JP4349518B2 - Continuous enzyme deactivation method of fruit juice - Google Patents

Continuous enzyme deactivation method of fruit juice Download PDF

Info

Publication number
JP4349518B2
JP4349518B2 JP2003315917A JP2003315917A JP4349518B2 JP 4349518 B2 JP4349518 B2 JP 4349518B2 JP 2003315917 A JP2003315917 A JP 2003315917A JP 2003315917 A JP2003315917 A JP 2003315917A JP 4349518 B2 JP4349518 B2 JP 4349518B2
Authority
JP
Japan
Prior art keywords
juice
enzyme
fruit juice
fruit
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003315917A
Other languages
Japanese (ja)
Other versions
JP2005080562A (en
Inventor
孝司 井上
崇輝 後藤
邦彦 植村
誠一郎 五十部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2003315917A priority Critical patent/JP4349518B2/en
Publication of JP2005080562A publication Critical patent/JP2005080562A/en
Application granted granted Critical
Publication of JP4349518B2 publication Critical patent/JP4349518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Alcoholic Beverages (AREA)

Description

本発明は、果汁又は野菜汁といった低酸性液体中の酵素を失活又は酵素活性を低減せしめる方法に関するものである。本発明によれば、保存中に品質劣化の原因となる酵素を含め各種酵素を失活させることができるので、長期間に亘って製造直後の品質が保持された果汁又は野菜汁を得ることができる。   The present invention relates to a method for inactivating or reducing enzyme activity in a low acid liquid such as fruit juice or vegetable juice. According to the present invention, it is possible to inactivate various enzymes including enzymes that cause quality degradation during storage, so that it is possible to obtain fruit juice or vegetable juice that retains quality immediately after production for a long period of time. it can.

果汁や野菜汁等低酸性液体中には、酸化等品質劣化の原因となる酵素が含まれており、保存中にも品質劣化が進行する。低酸性液体、例えば果汁中にはペクチンメチルエステラーゼやペルオキシダーゼが含まれ、ペクチンの分解により沈殿の発生が起こったり、酸化による褐変が進むなどの問題が発生するが、その対応として従来では、加熱のみにより酵素を失活させていた。   Enzymes that cause quality degradation such as oxidation are contained in low acid liquids such as fruit juice and vegetable juice, and the quality degradation progresses even during storage. Low acidic liquids such as fruit juice contain pectin methylesterase and peroxidase, which causes problems such as precipitation due to degradation of pectin and browning due to oxidation. Inactivated the enzyme.

酵素は熱に弱く、一般に60℃以上では容易に変性、失活するものが多いため(例えば、非特許文献1参照)、搾汁液に含まれる酵素の失活には、熱交換プレートを用いた加熱による失活や真空加熱濃縮時の熱による酵素失活を行う事が一般的にされている。しかし、単なる熱による処理では、90℃程度で数十秒の加熱が必要であり、その時の加熱による成分や香りの劣化を防止する事が出来なかった。   Enzymes are weak to heat and generally denatured and deactivated easily at 60 ° C. or higher (see, for example, Non-Patent Document 1). Therefore, a heat exchange plate was used to deactivate the enzyme contained in the juice. Inactivation by heating and enzyme inactivation by heat during vacuum heating concentration are generally performed. However, simple heat treatment requires heating at about 90 ° C. for several tens of seconds, and it has not been possible to prevent deterioration of components and aroma due to heating at that time.

また、搾汁から容器に詰めるまでに時間がかかる場合は、搾汁直後に酵素失活の為に加熱し、さらに容器に詰める際に再度加熱することもあり、この工程でも品質が劣化していた。   Also, if it takes time to pack the juice from the juice, it may be heated immediately after squeezing to deactivate the enzyme, and may be heated again when packed in the vessel. The quality has deteriorated even in this process. It was.

一方、液体飲料の電気的処理として、液体を高電界中に流して連続的に殺菌する方法が提案されている。この連続殺菌を実施するには、絶縁材からなる壁体に流体流路の一部をなす開口部が形成され、この開口部には交流電圧が印加される少なくとも一対の電極線が当該開口部を横切るように張設してなる殺菌装置を用い、少なくとも一対の電極線間に交流電圧を印加して殺菌するものである(例えば、特許文献1参照)。   On the other hand, as an electrical treatment of a liquid beverage, a method of continuously sterilizing a liquid by flowing it in a high electric field has been proposed. In order to carry out this continuous sterilization, an opening forming a part of a fluid flow path is formed in a wall made of an insulating material, and at least a pair of electrode wires to which an AC voltage is applied are formed in the opening. Is sterilized by applying an AC voltage between at least a pair of electrode wires using a sterilization device stretched across the wire (see, for example, Patent Document 1).

しかしながら、上記した電極線間に生じる高圧電界中に液体を通過させる方法は、液体を殺菌するためのものであって、酵素を失活させたり酵素活性を低減させたりするものではない。
特許第2848591号公報 「化学大辞典3」共立出版、昭和46年月5日、第562〜564頁。
However, the above-described method of passing a liquid through a high-voltage electric field generated between the electrode wires is for sterilizing the liquid, and does not deactivate the enzyme or reduce the enzyme activity.
Japanese Patent No. 2848591 "Chemical Dictionary 3", Kyoritsu Shuppan, 5th, 1971, pages 562-564.

