JP4352131B2 - Metal complex nanowire and manufacturing method thereof - Google Patents

Metal complex nanowire and manufacturing method thereof Download PDF

Info

Publication number
JP4352131B2
JP4352131B2 JP2004065656A JP2004065656A JP4352131B2 JP 4352131 B2 JP4352131 B2 JP 4352131B2 JP 2004065656 A JP2004065656 A JP 2004065656A JP 2004065656 A JP2004065656 A JP 2004065656A JP 4352131 B2 JP4352131 B2 JP 4352131B2
Authority
JP
Japan
Prior art keywords
compound
complex
nanowire
chemical formula
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004065656A
Other languages
Japanese (ja)
Other versions
JP2005255543A (en
Inventor
進 水上
雅敏 金里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004065656A priority Critical patent/JP4352131B2/en
Publication of JP2005255543A publication Critical patent/JP2005255543A/en
Application granted granted Critical
Publication of JP4352131B2 publication Critical patent/JP4352131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、金属イオンと一本鎖脂質を有する配位子の錯体形成に基づいて、自発的にナノワイヤー構造を構築し、金属錯体ナノワイヤーを製造する方法及びその製造方法により作製された金属錯体ナノワイヤーに関する。 The present invention relates to a method of spontaneously constructing a nanowire structure based on complex formation of a ligand having a metal ion and a single chain lipid, and producing a metal complex nanowire, and a metal produced by the production method. It relates to complex nanowires.

金属錯体は中心金属イオンと配位子の組み合わせを自由に変えることによって、光学・磁性材料から触媒などに至るまで様々な機能を持たせることができる為、多くの研究者が注目している魅力的な化合物群である。通常、金属錯体は結晶として得られるものであり、物性も結晶中で測定されている。
しかしながら、結晶そのものを材料として用いるのはあまり適さない。蒸着などの操作によって二次元構造にすることが可能な場合もあるが、一次元構造を得ることは不可能である。
もし、様々な種類の錯体であっても結晶と同様の機能を保ったまま一次元構造にすることができれば、幅広い産業分野での応用が可能になると考えられる。
Because metal complexes can have various functions ranging from optical and magnetic materials to catalysts by freely changing the combination of central metal ions and ligands, an attractive feature that many researchers are paying attention to Is a typical group of compounds. Usually, a metal complex is obtained as a crystal, and its physical properties are also measured in the crystal.
However, it is not very suitable to use the crystal itself as a material. Although it may be possible to obtain a two-dimensional structure by an operation such as vapor deposition, it is impossible to obtain a one-dimensional structure.
If various types of complexes can be made into a one-dimensional structure while maintaining the same function as a crystal, it can be applied in a wide range of industrial fields.

ナノワイヤーの作製については、双頭性脂質(アルキル鎖の両側に親水性の官能基がついた化合物)の構造を変えることによって、ナノからマイクロメートルスケールまでの一次元構造(ワイヤー、リボン、チューブ)の作成法が報告されている(非特許文献1参照)。
しかし、このナノワイヤーの作製の場合には有機物が用いられており、金属イオン又は金属錯体は用いられていない。
For nanowire fabrication, one-dimensional structure (wire, ribbon, tube) from nano to micrometer scale by changing the structure of bihead lipid (compound with hydrophilic functional groups on both sides of alkyl chain) Has been reported (see Non-Patent Document 1).
However, organic materials are used in the production of nanowires, and metal ions or metal complexes are not used.

また、ナノワイヤーの作製について、11属の一価金属イオン(Cu+, Ag+, Au+)とデンドリマーの結合した配位子を混合し、200°Cに加熱・冷却することによって幅約0.2μmのファイバーの作製が報告されている(非特許文献2参照)。
しかし、この場合は自己集合させるのに必要な官能基として、主として芳香族のベンシル基からなるデンドリマーを用いるものであって、デンドリマー構造においてのみ成立するものであるという問題がある。
For nanowire production, a monovalent metal ion of group 11 (Cu + , Ag + , Au + ) and a dendrimer-bonded ligand are mixed, heated to 200 ° C and cooled to a width of about 0.2. Production of μm fibers has been reported (see Non-Patent Document 2).
However, in this case, there is a problem that a dendrimer mainly composed of an aromatic benzyl group is used as a functional group necessary for self-assembly, and it is formed only in a dendrimer structure.

金属錯体の一次元構造化については、2価の銅イオンを有する金属錯体を上下に5つ並べた金属錯体の合成を報告しており、錯体が重なることにより特異な磁性が発現することが報告されている(非特許文献3参照)。
これは、合成した核酸誘導体を用いることによって、決まった数の金属イオンを並べるのに効果的な手法であるが、自己集合によってナノ又はメゾスケールの構造体を作ることができないという欠点がある。
Regarding the one-dimensional structuring of metal complexes, we have reported the synthesis of metal complexes in which five metal complexes with divalent copper ions are arranged one above the other, and report that unique magnetism appears when the complexes overlap. (See Non-Patent Document 3).
This is an effective technique for arranging a fixed number of metal ions by using a synthesized nucleic acid derivative, but has a drawback that a nano- or meso-scale structure cannot be formed by self-assembly.

