためには、燃料噴射孔を開閉する弁体の応答性を高めることが必要である。
【0004】
弁体の応答性向上を目的とした可動コアの形状が、特表平8−506876号公報や特開2000−265919号公報に開示されている。特表平8−506876号公報には、可動コア端面に円環状突起を形成することが開示されている。これによると、可動コアが固定コアに吸引されて衝突する際、衝突面が小さいため液圧による固着(固定コアから可動コアが離反するとき界面に負圧が発生し、離反に抗する力が働くため固着する現象、メタル接触ともいう)が回避され、可動コアの離反(弁体の下降)側応答性が向上するとある。また、特開2000−265919号公報には、固定コアに対向する可動コアの端面を、その中央に位置する燃料通路に向けて僅かに下降するテーパ面とすることが開示されている。これによると、その可動コアが固定コネクタに吸引される場合、可動コアの動きに応じて、可動コアと固定コアとの間に介在する燃料は、そのテーパ面に案内されて中央の燃料通路へ逃される。その結果、その介在する燃料によるダンパー作用が低減され、可動コアの吸引側の応答性が向上するとある。一方、可動コアが離反するときは、そのテーパ面によりエアが導入されて、可動コアと固定コアとの間の負圧の発生(吸付き)が抑制される。よって、同様に可動コアの離反側の応答性が向上する旨が開示されている。
【0005】
しかし、これら公報に開示された燃料噴射弁は、いずれも可動コアに突起が一つだけ形成されているため、可動コアが固定コアに吸引される場合、可動コアと固定コアの間に介在する燃料が逃げてしまい、燃料によるダンパー効果が小さくなる。その結果、可動コアが固定コアに高速で衝突し、その衝撃反力で可動コアが固定コアから離反する。離反して衝撃反力より固定コアの吸引力が大きくなると、吸引され衝突するといった吸引と離反が繰り返される現象が発生する。可動コアと弁体は、一体で動くため、可動コアの吸引側は弁体の上昇側になる。弁体の上昇と下降の挙動を模式的に示すと図4のようになり、可動コアが吸引・離反を繰り返す現象は、弁体が上昇する初期(図4の円で囲む領域)すなわち開弁初期挙動に対応し、開弁バウンス(弁が弾む)といわれる。図5は電磁コイルへ印加する駆動パルスと燃料噴射量の関係を模式的に示したもので、可動コアが固定コアに吸着すると一定開弁状態になり、それ以後は点線のように駆動パルス数に比例して噴射量が増大する。しかし、開弁バウンスがあると実線のように噴射量が変動し、噴射量の変動幅Δqは開弁バウンスが大きくなると大きくなる。
このように、公報に開示された燃料噴射弁は、開弁バウンスが発生し、噴射量が変動するという問題を有している。
【0006】
【発明が解決しようとする課題】
本発明は、弁体の上昇と下降の応答性を損なうことなく開弁バウンスの発生を抑制し燃料噴射量の変動幅を小さくした電磁式燃料噴射弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
課題を解決するための第1の手段は、円筒状のパイプと、電磁コイルと、該電磁コイルの励磁による磁束の磁路を形成する該パイプの内周側に嵌挿して固定された固定コアと、該電磁コイルの励磁に応答して該固定コアに吸引される該パイプの内周側に摺動可能に嵌挿された可動コアと、該可動コアに一体であると共に燃料噴射孔を開閉可能な弁体と、を有すると共に、前記固定コア及び可動コアの中央部側には、前記燃料噴射孔に連通する燃料通路が形成してある電磁式燃料噴射弁であって、
前記固定コアと前記可動コアが対面する両円環状端面の少なくともどちらか一方の円環状端面は、中心側及び遠心側に径方向中央部を隔てて内側円環状突起と外側円環状突起を有することを特徴とする電磁式燃料噴射弁である。
【0008】
可動コアが吸引時に上昇することでできる内側円環状突起、外側円環状突起、可動コア端面及び固定コア端面で区画される領域(実施形態に係る図2の容積V部)の油圧ダンパー作用で、可動コアが固定コアに衝突する速度を抑え、開弁バウンスを抑制することができる。開弁工程中は、内側円環状突起および外側円環状突起と固定コアとの間の隙間が大きいため、V内の燃料がVの外へ排出され易い(開弁応答性を悪化させない)。フルリフト(内側円環状突起が固定コアに衝突する)直前に、V内の燃料は、外側円環状突起と固定コアの間の微小な隙間からしか排出されないので(燃料が逃げ出せず、V内の燃料圧が急激に上昇し)開弁バウンスを抑制できる。また、可動コアと固定コアの間の衝突面(接触面)が小さいため、駆動パルスオフ時に可動コアは固定コアから離れ易くなり、弁体の応答性(閉弁応答性)が悪くならない。
内側円環状突起と外側円環状突起の高さは同じでもよいが、同じにすると、前記区画領域が完全に閉じた領域になり油圧ダンパー作用が大きくなる。固定コアの電磁吸引力などの条件によっては、油圧ダンパー作用が大きくなり過ぎ、開弁バウンスは抑制できるが、駆動パルスオフ時に、可動コアが固定コアから離れにくくなるため、閉弁応答性が悪くなる。したがって、高さが同じでない方が好ましい。高さが異なると、低い方の円環状突起と対向面との間の隙間(エアーギャップA/G)から燃料を逃がすことができるため、油圧ダンパー作用の最適化を図ることができる。フルリフト直前の内側円環状突起および外側円環状突起とその対向面(固定コア)のスクイーズの効果も弁の衝突速度を抑え、開弁バウンス低減に有効に働く。
【0009】
課題を解決するための第の手段は、更に、前記内側円環状突起は前記外側円環状突起より高い電磁式燃料噴射弁である。