本発明は、上記した技術の現状に鑑み、果汁や野菜汁中の酵素を失活させるに当り、従来法のように例えば600Wのマイクロ波で130℃に加熱したり100℃の温浴中で10分間加熱処理するといった高温長時間加熱処理を行ったのでは、風味や品質の劣化は避けられない点に注目し、低温もしくは高温短時間処理によって、果汁や野菜汁中の酵素、特に果汁や野菜汁の変質及び劣化の原因となる酵素を効率的に失活させる方法を新たに開発する目的でなされたものである。   In the present invention, in view of the above-described state of the art, enzymes in fruit juice and vegetable juice are deactivated by heating to 130 ° C. with a microwave of, for example, 600 W or 10 ° C. in a warm bath at 100 ° C. as in the conventional method. Pay attention to the fact that flavor and quality deterioration are unavoidable when heat treatment is performed for a long time, such as heat treatment for minutes, and enzymes in fruit juices and vegetable juices, especially fruit juices and vegetables, can be obtained by low temperature or high temperature short time treatments. It was made for the purpose of newly developing a method for efficiently deactivating enzymes that cause deterioration and deterioration of juice.

上記目的を達成するため、本発明者らは、各方面から検討した結果、殺菌目的のために専ら行われていた通電処理に着目した。そして、交流電圧を電極に印加し、これによって得られる高電界に果汁をさらしたところ、1秒以内という極く短時間の処理にて酵素が失活するという従来全く知られていない新しい知見を得ただけでなく、品温を100℃以上に上昇しなくてもできることを確認し、その結果、熱による果汁の変質や風味の劣化が発生しないこともはじめて確認した。   In order to achieve the above object, as a result of examination from various directions, the present inventors have focused on the energization treatment that has been performed exclusively for the purpose of sterilization. And, when AC voltage was applied to the electrode and the juice was exposed to the high electric field obtained by this, new knowledge that the enzyme was deactivated in a very short treatment within 1 second was not known at all. In addition to the obtained, it was confirmed that the product temperature could be increased without raising the temperature to 100 ° C. or higher, and as a result, it was confirmed for the first time that the juice was not deteriorated or deteriorated in flavor due to heat.

このように、通電処理によって果汁中の酵素が失活することは新しい知見であり、この処理によって保存中品質劣化の原因となる酵素が失活するため、果汁の風味品質が長期間に亘って保存、維持され、しかも、酵素失活処理自体が従来法とは異なり高温処理でないため、酵素失活処理時においても高温による風味、品質の劣化がなく、その結果、通電処理による酵素失活処理によれば、酵素失活処理時(通電処理時)から保存期間に亘って果汁の風味、品質の劣化を全般に防止できることは、更に新しい知見である。   Thus, it is a new finding that the enzyme in the fruit juice is deactivated by the energization treatment, and the enzyme causing the quality deterioration during storage is deactivated by this treatment, so that the flavor quality of the fruit juice is maintained over a long period of time. Unlike the conventional methods, the enzyme deactivation treatment itself is not a high temperature treatment, so there is no deterioration in flavor and quality due to the high temperature even during the enzyme deactivation treatment. According to the present invention, it is a further new finding that the flavor and quality of fruit juice can be prevented from being deteriorated in general over the storage period from the time of enzyme deactivation treatment (at the time of energization treatment).

これらの知見は、通電による殺菌処理とは全く別異のものであるし、従来から行われている高温加熱による酵素の失活処理とも別異のものであって、全く新規にして有用な知見である。   These findings are completely different from sterilization treatment by energization, and are also different from conventional enzyme deactivation treatment by high-temperature heating, which is completely new and useful knowledge. It is.

本発明は、これらの有用新知見に基づき更に研究の結果、遂に完成されたものであって、交流電圧を電極に印加し、これにより得られる高電界により短時間(5秒以内、好ましくは1秒以内)で酵素失活を行うものであり、本発明は、酵素失活を行う時に電界の効果を併用する事で高温にさらされる時間を極力短くし、ビタミンC等の成分や香り成分の分解を抑制し、しかも効果的に酵素の失活を連続的に行う方法を提供する事に有る。   The present invention has finally been completed as a result of further research based on these useful new findings, and an alternating voltage is applied to the electrode, and a high electric field obtained thereby allows a short time (within 5 seconds, preferably 1). Within a second), the enzyme is deactivated. In the present invention, when the enzyme is deactivated, the effect of the electric field is used in combination to shorten the time of exposure to high temperature as much as possible. The object of the present invention is to provide a method for continuously deactivating an enzyme while suppressing degradation.

上記目的を達成する為には、液体の供給口と取り出し口を設けた容器に通電ユニットを備える事により達成できる。この通電ユニットの電極には交流電源が接続され、液体は、絶縁体で挿んだ最低一対以上の対向電極間を通過させる事により失活できる。更に、通電ユニットを通液後は通電による抵抗加熱により加熱される為直ちに冷却されるような構造で有る事が望ましい。また、通電ユニット電極は必要に応じて絶縁体で挿まれた電極を複数枚重ねる事により一度に複数回通電する事ができ、効率的である。   In order to achieve the above object, it can be achieved by providing an energizing unit in a container provided with a liquid supply port and a liquid discharge port. An AC power supply is connected to the electrodes of the energization unit, and the liquid can be deactivated by passing between at least a pair of opposed electrodes inserted with an insulator. Furthermore, it is desirable to have a structure that immediately cools after passing through the energization unit because it is heated by resistance heating by energization. In addition, the energization unit electrode can be energized a plurality of times at a time by stacking a plurality of electrodes inserted with an insulator as required, and is efficient.