また、ある種の金属錯体は結晶中で一次元に配列し導電性を有する例(非特許文献4参照)があるが、単結晶であるためデバイスへの応用が困難であるという問題がある。
さらに、正に荷電した白金(Pt)のエチレンジアミン錯体とアニオン性脂質とを混合することによって錯体の一次元構造化に成功している例が示されている(非特許文献5参照)。
しかし、この長鎖脂肪酸と金属錯体の二成分からなる系は、固体状態では溶液中と異なり、非常に不安定であることが予想される。これは、実製品上(実用化)では非常に問題となる。また、この例では有機溶媒が使用されており、環境に対する負荷という問題もある。
JIT NEWS (2002), No.12 頁9〜11清水敏美著「高軸比ナノ構造材料のボトムアップ合成と形態制御に関する研究」 化学と工業 第58巻 第7号(2003)頁794〜797 相田卓三外「Nanoscopic Dendrimer World (ナノで広がるデンドリマーの世界)」 K. Tanaka et. Al. , Science 2003, 299, 1212-1213 化学フロンティア 分子ナノテクノロジー(化学同人)9章(2002年6月30日第1版第1刷発行)、頁101〜113 中村貴義著「分子性ナノワイヤの構築」 集積型金属錯体の化学(化学同人)9章(2003年4月1日第1版第1刷発行)、頁77〜85 君塚信夫著「自己組織性を有するナノ金属錯体の開発とその溶液化学」
In addition, there is an example in which a certain type of metal complex is arranged in one dimension in a crystal and has conductivity (see Non-Patent Document 4). However, since it is a single crystal, there is a problem that application to a device is difficult.
Furthermore, an example in which a one-dimensional structuring of the complex has been successfully achieved by mixing a positively charged platinum (Pt) ethylenediamine complex and an anionic lipid is shown (see Non-Patent Document 5).
However, this system composed of two components of a long-chain fatty acid and a metal complex is expected to be very unstable in a solid state, unlike in a solution. This is a serious problem on actual products (practical use). Further, in this example, an organic solvent is used, and there is a problem of an environmental load.
JIT NEWS (2002), No.12 pp. 9-11 “Study on bottom-up synthesis and morphology control of nanostructured materials with high axial ratio” by Toshimi Shimizu Chemistry and Industry Vol.58, No.7 (2003) pp.794-797 Takumi Aida “Nanoscopic Dendrimer World” K. Tanaka et. Al., Science 2003, 299, 1212-1213 Chemical Frontier Molecular Nanotechnology (Chemical Doujinshi), Chapter 9 (published June 30, 2002, 1st edition, first edition), pages 101 to 113 Takayoshi Nakamura, “Construction of molecular nanowires” Chemistry of Integrated Metal Complexes (Chemical Doujinshi) Chapter 9 (published April 1, 2003, 1st edition, 1st edition), pp. 77-85 “Development of Self-Organic Nanometal Complexes and Solution Chemistry” "

上記の従来の問題点に鑑み、自発的又は自己集合によって製造されるナノスケールの金属錯体ナノワイヤーが常温で安定であり、製造工程において環境に対する負荷が小さく、さらに磁性機能、エレクトロルミネッセンス(EL)、導電性機能、触媒能等の諸機能を持つことができる金属錯体ナノワイヤーを得ることを課題とする。 In view of the above-mentioned conventional problems, nanoscale metal complex nanowires produced spontaneously or by self-assembly are stable at normal temperature, have a low environmental load in the production process, and have a magnetic function and electroluminescence (EL). It is an object to obtain a metal complex nanowire that can have various functions such as a conductive function and a catalytic function.

上記課題を解決するために、本発明は、
1)両端に親水性基を有する双頭性脂質の中に金属錯体が埋め込まれた錯体化合物構造を備えていることを特徴とするナノワイヤー
2)錯体の配位子として、アミド基を含む親水性基を他端に有する長鎖アルキル基を修飾した化合物であることを特徴とする1記載のナノワイヤー
3)金属錯体が、磁性機能を有する錯体、エレクトロルミネッセンス(EL)を有する金属錯体、導電性機能を有する錯体、触媒能を有する錯体であることを特徴とする1又は2記載のナノワイヤー
4)下記化7の錯体化合物構造を備えていることを特徴とする1〜3のいずれかに記載のナノワイヤーを提供する。(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
In order to solve the above problems, the present invention provides:
1) A nanowire characterized by having a complex compound structure in which a metal complex is embedded in a double-headed lipid having hydrophilic groups at both ends. 2) Hydrophilicity containing an amide group as a ligand of the complex. 3. The nanowire according to 1, wherein the metal complex is a compound in which a long-chain alkyl group having a group at the other end is modified. 3) A metal complex having a magnetic function, a metal complex having electroluminescence (EL), and conductivity. The nanowire 4 according to 1 or 2, which is a complex having a function or a catalyst, 4) The compound compound according to any one of 1 to 3 having a complex compound structure of the following chemical formula 7 Of nanowires. (However, R 1 : H, CH 3 , C 2 H 5, etc., R 2 : alkyl group having a hydrophilic group, n ≧ 4)

また、本発明は、
5)下記[化8]の配位子化合物に、錯体化合物を形成する金属溶液を添加することにより、両端に親水性基を有する双頭性脂質の間に金属錯体が埋め込まれた前記[化7]の錯体化合物構造を有するナノワイヤーの製造方法(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
The present invention also provides:
5) The metal complex is embedded between the two-headed lipids having hydrophilic groups at both ends by adding a metal solution that forms a complex compound to the ligand compound of the following [Chemical Formula 8]. method for manufacturing a nanowire having a complex compound structure (where, R 1: H, CH 3 , C 2 H 5 , etc., R 2: an alkyl group, n ≧ 4 having a hydrophilic group)

6)上記配位子化合物を緩衝液に溶解させた後、錯体化合物を形成する金属溶液を添加することを特徴とする5記載のナノワイヤーの製造方法
7)下記[化9]の配位子化合物を溶媒に溶かした後、触媒を加え攪拌して前記[化8]の配位子化合物を製造することを特徴とする5又は6に記載のナノワイヤーの製造方法(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
6) The method for producing nanowire according to 5 above, wherein the ligand compound is dissolved in a buffer solution, and then a metal solution for forming a complex compound is added. 7) The ligand of the following [Chemical 9] The method for producing a nanowire according to 5 or 6, wherein the compound is dissolved in a solvent, and then the catalyst is added and stirred to produce the ligand compound of [Chemical Formula 8] (provided that R 1 : H , CH 3 , C 2 H 5 , R 2 : an alkyl group having a hydrophilic group, n ≧ 4)

8)下記[化10]の化合物を溶媒に溶かした後、親水性基を有するアルキルアミン又はその誘導体を加え、撹拌した後、前記化9の化合物を得ることを特徴とする7に記載のナノワイヤーの製造方法(但し、R:H、CH、C等、n≧4) 8) The compound of [Chemical Formula 10] below is dissolved in a solvent, and after adding an alkylamine having a hydrophilic group or a derivative thereof and stirring, the compound of Chemical Formula 9 is obtained. Wire manufacturing method (however, R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)

9)下記[化11]の化合物とN-ヒドロキシスクシンイミドを溶媒に溶かした後、縮合試薬を加え、この反応溶液から溶媒を除去した後精製し、前記[化10]の化合物を得ることを特徴とする8に記載のナノワイヤーの製造方法(但し、R:H、CH、C等、n≧4) 9) A compound of the following [Chemical Formula 11] and N-hydroxysuccinimide are dissolved in a solvent, a condensation reagent is added, the solvent is removed from the reaction solution, and the product is purified to obtain the compound of [Chemical Formula 10]. The manufacturing method of the nanowire of 8 described above (however, R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)

10)下記[化12]の化合物を溶媒に溶かし、この溶液にアミノアルキルカルボン酸(n≧4)を溶解させた水溶液を加え、pH調整、加熱還流の工程を経た後、精製し、上記[化11]の粉体を得ることを特徴とする9に記載のナノワイヤーの製造方法を提供するものである。 10) The compound of the following [Chemical Formula 12] is dissolved in a solvent, and an aqueous solution in which aminoalkylcarboxylic acid (n ≧ 4) is dissolved is added to this solution. The powder of [11] is obtained, and the method for producing a nanowire according to 9 is provided.