【0011】
課題を解決するための第の手段は、第の手段であって、前記外側円環状突起の高さは、1〜25μmである電磁式燃料噴射弁である。
【0012】
内側円環状突起、外側円環状突起、固定コア端面、及び可動コア端面で区画される領域の容積をV、V内に流入してきた燃料量をΔV、燃料の体積弾性係数をEとすると、容積Vの領域の圧力上昇ΔPは次式のようになる。
ΔP=EΔV/V
したがって、油圧ダンパー作用はVに反比例し、Vを小さくすることでも開弁バウンスを抑制することができる。図5は開弁バウンスによる噴射量の変動幅ΔqとVおよびA/Gとの関係を示したグラフで、Vを矢印のように小さくすると、開弁バウンスが抑制されΔqが小さくなる。Vは外側円環状突起の高さに比例する(実施の形態に係る図2参照)ので高さを小さくすればよいが、発明者らの実験によると、1μm未満では、油圧ダンパー作用が大きくなり、磁気吸引力を増加させる必要があった。磁気吸引力を増加させると、磁気切れ悪化による閉弁速度の低下を招いてしまうので、高さの下限は1μmが適当である。一方、高さを大きくすると油圧ダンパー作用が低下するので、当然上限が存在する。発明者らの実験によれば、25μmであった。
【0013】
課題を解決するための第の手段は、第1〜のいずれかの手段であって、前記内側円環状突起と前記外側円環状突起の高さの差が1〜50μmである電磁式燃料噴射弁である。
【0014】
可動コアが固定コアに衝突する直前に、前述の容積Vの区画領域内の燃料は、内側円環状突起と対向面との間の隙間がなくなるため、外側円環状突起と対向面との間の隙間(A/G)のみから逃げ出すが、A/Gが小さくなると油圧ダンパー作用が大きくなり、A/Gが大きくなると油圧ダンパー作用が小さくなる。したがって、図5に示すように、噴射量の変動幅Δqは、A/Gに比例するため、Δqを所定の値にするためには、前述のVに応じてA/Gを選定すれば良いことがわかる。VとA/Gの組み合わせが使えるので、弁体の応答性を悪化させないで開弁バウンスを抑制しΔqを所定の値にすることが容易にできる。しかし、A/Gを小さくし過ぎると、油圧ダンパー作用が大きくなり過ぎるし、A/Gを大きくし過ぎると、油圧ダンパー作用が小さくなり過ぎるので、A/Gすなわち、内側円環状突起と外側円環状突起の高さの差には最適範囲が存在する。発明者らの実験によれば高さの差が1〜10μmのとき油圧ダンパー作用が有効に働き、開弁バウンスを抑制することができ、噴射量の変動幅Δqを所定の値にすることができると共に、弁体の応答性を悪化させないことがわかった。
【0015】
【発明の実施の形態】
次に、実施形態を挙げ、本発明をより具体的に説明する。
本発明の実施形態である燃料噴射弁1の縦断面図を図1に示す。この燃料噴射弁1は、自動車用ガソリンエンジンのシリンダヘッドに配設されるものである。つまり、シリンダ内に直接燃料を噴射する、いわゆる直噴タイプの電磁式燃料噴射弁である。
燃料噴射弁1は、燃料供給部10と、電磁駆動部20と、弁部30と、電気コネクタ部40とからなる。
燃料供給部10は、高圧燃料が供給されるコモンレール(図略)に接続される燃料コネクタ11と、その内部に形成された燃料通路111に設けられる燃料フィルター12と、燃料コネクタ11の外周側に嵌入されたOリング13とからなる。コモンレールと燃料コネクタ11とは、このOリング13を介して油密状態に接続される。
【0016】
電磁駆動部20は、底部中央が開口した有底円筒状のパイプ21と、パイプ21内に圧入固定される段付き円筒状の固定コア22と、固定コア22と燃料噴射弁1の軸線1Aと同軸的に対向して配設される段付き円筒状の可動コア23と、起磁力を生じさせる電磁コイル24と、パイプ21と後述のノズルホルダ33との間で磁気回路を形成する磁性プレート25と、可動コア23を図下方に付勢するスプリング26と、その付勢力を調整するアジャスタ27とからなる。
固定コア22は、パイプ21に圧入される圧入部221と、圧入部221と同軸的に図下方に延びる縮径した縮径部222とからなる。そして、固定コア22は、圧入部221がパイプ21に圧入されると共にその部分で油密状に溶接固定されている。また、固定コア22の軸中央部には、燃料通路111に連通する燃料通路223が形成されている。この燃料通路223には、スプリング26と円筒状のアジャスタ27とも納められている。
【0017】
可動コア23は、パイプ21に嵌挿されてその内周面と摺動するガイド部231と、ガイド部231から同軸的に図下方に延びる縮径部232と、縮径部232から図下方に突出し、下面に開口した有底円筒状の支持部233とからなる。支持部233の図下方には、後述するニードル弁31の頭部がその円筒開口から圧入され溶接固定されている。また、可動コア23の中央部には燃料通路234が形成されている。この燃料通路234の図上方はスプリング26の座面となっている。また、燃料通路234は、支持部233に穿設した貫通孔235と連通している。
【0018】
なお、パイプ21の図上方の開口部には、前述の燃料コネクタ11が嵌装され、溶接で燃料シール固定されている。また、パイプ21、固定コア22、可動コア23、磁性プレート25および後述のノズルホルダ33は鉄系の磁性材料からなる。
【0019】
弁部30は、弁体であるニードル弁31と、先端に燃料噴射孔321が穿設された円筒状のノズル32と、ノズル32を固定保持するノズルホルダ33とからなる。