例えば、次のような装置を用いることによって、効率的に本発明に係る通電処理による酵素の失活を実施することができる。   For example, by using the following apparatus, the enzyme can be deactivated efficiently by the energization treatment according to the present invention.

果汁又は野菜汁(以下、果汁等ということもある)の供給口と取出口を設けた加圧容器にもなり得る容器内に、通電ユニット及びその下部に冷却水にて冷却される貯留部を配置し、通電ユニットの上端部は果汁等の供給口に接続し、下端部は貯留部に接続する。貯留部に溜められた酵素失活処理終了後の果汁等はパイプにより前記取出口から容器外に取り出す。   In a container that can be a pressurized container provided with a supply port and an outlet for fruit juice or vegetable juice (hereinafter also referred to as fruit juice), a current-carrying unit and a storage part that is cooled by cooling water at the lower part thereof It arranges, the upper end part of an electricity supply unit is connected to supply ports, such as fruit juice, and a lower end part is connected to a storage part. Fruit juice and the like after completion of the enzyme deactivation treatment stored in the storage part are taken out of the container from the outlet through a pipe.

通電ユニットには、果汁等の供給口から供給された果汁等が流れる流路が形成されており、この流路には交流電源に接続される少なくとも一対の電極が臨んでいればよく、例えば、複数の絶縁体を積層するとともに、絶縁体間に電極を挟持した構成とすることができる。   The energization unit is formed with a channel through which fruit juice supplied from a supply port for fruit juice or the like flows, and it is sufficient that at least a pair of electrodes connected to an AC power source face the channel. A plurality of insulators can be stacked and an electrode can be sandwiched between the insulators.

また、通電処理によって果汁等が加熱されてその品温が上昇し、沸とうするような場合には、それを抑制するために、容器を加圧容器として、加圧条件のもとで通電処理すればよい。その際、加圧容器内の圧力を、0.1MPa以上、好ましくは0.2PMa以上としておくのが良く、上限については格別の限定はないが、通常0.5MPa程度であり、この範囲内で品温に応じて適宜決定すればよい。また、加圧容器を使用すれば、液体取出口の弁をひらくことにより、圧力差を利用して酵素失活後の果汁等を容器外に容易に取出すことができる。   In addition, when fruit juice is heated by the energization process and its product temperature rises and boils, in order to suppress it, the energization process is performed under the pressurizing condition using the container as a pressurized container. do it. At that time, the pressure in the pressurized container should be 0.1 MPa or more, preferably 0.2 Ppa or more, and there is no particular limitation on the upper limit, but it is usually about 0.5 MPa, and within this range What is necessary is just to determine suitably according to goods temperature. Moreover, if a pressurized container is used, the juice after enzyme deactivation etc. can be easily taken out of a container using a pressure difference by opening the valve of a liquid outlet.

本発明において、一対の電極の間隙(d:mm)と印加電圧(H:V)との関係は、200≦H/d≦2000となる条件、好ましくは400≦H/d≦1600となる条件で失活させる。周波数は、低いほうが効率が高いため、50KHz以下好ましくは20KHz以下が良い。通液する時間は、1秒以内で十分効果を発揮する。   In the present invention, the relationship between the gap (d: mm) between the pair of electrodes and the applied voltage (H: V) is such that 200 ≦ H / d ≦ 2000, preferably 400 ≦ H / d ≦ 1600. To deactivate. The lower the frequency, the higher the efficiency. Therefore, the frequency is 50 KHz or less, preferably 20 KHz or less. The time for passing the liquid is sufficiently effective within one second.

このように、通電ユニット内の滞留時間(昇温開始から冷却開始まで)は、1秒〜0.01秒の短い時間で充分に効果が発揮されるが、滞留時間(処理時間)は、好ましくは0.5〜0.05秒、更に好ましくは0.3〜0.1秒程度である。本発明のように通電処理すると、例えば、0.2秒間に品温を急速に50℃上昇させることが可能である。また、使用電力を増加させれば品温の昇温が到達するまでの時間が短縮される。このように電圧を印加して短時間に急速に温度を上昇させることができるため、溶液中の酵素に何らかの物性変化が起こるものと推測され、酵素失活を速やかに行うことができる。   As described above, the residence time (from the start of temperature rise to the start of cooling) in the energization unit is sufficiently effective in a short time of 1 second to 0.01 seconds, but the residence time (treatment time) is preferably Is 0.5 to 0.05 seconds, more preferably about 0.3 to 0.1 seconds. When the energization process is performed as in the present invention, for example, the product temperature can be rapidly increased by 50 ° C. in 0.2 seconds. Further, if the power consumption is increased, the time until the product temperature rises is shortened. As described above, since the temperature can be rapidly increased in a short time by applying a voltage, it is presumed that some physical property change occurs in the enzyme in the solution, and the enzyme can be deactivated quickly.