本発明は、今まで結晶としてしか存在しなかった多くの機能性金属錯体の繊維化が可能になり、機能性金属錯体の材料化が容易になるという優れた効果がある。すなわち、金属イオンと一本鎖脂質を有する配位子の錯体形成に基づいて、自発的又は自己集合によってナノスケールの金属錯体ナノワイヤーの製造が可能となり、この金属錯体ナノワイヤーは常温で安定であり、製造工程において環境に対する負荷が小さく、さらに磁性機能、エレクトロルミネッセンス(EL)機能、導電性機能、触媒能等の金属的特性を備えたナノワイヤーを構築できるという優れた効果を有する。 The present invention makes it possible to fiberize many functional metal complexes that existed only as crystals so far, and has an excellent effect of facilitating materialization of functional metal complexes. That is, based on the complex formation of a ligand having a metal ion and a single-chain lipid, it becomes possible to produce a nanoscale metal complex nanowire by spontaneous or self-assembly, and this metal complex nanowire is stable at room temperature. In addition, it has an excellent effect that a nanowire having a small load on the environment in the manufacturing process and having metallic characteristics such as a magnetic function, an electroluminescence (EL) function, a conductivity function, and a catalytic function can be constructed.

本発明は、錯体の配位子として、アミド基を含む親水性基を他端に有する長鎖アルキル基を修飾した化合物を合成した。
図1に、本発明の化合物VIIを形成するまでに至る合成ルートを示す。この配位子が金属イオンと錯体を形成すると、両端に親水性基を有する双頭性脂質の中に金属錯体が埋め込まれた構造になる。(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
双頭性脂質は水溶液中で自己集合によりナノワイヤーまたはナノチューブ構造を形成しやすいことが知られており、錯形成が金属錯体ナノワイヤーの自発的形成を促すことが分かった。
In the present invention, a compound in which a long-chain alkyl group having a hydrophilic group containing an amide group at the other end is modified as a ligand of a complex is synthesized.
FIG. 1 shows a synthetic route leading to the formation of Compound VII of the present invention. When this ligand forms a complex with a metal ion, the metal complex is embedded in a bihead lipid having hydrophilic groups at both ends. (However, R 1 : H, CH 3 , C 2 H 5, etc., R 2 : alkyl group having a hydrophilic group, n ≧ 4)
It is known that biheaded lipids tend to form nanowire or nanotube structures by self-assembly in aqueous solution, and it was found that complex formation promotes spontaneous formation of metal complex nanowires.

図1の本発明は、化合物VIIに示す通り、両端に親水性基を有する双頭性脂質の中に金属錯体が埋め込まれた錯体化合物構造を備えているナノワイヤーであることが大きな特徴である。
これによって、金属錯体を選択することにより、諸種の機能を持つナノワイヤーを得ることができる。例えば、磁性機能、エレクトロルミネッセンス(EL)機能、導電性機能、触媒能等である。
上記化合物VIIに示す錯体の配位子としてアミド基を含む親水性基を他端に有する長鎖ナノワイヤーは、金属の錯体化合物構造持つナノワイヤーであり、例えば、この錯体化合物の金属イオンが銅イオンである場合には、Cuイオン同士が磁気相互作用を起こす機能を有している。
The present invention of FIG. 1 is greatly characterized in that it is a nanowire having a complex compound structure in which a metal complex is embedded in a bihead lipid having a hydrophilic group at both ends, as shown in Compound VII.
Thereby, nanowires having various functions can be obtained by selecting a metal complex. For example, there are a magnetic function, an electroluminescence (EL) function, a conductivity function, a catalytic ability, and the like.
A long-chain nanowire having a hydrophilic group containing an amide group at the other end as a ligand of the complex shown in Compound VII is a nanowire having a metal complex compound structure. For example, the metal ion of this complex compound is copper. In the case of ions, Cu ions have a function of causing magnetic interaction.

本発明の両端に親水性基を有する双頭性脂質の間に金属錯体が埋め込まれた錯体化合物構造を有するナノワイヤーの製造に際しては、図1の配位子化合物VI(前記[化8])に、錯体化合物を形成する金属溶液を添加することにより製造することができる。
図1の配位子化合物VI(前記[化8](R:H、CH、C等、R:親水性基を有するアルキル基、n≧4))は、本発明のナノワイヤーを製造する上で、基本となる物質である。この配位子化合物は緩衝液により溶解させることができる。緩衝液の使用は、有機溶媒を使用するものに比べ環境への負荷を著しく低減させることができる。
上記の通り、図1に示す長鎖ナノワイヤーVII(前記[化7])は、緩衝液により溶解させた後、金属を溶解させた溶液を添加したものであるが、この金属添加溶液を替えることにより、様々な機能を持つナノワイヤーを得ることができる。
例えば、金属元素としては、Cu、Fe,Ni,Co,Al,Mn,Zn,希土類イオン(Eu,Tb,Sm,Gdなど)等を使用することができる。しかし、本発明はこれらの例示した元素に制限されるものではない。
In the production of a nanowire having a complex compound structure in which a metal complex is embedded between biceps lipids having hydrophilic groups at both ends of the present invention, the ligand compound VI (the above [Chemical Formula 8]) in FIG. It can be produced by adding a metal solution that forms a complex compound.
The ligand compound VI of FIG. 1 (the above [Chemical Formula 8] (R 1 : H, CH 3 , C 2 H 5 etc., R 2 : an alkyl group having a hydrophilic group, n ≧ 4)) It is a basic material for producing nanowires. This ligand compound can be dissolved by a buffer solution. The use of a buffer can significantly reduce the burden on the environment as compared with those using an organic solvent.
As described above, the long-chain nanowire VII (the above [Chemical Formula 7]) shown in FIG. 1 is a solution in which a metal is dissolved after being dissolved in a buffer solution. Thus, nanowires having various functions can be obtained.
For example, Cu, Fe, Ni, Co, Al, Mn, Zn, rare earth ions (Eu, Tb, Sm, Gd, etc.), etc. can be used as the metal element. However, the present invention is not limited to these exemplified elements.