ニードル弁31は、そのガイド部311とノズル32の内周面とを摺動させながら往復動する。このニードル弁31の往復動により、ニードル弁31の先端テーパ面と燃料噴射孔321のテーパ座面とが離着座して、燃料噴射孔321の開閉(開弁・閉弁)がなされる。なお、燃料噴射孔321のさらに先端には、複数の噴孔322が形成されている。燃料は、この噴孔322からシリンダ(図略)内に噴射される。
【0020】
電気コネクタ部40は、パイプ21およびノズルホルダ33に嵌装された樹脂モールド成形部材である。電気コネクタ部40は、パイプ21の側方から延在したコネクタ41と、コネクタ41の内側から突出したターミナル42と、ターミナル42と電磁コイル24と接続する埋設された導線43とからなる。
ターミナル42に電力供給源である電子制御装置(ECU)から電圧が印加(駆動パルスが供給)されると、電磁コイル24に電流が流れる。電磁コイル24は、励磁されて、その電流量に応じた起磁力を生じる。そして、可動コア23→固定コア22→パイプ21→磁性プレート25→ノズルホルダ33→パイプ21→可動コア23と形成された磁気回路を磁束が伝わり、可動コア23およびニードル弁31をスプリング26の付勢力に抗して上昇させる。駆動パルスの供給が停止されると、起磁力が消滅し、可動コア23およびニードル弁31はスプリング26の付勢力で下降する。
【0021】
図2は図1の噴射弁の固定コア22と可動コア23の対面する両端面付近の拡大断面図である。
固定コア22の縮径部222は、水平の(噴射弁1の軸線1Aと直交する)固定作用面228を有している。
可動コア23のガイド部231は、固定作用面228に対向する水平の可動作用面238を有し、外周部に例えば高さ5μmの外側円環状突起230を、内周部に例えば高さ10μmの内側円環状突起239を有している。
【0022】
駆動パルスによって電磁コイル24に起磁力が発生すると、可動コア23が上昇し、内側円環状突起239が固定コア22の固定作用面228に衝突し、開弁するようになる。その際、それまで固定作用面228と可動作用面238の間に介在していた燃料は、外側円環状突起230と固定作用面228の間の隙間A/Gを通して抵抗を受けながら(逃げ出し、さらに、ガイド部231の外周部とパイプ21の内周部の隙間を通して抵抗を受けながら)逃げ出す。したがって、可動コア23の上昇時、燃料の油圧ダンパー作用が働くようになり、内側円環状突起239の上昇速度は小さくなり、開弁バウンスを抑制することができた。
【0023】
図3は本発明の第2の実施形態による電磁式燃料噴射弁における固定コア22と可動コア23の対面する両端面付近の拡大断面図である。実施形態1の図2と同じ要素には同じ番号を付す。
第1の実施形態と異なる点は、可動作用面238が水平でなくガイド部231の外周部に向けテーパになっている点と、そのテーパの終端が外側円環状突起230の上面の一端とつながっている点とである。
【0024】
固定作用面228と可動作用面238の間に介在する燃料による油圧ダンパー作用で開弁バウンスが抑制される効果は第1の実施形態と同じであるが、可動作用面238が外周部に向けてテーパで、かつ、その終端が外側円環状突起230の上面の一端とつながっているので、可動コア23のガイド部231への外側円環状突起、内側円環状突起の形成が容易である点有利である。
【0025】
なお、可動作用面238をガイド部231の内周部に向けてテーパとし、そのテーパ終端を内側円環状突起239の上面の一端とつながるようにしても良いことは当然である。
【0026】
【発明の効果】
本発明の燃料噴射弁によれば、固定コアと可動コアが対面する両円環状端面の少なくともどちらか一方の円環状端面は、中心側及び遠心側に径方向中央部を隔てて内側円環状突起と外側円環状突起を有しているので、可動コアが吸引時に上昇することでできる内側円環状突起、外側円環状突起、可動コア端面及び固定コア端面で区画される領域(容積V)の油圧ダンパー作用で、可動コアが固定コアに衝突する速度を抑え、開弁バウンスを抑制することができる。しかも、油圧ダンパー作用は、容積Vと内側円環状突起と外側円環状突起の高さの差(A/G)に依存するので、可動コアの応答性を低下させずに、開弁バウンスによる噴射量の変動幅Δqを所定の値にするのにVとA/Gの組み合わせで行うことができ、容易に実施できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る燃料噴射弁を示す断面である。
【図2】本発明の第1の実施形態に係る燃料噴射弁の固定コアと可動コアとの拡大断面図である。
【図3】本発明の第2の実施形態に係る燃料噴射弁の固定コアと可動コアとの拡大断面図である。
【図4】弁体の上昇と下降挙動を説明する模式図である。
【図5】噴射量の変動幅を説明するための噴射量と駆動パルスの関係を示すグラフである。
【図6】噴射量の変動幅Δqと固定コアと可動コアの間の容積VおよびエアギャップA/Gとの関係を示すグラフである。
【符号の説明】
1 燃料噴射弁
21 パイプ
22 固定コア
23 可動コア
24 電磁コイル
31 ニードル弁(弁体)
111,234 燃料通路
230 外側円環状突起
239 内側円環状突起
321 燃料噴射孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection valve that operates by electromagnetic force.