通電処理によって、果汁等に存在する酵素は失活し、酵素活性は0〜10%にまで低減する。処理条件を強めれば、酵素活性を更に低減することも可能であるが、一般流通面から考慮すると、10%以下の範囲であれば実質上格別の問題点はないものと考えられる。このようにして、果汁等の保存中に品質劣化の原因となる酵素(ペクチンメチルエステラーゼ、ペルオキシダーゼ等)も、その活性が低減されるため、果汁等の品質劣化が長期間に亘って抑制される。なお、本発明において失活とは、酵素活性を完全に失う場合(完全失活)のほか、完全失活には至らないものの酵素活性が低減する場合も包含するものである。   By the energization treatment, the enzyme present in the fruit juice or the like is deactivated, and the enzyme activity is reduced to 0 to 10%. Enhancing the treatment conditions can further reduce the enzyme activity, but considering general distribution, it is considered that there is virtually no problem if it is in the range of 10% or less. In this way, since the activity of enzymes (pectin methylesterase, peroxidase, etc.) that cause quality degradation during storage of fruit juice or the like is also reduced, quality degradation of fruit juice or the like is suppressed over a long period of time. . In the present invention, the term “inactivation” includes not only the case where the enzyme activity is completely lost (complete inactivation) but also the case where the enzyme activity is reduced although it does not lead to complete inactivation.

そのうえ、通電処理によっても、短時間で処理することで果汁等の品温は必要以上に上昇することがなく、品温は、100℃以下であって、100〜50℃の温度帯、通常90〜65℃程度である。また、通電処理によって目的の品温に到達したら、直ちに処理した果汁等の冷却を開始する。したがって通電処理によれば、従来の酵素失活のように高温長時間処理する必要がなく、そのため、不活化処理時における果汁等の品質劣化も防止される。更にまた、本発明においては、通電によって果汁等の酵素活性をゼロ又は低減した後、直ちに(例えば通電ユニットの下部に設けた冷却した貯留部内で)冷却するため、果汁等の品質劣化がこの処理によっても更に防止される。   In addition, the product temperature such as fruit juice does not rise more than necessary by processing in a short time even by energization treatment, and the product temperature is 100 ° C. or less and is in a temperature range of 100 to 50 ° C., usually 90 It is about ~ 65 ° C. When the target product temperature is reached by the energization process, cooling of the processed fruit juice or the like is started immediately. Therefore, according to the energization process, it is not necessary to perform a high temperature and long time treatment as in the case of the conventional enzyme inactivation, and therefore, quality deterioration of fruit juice and the like during the inactivation process is prevented. Furthermore, in the present invention, the enzyme activity such as fruit juice is zeroed or reduced by energization, and then immediately cooled (for example, in a cooled storage section provided at the lower part of the energization unit). Is further prevented.

通電ユニットに通液する果汁は、特に搾汁方法は限定しないが、従来の搾汁機(インライン搾汁機、ブラウン搾汁、遠心搾汁機等)で搾汁したものが使用できる。   The juice that passes through the energizing unit is not particularly limited in terms of the method of squeezing.

また、通液する果汁は、ストレート果汁及び凍結濃縮した果汁及び濃縮還元した果汁など全ての果汁を使用する事ができる。   Moreover, all the fruit juices, such as the straight fruit juice, the freeze-concentrated fruit juice, and the concentrated and reduced fruit juice, can be used for the fruit juice to pass.

搾汁した液は、パルプ除去を行っておくと良い。   The juice that has been squeezed is preferably subjected to pulp removal.

対象溶液としては、オレンジやレモン等のカンキツ類の果汁や、アップル、ぶどう、もも、パインアップル、イチゴ、トマト、なし、バナナ、メロンなどの果汁のほか、ニンジン、大根など野菜搾汁液も使用可能である。これらの液体は、未加熱の方が好適である。   Candidate juices such as oranges and lemons, apples, grapes, peaches, pineapples, strawberries, tomatoes, none, bananas, melons, vegetable juices such as carrots and radishes can be used as target solutions It is. These liquids are preferably unheated.

通液した果汁等は、そのまま容器に充填、密閉することができるが、通液後の果汁等は直ちに冷却した後、容器に充填、密閉すれば、更に保存中における品質の劣化が防止される。したがって本発明は、果汁等に含まれる酵素を失活ないし酵素活性を低下させる効率的な新規方法を提供するだけでなく、この方法によって得られた風味、品質の劣化が防止された果汁類の製造、更にはこれらの果汁類を原料として常法にしたがって製造した各種飲料も本発明に包含するものである。   The passed fruit juice, etc. can be filled and sealed as it is in the container, but the fruit juice after passing the liquid is immediately cooled and then filled in the container and sealed to prevent further deterioration in quality during storage. . Therefore, the present invention not only provides an efficient new method for inactivating or reducing enzyme activity contained in fruit juice etc., but also the fruit juices obtained by this method in which deterioration of flavor and quality is prevented. Various beverages manufactured according to conventional methods using these fruit juices as raw materials are also included in the present invention.

本発明は、果汁等を通電ユニットに短時間通し、その際、高電界を印加することによって酵素を失活させるものである。本発明の方法は通常の加熱による方法のように、長時間、高温での加熱を行わないことから、加熱処理した果汁より香りの劣化や成分の変質が生じにくく、より搾りたてに近い果汁を製造することができる。   In the present invention, fruit juice or the like is passed through an energization unit for a short time, and at that time, a high electric field is applied to deactivate the enzyme. Since the method of the present invention does not perform heating at a high temperature for a long period of time as in a normal heating method, it is less likely to cause fragrance deterioration or component alteration than the heat-treated fruit juice, and the juice is more freshly squeezed. Can be manufactured.

以下、本発明の実施例及び比較例について述べる。   Examples of the present invention and comparative examples will be described below.