さらに、図1の配位子化合物VI(前記[化8])の製造に際しては、図1に示す化合物V(前記[化9])をエタノール等の溶媒に溶かした後、パラジウム−炭素等の触媒を加え攪拌して製造することができる。
また、前記化合物V(前記[化9](但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4))の製造に際しては、図1に示す化合物IV(前記[化10])を溶媒に溶解した後、親水性基を有するアルキルアミン又はその誘導体を加え、撹拌して得ることができる。
Further, in the production of the ligand compound VI of FIG. 1 (the above [Chemical 8]), the compound V shown in FIG. 1 (the above [Chemical 9]) is dissolved in a solvent such as ethanol, and then palladium-carbon or the like is used. It can be produced by adding a catalyst and stirring.
In the preparation of the compound V (the above [Chemical 9] (where R 1 is H, CH 3 , C 2 H 5 , R 2 is an alkyl group having a hydrophilic group, n ≧ 4)), It can be obtained by dissolving the compound IV shown in 1 (above [Chemical Formula 10]) in a solvent, adding an alkylamine having a hydrophilic group or a derivative thereof, and stirring.

さらに、前記化合物IV(前記[化10](但し、R:H、CH、C等、n≧4))を製造するに際しては、図1に示す化合物III(前記[化11])の化合物とN-ヒドロキシスクシンイミドを、溶媒に溶かした後、縮合試薬を加え、この反応溶液から溶媒を除去し精製して製造することができる。
前記化合物III(前記[化11])の製造に際しては、図1に示す化合物I(前記[化12](但し、R:H、CH、C等、n≧4))の化合物をエタノール等の溶媒に溶かし、この溶液にアミノアルキルカルボン酸を溶解させた水溶液を加え、pH調整、加熱還流の工程を経た後、精製して製造することができる。
Further, when the compound IV (the above [Chemical Formula 10] (provided that R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)) is prepared, the compound III shown in FIG. ]) And the N-hydroxysuccinimide are dissolved in a solvent, and then a condensation reagent is added, and the solvent is removed from the reaction solution for purification.
In the production of the compound III (the above [Chemical Formula 11]), the compound I (the above [Chemical Formula 12] (provided that R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)) shown in FIG. A compound can be dissolved in a solvent such as ethanol, an aqueous solution in which an aminoalkylcarboxylic acid is dissolved is added to this solution, and after undergoing steps of pH adjustment and heating to reflux, purification can be performed.

次に、本発明の実施例を説明する。なお、この実施例はあくまで本発明の理解を容易にするためのものであり、この例に制限されるものではない。すなわち、本発明の技術思想に基づく変形、他の態様又は例は、当然本発明に包含されるものである。   Next, examples of the present invention will be described. In addition, this Example is for making an understanding of this invention easy to the last, and is not restrict | limited to this example. That is, modifications and other aspects or examples based on the technical idea of the present invention are naturally included in the present invention.

(化合物Iの合成)
化合物I〜VIIを形成するまでに至る合成ルートを図2に示す。
まず、化合物I([化13])の合成であるが、これはHiderらの方法(J. Med. Chem. 1998, 41, 3347-3359)に従って合成した。その合成の詳細を以下に説明する。
マルトール(20 g)をメタノール(20 ml)に懸濁させ、そこに水酸化ナトリウム(7.0 g)、臭化ベンジル(21 ml)を加えた。次に、反応混合物を一晩加熱還流した後、室温まで冷却した。
さらに、ジクロロメタン(80 ml)を加え有機層を抽出し、1N水酸化ナトリウム水溶液で3回、蒸留水で2回、飽和食塩水で1回洗浄した。
有機層を硫酸ナトリウムで乾燥した後、溶媒を留去し、褐色がかったオイル(化合物I([化13])、34.6 g)を得た。
(Synthesis of Compound I)
A synthetic route leading to formation of compounds I-VII is shown in FIG.
First, Compound I ([Chemical Formula 13]) was synthesized according to the method of J. Med. Chem. 1998, 41, 3347-3359. Details of the synthesis will be described below.
Maltol (20 g) was suspended in methanol (20 ml), and sodium hydroxide (7.0 g) and benzyl bromide (21 ml) were added thereto. The reaction mixture was then heated at reflux overnight and then cooled to room temperature.
Further, dichloromethane (80 ml) was added to extract the organic layer, which was washed 3 times with 1N aqueous sodium hydroxide solution, twice with distilled water and once with saturated saline.
The organic layer was dried over sodium sulfate, and then the solvent was distilled off to obtain a brownish oil (Compound I ([Chemical Formula 13]), 34.6 g).

(化合物IIの使用と化合物IIIの合成)
上記化合物I(前記化[13])(1.0 g)をエタノール15mlに溶解し、この溶液にアミノラウリル酸II(1.2 g, 1.2当量)を溶解させた水溶液10mlを加えた。これを2 N NaOH水溶液で溶液のpHを13以上に調整した後、加熱還流した。12時間後、溶液中のエタノールを留去し、残りの水溶液を2 N NaOH水溶液で強アルカリ性に調整した。
次に、水溶液をジクロロメタンで3回洗浄した後、NaH2PO4を用いて溶液のpHを弱酸性に調整した。この水溶液をジクロロメタンで3回抽出し、有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥、溶媒を留去した。残渣を冷アセトンでよく洗浄し、山吹色の粉体(化合物III([化14])、0.99 g)を得た。収率は52%であった。
(Use of Compound II and Synthesis of Compound III)
Compound I (formula [13]) (1.0 g) was dissolved in 15 ml of ethanol, and 10 ml of an aqueous solution in which aminolauric acid II (1.2 g, 1.2 equivalents) was dissolved was added thereto. The pH of the solution was adjusted to 13 or more with 2 N NaOH aqueous solution, and then heated to reflux. After 12 hours, ethanol in the solution was distilled off, and the remaining aqueous solution was adjusted to be strongly alkaline with 2 N NaOH aqueous solution.
Next, the aqueous solution was washed with dichloromethane three times, and then the pH of the solution was adjusted to weak acidity using NaH 2 PO 4 . This aqueous solution was extracted three times with dichloromethane, and the organic layer was washed with saturated brine, dried over sodium sulfate, and the solvent was distilled off. The residue was thoroughly washed with cold acetone to obtain a bright yellow powder (compound III ([Chemical Formula 14]), 0.99 g). The yield was 52%.