[0002]
[Prior art]
Recent gasoline engines and diesel engines are required to satisfy strict exhaust gas regulations with low fuel consumption and high fuel efficiency in addition to high output and low noise. For this reason, the fuel supply to the engine is accurately performed by the fuel injection valve.
As shown in FIG. 1, for example, a fuel injection valve includes a cylindrical core in which a fixed core and a movable core coupled to a valve body are housed, and an electromagnetic coil is disposed on the outer peripheral side thereof. Yes. The fixed core and the movable core form part of the magnetic circuit. When the electromagnetic coil receives power and generates magnetomotive force, a magnetic path is formed between the fixed core and the movable core. Then, the movable core is attracted to the fixed core by electromagnetic force, and the valve body rises to open the fuel injection hole. Conversely, when the power supply to the electromagnetic coil is cut off, the movable core is separated from the fixed core by the spring (biasing means), the valve body is lowered, and the fuel injection hole is closed. This fuel injection valve is controlled by a control unit (ECU), and is usually performed by adjusting the voltage (drive pulse) applied to the electromagnetic coil. By controlling the opening / closing time and opening / closing timing of the fuel injection hole by the valve body, the injection amount and injection timing of the fuel injected into the intake pipe and the cylinder are controlled with high accuracy.
[0003]
In order to achieve the high output, low noise, low fuel consumption, and clean exhaust gas required for automobile engines, it is necessary to improve the control of such fuel injection valves. That is, there is a demand for improved controllability of the fuel injection amount, and further shortening of the injection start time and end time. In order to meet these demands, the responsiveness of the valve body that opens and closes the fuel injection hole is improved. is required.
[0004]
The shape of the movable core for the purpose of improving the responsiveness of the valve body is disclosed in JP-T-8-506876 and JP-A-2000-265919. Japanese Patent Laid-Open No. 8-506876 discloses that an annular protrusion is formed on the end surface of the movable core. According to this, when the movable core is attracted to and collides with the fixed core, the collision surface is small, so that the pressure is fixed due to hydraulic pressure (negative pressure is generated at the interface when the movable core is separated from the fixed core, and the force against the separation is The phenomenon of sticking to work, also referred to as metal contact) is avoided, and the movable core separation (valve element lowering) side response is improved. Japanese Patent Laid-Open No. 2000-265919 discloses that the end surface of the movable core facing the fixed core is a tapered surface that slightly descends toward the fuel passage located at the center thereof. According to this, when the movable core is sucked into the fixed connector, the fuel interposed between the movable core and the fixed core is guided by the tapered surface to the central fuel passage according to the movement of the movable core. To be missed. As a result, the damper action by the intervening fuel is reduced, and the responsiveness on the suction side of the movable core may be improved. On the other hand, when the movable core separates, air is introduced by the tapered surface, and generation (sucking) of negative pressure between the movable core and the fixed core is suppressed. Therefore, it is disclosed that the responsiveness on the separation side of the movable core is improved similarly.
[0005]
However, since the fuel injection valves disclosed in these publications all have only one protrusion formed on the movable core, when the movable core is attracted to the fixed core, it is interposed between the movable core and the fixed core. The fuel escapes and the damper effect by the fuel is reduced. As a result, the movable core collides with the fixed core at high speed, and the movable core separates from the fixed core by the impact reaction force. If the suction force of the fixed core becomes larger than the impact reaction force after separation, a phenomenon occurs in which suction and separation such as suction and collision are repeated. Since the movable core and the valve body move together, the suction side of the movable core is the ascending side of the valve body. The behavior of the valve body ascending and descending is schematically shown in FIG. 4, and the phenomenon in which the movable core repeats suction and separation is the initial stage in which the valve body ascends (region surrounded by a circle in FIG. 4), that is, valve opening. Corresponding to the initial behavior, it is said to be a valve opening bounce. FIG. 5 schematically shows the relationship between the drive pulse applied to the electromagnetic coil and the fuel injection amount. When the movable core is attracted to the fixed core, the valve is in a constant valve open state, and thereafter, the number of drive pulses as indicated by the dotted line. The injection amount increases in proportion to However, if there is a valve opening bounce, the injection amount varies as shown by the solid line, and the fluctuation range Δq of the injection amount increases as the valve opening bounce increases.