レモン生果10kgからインライン搾汁機にて2.9kgのレモン果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液し、その後直ちに冷却を行いペクチンメチルエステラーゼ活性を測定した。   From 10 kg of lemon fresh fruit, 2.9 kg of lemon fruit juice was squeezed with an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit, and then immediately cooled to measure pectin methylesterase activity.

処理条件としては、20KHz、5.50KV/cmの電圧を印加し、処理時間を0.2秒とした。そのときの品温は、70.5℃となった。   As processing conditions, a voltage of 20 KHz and 5.50 KV / cm was applied, and the processing time was set to 0.2 seconds. The product temperature at that time was 70.5 ° C.

レモン生果10Kgからインライン搾汁機にて4Kgのレモン果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液し、その後直ぐに冷却を行いヨウ素法により還元型ビタミンC含量を測定した。   4 kg of lemon juice was squeezed from 10 kg of fresh lemon fruit using an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit, cooled immediately thereafter, and the reduced vitamin C content was measured by the iodine method.

処理条件としては、20KHz、4.00KV/cmの電圧を印加し、処理時間を0.2secとした。そのときの品温は、72℃となった。   As processing conditions, a voltage of 20 KHz and 4.00 KV / cm was applied, and the processing time was 0.2 sec. The product temperature at that time was 72 ° C.

レモン生果10Kgからインライン搾汁機にて4Kgのレモン果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液し、その後直ぐに冷却を行いペクチンメチルエステラーゼ活性を測定した。また、ヨウ素法により還元型ビタミンC含量を測定した。   4 kg of lemon juice was squeezed from 10 kg of fresh lemon fruit using an in-line juicer. The juice was filtered through 200 mesh, passed through an energization unit, and then immediately cooled to measure pectin methylesterase activity. Moreover, the reduced vitamin C content was measured by the iodine method.

処理条件としては、20KHz、4.50KV/cmの電圧を印加し、処理時間を0.2secとした。そのときの品温は、79℃となった。
(比較例1)
レモン生果10Kgからインライン搾汁機にて2.9Kgのレモン果汁を搾汁した。その搾汁液を200メッシュにてろ過を行いペクチメチルエステラーゼ活性を測定した。また、ヨウ素法による還元型ビタミンC含量を測定した。
(比較例2)
レモン生果10Kgからインライン搾汁機にて4Kgのレモン果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、80℃、30秒間ウォ−ターバスにて加熱処理を行いペクチンメチルエステラーゼ活性を測定した。また、ヨウ素法により還元型ビタミンC含量を測定した。
ペクチンメチルエステラーゼ活性測定法:
レモン果汁25mlに1M NaClを4ml加え、1N NaOHにてpHを7.5に調整し40mlにメスアップを行ったものを酵素液とする。(尚、予め100℃、15分間の加熱を行ったレモン果汁をブランクとして使用した。)基質としては、0.1M NaCl中に1%カンキツペクチンを溶解し、NaOHにてpHを7.5に調整したものを用いた。活性測定としては、酵素液5mlに30℃、10分間プレインキュベート後、基質を20ml添加し30℃にて3時間反応を行い、その後、100℃、15分間加熱する事により反応を停止した。活性測定としては、0.02M NaOHによる滴定量することにより行った。酵素活性は、下記式から算定した。
ペクチンメチルエステラーゼ活性(Unit/ml)
=〔(滴定量×Factor)/(反応時間×酵素量×希釈倍率)〕×10000
ペクチンメチルエステラーゼ活性測定結果を下記表1に示し、還元型ビタミンC含量測定結果を下記表2に示す。
(表1)
ペクチンメチルエステラーゼ活性測定結果
残存活性(%)
────────────────────
実施例1 4.0
実施例3 0.0
比較例1 100.0
比較例2 0.1
────────────────────
(表2)
還元型ビタミンC含量
ビタミンC含量(mg%)
────────────────────
実施例2 54.93
実施例3 54.06
比較例1 57.20
比較例2 53.18
────────────────────
上記結果から明らかなように、通液処理することによって、果汁のペクチンメチルエステラーゼを失活できること(表1)、及び、成分分解も抑制されていること(表2)がいずれも実証された。
As processing conditions, a voltage of 20 KHz and 4.50 KV / cm was applied, and the processing time was 0.2 sec. The product temperature at that time was 79 ° C.
(Comparative Example 1)
From 10 kg of fresh lemon fruit, 2.9 kg of lemon fruit juice was squeezed with an in-line juicer. The squeezed juice was filtered through 200 mesh, and pectinmethylesterase activity was measured. Moreover, the reduced vitamin C content by the iodine method was measured.
(Comparative Example 2)
4 kg of lemon juice was squeezed from 10 kg of fresh lemon fruit using an in-line juicer. The juice was filtered through 200 mesh, heat-treated in a water bath at 80 ° C. for 30 seconds, and pectin methylesterase activity was measured. Moreover, the reduced vitamin C content was measured by the iodine method.
Method for measuring pectin methylesterase activity:
4 ml of 1M NaCl is added to 25 ml of lemon juice, pH is adjusted to 7.5 with 1N NaOH, and the volume is adjusted to 40 ml. (Lemon juice that had been heated at 100 ° C. for 15 minutes in advance was used as a blank.) As a substrate, 1% citrus pectin was dissolved in 0.1 M NaCl, and the pH was adjusted to 7.5 with NaOH. The adjusted one was used. For the activity measurement, after pre-incubating in 5 ml of enzyme solution at 30 ° C. for 10 minutes, 20 ml of substrate was added and reacted at 30 ° C. for 3 hours, and then the reaction was stopped by heating at 100 ° C. for 15 minutes. The activity was measured by titration with 0.02M NaOH. The enzyme activity was calculated from the following formula.
Pectin methylesterase activity (Unit / ml)
= [(Titration amount × Factor) / (Reaction time × Enzyme amount × Dilution ratio)] × 10000
The results of measuring pectin methylesterase activity are shown in Table 1 below, and the results of measuring reduced vitamin C content are shown in Table 2 below.
(Table 1)
Pectin methylesterase activity measurement results
Residual activity (%)
────────────────────
Example 1 4.0
Example 3 0.0
Comparative Example 1 100.0
Comparative Example 2 0.1
────────────────────
(Table 2)
Reduced vitamin C content
Vitamin C content (mg%)
────────────────────
Example 2 54.93
Example 3 54.06
Comparative Example 1 57.20
Comparative Example 2 53.18
────────────────────
As is clear from the above results, it was demonstrated that the pectin methylesterase in the fruit juice can be inactivated (Table 1) and that the component decomposition is also suppressed (Table 2) by the liquid passing treatment.