(化合物IIIの同定)
1H NMR (500 MHz CDCl3):δ1.52-1.33(m, 14H, -CH2-), 1.62 (sept,4H, J= 6.1 Hz, -CH2-), 2.09 (s, 3H, -CH3), 2.35 (t, 2H, J = 7.3 Hz,-CH2CO2H), 3.77 (t, 2H, J = 7.3 Hz, -CH2N-), 5.22 (s, 2H, -CH2Ph),6.62 (d, 2H, J= 7.3 Hz, -CH=CH-CO-), 7.22 (d, 2H, J = 7.3Hz, -N-CH=CH-), 7.29-7.34 (m, 3H, -C6H5), 7.38-7.40 (m, 2H, -C6H5) 。 ESI-MS: m/z 414.4 [M+H]+
(Identification of Compound III)
1 H NMR (500 MHz CDCl 3 ): δ1.52-1.33 (m, 14H, -CH 2- ), 1.62 (sept, 4H, J = 6.1 Hz, -CH 2- ), 2.09 (s, 3H,- CH 3 ), 2.35 (t, 2H, J = 7.3 Hz, -CH 2 CO 2 H), 3.77 (t, 2H, J = 7.3 Hz, -CH 2 N-), 5.22 (s, 2H, -CH 2 Ph), 6.62 (d, 2H, J = 7.3 Hz, -CH = CH-CO-), 7.22 (d, 2H, J = 7.3Hz, -N-CH = CH-), 7.29-7.34 (m, 3H , -C 6 H 5 ), 7.38-7.40 (m, 2H, -C 6 H 5 ). ESI-MS: m / z 414.4 [M + H] + .

(化合物IVの合成)
化合物III(818 mg)及びN-ヒドロキシスクシンイミド(N-hydroxysuccinimide、253 mg, 1.1当量)を10mlの乾燥ジメチルホルムアミドに溶解し、0°Cに冷却しながらEDC(ethyldiisopropylcarbodiimide)塩酸塩(422 mg, 1.1当量)を溶かしたジクロロメタン溶液(20ml)をゆっくりと滴下した。
0°Cで1時間、さらに室温で18時間撹拌した後、溶媒を留去した。シリカゲルカラムにより精製し、僅かに褐色がかったオイル(化合物IV([化15])、919mg)を得た)。収率は92%であった。
(Synthesis of Compound IV)
Compound III (818 mg) and N-hydroxysuccinimide (N-hydroxysuccinimide, 253 mg, 1.1 equivalents) are dissolved in 10 ml of dry dimethylformamide and cooled to 0 ° C., and EDC (ethyldiisopropylcarbodiimide) hydrochloride (422 mg, 1.1 equivalents) is dissolved. Equivalent) was slowly added dropwise in dichloromethane solution (20 ml).
After stirring at 0 ° C for 1 hour and further at room temperature for 18 hours, the solvent was distilled off. Purification by silica gel column gave a slightly brownish oil (compound IV ([Chemical 15]), 919 mg). The yield was 92%.

(化合物IVの同定)
1H NMR (500 MHz CDCl3):δ1.27 (br, 12H, -CH2-), 1.40 (quin,2H,J = 6.8 Hz, -CH2-),1.61 (quin, 2H, J = 7.5 Hz, -CH2-),1.73 (quin,2H, J = 7.5 Hz, -CH2-),2.08 (s, 3H, -CH3), 2.60 (t, 2H, J= 7.5 Hz,-CH2CO2H),2.83 (br, 4H, -COCH2CH2CO-), 3.71 (t, 2H, J = 7.5 Hz,-CH2N-), 5.23 (s,2H, -CH2Ph), 6.42 (d, 1H, J = 7.6 Hz, -CH=CH-CO-),7.17 (d, 1H, J =7.6 Hz, -N-CH=CH-), 7.29-7.34 (m,3H,-C6H5), 7.39-7.42 (m, 2H, -C6H5)。ESI-MS:m/z 511.4 [M+H]+
(Identification of Compound IV)
1 H NMR (500 MHz CDCl 3 ): δ 1.27 (br, 12H, -CH 2- ), 1.40 (quin, 2H, J = 6.8 Hz, -CH 2- ), 1.61 (quin, 2H, J = 7.5 Hz, -CH 2- ), 1.73 (quin, 2H, J = 7.5 Hz, -CH 2- ), 2.08 (s, 3H, -CH 3 ), 2.60 (t, 2H, J = 7.5 Hz, -CH 2 CO 2 H), 2.83 (br, 4H, -COCH 2 CH 2 CO-), 3.71 (t, 2H, J = 7.5 Hz, -CH 2 N-), 5.23 (s, 2H, -CH 2 Ph), 6.42 (d, 1H, J = 7.6 Hz, -CH = CH-CO-), 7.17 (d, 1H, J = 7.6 Hz, -N-CH = CH-), 7.29-7.34 (m, 3H, -C 6 H 5), 7.39-7.42 (m , 2H, -C 6 H 5). ESI-MS: m / z 511.4 [M + H] + .

(化合物Vの合成)
化合物IV(556 mg)を無水ジメチルホルムアミド20 mlに溶解し、(S)-2-amino-1-propanol (90 mg, 1.1当量)を加えたところ、溶液が一気に白濁した。さらに、室温で2時間撹拌し、沈殿を濾過し、テトラヒドロフラン(THF)でよく洗浄した。
次に、濾液と洗液を合わせて溶媒を留去し、アミン修飾シリカゲルカラムクロマトグラフィーで精製した。無色の固体(化合物V([化16])、502 mg)を得た。収率は98%であった。
(Synthesis of Compound V)
Compound IV (556 mg) was dissolved in 20 ml of anhydrous dimethylformamide, and (S) -2-amino-1-propanol (90 mg, 1.1 equivalents) was added, and the solution turned cloudy all at once. The mixture was further stirred at room temperature for 2 hours, and the precipitate was filtered and washed well with tetrahydrofuran (THF).
Next, the filtrate and the washing solution were combined, the solvent was distilled off, and the residue was purified by amine-modified silica gel column chromatography. A colorless solid (Compound V ([Chemical Formula 16]), 502 mg) was obtained. The yield was 98%.