As described above, the fuel injection valve disclosed in the publication has a problem that valve opening bounce occurs and the injection amount fluctuates.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an electromagnetic fuel injection valve in which the occurrence of valve opening bounce is suppressed and the fluctuation range of the fuel injection amount is reduced without impairing the responsiveness of rising and lowering of the valve body.
[0007]
[Means for Solving the Problems]
A first means for solving the problem is a fixed core that is fitted and fixed to a cylindrical pipe, an electromagnetic coil, and an inner peripheral side of the pipe that forms a magnetic path of magnetic flux by excitation of the electromagnetic coil A movable core that is slidably fitted on the inner peripheral side of the pipe that is attracted to the fixed core in response to excitation of the electromagnetic coil, and that is integral with the movable core and opens and closes the fuel injection hole An electromagnetic fuel injection valve having a fuel passage communicating with the fuel injection hole at a central portion side of the fixed core and the movable core,
At least one of the annular end surfaces of the fixed core and the movable core facing each other has an inner annular projection and an outer annular projection on the center side and the distal side with a radial center portion therebetween. This is an electromagnetic fuel injection valve characterized by the following.
[0008]
With the hydraulic damper action of the region (volume V part of FIG. 2 according to the embodiment) defined by the inner annular projection, the outer annular projection, the movable core end surface, and the fixed core end surface that can be raised when the movable core is lifted, The speed at which the movable core collides with the fixed core can be suppressed, and the valve opening bounce can be suppressed. During the valve opening process, the gaps between the inner annular protrusion and the outer annular protrusion and the fixed core are large, so that the fuel in V is easily discharged out of V (does not deteriorate the valve opening response). Immediately before the full lift (the inner annular protrusion collides with the fixed core), the fuel in V is discharged only from a minute gap between the outer annular protrusion and the fixed core (the fuel does not escape, the fuel in V The pressure rises rapidly, and the valve opening bounce can be suppressed. Further, since the collision surface (contact surface) between the movable core and the fixed core is small, the movable core is easily separated from the fixed core when the drive pulse is turned off, and the responsiveness (valve closing response) of the valve body is not deteriorated.
The inner annular projection and the outer annular projection may have the same height, but if they are the same, the partition region becomes a completely closed region and the hydraulic damper action increases. Depending on conditions such as the electromagnetic attraction force of the fixed core, the hydraulic damper action becomes too large and valve opening bounce can be suppressed, but the movable core is difficult to separate from the fixed core when the drive pulse is off, resulting in poor valve closing response. . Therefore, it is preferable that the heights are not the same. If the heights are different, the fuel can escape from the gap (air gap A / G) between the lower annular projection and the opposing surface, so that the hydraulic damper action can be optimized. The effect of the squeeze of the inner annular projection and the outer annular projection immediately before the full lift and the opposing surface (fixed core) also suppresses the collision speed of the valve and effectively works to reduce the valve opening bounce.
[0009]
First means for solving the problem, further, the inner annular protrusion is a high electromagnetic fuel injection valve than the outer annular projection.
[0011]
Second means for solving the problems is a first means, the height of the outer annular projection is an electromagnetic fuel injection valve is 1 to 25 m.
[0012]
If the volume of the region defined by the inner annular protrusion, the outer annular protrusion, the fixed core end face, and the movable core end face is V, the amount of fuel flowing into V is ΔV, and the volume elastic modulus of the fuel is E, the volume The pressure increase ΔP in the region V is as follows.
ΔP = EΔV / V
Therefore, the hydraulic damper action is inversely proportional to V, and the valve opening bounce can be suppressed by reducing V. FIG. 5 is a graph showing the relationship between the fluctuation range Δq of the injection amount due to valve opening bounce and V and A / G. When V is reduced as shown by the arrow, the valve opening bounce is suppressed and Δq is reduced. Since V is proportional to the height of the outer annular projection (see FIG. 2 according to the embodiment), the height may be reduced. However, according to the experiments by the inventors, the hydraulic damper action is increased below 1 μm. It was necessary to increase the magnetic attractive force. If the magnetic attractive force is increased, the valve closing speed is lowered due to the deterioration of the magnetic breakage, so that the lower limit of the height is appropriately 1 μm. On the other hand, if the height is increased, the hydraulic damper action decreases, so there is naturally an upper limit. According to the experiments by the inventors, it was 25 μm.
[0013]
A third means for solving the problem is any one of the first and second means, wherein a difference in height between the inner annular protrusion and the outer annular protrusion is 1 to 50 μm. It is an injection valve .