バレンシアオレンジ生果10Kgからインライン搾汁機にて3.6Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液しその後直ぐに冷却を行いペクチンメチルエステラーゼ活性を測定した。   3.6 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit, and then immediately cooled to measure pectin methylesterase activity.

処理条件としては、20KHz、5.50KV/cmの電圧を印加し処理時間を0.2secとした。そのときの品温は、69.7℃となった。   As processing conditions, a voltage of 20 KHz and 5.50 KV / cm was applied, and the processing time was 0.2 sec. The product temperature at that time was 69.7 ° C.

バレンシアオレンジ生果10Kgからインライン搾汁機にて3.9Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液しその後直ぐに冷却を行いペクチンメチルエステラーゼ活性を測定した。   3.9 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit, and then immediately cooled to measure pectin methylesterase activity.

処理条件としては、20KHz、7.0KV/cmの電圧を印加し処理時間を0.2secとした。そのときの品温は、79℃となった。
(比較例3)
バレンシアオレンジ生果10Kgからインライン搾汁機にて3.9Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行いペクチンメチルエステラーゼ活性を測定した。
(比較例4)
バレンシアオレンジ生果10Kgからインライン搾汁機にて3.9Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、70℃、30秒、加熱処理した。ペクチンメチルエステラーゼ活性を測定した。
(比較例5)
バレンシアオレンジ生果10Kgからインライン搾汁機にて3.9Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、80℃、30秒、加熱処理した。ペクチンメチルエステラーゼ活性を測定した。
As processing conditions, a voltage of 20 KHz and 7.0 KV / cm was applied, and the processing time was set to 0.2 sec. The product temperature at that time was 79 ° C.
(Comparative Example 3)
3.9 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh and pectin methylesterase activity was measured.
(Comparative Example 4)
3.9 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The squeezed liquid was filtered with 200 mesh and heat-treated at 70 ° C. for 30 seconds. Pectin methylesterase activity was measured.
(Comparative Example 5)
3.9 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh and heat-treated at 80 ° C. for 30 seconds. Pectin methylesterase activity was measured.

ペクチンメチルエステラーゼ活性は、実施例1と同様の方法で行った。得られた結果を表3に示す。
(表3)
ペクチンメチルエステラーゼ活性測定結果
残存活性(%)
────────────────────
実施例4 10.0
実施例5 0.0
比較例3 100.0
比較例4 11.0
比較例5 11.0
───────────────────
以上の事より酵素の失活において通電処理は、促進効果が認められ極短時間の加熱により酵素の失活が可能である事がわかった。
Pectin methylesterase activity was performed in the same manner as in Example 1. The obtained results are shown in Table 3.
(Table 3)
Pectin methylesterase activity measurement results
Residual activity (%)
────────────────────
Example 4 10.0
Example 5 0.0
Comparative Example 3 100.0
Comparative Example 4 11.0
Comparative Example 5 11.0
───────────────────
From the above, it was found that the energization treatment was effective in deactivating the enzyme, and the enzyme could be deactivated by heating for a very short time.

更に、加熱処理した比較例4及び比較例5と比べると、実施例4及び実施例5は加熱臭(イモ臭)が少なく後味もすっきりする傾向であった。   Furthermore, compared with the comparative example 4 and the comparative example 5 which heat-processed, Example 4 and Example 5 had the tendency for there was little heating odor (potato odor) and the aftertaste was clear.

バレンシアオレンジ生果10Kgからインライン搾汁機にて3.7Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液しその後直ぐに冷却を行いペルオキダーゼ活性を測定した。   3.7 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit, and then cooled immediately to measure peroxidase activity.