(化合物Vの同定)
1H NMR (500MHz CDCl3): δ1.25-1.30 (br, 14H, -CH2-), 1.62 (sept,4H, J = 7.1 Hz, -CH2-), 2.09 (s,3H, -CH3), 2.35 (t, 2H, J= 7.1 Hz,-CH2CO2H),3.77 (t, 2H, J = 7.3 Hz, -CH2N-), 5.23 (s, 2H, -CH2Ph),6.62 (d, 1H, J=7.5 Hz, -CH=CH-CO-), 7.22 (d, 1H, J =7.5 Hz,-N-CH=CH-), 7.29-7.33 (m, 3H, -C6H5), 7.38-7.41(m, 2H, -C6H5)。 ESI-MS: m/z 471.5[M+H]+
(Identification of Compound V)
1 H NMR (500MHz CDCl 3 ): δ1.25-1.30 (br, 14H, -CH 2- ), 1.62 (sept, 4H, J = 7.1 Hz, -CH 2- ), 2.09 (s, 3H, -CH 3 ), 2.35 (t, 2H, J = 7.1 Hz, -CH 2 CO 2 H), 3.77 (t, 2H, J = 7.3 Hz, -CH 2 N-), 5.23 (s, 2H, -CH 2 Ph ), 6.62 (d, 1H, J = 7.5 Hz, -CH = CH-CO-), 7.22 (d, 1H, J = 7.5 Hz, -N-CH = CH-), 7.29-7.33 (m, 3H, -C 6 H 5), 7.38-7.41 ( m, 2H, -C 6 H 5). ESI-MS: m / z 471.5 [M + H] + .

(化合物VIの合成)
化合物V(140 mg)をエタノール25 mlに溶かし、10%パラジウム−炭素(25mg)を加えた。水素雰囲気下、室温で激しく16時間撹拌した。
残渣を濾去した後、溶媒を留去した。これによって、無色アモルファス(化合物VI([化17])、83mg)を得た。収率は73%であった。
(Synthesis of Compound VI)
Compound V (140 mg) was dissolved in 25 ml of ethanol, and 10% palladium-carbon (25 mg) was added. The mixture was vigorously stirred at room temperature for 16 hours under a hydrogen atmosphere.
The residue was removed by filtration and the solvent was distilled off. As a result, colorless amorphous (compound VI ([Chemical Formula 17]), 83 mg) was obtained. The yield was 73%.

(化合物VIの同定)
1H NMR (500 MHz CDCl3): δ1.18 (d, 3H, J = 6.9 Hz, -CH(CH3)-),1.24-1.31 (m, 16H, -CH2-), 1.61 (quin,2H, J = 7.0 Hz,-CH2-),1.71 (quin, 2H, J = 7.4 Hz, -CH2-),2.17 (t, 2H, J = 7.6Hz, -CH2CO2H), 2.41 (s,3H, Ar-CH3), 3.54 (dd, 1H, J= 6.0, 11.1 Hz,-CH2OH),3.68(dd, 1H, J = 3.3, 11.1 Hz, -CH2OH), 3.89 (t, J = 7.2Hz, -CH2N-),4.03-4.10 (m, 1H, -CH(CH3)-),6.12 (d, J = 6.9 Hz, -NH-),6.43(d, 1H, J =7.1Hz, -CH=CH-CO-), 7.26 (d, 1H, J =7.1 Hz,-N-CH=CH-). ElementalAnalysis: (Calcd. for C21H36N2O4)C, 66.28;H, 9.54; N, 7.36%, (Found)C, 66.45; H, 9.53; N, 7.17%。ESI-MS: m/z381.5 [M+H]+。 IR (KBr): v= 3298s, 2924s, 2852m, 1644s,1576m, 1550m,1513s, 1469w, 1354w, 1257m, 1053w cm-1
(Identification of compound VI)
1 H NMR (500 MHz CDCl 3 ): δ1.18 (d, 3H, J = 6.9 Hz, -CH (CH 3 )-), 1.24-1.31 (m, 16H, -CH 2- ), 1.61 (quin, 2H, J = 7.0 Hz, -CH 2- ), 1.71 (quin, 2H, J = 7.4 Hz, -CH 2- ), 2.17 (t, 2H, J = 7.6Hz, -CH 2 CO 2 H), 2.41 (s, 3H, Ar-CH 3 ), 3.54 (dd, 1H, J = 6.0, 11.1 Hz, -CH 2 OH), 3.68 (dd, 1H, J = 3.3, 11.1 Hz, -CH 2 OH), 3.89 (t, J = 7.2Hz, -CH 2 N-), 4.03-4.10 (m, 1H, -CH (CH 3 )-), 6.12 (d, J = 6.9 Hz, -NH-), 6.43 (d, 1H, J = 7.1Hz, -CH = CH-CO-), 7.26 (d, 1H, J = 7.1 Hz, -N-CH = CH-). ElementalAnalysis: (Calcd. For C 21 H 36 N 2 O 4 ) C, 66.28; H, 9.54; N, 7.36%, (Found) C, 66.45; H, 9.53; N, 7.17%. ESI-MS: m / z 381.5 [M + H] + . IR (KBr): v = 3298s, 2924s, 2852m, 1644s, 1576m, 1550m, 1513s, 1469w, 1354w, 1257m, 1053w cm −1 .

(化合物VIIの合成:錯形成によるナノワイヤー構造の構築)
化合物VI(43 mg)をジメチルホルムアミド1 mlに溶解し、その溶液を10mM HEPES緩衝液(pH 7.4)50 mlで希釈した。
次に、10 mM 硫酸銅(II)水溶液5.4 mlを添加したところ白濁し、沈殿が析出した。反応液を80度に加熱し、一時間撹拌した後、2時間放置し室温まで冷却させた。沈殿を濾取、乾燥し、薄緑色の粉体(錯体化合物VII([化18])、45mg)を得た。収率は46%であった。
(Synthesis of Compound VII: Construction of nanowire structure by complex formation)
Compound VI (43 mg) was dissolved in 1 ml of dimethylformamide, and the solution was diluted with 50 ml of 10 mM HEPES buffer (pH 7.4).
Next, when 5.4 ml of 10 mM copper (II) sulfate aqueous solution was added, it became cloudy and a precipitate was deposited. The reaction solution was heated to 80 ° C., stirred for 1 hour, and then allowed to stand for 2 hours to cool to room temperature. The precipitate was collected by filtration and dried to obtain a light green powder (complex compound VII ([Chemical Formula 18]), 45 mg). The yield was 46%.