[0014]
Immediately before the movable core collides with the fixed core, the fuel in the partition region of the volume V described above has no gap between the inner annular protrusion and the opposing surface, so that the gap between the outer annular protrusion and the opposing surface is eliminated. Escape only from the gap (A / G), but when A / G decreases, the hydraulic damper action increases, and when A / G increases, the hydraulic damper action decreases. Therefore, as shown in FIG. 5, the fluctuation range Δq of the injection amount is proportional to A / G. Therefore, in order to set Δq to a predetermined value, A / G may be selected according to V described above. I understand that. Since a combination of V and A / G can be used, valve opening bounce can be suppressed and Δq can be easily set to a predetermined value without deteriorating the responsiveness of the valve body. However, if A / G is too small, the hydraulic damper action becomes too large, and if A / G is too large, the hydraulic damper action becomes too small. There is an optimum range for the difference in height of the annular protrusions. According to the experiments by the inventors, when the height difference is 1 to 10 μm, the hydraulic damper action works effectively, the valve opening bounce can be suppressed, and the fluctuation range Δq of the injection amount can be set to a predetermined value. It was found that the responsiveness of the valve body was not deteriorated.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described more specifically with reference to embodiments.
FIG. 1 shows a longitudinal sectional view of a fuel injection valve 1 according to an embodiment of the present invention. The fuel injection valve 1 is disposed in a cylinder head of an automobile gasoline engine. That is, it is a so-called direct injection type electromagnetic fuel injection valve that directly injects fuel into a cylinder.
The fuel injection valve 1 includes a fuel supply unit 10, an electromagnetic drive unit 20, a valve unit 30, and an electrical connector unit 40.
The fuel supply unit 10 includes a fuel connector 11 connected to a common rail (not shown) to which high pressure fuel is supplied, a fuel filter 12 provided in a fuel passage 111 formed therein, and an outer peripheral side of the fuel connector 11. It is composed of an inserted O-ring 13. The common rail and the fuel connector 11 are connected in an oil-tight state via the O-ring 13.
[0016]
The electromagnetic drive unit 20 includes a bottomed cylindrical pipe 21 having an open bottom center, a stepped cylindrical fixed core 22 that is press-fitted into the pipe 21, an axis 1 </ b> A of the fixed core 22 and the fuel injection valve 1. A stepped cylindrical movable core 23 disposed coaxially, an electromagnetic coil 24 that generates magnetomotive force, and a magnetic plate 25 that forms a magnetic circuit between the pipe 21 and a nozzle holder 33 described later. And a spring 26 for urging the movable core 23 downward in the figure and an adjuster 27 for adjusting the urging force.
The fixed core 22 includes a press-fit portion 221 that is press-fitted into the pipe 21, and a reduced diameter portion 222 that is reduced in diameter and extends coaxially with the press-fit portion 221 downward in the figure. The fixed core 22 is press-fitted into the pipe 21 with the press-fitted portion 221 and fixed in an oil-tight manner at that portion. A fuel passage 223 that communicates with the fuel passage 111 is formed in the central portion of the shaft of the fixed core 22. A spring 26 and a cylindrical adjuster 27 are also accommodated in the fuel passage 223.
[0017]
The movable core 23 is inserted into the pipe 21 and slides with the inner peripheral surface thereof, the reduced diameter portion 232 coaxially extending from the guide portion 231 downward in the figure, and the reduced diameter portion 232 downward in the figure. A bottomed cylindrical support portion 233 that protrudes and opens on the lower surface. Below the support portion 233 in the figure, a head of a needle valve 31 to be described later is press-fitted through a cylindrical opening and fixed by welding. A fuel passage 234 is formed in the central portion of the movable core 23. Above the fuel passage 234 in the figure is a seating surface of the spring 26. The fuel passage 234 communicates with a through hole 235 formed in the support portion 233.
[0018]
Note that the above-described fuel connector 11 is fitted into the opening of the pipe 21 in the upper part of the figure, and the fuel seal is fixed by welding. The pipe 21, the fixed core 22, the movable core 23, the magnetic plate 25, and the nozzle holder 33 described later are made of an iron-based magnetic material.
[0019]
The valve section 30 includes a needle valve 31 that is a valve body, a cylindrical nozzle 32 having a fuel injection hole 321 formed at the tip, and a nozzle holder 33 that holds the nozzle 32 fixedly.
The needle valve 31 reciprocates while sliding between the guide portion 311 and the inner peripheral surface of the nozzle 32. By the reciprocation of the needle valve 31, the tip tapered surface of the needle valve 31 and the tapered seating surface of the fuel injection hole 321 are separated from each other, and the fuel injection hole 321 is opened and closed (opened / closed). A plurality of injection holes 322 are formed at the further tip of the fuel injection holes 321. The fuel is injected from the injection hole 322 into a cylinder (not shown).
[0020]
The electrical connector portion 40 is a resin molded member fitted to the pipe 21 and the nozzle holder 33. The electrical connector portion 40 includes a connector 41 that extends from the side of the pipe 21, a terminal 42 that protrudes from the inside of the connector 41, and a buried conductor 43 that connects the terminal 42 and the electromagnetic coil 24.