処理条件としては、20KHz、4.5KV/cmの電圧を印加し処理時間を0.2secとした。そのときの品温は、88℃となった。
(比較例6)
バレンシアオレンジ生果10Kgからインライン搾汁機にて3.7Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行いペルオキシダーゼ活性を測定した。
ペルオキシダーゼ活性測定方法:
1/15M酢酸緩衝液(pH5.0)10mlに0.1%グアヤコール1mlを添加しオレンジ果汁10mlに蒸留水5mlを加え0.1%過酸化水素を1ml添加し30℃にて反応を行った。100℃、15分間加熱する事により反応を停止し、終濃度50%となるようにエタノールを加えた。その後、1500rpm、10分間の遠心分離後の上清液の470nmにおける吸光度により酵素活性を測定した。
As processing conditions, a voltage of 20 KHz and 4.5 KV / cm was applied, and the processing time was 0.2 sec. The product temperature at that time was 88 ° C.
(Comparative Example 6)
3.7 kg of orange juice was squeezed from 10 kg of fresh Valencia orange fruit with an in-line juicer. The juice was filtered through 200 mesh and the peroxidase activity was measured.
Peroxidase activity measurement method:
1 ml of 0.1% guaiacol was added to 10 ml of 1/15 M acetate buffer (pH 5.0), 5 ml of distilled water was added to 10 ml of orange juice, and 1 ml of 0.1% hydrogen peroxide was added, and the reaction was carried out at 30 ° C. . The reaction was stopped by heating at 100 ° C. for 15 minutes, and ethanol was added to a final concentration of 50%. Thereafter, the enzyme activity was measured by the absorbance at 470 nm of the supernatant after centrifugation at 1500 rpm for 10 minutes.

なお、予め100℃、15分間の加熱した果汁をブランクとして用いた。   In addition, the fruit juice heated beforehand at 100 degreeC for 15 minutes was used as a blank.

得られた結果を下記表4に示す。
(表4)
ペルオキシダーゼ活性測定結果
470nmにおける吸光度
反応60分 反応120分
───────────────────────────
実施例6 0.014 0.014
比較例6 0.028 0.040
ブランク 0.014 0.014
───────────────────────────
以上のことよりペルオキシダーゼの失活が出来る事が分かった。
The results obtained are shown in Table 4 below.
(Table 4)
Peroxidase activity measurement results
Absorbance at 470 nm
Reaction 60 minutes Reaction 120 minutes ───────────────────────────
Example 6 0.014 0.014
Comparative Example 6 0.028 0.040
Blank 0.014 0.014
────────────────────────────
From the above, it was found that peroxidase can be inactivated.

バレンシアオレンジ生果10Kgからインライン搾汁機にて4.75Kgのオレンジ果汁を搾汁した。その搾汁液を200メッシュにてろ過を行い、通電ユニットに通液しその後直ぐに冷却を行いペクチンメチルエステラーゼ活性を測定した。ペクチンメチルエステラーゼ活性の測定方法は前記の通りとした。   4.75 kg of orange juice was squeezed from 10 kg of Valencia orange fresh fruit with an in-line juicer. The juice was filtered through 200 mesh, passed through a current-carrying unit and then immediately cooled to measure pectin methylesterase activity. The method for measuring pectin methylesterase activity was as described above.

処理条件としては、20KHz、6.0KV/cmの電圧を印加し処理時間を0.2secとした。処理時の電極内の圧力を炭酸ガスにて0、0.1、0.2MPaと変化させた。また、そのときの品温を70、65、60℃とそれぞれ変化させた。   As processing conditions, a voltage of 20 KHz and 6.0 KV / cm was applied, and the processing time was 0.2 sec. The pressure in the electrode during the treatment was changed to 0, 0.1, and 0.2 MPa with carbon dioxide gas. The product temperature at that time was changed to 70, 65, and 60 ° C., respectively.

下記表5、表6、表7にペクチンメチルエステラーゼの活性を測定した結果を常圧処理時の酵素活性を100%として示す。
(表5)
処理温度70℃時の圧力が及ぼす影響
───────────────────
圧力(MPa) 酵素活性(%)
───────────────────
0 100
0.1 46.9
0.2 33.8
───────────────────
(表6)
処理温度65℃時の圧力が及ぼす影響
───────────────────
圧力(MPa) 酵素活性(%)
───────────────────
0 100
0.1 95.9
0.2 86.9
───────────────────
(表7)
処理温度60℃時の圧力が及ぼす影響
───────────────────
圧力(MPa) 酵素活性(%)
───────────────────
0 100
0.1 91.0
0.2 89.3
───────────────────
以上の結果より、通電ユニットに通液させる場合、加圧処理も同時に施せば酵素活性を抑制することが可能である。また、処理温度が高くなればなるほど加圧処理する効果が高まることが分る。
The results of measuring the activity of pectin methylesterase are shown in Table 5, Table 6 and Table 7 below, with the enzyme activity during normal pressure treatment being taken as 100%.
(Table 5)
Effect of pressure at processing temperature of 70 ℃ ───────────────────
Pressure (MPa) Enzyme activity (%)
───────────────────
0 100
0.1 46.9
0.2 33.8
───────────────────
(Table 6)
Effect of pressure at a processing temperature of 65 ℃ ───────────────────
Pressure (MPa) Enzyme activity (%)
───────────────────
0 100
0.1 95.9
0.2 86.9
───────────────────
(Table 7)
Effect of pressure when the processing temperature is 60 ℃ ───────────────────
Pressure (MPa) Enzyme activity (%)
───────────────────
0 100
0.1 91.0
0.2 89.3
───────────────────
From the above results, when the liquid is passed through the energization unit, it is possible to suppress the enzyme activity by applying the pressure treatment at the same time. Moreover, it turns out that the effect of a pressurizing process increases, so that process temperature becomes high.