(化合物VIIの同定)
Elemental Analysis: (Calcd.for C42H70N4O8・2.5H2O)C, 58.14; H,8.71;N, 6.46%。(Found) C, 58.01; H, 8.74; N, 6.25%。ESI-MS: m/z822.5 [M+H]+, 844.5 [M+Na]+。IR (KBr): v= 3298s, 2924s, 2852m,1641s, 1600m, 1547s, 1507s, 1471m, 1354m, 1283s,1160w, 1119w,1058m cm-1
(Identification of Compound VII)
Elemental Analysis: (Calcd.for C 42 H 70 N 4 O 8 · 2.5H 2 O) C, 58.14; H, 8.71; N, 6.46%. (Found) C, 58.01; H, 8.74; N, 6.25%. ESI-MS: m / z 822.5 [M + H] + , 844.5 [M + Na] + . IR (KBr): v = 3298s, 2924s, 2852m, 1641s, 1600m, 1547s, 1507s, 1471m, 1354m, 1283s, 1160w, 1119w, 1058m cm- 1 .

上記白濁した沈殿物を、CD(円二色性)スペクトルを測定したところ、図3に示すように、銅錯体の吸収波長領域にコットン効果が観察され、配位子末端の光学活性構造の影響により、不斉自己集合構造が誘起されていることが示唆された。銅イオンを添加しない系では、コットン効果は全く見られなかった。
次に、上記薄緑色の粉体を走査型電子顕微鏡により観察を行ったところ、図4に示すように、幅数十ナノから数百ナノメートルまでの太さの繊維状の構造体が観測された。銅イオンを添加しない系では、このような構造は全く見られなかった。
When the white turbid precipitate was measured for CD (circular dichroism) spectrum, as shown in FIG. 3, a cotton effect was observed in the absorption wavelength region of the copper complex, and the influence of the optically active structure at the end of the ligand. This suggested that an asymmetric self-assembled structure was induced. In the system where no copper ion was added, no cotton effect was observed.
Next, when the light green powder was observed with a scanning electron microscope, a fibrous structure having a width of several tens of nanometers to several hundred nanometers was observed as shown in FIG. It was. Such a structure was not seen at all in the system to which no copper ion was added.

本発明は、電子材料、磁性材料・エレクトロルミネッセンス(EL)材料・分子エレクトロニクス材料、繊維材料などとして極めて有用である。具体的には、例えば中心金属錯体に磁性機能錯体を用いた場合には磁性ナノワイヤーが、中心金属錯体にエレクトロルミネッセンス(EL)を有する金属錯体を用いた場合にはELナノワイヤーが、中心金属錯体に導電性錯体を用いた場合には導電性ナノワイヤーが、中心金属錯体が触媒能を有する場合には触媒ナノワイヤーを製造することが可能であり、さらにナノワイヤー同士を繋げて高分子化することで、機能性繊維とすることが可能である。   The present invention is extremely useful as an electronic material, a magnetic material, an electroluminescence (EL) material, a molecular electronics material, a fiber material, and the like. Specifically, for example, when a magnetic functional complex is used as the central metal complex, the magnetic nanowire is used, and when a metal complex having electroluminescence (EL) is used as the central metal complex, the EL nanowire is used as the central metal. When a conductive complex is used as the complex, conductive nanowires can be produced, and when the central metal complex has catalytic ability, catalytic nanowires can be produced. By doing so, it is possible to obtain a functional fiber.

本発明の化合物VIIの合成ルートを示す図である。It is a figure which shows the synthetic route of the compound VII of this invention. 実施例に示す配位子化合物VI及びCu(II)錯体VIIの合成ルートを示す図である。It is a figure which shows the synthetic route of the ligand compound VI and the Cu (II) complex VII which are shown in the Example. 化合物VII及び化合物VIIに銅イオンを添加したときの円二色性スペクトルの変化を示す図である。It is a figure which shows the change of a circular dichroism spectrum when a copper ion is added to the compound VII and the compound VII. 走査型電子顕微鏡写真による自己集合錯体ナノワイヤーを示す図である。It is a figure which shows the self-assembly complex nanowire by a scanning electron micrograph.

Claims (10)