When a voltage is applied to the terminal 42 from an electronic control unit (ECU) that is a power supply source (a drive pulse is supplied), a current flows through the electromagnetic coil 24. The electromagnetic coil 24 is excited to generate a magnetomotive force corresponding to the amount of current. The magnetic flux is transmitted through the magnetic circuit formed by the movable core 23 → the fixed core 22 → the pipe 21 → the magnetic plate 25 → the nozzle holder 33 → the pipe 21 → the movable core 23, and the movable core 23 and the needle valve 31 are attached to the spring 26. Raise against the power. When the supply of the drive pulse is stopped, the magnetomotive force disappears, and the movable core 23 and the needle valve 31 are lowered by the urging force of the spring 26.
[0021]
FIG. 2 is an enlarged cross-sectional view of the vicinity of both opposing end surfaces of the fixed core 22 and the movable core 23 of the injection valve of FIG.
The reduced diameter portion 222 of the fixed core 22 has a horizontal fixed action surface 228 (perpendicular to the axis 1A of the injection valve 1).
The guide portion 231 of the movable core 23 has a horizontal movable action surface 238 opposite to the fixed action surface 228, and has an outer annular protrusion 230 having a height of, for example, 5 μm on the outer peripheral portion and a height of 10 μm, for example, on the inner peripheral portion. It has an inner annular protrusion 239.
[0022]
When a magnetomotive force is generated in the electromagnetic coil 24 by the drive pulse, the movable core 23 rises, and the inner annular protrusion 239 collides with the fixed action surface 228 of the fixed core 22 to open the valve. At that time, the fuel that has been interposed between the fixed acting surface 228 and the movable acting surface 238 until then is subjected to resistance through the gap A / G between the outer annular projection 230 and the fixed acting surface 228 (escapes, And escapes while receiving resistance through the gap between the outer peripheral portion of the guide portion 231 and the inner peripheral portion of the pipe 21. Accordingly, when the movable core 23 is lifted, the hydraulic damper action of the fuel is activated, the rising speed of the inner annular protrusion 239 is reduced, and the valve opening bounce can be suppressed.
[0023]
FIG. 3 is an enlarged cross-sectional view of the vicinity of both end faces of the fixed core 22 and the movable core 23 facing each other in the electromagnetic fuel injection valve according to the second embodiment of the present invention. The same elements as those in FIG. 2 of the first embodiment are denoted by the same reference numerals.
The difference from the first embodiment is that the movable action surface 238 is not horizontal but is tapered toward the outer periphery of the guide portion 231, and the end of the taper is connected to one end of the upper surface of the outer annular protrusion 230. It is a point.
[0024]
The effect that the valve opening bounce is suppressed by the hydraulic damper action by the fuel interposed between the fixed action surface 228 and the movable action surface 238 is the same as that of the first embodiment, but the movable action surface 238 faces the outer peripheral portion. Since it is tapered and its terminal end is connected to one end of the upper surface of the outer annular protrusion 230, it is advantageous in that it is easy to form the outer annular protrusion and the inner annular protrusion on the guide portion 231 of the movable core 23. is there.
[0025]
Of course, the movable action surface 238 may be tapered toward the inner peripheral portion of the guide portion 231, and the end of the taper may be connected to one end of the upper surface of the inner annular protrusion 239.
[0026]
【The invention's effect】
According to the fuel injection valve of the present invention, the annular end surface of at least one of the two annular end surfaces where the fixed core and the movable core face each other has an inner annular projection with a central portion in the radial direction separated from the center side and the centrifugal side. And the outer annular projection, the hydraulic pressure in the region (volume V) defined by the inner annular projection, the outer annular projection, the movable core end surface, and the fixed core end surface that can be raised when the movable core is raised. Due to the damper action, the speed at which the movable core collides with the fixed core can be suppressed, and the valve opening bounce can be suppressed. In addition, since the hydraulic damper action depends on the volume V and the height difference (A / G) between the inner annular projection and the outer annular projection, the injection by the valve opening bounce without reducing the responsiveness of the movable core. The amount of fluctuation range Δq can be set to a predetermined value by a combination of V and A / G, which can be easily implemented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a fuel injection valve according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a fixed core and a movable core of the fuel injection valve according to the first embodiment of the present invention.
FIG. 3 is an enlarged cross-sectional view of a fixed core and a movable core of a fuel injection valve according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram for explaining the ascent and descent behavior of the valve body.
FIG. 5 is a graph showing a relationship between an injection amount and a drive pulse for explaining a fluctuation range of the injection amount.
FIG. 6 is a graph showing the relationship between the injection amount fluctuation range Δq, the volume V between the fixed core and the movable core, and the air gap A / G.