Claims (6)

未加熱果汁又は未加熱野菜汁を連続的に少なくとも一対以上の電極が臨んでいる通電ユニットを備えた装置に通液し、その際、交流電源を用い、周波数20〜50KHz、印加電界4000V/cm以上の通電処理によって0.5秒以内で果汁又は野菜汁の品温を50〜100℃に昇温し、その後可及的速やかに冷却すること、を特徴とする果汁又は野菜汁に含有されている酵素を失活又は酵素活性を低減する方法。   Unheated fruit juice or unheated vegetable juice is continuously passed through a device equipped with an energization unit facing at least a pair of electrodes, using an AC power source at a frequency of 20 to 50 KHz and an applied electric field of 4000 V / cm. It is contained in the fruit juice or vegetable juice characterized by heating the product temperature of fruit juice or vegetable juice to 50-100 degreeC within 0.5 second by the above energization process, and cooling as soon as possible after that. A method of deactivating an enzyme or reducing enzyme activity. 処理時の電極内の圧力を0.1〜0.5MPaに加圧した環境下で通電処理を行うこと、を特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the energization treatment is performed in an environment in which the pressure in the electrode during the treatment is increased to 0.1 to 0.5 MPa. 一対の電極の間隔(d:mm)と印加電圧(H:V)との関係が、200≦H/d≦2000であること、を特徴とする請求項1又は2に記載の方法。   3. The method according to claim 1, wherein the relationship between the distance between the pair of electrodes (d: mm) and the applied voltage (H: V) is 200 ≦ H / d ≦ 2000. 酵素が果汁又は野菜汁の保存中に品質劣化の原因となる酵素であること、を特徴とする請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the enzyme is an enzyme that causes quality deterioration during storage of fruit juice or vegetable juice. 酵素がペクチンメチルエステラーゼ又はペルオキシダーゼであること、を特徴とする請求項4に記載の方法。   The method according to claim 4, wherein the enzyme is pectin methylesterase or peroxidase. 酵素活性を0〜10%にまで失活ないし低減すること、を特徴とする請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the enzyme activity is deactivated or reduced to 0 to 10%.
JP2003315917A 2003-09-08 2003-09-08 Continuous enzyme deactivation method of fruit juice Expired - Lifetime JP4349518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315917A JP4349518B2 (en) 2003-09-08 2003-09-08 Continuous enzyme deactivation method of fruit juice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315917A JP4349518B2 (en) 2003-09-08 2003-09-08 Continuous enzyme deactivation method of fruit juice

Publications (2)

Publication Number Publication Date
JP2005080562A JP2005080562A (en) 2005-03-31
JP4349518B2 true JP4349518B2 (en) 2009-10-21

Family

ID=34416019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315917A Expired - Lifetime JP4349518B2 (en) 2003-09-08 2003-09-08 Continuous enzyme deactivation method of fruit juice

Country Status (1)

Country Link
JP (1) JP4349518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4495647B2 (en) * 2005-07-27 2010-07-07 株式会社ポッカコーポレーション Fruit juice sterilization method
JP4606960B2 (en) * 2005-07-27 2011-01-05 株式会社ポッカコーポレーション Tea beverage sterilization method
US7629011B2 (en) 2005-08-22 2009-12-08 Del Monte Corporation Process for removing the peel from citrus fruit

Also Published As

Publication number Publication date
JP2005080562A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
Iqbal et al. Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing
Jiménez-Sánchez et al. Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications
Sulaiman et al. Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures
Buckow et al. Pulsed electric field processing of orange juice: a review on microbial, enzymatic, nutritional, and sensory quality and stability
Choudhary et al. Ultraviolet pasteurization for food industry
Umair et al. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements
Pipliya et al. Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology
Lasekan et al. Effect of pulsed electric field processing on flavor and color of liquid foods
Zhu et al. Application advantages of new non-thermal technology in juice browning control: A comprehensive review
Silva et al. Advances in thermosonication for the inactivation of endogenous enzymes in foods
Shaik et al. Nonthermal pasteurization of pineapple juice: A review on the potential of achieving microbial safety and enzymatic stability
Aghajanzadeh et al. Pasteurization of juices with non-thermal technologies
CN104397804B (en) Fruit and vegetable juice and non-thermal preparation method thereof
Farias et al. Comparative study of two cold plasma technologies on apple juice antioxidant capacity, phenolic contents, and enzymatic activity
JP4349518B2 (en) Continuous enzyme deactivation method of fruit juice
JP4495647B2 (en) Fruit juice sterilization method
CN114651919B (en) A method for preparing concentrated citrus juice by hot processing for inhibiting non-enzymatic browning
Shahbaz et al. Effects of UV‐C in a teflon‐coil and high hydrostatic pressure combined treatment for maintenance of the characteristic quality of Dongchimi (watery radish kimchi) during room temperature storage
Shabbir et al. Applications of cold plasma technique to enhance the safety and quality of different food products
JP2015104323A (en) Lemon juice-containing beverage packed in container, and manufacturing method thereof
Premjit et al. Potential of Pulsed Electric Field for Inactivation of Food Enzymes
JP4773846B2 (en) Method for inhibiting browning of liquid foods and drinks
Woldemariam et al. Recent trends in cold pasteurization of fruit juices using pulsed electric fields: a review.
Aguiló‐Aguayo et al. Pome Fruit Juices
US1850594A (en) Process for sterilization of liquids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060814

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4349518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term