両端に親水性基を有する双頭性脂質の中に金属錯体が埋め込まれた錯体化合物構造を備えていることを特徴とするナノワイヤー。 A nanowire comprising a complex compound structure in which a metal complex is embedded in a bihead lipid having hydrophilic groups at both ends. 錯体の配位子として、アミド基を含む親水性基を他端に有する長鎖アルキル基を修飾した化合物であることを特徴とする請求項1記載のナノワイヤー。 2. The nanowire according to claim 1, which is a compound obtained by modifying a long-chain alkyl group having a hydrophilic group containing an amide group at the other end as a ligand of the complex. 金属錯体が、磁性機能を有する錯体、エレクトロルミネッセンス(EL)を有する金属錯体、導電性機能を有する錯体、触媒能を有する錯体であることを特徴とする請求項1又は2記載のナノワイヤー。 The nanowire according to claim 1 or 2, wherein the metal complex is a complex having a magnetic function, a metal complex having electroluminescence (EL), a complex having a conductive function, or a complex having catalytic ability. 下記[化1]の錯体化合物構造を備えていることを特徴とする請求項1〜3のいずれかに記載のナノワイヤー。(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
The nanowire according to any one of claims 1 to 3, comprising a complex compound structure of the following [Chemical Formula 1]. (However, R 1 : H, CH 3 , C 2 H 5, etc., R 2 : alkyl group having a hydrophilic group, n ≧ 4)
下記[化2]の配位子化合物に、錯体化合物を形成する金属溶液を添加することにより、両端に親水性基を有する双頭性脂質の間に金属錯体が埋め込まれた前記[化1]の錯体化合物構造を有するナノワイヤーの製造方法。(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
By adding a metal solution that forms a complex compound to the ligand compound of the following [Chemical Formula 2], the metal complex is embedded between the two-headed lipids having hydrophilic groups at both ends. A method for producing nanowires having a complex compound structure. (However, R 1 : H, CH 3 , C 2 H 5, etc., R 2 : alkyl group having a hydrophilic group, n ≧ 4)
上記配位子化合物を緩衝液に溶解させ後、錯体化合物を形成する金属溶液を添加することを特徴とする請求項5記載のナノワイヤーの製造方法。   6. The method for producing nanowires according to claim 5, wherein a metal solution for forming a complex compound is added after dissolving the ligand compound in a buffer solution. 下記[化3]の配位子化合物を溶媒に溶かした後、触媒を加え攪拌して前記[化2]の配位子化合物を製造することを特徴とする請求項5又は6に記載のナノワイヤーの製造方法。(但し、R:H、CH、C等、R:親水性基を有するアルキル基、n≧4)
The nanostructure according to claim 5 or 6, wherein the ligand compound of the following [Chemical 3] is dissolved in a solvent, and then a catalyst is added and stirred to produce the ligand compound of the above [Chemical 2]. Manufacturing method of wire. (However, R 1 : H, CH 3 , C 2 H 5, etc., R 2 : alkyl group having a hydrophilic group, n ≧ 4)
下記[化4]の化合物を溶媒に溶かした後、親水性基を有するアルキルアミン又はその誘導体を加え、撹拌した後、前記[化3]の化合物を得ることを特徴とする請求項7に記載のナノワイヤーの製造方法。(但し、R:H、CH、C等、n≧4)
8. The compound of [Chemical Formula 3] is obtained after dissolving the compound of [Chemical Formula 4] below in a solvent, adding an alkylamine having a hydrophilic group or a derivative thereof, and stirring the mixture. Nanowire manufacturing method. (However, R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)
下記[化5]の化合物とN-ヒドロキシスクシンイミドを溶媒に溶かした後、縮合試薬を加え、この反応溶液から溶媒を除去した後精製し、前記[化4]の化合物を得ることを特徴とする請求項8に記載のナノワイヤーの製造方法。(但し、R:H、CH、C等、n≧4)
The compound of the following [Chemical Formula 5] and N-hydroxysuccinimide are dissolved in a solvent, a condensation reagent is added, the solvent is removed from the reaction solution, and the product is purified to obtain the compound of [Chemical Formula 4]. The manufacturing method of the nanowire of Claim 8. (However, R 1 : H, CH 3 , C 2 H 5 etc., n ≧ 4)
下記[化6]の化合物を溶媒に溶かし、この溶液にアミノアルキルカルボン酸(n≧4)を溶解させた水溶液を加え、pH調整、加熱還流の工程を経た後、精製し、上記[化5]の粉体を得ることを特徴とする請求項9に記載のナノワイヤーの製造方法。
The compound of the following [Chemical Formula 6] is dissolved in a solvent, and an aqueous solution in which an aminoalkylcarboxylic acid (n ≧ 4) is dissolved is added to this solution. The method of producing a nanowire according to claim 9, wherein:
JP2004065656A 2004-03-09 2004-03-09 Metal complex nanowire and manufacturing method thereof Expired - Lifetime JP4352131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065656A JP4352131B2 (en) 2004-03-09 2004-03-09 Metal complex nanowire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065656A JP4352131B2 (en) 2004-03-09 2004-03-09 Metal complex nanowire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005255543A JP2005255543A (en) 2005-09-22
JP4352131B2 true JP4352131B2 (en) 2009-10-28

Family

ID=35081635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065656A Expired - Lifetime JP4352131B2 (en) 2004-03-09 2004-03-09 Metal complex nanowire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4352131B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006349A1 (en) * 2011-07-01 2013-01-10 Cambrios Technologies Corporation Anisotropy reduction in coating of conductive films

Also Published As

Publication number Publication date
JP2005255543A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
Zhang et al. La (OH) 3: Ln3+ and La2O3: Ln3+ (Ln= Yb/Er, Yb/Tm, Yb/Ho) Microrods: Synthesis and Up-conversion Luminescence Properties
Zhang et al. Supramolecular organogels and nanowires based on a V-shaped cyanostilbene amide derivative with aggregation-induced emission (AIE) properties
Pan et al. Highly luminescent zinc (II)− Bis (8-hydroxyquinoline) complex nanorods: sonochemical synthesis, characterizations, and protein sensing
EP1648622A2 (en) Stabilized and chemically functionalized nanoparticles
JP3985025B2 (en) Amphiphilic compound, soluble carbon nanotube composite
Meng et al. Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Au n (n= 20, 24, 39, 40)
CN111647402B (en) Carbon quantum dot, preparation method thereof and tracer
JP2005220046A (en) Amphipathic hexa-peri-hexabenzocoronene derivative
CN105936636A (en) Preparation methods and application of long chain-containing phenazine derivative gel factor and metal gel thereof
Cha et al. Thermal behavior of gold (I)− thiolate complexes and their transformation into gold nanoparticles under heat treatment process
JP4352131B2 (en) Metal complex nanowire and manufacturing method thereof
JP2004250797A (en) Hollow microfiber
CN111205450B (en) Application and preparation method of tetraphenylethylene isomer
CN112079776A (en) Light-induced crystallized isoquinoline salt compound, preparation method and application thereof, and preparation method of nanocrystal
Omori et al. Transformation of two-dimensional structures of noncyclic isobutenyl diamide compounds by tandem Claisen rearrangement
JP2008068330A (en) Carbon nanotube-synthetic polymer composite material with controlled arrangement in nanometer order
Vaishampayan et al. Optical and photocatalytic properties of single crystalline ZnO at the air–liquid Interface by an aminolytic reaction
JP2004091328A (en) Inorganic nanoparticle-organic compound composite and unidimensionally arranged integrated structure thereof
CN110981917B (en) Amphiphilic double platinum complex and application thereof in preparation of luminescent nano assembly
CN110357873B (en) Organic fluorescent material for ultrahigh-resolution cell imaging and preparation and application thereof
JP2006232606A (en) Transition metal oxide nanotube
Luo et al. Solvent induced different morphologies of bis (propyl) triethoxysilane substituted perylenediimide and their optical properties
KR100893608B1 (en) Fluorescent Gel of Silver-Complex and Process of Preparation thereof
CN114106345B (en) Luminous copper-thiol polymer single crystal and preparation method thereof
Mahdi et al. Comarine derivatives designed as carbon dioxide and hydrogen storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350