[Explanation of symbols]
1 Fuel Injection Valve 21 Pipe 22 Fixed Core 23 Movable Core 24 Electromagnetic Coil 31 Needle Valve (Valve)
111,234 Fuel passage 230 Outer annular protrusion 239 Inner annular protrusion 321 Fuel injection hole

Claims (3)

円筒状のパイプと、電磁コイルと、該電磁コイルの励磁による磁束の磁路を形成する該パイプの内周側に嵌挿して固定された固定コアと、該電磁コイルの励磁に応答して該固定コアに吸引される該パイプの内周側に摺動可能に嵌挿された可動コアと、該可動コアに一体であると共に燃料噴射孔を開閉可能な弁体と、を有すると共に、前記固定コア及び可動コアの中央部側には、前記燃料噴射孔に連通する燃料通路が形成してある電磁式燃料噴射弁であって、
前記固定コアと前記可動コアが対面する両円環状端面の少なくともどちらか一方の円環状端面は、中心側及び遠心側に径方向中央部を隔てて内側円環状突起と外側円環状突起を有し、
前記内側円環状突起は、前記外側円環状突起より高いことを特徴とする電磁式燃料噴射弁。
A cylindrical pipe, an electromagnetic coil, a fixed core that is fitted and fixed on the inner peripheral side of the pipe that forms a magnetic path of magnetic flux by excitation of the electromagnetic coil, and in response to excitation of the electromagnetic coil, A movable core that is slidably fitted on the inner peripheral side of the pipe that is sucked into the fixed core, and a valve body that is integral with the movable core and that can open and close the fuel injection hole. An electromagnetic fuel injection valve in which a fuel passage communicating with the fuel injection hole is formed on a central portion side of the core and the movable core,
At least one of the annular end surfaces of the fixed core and the movable core facing each other has an inner annular projection and an outer annular projection on the center side and the distal side with a radial center portion therebetween. ,
The electromagnetic fuel injection valve, wherein the inner annular protrusion is higher than the outer annular protrusion .
前記外側円環状突起の高さは、1〜25μmである請求項1に記載の電磁式燃料噴射弁。The electromagnetic fuel injection valve according to claim 1, wherein a height of the outer annular protrusion is 1 to 25 μm. 前記内側円環状突起と前記外側円環状突起の高さの差が1〜50μmである請求項1〜2のいずれかに記載の電磁式燃料噴射弁。3. The electromagnetic fuel injection valve according to claim 1, wherein a difference in height between the inner annular protrusion and the outer annular protrusion is 1 to 50 μm.
JP2001297580A 2001-09-27 2001-09-27 Electromagnetic fuel injection valve Expired - Lifetime JP4352301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297580A JP4352301B2 (en) 2001-09-27 2001-09-27 Electromagnetic fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297580A JP4352301B2 (en) 2001-09-27 2001-09-27 Electromagnetic fuel injection valve

Publications (2)

Publication Number Publication Date
JP2003106236A JP2003106236A (en) 2003-04-09
JP4352301B2 true JP4352301B2 (en) 2009-10-28

Family

ID=19118626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297580A Expired - Lifetime JP4352301B2 (en) 2001-09-27 2001-09-27 Electromagnetic fuel injection valve

Country Status (1)

Country Link
JP (1) JP4352301B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134937B2 (en) * 2004-04-16 2008-08-20 株式会社デンソー Fuel injection valve
JP2005307750A (en) * 2004-04-16 2005-11-04 Denso Corp Fuel injection valve
JP4577654B2 (en) * 2005-02-10 2010-11-10 株式会社デンソー Electromagnetic drive device and fuel injection valve using the same
JP2007205234A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection valve
JP5262972B2 (en) * 2009-05-08 2013-08-14 株式会社デンソー Fuel injection valve
JP6776963B2 (en) * 2017-03-16 2020-10-28 株式会社デンソー High pressure pump
JP6698802B2 (en) * 2018-12-07 2020-05-27 日立オートモティブシステムズ株式会社 Fuel injector
JP7338155B2 (en) 2019-01-08 2023-09-05 株式会社デンソー fuel injector

Also Published As

Publication number Publication date
JP2003106236A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
CN100402831C (en) Fuel injection valve
JP3700981B2 (en) Accumulated fuel injection system
KR100347430B1 (en) Collision Relief Amateur and Needle Valve Assembly
US7866577B2 (en) Fuel injection valve
JP2002531750A (en) Solenoid operated valve
JP2006017101A (en) Fuel injection valve
WO2018135219A1 (en) Drive device for fuel injection device
JP2003515049A (en) Fuel injection valve
US6745993B2 (en) Fuel injection valve
JP4352301B2 (en) Electromagnetic fuel injection valve
JPWO2018037748A1 (en) Fuel injection valve
JP2013167194A (en) Fuel injection valve
JP2003517532A (en) Fuel injection valve
JP4259466B2 (en) Electromagnetic drive device and fuel injection valve using the same
US20050056712A1 (en) Fuel injection valve
JP2002310029A (en) Fuel injection valve
JP4389140B2 (en) Fuel injection apparatus and fuel injection valve control method
JP5157984B2 (en) Electromagnetic drive device
JP4273676B2 (en) Fuel injection valve
JP6762393B2 (en) Fuel injection device
JP2002327661A (en) Fuel injection valve
JP4225893B2 (en) Fuel injection valve
JP3021182B2 (en) Electromagnetic unit injector
WO2019163383A1 (en) Fuel injection valve and method for assembling same
JPH09310655A (en) Fuel injection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R151 Written notification of patent or utility model registration

Ref document number: 4352301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250